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Abstract. Assume ZF + AD. If ϵ is an ordinal and X is a set of ordinals, then [X]ϵ∗ is the collection

of order-preserving functions f : ϵ → X which have uniform cofinality ω and discontinuous everywhere.
The weak partition properties on ω1 and ω2 yield partition measures on [ω1]ϵ∗ when ϵ < ω1 and [ω2]ϵ∗ when

ϵ < ω2. The following almost everywhere continuity properties for functions on partition spaces with respect

to these partition measures will be shown.
For every ϵ < ω1 and function Φ : [ω1]ϵ → ω1, there is a club C ⊆ ω1 and a ζ < ϵ so that for all

f, g ∈ [C]ϵ∗, if f ↾ ζ = g ↾ ζ and sup(f) = sup(g), then Φ(f) = Φ(g).
For every ϵ < ω2 and function Φ : [ω2]ϵ → ω2, there is an ω-club C ⊆ ω2 and a ζ < ϵ so that for all

f, g ∈ [C]ϵ∗, if f ↾ ζ = g ↾ ζ and sup(f) = sup(g), then Φ(f) = Φ(g).

The previous two continuity results will be used to distinguish the cardinalities of some important sub-
sets of P(ω2): |[ω1]ω | < |[ω1]<ω1 |. |[ω2]ω | < |[ω2]<ω1 | < |[ω2]ω1 | < |[ω2]<ω2 |. ¬(|[ω1]<ω1 | ≤ |[ω2]ω |).
¬(|[ω1]ω1 | ≤ |[ω2]<ω1 |).

It will also be shown that [ω1]ω has the Jónsson property: For every Φ : <ω([ω1]ω) → [ω1]ω , there is an

X ⊆ [ω1]ω with |X| = |[ω1]ω | so that Φ[<ωX] ̸= [ω1]ω .

1. Introduction

Under the axiom of determinacy, AD, the cardinalities of sets have a very rich and non-linear structure.
The cardinalities of wellorderable sets are called cardinals. ω1 and ω2 refer to the first and second uncountable
cardinals, respectively. This article will distinguish the cardinalities of some important subsets of P(ω1)
(the power set of ω1) and P(ω2) (the power set of ω2) under AD. Since cardinalities are compared through
injections, a deep understanding of the behavior of functions between the relevant sets will be necessary.
This will be obtained through a complete analysis of the continuity properties of functions of the form
Φ : [ω1]

ϵ → ω1 when ϵ < ω1 and functions of the form Φ : [ω2]
ϵ → ω2 when ϵ < ω2. The arguments

in this article are entirely combinatorial and should be accessible with minimal knowledge of determinacy.
The necessary combinatorial consequences of determinacy such as the partition relations on ω1 and ω2, the
ultrapower representation of ω2, and some combinatorial tools to handle this ultrapower such as Kunen
functions and sliding arguments will be reviewed.

Descriptive set theorists have recently studied the definable cardinalities of quotients of equivalence re-
lations on Polish spaces through definable reductions. If E is an equivalence relation on R, then let R/E
denote the set of equivalence classes of E. If E and F are two equivalence relations on R, then a reduction
between E and F is a function Λ : R → R so that for all x, y ∈ R, x E y if and only if Λ(x) F Λ(y).
The reduction Λ between E and F induces an injection Σ : R/E → R/F . Motivated by this, an injection
Σ : R/E → R/F is said to be a Borel definable injection if and only if Σ is induced by a Borel reduction
Λ : R → R between E and F .

There are several important dichotomy results of descriptive set theory which elucidate the structure of
the quotients of Borel equivalence relations under Borel definable injections. Silver ([17]) showed that if E
is a Borel (or even coanalytic) equivalence relation, then either

• E has countably many classes or
• there is a Borel reduction of the equality equivalence relation = on R into E.

Thus the quotient of a Borel equivalence relation E is either countable or there is a Borel definable injection
of R into R/E. Let E0 be the equivalence relation on ω2 of eventual equality defined by x E0 y if and only
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if (∃m)(∀n ≥ m)(x(n) = y(n)). Harrington, Kechris, and Louveau [9] showed that for any Borel equivalence
relation E, either

• there is a Borel reduction of E into the equality relation = or
• there is a Borel reduction of E0 into E.

Thus for any Borel equivalence relation E, either there is a Borel definable injection of R/E into R (which
is in bijection with P(ω)) or there is a Borel definable injection of R/E0 into R/E.

With the axiom of choice, this nice structure for the definable cardinalities under definable injections
collapses since all these quotients are in bijection with R. In the spirit of descriptive set theory, this paper
will be interested in definable cardinalities studied using definable maps which can either be interpreted by
restricting functions to certain classes (like the class of Borel functions, as in the classical examples above) or
by working within models of determinacy, which will be the approach taken here. The axiom of determinacy,
AD, asserts that every two player game where each player takes turns playing a natural number has a winning
strategy for one of the two players. Determinacy axioms allow the structure of the definable cardinalities of
sets (which are surjective images of R) to possess a structure that resembles the structure of Borel definable
cardinalities and this structure is established through techniques that have a descriptive set theoretic flavor.

The two dichotomy results for Borel reductions mentioned above are proved by using the Gandy-Harrington
forcing of lightface Σ1

1 subsets of R developed in [10]. In an extension of AD called AD+, highly absolute
definitions for equivalence relations called ∞-Borel codes exist. The Vopěnka forcing of ordinal definable
(relative to the ∞-Borel code) subsets of R can be used to extend Silver’s dichotomy and the E0-dichotomy
into cardinality dichotomies in AD+. Generalizing Silver’s dichotomy, Woodin’s perfect set dichotomy ([3],
[1]) states that if E is an equivalence relation on R, then either

• R/E is wellorderable (that is, injects into an ordinal) or
• R injects into R/E.

Since all sets which are surjective images of R are in bijection with a quotient of an equivalence relation on R,
this can be reformulated to say that for all sets X which are surjective images of R, either X is wellorderable
or R injects into X. In L(R) |= AD, Caicedo and Ketchersid [1] extended these results further by showing
every set X ∈ L(R) is either wellorderable or R injects into X. Generalizing the E0-dichotomy, Hjorth’s
E0-dichtomy ([11]) states that if E is an equivalence relation on R, then either

• R/E injects into P(δ) for some ordinal δ or
• R/E0 injects into R/E.

The first two authors have recently obtained additional new cardinality results for quotients of equivalence
relations on R in L(R) |= AD. Borrowing a term from classical descriptive set theory, an equivalence relation
E on R is strongly smooth if and only if R/E is in bijection with R. In L(R) |= AD, many subsets of P(ω1)
are in bijection with an ω1-length disjoint union of quotients of strongly smooth equivalence relations on R;
however, only one cardinality can be represented in this way if each equivalence relation has only countable
equivalence classes: Combining ideas from the Woodin perfect set dichotomy and Hjorth’s E0-dichotomy,
[5] Theorem 5.8 showed that in L(R) |= AD, if ⟨Eα : α < ω1⟩ is a sequence of strongly smooth equivalence
relations on R so that each Eα has all countable equivalence classes, then the disjoint union

⊔
α<ω1

R/Eα is
in bijection with R× ω1.

Another classical cardinality result under AD is the perfect set property which asserts that every subset
of R is either countable or contains a perfect subset (a nonempty closed set with no isolated points). Since
R is in bijection with P(ω), this result completely characterizes the cardinalities of sets below P(ω) by
establishing a suitable form of the continuum hypothesis: All subsets of P(ω) are either countable or in
bijection with P(ω). This article and other recent work of the authors seek to understand the structure of
the cardinalities below P(ω1) and P(ω2).

By the Moschovakis coding lemma, R surjects onto P(ω1) and P(ω2). Thus every subset of P(ω1)
and P(ω2) is in bijection with a quotient of an equivalence relation on R. Rather than viewing these sets
as quotients of equivalence relations, the approach of this paper will be to consider these sets as sets of
increasing sequences of ordinals and use an important consequence of determinacy known as the partition
relations on ω1 and ω2. Both the descriptive set theoretic and the combinatorial approaches seem useful
and necessary for studying cardinalities under determinacy. The following will summarize the results of this
paper and its context within determinacy.
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Let A and B be two sets. If there is an injection from A into B, then write |A| ≤ |B|. Denote |A| < |B|
if |A| ≤ |B| but ¬(|B| ≤ |A|). If there is a bijection between A and B, then one writes |A| = |B|. By the
Cantor-Schröder-Bernstein theorem (proved in ZF), |A| = |B| if and only |A| ≤ |B| and |B| ≤ |A|. In the
absence of choice, the cardinality of A, referred to as |A|, is the equivalence class of A under the bijection
relation.

To understand cardinalities and injections, one will need to study functions between sets under determi-
nacy. One such classical result concerns continuity for functions from R to R. Assuming AD, every function
Φ : R → R is continuous on a comeager subset of R. As customary in descriptive set theory, thinking of R
as ωω (the collection of functions from ω into ω), continuity can be understood using the following example:
Φ(f)(0), the first bit of Φ(f), a priori could require global information about all of f . Continuity on a comea-
ger set implies that if f belongs to this comeager set, then Φ(f)(0) only depends on a local behavior of f .
That is, there is some n ∈ ω so that for all g which belong to this appropriate comeager set, if g ↾ n = f ↾ n,
then Φ(g)(0) = Φ(f)(0). Continuity of Φ on this comeager set means this property holds for the kth bit of
Φ(f) for each k ∈ ω and f belonging to the suitable comeager set.

Identifying subsets of ω1 or ω2 by their increasing enumeration, one will prefer to work with the collection
of increasing sequences through ω1 and ω2 (primarily because the partition properties are formulated for
these sets). If ϵ ≤ δ are two ordinals, then [δ]ϵ is the collection of increasing functions f : ϵ → δ. Let
[δ]<ϵ =

⋃
γ<ϵ[δ]

γ . This paper will be particularly interested in [ω1]
ω, [ω1]

<ω1 , [ω2]
ω, [ω2]

ω1 , and [ω1]
<ω2 .

This article will study the short functions on ω1 and ω2 (i.e. functions Φ : [ω1]
ϵ → ω1 when ϵ < ω1 or

Φ : [ω2]
ϵ → ω2 when ϵ < ω2). The continuity phenomenon for full functions on ω1 (i.e. Φ : [ω1]

ω1 → ω1) is
investigated in [6], and the techniques there are quite different than what is used here. The first two authors
[6] showed that for every function Φ : [ω1]

ω1 → ω1, there is a club C ⊆ ω1 with the property that for all
f ∈ [C]ω1

∗ , there exists an α < ω1 so that for all g ∈ [C]ω1
∗ , if g ↾ α = f ↾ α, then Φ(f) = Φ(g). ([C]ω1

∗ is
the collection of increasing functions from ω1 into C of the correct type, which will be defined in Definition
2.1.) The authors [6] also showed an even stronger version that for every function Φ : [ω1]

ω1 → ω1ω1, there
is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ and β < ω1, there exists an α < ω1 so that for all g ∈ [C]ω1
∗ ,

if g ↾ α = f ↾ α, then Φ(g) ↾ β = Φ(f) ↾ β. Note that this latter continuity property is just the standard
notion of continuity where the domain and range spaces are given the topology generated by sets of the form
Nσ = {f ∈ [ω1]

ω1 : σ ⊆ f} where σ ∈ [ω1]
<ω1 (or Nσ = {f ∈ ω1ω1 : σ ⊆ f} where σ ∈ <ω1ω1) as a basis.

As a consequence of Martin’s result that ω1 is a strong partition cardinal, the filter µω1 on [ω1]
ω1 defined

by X ∈ µω1 if and only if there exists a club C ⊆ ω1 so that [C]ω1
∗ ⊆ X is a countably complete measure

on ω1. Thus in the above two continuity results, the notion of largeness given by comeagerness for classical
continuity on R is replaced with largeness on [ω1]

ω1 given by the ultrafilter µω1 . The continuity property
for functions mentioned in the previous paragraph can be used to show that |P(ω1)| = |[ω1]

ω1 | is “regular
cardinality” with respect to wellordered decompositions: if ⟨Xα : α < ω1⟩ is a sequence of subsets of [ω1]

ω1

so that [ω1]
ω1 =

⋃
α<ω1

Xα, then there is an α < ω1 such that |Xα| = |[ω1]
ω1 |. This result can then be used

to show that |[ω1]
<ω1 | < |[ω1]

ω1 |. (See Fact 3.30 for a different argument using measures and certain inner
models of ZFC.)

This article will be concerned with continuity phenomena for functions Φ : [ω1]
ϵ → ω1 where ϵ < ω1. The

partition measure µϵ on [ω1]
ϵ will serve as the notion of largeness for subsets of [ω1]

ϵ. However, continuity in
the sense described above is impossible for functions from [ω1]

ω into ω1 by the following example. Consider
the function Ψ : [ω1]

ω → ω1 defined by Ψ(f) = sup(f). There is no club C ⊆ ω1 so that for all f ∈ [C]ω∗ ,
there is an n < ω such that whenever g ∈ [C]ω∗ and f ↾ n = g ↾ n, Ψ(f) = Ψ(g). However, Ψ does sat-
isfy a particular continuity phenomenon in the sense that Ψ(f) depends only on one piece of information,
namely sup(f). That is (by definition of Ψ), for any f, g ∈ [ω1]

ω, if sup(f) = sup(g), then Ψ(f) = Ψ(g).
The first main result is that this is a general occurrence that holds for any function Φ : [ω1]

ϵ → ω1 when
ϵ < ω1. For each f ∈ [ω1]

ϵ and α ≤ ϵ, let bound(f, α) = sup{f(β) : β < α}. Note that bound(f, 0) = 0 and
bound(f, ϵ) = sup(f).

Theorem 2.14. Assume ZF + AD. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1. Then there is a decreasing se-

quence of ordinals which are less than or equal to ϵ, (βi : i ≤ n), with βn = 0 and a club C ⊆ ω1 so that if
f, g ∈ [C]ϵ∗ has the property that bound(f, βi) = bound(g, βi) for all i ≤ n, then Φ(f) = Φ(g).
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This result is a continuity property which states that for any such function Φ, Φ(f) depends only on
local behaviors of f at certain finitely many places for µϵ-almost all f . The following is a more coarse but
useful consequence of the above result which states that for every function Φ, there is a δ < ϵ so that Φ(f)
depends only on the δ-length initial segment of f and sup(f).

Theorem 2.15. Assume ZF + AD. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1. Then there is a δ < ϵ and some

club C ⊆ ω1 so that for all f, g ∈ [C]ϵ∗ with f ↾ δ = g ↾ δ and sup(f) = sup(g), Φ(f) = Φ(g).

[ω1]
ω and [ω1]

<ω1 are two distinguished subsets of P(ω1). One natural question is whether these two sets
are different in terms of cardinality. Woodin [18] studied the cardinalities below [ω1]

<ω1 under ZF+ADR+DC.
From the dichotomy results in [18], it was known to Woodin that |[ω1]

ω| < |[ω1]
<ω1 |. Moreover, Woodin

isolated a subset of [ω1]
<ω1 called S1 defined by S1 = {f ∈ [ω1]

<ω1 : sup(f) = ω
L[f ]
1 }. It is implicit in [18]

that |S1| is incomparable with [ω1]
ω and hence one can conclude that |[ω1]

ω| < |[ω1]
<ω1 |.

The proofs of some of the main properties of S1 (assuming ZF+ AD+ DCR and all sets of reals have ∞-
Borel codes) can be found [4] and [5]. Assuming just ZF+AD, one can show that |R| ≤ |S1| and ¬(ω1 ≤ |S1|)
(see [5] Fact 6.3). The main property of S1 shown in [4] is that there is no injection of S1 into ωON assuming
ZF + AD + DCR and all sets of reals have ∞-Borel codes. From this, one can conclude that |R| < |S1| and
¬(|S1| ≤ |[ω1]

ω|). The argument for the main property of S1 in [4] goes roughly as follows: Suppose such
an injection Φ exists. Using ∞-Borel codes, one can find an inner model M of ZFC that “absorbs” some
fragment of this injection in a suitable sense. Let ζ < ωV

1 be an inaccessible cardinal of M . Since Coll(ω,< ζ)
is countable in the real world satisfying AD, one can find a G ⊆ Coll(ω,< ζ) which is Coll(ω,< ζ)-generic
over M . One can show that G adds a g ∈ S1 such that M [G] = M [g]. Since M “absorbs” Φ, Φ(g) ∈ M [g].
Since Φ is an injection, one can argue that M [g] = M [Φ[g]]. However, Φ(g) is an ω-sequence of ordinals.
By a crucial property of the Lévy collapse, there is a ξ < ζ so that Ψ(g) ∈ M [G ↾ ξ]. Then one has that
M [G] = M [g] = M [Φ(g)] = M [G ↾ ξ]. This is impossible.

The authors know very little about the cardinality properties of S1 in the absence of ∞-Borel codes. S1 is
a set whose definition is based upon the notion of constructibility. The two sets [ω1]

ω and [ω1]
<ω1 are very

concrete combinatorial objects. There should be no need to employ AD+ concepts to distinguish these two
cardinalities. Using the continuity properties for short functions mentioned above, one can distinguish these
two sets within ZF+ AD using combinatorial arguments.

Theorem 2.16. Assume ZF+ AD. |[ω1]
ω| < |[ω1]

<ω1 |.

Recently, the authors have used Theorem 2.16 as a backbone for more general results concerning in-
jections of [ω1]

<ω1 . For example, [7] showed under just ZF + AD that there is no injection of [ω1]
<ω1 into

ω(ωω), the set of ω-sequences into ωω. Moreover with the addition of DCR, [7] proved in ZF+AD+DCR that
there is no injection of [ω1]

<ω1 into ωON, the class of ω-sequences of ordinals. These results use a variety of
combinatorial and descriptive set theoretic consequences of determinacy to reduce back to Theorem 2.16.

Next, one will consider various subsets of P(ω2). Of particular interests are [ω2]
ω, [ω2]

<ω1 , [ω2]
ω1 , [ω2]

<ω2 ,
and [ω2]

ω2 . One would like to distinguish the cardinality of these sets from each other as well as from the
cardinality of the subsets of P(ω1) considered earlier such as [ω1]

ω, [ω1]
<ω1 , and [ω1]

ω1 .
Martin showed that ω2 is a weak partition cardinal and hence measurable. Using the same technique men-

tioned above (for showing |[ω1]
<ω1 | < |[ω1]

ω1 |) which involved using a measure and going into an appropriate
inner model of ZFC, one can show |[ω2]

<ω2 | < |[ω2]
ω2 | under just ZF+ AD.

Similar to the study of ω1, one needs to establish the analogous continuity property for ω2.

Theorem 3.21. Assume ZF + AD. Let ϵ < ω2 and Φ : [ω2]
ϵ
∗ → ω2. Then there is a decreasing se-

quence of ordinals less than or equal to ϵ, (βi : i ≤ n), with βn = 0 and an ω-club B ⊆ ω2 so that if
F ,G ∈ [B]ϵ∗ has the property that bound(F , βi) = bound(G, βi) for all i ≤ n, then Φ(F) = Φ(G).

Theorem 3.22. Assume ZF + AD. Let ϵ < ω2 and Φ : [ω2]
ϵ
∗ → ω2. Then there is a δ < ϵ and an ω-

club B ⊆ ω2 so that for all F ,G ∈ [B]ϵ∗ with F ↾ δ = G ↾ δ and sup(F) = sup(G), Φ(F) = Φ(G).
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Using these continuity results, one can establish the following cardinality relations:

Theorem 3.23. Assume ZF+ AD. |[ω2]
ω| < |[ω2]

<ω1 |.

Theorem 3.24. Assume ZF+ AD. |[ω2]
<ω1 | < |[ω2]

ω1 |.

Theorem 3.26. Assume ZF+ AD. |[ω2]
ω1 | < |[ω2]

<ω2 |.

It should be mentioned that these results concerning ω2 are proved in ZF + AD and the arguments
provided here are the only proofs presently known to the authors. That is, the authors do not know of an
AD+ style proof involving some analog of S1. In the proof that S1 does not inject into ωON sketched above,
one considered the forcing Coll(ω,< ζ) where ζ < ωV

1 is an inaccessible cardinal of an inner model M of
ZFC. In that case, one was able to find, in the real world, a generic over M since the forcing is countable
in the real world. One may attempt to make analogs of S1 to handle results at ω2. However, the naturally
associated forcing appears to be uncountable even in the real world, and one can no longer be certain that
generics for such forcings exist in the real world.

To give a more complete picture of the relations between cardinalities, one also has the following results.

Theorem 3.29. Assume ZF+ AD. ¬(|[ω1]
<ω1 | ≤ |[ω2]

ω|). Thus ¬(|[ω1]
ω1 | ≤ [ω2]

ω).

Theorem 3.31. Assume ZF+ AD. Then ¬(|[ω1]
ω1 | ≤ |[ω2]

<ω1 |).

From the results mentioned throughout the paper, one has the following diagram depicting the rela-
tionships between the uncountable cardinalities below P(ω2) which will be discussed in this paper. An
arrow between A and B indicates |A| < |B|. All relations among these cardinals are those derivable by
compositions of the arrows on the diagram. Of course, there are other cardinals below P(ω2) which are not
on the diagram, for instance [ω1]

<ω1 ⊔ [ω2]
ω and [ω1]

ω1 × [ω2]
<ω1 . With additional determinacy assumptions

such as AD+, the set S1 can be proved to be distinct from all of these.

ω1 R

R ⊔ ω1
R× ω1

[ω1]
ω [ω1]

<ω1
[ω1]

ω1
ω2

R ⊔ ω2
R× ω2

[ω2]
ω [ω2]

<ω1
[ω2]

ω1
[ω2]

<ω2
[ω2]

ω2

The main technique used in this paper involves Kunen functions for ω1. Let µ be the club measure on
ω1. Using the Kunen tree analysis, one can show that for any function f : ω1 → ω1, there is a function
Ξ : ω1×ω1 → ω1 so that for µ-almost all α, f(α) < sup{Ξ(α, β) : β < α} and {Ξ(α, β) : β < α} is an ordinal
(not just a set of ordinals). This function Ξ will be called a Kunen function for f . Ξ allows for a uniform
way of selecting a representative for any g <µ f , i.e. there is a β < ω1 so that the function Ξβ : ω1 → ω1

defined by Ξβ(α) = Ξ(α, β) is µ-almost equal to g. Using these Kunen functions and sliding arguments,
Martin proved an ultrapower representation for ω2 =

∏
ω1

ω1/µ and showed the weak partition property on
ω2.

The ultrapower representation is important for studying the continuity property at ω2 in this paper. In
fact, these continuity properties for functions Φ : [ω2]

ϵ → ω2 expressed in Theorem 3.21 and Theorem 3.22
when ϵ < ω2 and has uncountable cofinality are exceptionally remarkable and unique to ω2. For instance,
one can show under AD that the ultrapower of ω2 by the club measure µ on ω1,

∏
ω1

ω2/µ, is ω3. Define
5



Ψ : [ω2]
ω1 → ω3 by Ψ(f) = [f ]µ (where [f ]µ is the element of this ultrapower represented by f). There is no

ω-club B, ordinal δ < ϵ so that if f, g ∈ [B]ω1
∗ with f ↾ δ = g ↾ δ and sup(f) = sup(g), then Ψ(f) = Ψ(g).

This example shows that the continuity property expressed in Theorem 3.22 fails if one considers functions
whose range is larger than ω2. For partition cardinals greater than ω2, the failure of the continuity property
at ϵ of uncountable cofinality is even worse. ωω+1 is the next strong partition cardinal after ω1 under AD.
The ultrapower of ωω+1 by the club measure µ on ω1,

∏
ω1

ωω+1/µ, is ωω+1. Define Ψ : [ωω+1]
ω1 → ωω+1 by

Ψ(f) = [f ]µ. For the same reason as before, the continuity property expressed in Theorem 3.22 fails. These
continuity results at ω2 are largely possible due to the combinatorial tool available from the ultrapower
representation of ω2.

The basic facts about partition properties and Kunen functions can be found in [3]. These arguments
are well known and due to Jackson, Kunen, and Martin. (See [13], [14], and [15].) However, the article will
follow [3] which develops the minimal notation and theory necessary for the results in this paper.

The final section of this paper will study functions on tuples in [ω1]
ω using partition properties to establish

a basic combinatorial property called the Jónsson property for [ω1]
ω. Let X be a set. Let [X]n= = {f ∈ nX :

(∀i < j < n)(f(i) ̸= f(j))}. Let [X]<ω
= =

⋃
n∈ω[X]n=. X is n-Jónsson if and only if for every Φ : [X]n= → X,

there exists a Y ⊆ X with |Y | = |X| and Φ[[Y ]n=] ̸= X. X is Jónsson if and only if for every Φ : [X]<ω
= → X,

there is a Y ⊆ X with |Y | = |X| and Φ[[Y ]<ω
= ] ̸= X.

Under AD, Kleinberg [16] showed that ωn is Jónsson for all n ∈ ω. Jackson, Ketchersid, Schlutzenberg,
and Woodin [12] showed that under ZF + AD + V = L(R) (and also ZF + AD+) that every cardinal κ < Θ
is Jónsson. Holshouser and Jackson showed that R and R × κ for κ < Θ are Jónsson. The first author
[2] showed in fact that for all ordinals κ, R × κ is Jónsson. Holshouser and Jackson showed that ω2/E0 is
2-Jónsson. The first author and Meehan [8] showed that ω2/E0 is not 3-Jónsson and hence not Jónsson.
The final result of this paper shows [ω1]

ω has the Jónsson property:

Theorem 4.12. Assume ZF+ AD. [ω1]
ω is Jónsson.

2. Continuity of Short Functions on ω1

For the rest of the paper, assume ZF+ AD. (Not even DCR will be implicitly assumed.)
If ϵ ≤ κ are ordinals, then [κ]ϵ is the collection of increasing functions f : ϵ → κ.

Definition 2.1. ([14]) Let κ be an ordinal and ϵ ≤ κ. A function f : ϵ → κ has uniform cofinality ω if and
only if there is a function g : ϵ× ω → κ with the following two properties:
(a) For all α < ϵ and n ∈ ω, g(α, n) < g(α, n+ 1).
(b) For all α < ϵ, f(α) = sup{g(α, n) : n ∈ ω}.

A function f : ϵ → κ is discontinuous at α if and only if f(α) > sup{f(β) : β < α}.
A function f : ϵ → κ is of the correct type if and only if f has uniform cofinality ω and f is discontinuous

everywhere.
Let A ⊆ κ, [A]ϵ∗ denote the collection of all increasing functions f : ϵ → A of the correct type.

The collection of increasing functions and the collection of increasing functions of the correct type have
the same cardinality. In the following, one may use either sets for purpose of distinguishing cardinality.

Fact 2.2. Let κ be a cardinal. Let ϵ ≤ κ. [κ]ϵ ≈ [κ]ϵ∗.

Proof. Let H : κ → κ be any increasing function of the correct type. Define Φ : [κ]ϵ → [κ]ϵ∗ by Φ(f) = H ◦f .
Then Φ is an injection. The two sets are in bijection by the Cantor-Schröder-Bernstein theorem. □

Definition 2.3. Let κ be an ordinal and ϵ ≤ κ. One write κ →∗ (κ)ϵ2 to indicate that for every P : [κ]ϵ∗ → 2,
there is some club C ⊆ ω1 and an i ∈ 2 so that for all f ∈ [C]ϵ∗, Φ(f) = i.

If κ →∗ (κ)κ2 , then one says that κ is a strong partition cardinal.
If κ →∗ (κ)ϵ2 for all ϵ < κ, then κ is said to be a weak partition cardinal.

Fact 2.4. ([3] Section 2 and 4, [16] Chapter II, [15] Theorem 7.3 and 12.2.) (Solovay) The club measure µ
on ω1 is a countably complete normal measure on ω1. (Martin) ω1 is a strong partition cardinal.
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Definition 2.5. Let µ denote the club measure on ω1. For each ϵ ≤ ω1, let µϵ be a filter on [ω1]
ϵ
∗ defined

by K ∈ µϵ if and only if there is a club C ⊆ ω1 so that [C]ϵ∗ ⊆ K. Since ω1 is a strong partition cardinal,
one has that µϵ is a countably complete ultrafilter for all ϵ ≤ ω1.

If φ is a formula, then one writes (∀∗ϵf)φ(f) to indicate that the set {f ∈ [ω1]
ϵ
∗ : φ(f)} ∈ µϵ.

Definition 2.6. ([3] Section 5) Let µ be the club measure on ω1.
Let Ξ : ω1 × ω1 → ω1. For each α < ω1, let δΞα = sup{Ξ(α, β) : β < α}. Let Ξα : α → δΞα be defined by

Ξα(β) = Ξ(α, β).
Ξ is a Kunen function for f with respect to µ if and only ifKΞ

f = {α < ω1 : f(α) ≤ δΞα ∧ Ξα is a surjection} ∈
µ. KΞ

f is the set of α on which Ξ provides a bounding for f .

For β < ω1, let Ξ
β : ω1 → ω1 be defined by Ξβ(α) = Ξ(α, β) where α > β and 0 otherwise.

Fact 2.7. ([3] Section 5, [14] Lemma 4.1) (Kunen) For every f : ω1 → ω1, there is a Kunen function for f
with respect to µ.

Definition 2.8. Let β ≤ ϵ < ω1 and f ∈ [ω1]
ϵ
∗. Let bound(f, β) = sup{f(α) : α < β}, where sup(∅) is

defined to be 0.
If A ⊆ ω1 with |A| = ω1, then let enumA : ω1 → A denote the increasing enumeration of A.
Let C ⊆ ω1 be a club. Let nextωC(α) denote the ωth element of C above α.

Fact 2.9. Let ϵ < ω1. For all Φ : [ω1]
ϵ
∗ → ω1, there exists a unique bΦ ≤ ϵ so that bΦ is the largest β ≤ ϵ so

(∀∗ϵf)(bound(f, β) ≤ Φ(f)).

Proof. For each β ≤ ϵ < ω1, let Aβ be the set of f so that β is the largest γ ≤ ϵ so that Φ(f) ≥ bound(f, γ).
[ω1]

ϵ
∗ =

⋃
β≤ϵ Aβ . Since µϵ is a countably complete ultrafilter on [ω1]

ϵ
∗, there is a bΦ so that AbΦ

∈ µϵ. □

Lemma 2.10. Let ϵ < ω1. Let Φ : [ω1]
ϵ
∗ → ω1. Then there are club subsets of ω1, C and D, so that for all

f ∈ [D]ϵ∗, Φ(f) < nextωC(bound(f, bΦ)).

Proof. Let ∗ be a new symbol. Define a linear ordering L on ϵ ∪ {∗} by x ≺ y if and only if
(a) x, y ∈ ϵ and x < y
(b) x = ∗, y ∈ ϵ, and y ≥ bΦ
(c) x ∈ ϵ, y = ∗, and x < bΦ.

Note that L is a wellordering of ordertype less than ω1. If f : L → ω1 is an increasing function, then let
main(f) : ϵ → ω1 be defined by main(f)(α) = f(α). Let extra(f) ∈ ω1 be defined by extra(f) = f(∗).

Define a partition P : [ω1]
L
∗ → 2 by P (g) = 0 ⇔ Φ(main(g)) < extra(g). By the weak partition property

of ω1, there is some C ⊆ ω1 which is homogeneous for this partition. By intersecting with an appropriate
club, one may assume that for all f ∈ [C]ϵ∗, bΦ is the largest γ so that Φ(f) ≥ bound(f, γ). Therefore if
bΦ < ϵ, Φ(f) < f(bΦ).

The claim is that C is homogeneous for P taking value 0: Let D = {α ∈ C : enumC(α) = α} which is
the club set of closure points of C. Let f ∈ D. In the case that bΦ < ϵ, since bound(f, bΦ) ≤ Φ(f) < f(bΦ)
and f(bΦ) ∈ D, the ωth-element of C above Φ(f) is below f(bΦ). In all cases, let g : L → C be defined
by g(α) = f(α) for all α ∈ ϵ and g(∗) = nextωC(Φ(f)). Using any function witnessing that f has uniform
cofinality ω, one can show that g has uniform cofinality ω. g is discontinuous everywhere. So g ∈ [C]L∗ and
Φ(main(g)) = Φ(f) < nextωC(Φ(f)) = extra(g). Thus P (g) = 0 and hence C must have been homogeneous
for P taking value 0. The establishes the claim.

Now suppose f ∈ [D]ϵ∗. In the case that bΦ < ϵ, since bound(f, bΦ) ≤ Φ(f) < f(bΦ) and f(bΦ) ∈ D,
nextωC(bound(f, bΦ)) < f(bΦ). In all cases, let g : L → C be defined by g(α) = f(α) if α < ϵ and
g(∗) = nextωC(bound(f, bΦ)). As before, g is a function of the correct type in [C]L∗ . P (g) = 0 implies that
Φ(f) = Φ(main(g)) < extra(g) = nextωC(bound(f, bΦ)). This completes the proof. □

Lemma 2.11. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1 be such that bΦ ̸= 0. Then there is some club D ⊆ ω1,

some Kunen function Ξ : ω1 × ω1 → ω1, and some Φ′ : [ω1]
ϵ
∗ → ω1 so that for all f ∈ [D]ω1

∗ , Φ(f) =
Ξ(bound(f, bΦ),Φ

′(f)) where bΦ′ < bΦ.

Proof. By Lemma 2.10, there are clubs C and D1 so that for all f ∈ [D1]
ϵ
∗, Φ(f) < nextωC(bound(f, bΦ)). Let

Ξ be a Kunen function for nextωC : ω1 → ω1. Since KΞ
nextωC

∈ µ, let D2 ⊆ KΞ
nextωC

be a club subset of ω1. Let
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D3 = D1 ∩D2. Thus for all f ∈ [D3]
ϵ
∗, Φ(f) < nextωC(bound(f, bΦ)) ≤ δΞbound(f,bΦ). Let Φ′ : [D3]

ϵ
∗ → ω1 be

defined by Φ′(f) is the least γ < bound(f, bΦ) so that Φ(f) = Ξ(bound(f, bΦ), γ). Thus one has that for all
f ∈ [D3]

ϵ
∗, Φ(f) = Ξ(bound(f, bΦ),Φ

′(f)). Also (∀∗ϵf)(Φ′(f) < bound(f, bΦ)) implies that bΦ′ < bΦ as long
as bΦ ̸= 0. □

Definition 2.12. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1.

A representation for Φ is a tuple (Ξ0, ...,Ξn−1;β0, ..., βn; γ) with the following properties
(a) n ∈ ω. If n = 0, then no Ξ appears.
(b) β0 > β1 > ... > βn−1 > βn = 0 is a sequence of strictly decreasing ordinals less than or equal to ϵ.
γ < ω1.
(c) Each Ξi : ω1 × ω1 → ω1 is a Kunen function (for some function with respect to µ).
(c) Let Φn(f) = γ. Suppose for 0 < i ≤ n, Φi has been defined, then let Φi−1(f) = Ξi−1(bound(f, βi−1),Φi(f)).
One has that (∀∗ϵf)(Φ0(f) = Φ(f)).

Theorem 2.13. Let ϵ < ω1. Every Φ : [ω1]
ϵ
∗ → ω1 has a representation.

Proof. Let T be the tree of decreasing sequences σ = (β0, ..., βk) in ϵ+1 ordered by reverse string extension
with the property that there exists some Kunen functions Ξ0, ...,Ξk−1 and functions Φ0, ...,Φk with the
property that
(i) Φ0 = Φ.
(ii) βi = bΦi .
(iii) (∀∗ϵf)(Φi(f) = Ξi(bound(f, βi),Φi+1(f))) for all i < k.

The claim is that there there is some σ = (β0, ..., βn) ∈ T so that βn = 0.
To see this: Suppose not. Let σ = (β0, ..., βk) ∈ T with βk ̸= 0. Let Ξ0, ...,Ξk−1 and Φ0, ...,Φk witness

that σ ∈ T . (ii) implies that bΦk
= βk > 0. Lemma 2.11 implies that there is some Ξk and Φ′ so that

(∀∗ϵf)(Φk(f) = Ξk(bound(f, bΦk
),Φ′(f))) with bΦ′ < bΦk

= βk. Let Φk+1 = Φ′. Let βk+1 = bΦ′ . Let
σ′ = σˆβk+1. Then Φ0, ...,Φk+1 and Ξ0, ...,Ξk witness that σ′ ∈ T .

It has been shown that any σ ∈ T can be extended to some σ′ ∈ T . T is a tree on ϵ+ 1 with no terminal
nodes. Since ϵ is a wellordering, T must have an infinite branch. This is impossible since an infinite branch
is an infinite descending sequence of ordinals.

The claim has been shown. So let σ = (β0, ..., βn) ∈ T be such that βn = 0. Let Ξ0, ...,Ξn−1 and
Φ0, ...,Φn be witnesses to σ ∈ T . Since bΦn = βn = 0, one has that for µϵ-almost all f , bound(f, 0) =
0 ≤ Φn(f) < f(0). This implies that bΦn

= 0. By Lemma 2.10, there is a club C ⊆ ω1 so that Φn(f) <
nextωC(bound(f, bΦn

)) = nextωC(bound(f, 0)) = nextωC(0). Since µϵ is countably complete and nextωC(0) <
ω1, Φn is µϵ-almost everywhere a constant function taking value some γ ∈ nextωC(0). This implies that
(Ξ0, ...,Ξn−1;β0, ..., βn; γ) is a representation of Φ. □

The theorem implies a µϵ-almost everywhere continuity result for functions Φ : [ω1]
ϵ
∗ → ω1.

Theorem 2.14. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1. Then there is a decreasing sequence of ordinals which are

less than or equal to ϵ, (βi : i ≤ n), with βn = 0 and a club C ⊆ ω1 so that if f, g ∈ [C]ϵ∗ has the property
that bound(f, βi) = bound(g, βi) for all i ≤ n, then Φ(f) = Φ(g).

The following is an even coarser form of continuity:

Theorem 2.15. Let ϵ < ω1 and Φ : [ω1]
ϵ
∗ → ω1. Then there is a δ < ϵ and some club C ⊆ ω1 so that for all

f, g ∈ [C]ϵ∗ with f ↾ δ = g ↾ δ and sup(f) = sup(g), Φ(f) = Φ(g).

Proof. If n = 0, then Φ is a constant function so this immediately true. If n = 1, then let δ = β0 if β0 < ϵ
and δ = 0 if β0 = ϵ. If n > 1, then let δ = β1. □

Woodin [18] has observed the conclusion of the next theorem at least under ZF+DC+ADR or ZF+AD+.
The following gives a combinatorial proof in AD.

Theorem 2.16. |[ω1]
ω| < |[ω1]

<ω1 |.

Proof. Observe that [ω1]
ω
∗ ≈ [ω1]

ω and [ω1]
<ω1
∗ ≈ [ω1]

<ω1 . So suppose there is an injection Σ : [ω1]
<ω1
∗ →

[ω1]
ω
∗ .
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For each ϵ < ω1 and n ∈ ω, let Σϵ
n : [ω1]

ϵ
∗ → ω1 be defined by Σϵ

n(f) = Σ(f)(n). By Theorem 2.15, there
is some δϵn < ϵ so that there is some C ⊆ ω1 club with the property that for all f, g ∈ [C]ϵ∗, sup(f) = sup(g)
and f ↾ δϵn = g ↾ δϵn implies that Σϵ

n(f) = Σϵ
n(g).

For each n ∈ ω, define Λn : ω1 → ω1 by Λn(ϵ) = δϵn. Each Λn is a regressive function. For each n ∈ ω,
there is a club C so that Λn is constant on C. Define a relation S ⊆ ω × P(ω1) by S(n,C) if and only if
C is a club subset of ω1 and Λn is constant on C. By the Moschovakis coding lemma, there is a surjection
π : R → P(ω1). Define R ⊆ ω × R by R(n, r) if and only if R(n, π(r)). Therefore, using ACR

ω, there is
a function Γ : ω → R so that for all n ∈ ω, R(n,Γ(n)). Let Cn = π(Γ(n)) which is a club subset of ω1.
Thus Λn is constant on Cn. Let δn be such that for all ϵ ∈ Cn, Λn(ϵ) = δn. Let Cω =

⋂
n∈ω Cn. Let

δ = sup{δn : n ∈ ω}. Since ω1 is regular, δ < ω1.
Now fix an ϵ > δ be some limit ordinal with ϵ ∈ Cω. Since ϵ ∈ Cω, for all n, δ

ϵ
n = δn. As observed above

and since δϵn = δn ≤ δ, there is a club C ⊆ ω1 so that for all f, g ∈ [C]ϵ∗, if sup(f) = sup(g) and f ↾ δ = g ↾ δ,
then Σϵ

n(f) = Σϵ
n(g). Let T ⊆ ω × P(ω1) be defined by T (n,C) if and only if C is a club subset of ω1 and

for all f, g ∈ [C]ϵ∗, if sup(f) = sup(g) and f ↾ δ = g ↾ δ, then Σϵ
n(f) = Σϵ

n(g). By an argument as above

using ACR
ω and the Moschovakis coding lemma, there is a sequence ⟨Dn : n ∈ ω⟩ so that for all n ∈ ω, Dn is

a club subset of ω1 and for all f, g ∈ [Dn]
ϵ
∗, if sup(f) = sup(g) and f ↾ δ = g ↾ δ, then Σϵ

n(f) = Σϵ
n(g). Let

D =
⋂

n∈ω Dn.
Now pick f, g ∈ [D]ϵ∗ so that f ↾ δ = g ↾ δ, sup(f) = sup(g), and f ̸= g. Since for all n ∈ ω, δ ≥ δn = δϵn,

one has that Σ(f) = Σ(g). This contradicts Σ being an injection. □

3. Continuity of Short Functions on ω2

First, one will review the notations and basic tools needed to analyze ω2 under AD. See [3] Section 5 and
6 for more details and the proofs of the following results.

Let µ denote the club filter on ω1. An important application of the Kunen function for functions f : ω1 →
ω1 is the existence of a uniform procedure to select representatives of the ultrapower

∏
ω1

ω1/µ.

Fact 3.1. Let µ be the club measure on ω1. Suppose f : ω1 → ω1 and possesses a Kunen function Ξ with
respect to µ. Suppose G ∈

∏
α∈ω1

f(α)/µ. Then there is a β < ω1 so that [Ξβ ]µ = G

As a consequence, one can show that
∏

ω1
ω1/µ is wellfounded even without DCR.

Fact 3.2. Let f : ω1 → ω1 and possesses a Kunen function Ξ with respect to µ. Then
∏

α∈ω1
f(α)/µ, i.e.

the initial segment of
∏

ω1
ω1/µ determined by [f ]µ, is a wellordering.∏

ω1
ω1/µ is wellfounded.

For each F ∈
∏

ω1
ω1/µ, F < ω2. Thus

∏
ω1

ω1/µ ≤ ω2.

Fact 3.3. (Martin) Assume just ZF. Let κ be a strong partition cardinal.
If ν is a measure on κ, then

∏
κ κ/ν is a cardinal.

If ν is a normal κ-complete measure on κ, then
∏

κ κ/ν is a regular cardinal.

Corollary 3.4. (Martin) Let µ be the club measure on ω1. ω2 =
∏

ω1
ω1/µ and ω2 is a regular cardinal.

Definition 3.5. Let µ be the club measure on ω1. Let h : ω1 → ω1. Suppose h possesses a Kunen function
Ξ with respect to µ. An ordinal β < ω1 is a minimal code (relative to Ξ) if and only if for all γ < β,
¬(Ξγ =µ Ξβ). Let J be the collection of β which are minimal codes and satisfy Ξβ <µ h. Define an ordering
≺ on J by α ≺ β if and only if Ξα <µ Ξβ . By Fact 3.1, for every G < [h]µ, there is a unique β ∈ J so
that Ξβ ∈ G (i.e. [Ξβ ]µ = G). In this way, one says that β is a minimal code for G or for any g ∈ G with
respect to Ξ. Thus (J,≺) has the same ordertype as [h]µ. By Fact 3.2, [h]µ is a wellordering. Let ϵ ∈ ON
denote the ordertype of ([h]µ, <) which is equal to the ordertype of (J,≺). Let π : ϵ → (J,≺) be the unique
order-preserving isomorphism.

Note that the objects J , ≺, ϵ, and π depend on Ξ and h. However, within this section, one will only work
with a single Ξ and h at a given time. It should be clear in context that these objects depend on this fixed
Ξ and h.

Definition 3.6. Let µ be the club measure on ω1. Let h : ω1 → ω1 be a function so that h(α) > 0 µ-almost
everywhere. Let Ξ be a Kunen function for h with respect to µ. Let ϵ = [h]µ = ot(J,≺) which are defined
relative to Ξ and h.
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Let Th = {(α, β) ∈ ω1 × ω1 : β < h(α)}. Let T h = (Th,⊏) where ⊏ is the lexicographic ordering. Note
that ot(T h) = ω1.

Suppose F : T h → ω1 is an order-preserving function. Let g ∈ ω1 → ω1 be such that g <µ h. Let
Ag = {α : g(α) < h(α)}. Let F g : ω1 → ω1 be defined by

F g(α) =

{
F (α, g(α)) α ∈ Ag

F (α, 0) otherwise

Note that if g1 <µ g2 <µ h, then F g1 <µ F g2 .

If β ∈ ϵ, then let F (β) = FΞπ(β)

. Let funct(F ) : ϵ → ON be defined by funct(F )(α) = [F (α)]µ.

If X ⊆ ω1, then let [X]T
h

be the collection of order-preserving functions f : T h → X. Let [X]T
h

∗ be the
collection of correct type order-preserving functions f : T h → ω1 (since T h is order-isomorphic to ω1, this is
equivalent to the earlier notion of f : ω1 → X having the correct type).

Fact 3.7. Let µ be the club measure on ω1. Let h : ω1 → ω1 be a function possessing a Kunen function

Ξ with respect to µ. Suppose F0, F1 ∈ [ω1]
T h

have the property that F
(β)
0 =µ F

(β)
1 for all β < ϵ. Then for

µ-almost all α, F0(α, β) = F1(α, β) for all β < h(α).

Suppose ϵ < ω2 and F : ϵ → ω2. Let h : ω1 → ω1 be such that [h]µ = ϵ. Let Ξ be a Kunen function
for h. Via a “sliding argument”, one can find an increasing function F : T h → ω1 so that for all β < ϵ,
[F (β)]µ = F(β). Hence one can study functions F : ϵ → ω2 by using the strong partition property of ω1 on

partitions of functions in [ω1]
T h

∗ . See [3] Section 5 on the statement of the sliding lemma and how it can be
used to prove the following results:

Theorem 3.8. (Martin-Paris) Let µ be the club measure on ω1. Then for all α < ω2, the partition relation
ω2 → (ω2)

α
2 holds. That is, ω2 is a weak partition cardinal.

As a consequence of the weak partition property on ω2, one can completely characterize the normal
measures on ω2.

Corollary 3.9. Let Wω2
ω and Wω2

ω1
denote the ω-club and ω1-club filter, respectively.

Wω2
ω and Wω2

ω1
are the only two ω2-complete normal ultrafilters on ω2.

The next two results show that club subsets and ω-club subsets of ω2 are lifts (in a certain sense) of some
club subsets of ω1.

Fact 3.10. Let µ be the club measure on ω1. If C ⊆ ω1 is a club subset of ω1, then [C]ω1/µ is a club subset
of ω2.

If D ⊆ ω2 is club, then there is a club C ⊆ ω1 so that [C]ω1/µ ⊆ D.

Fact 3.11. Let µ be the club measure on ω1. Let C ⊆ ω1 be a club. Then [C]ω1
∗ /µ is an ω-club subset.

Moreover, for every ω-club D ⊆ ω2, there is a club C ⊆ ω1 so that [C]ω1
∗ /µ ⊆ D.

Fact 3.12. Let µ denote the club measure on ω1. Let C ⊆ ω1 be club. Let B = [C]ω1
∗ /µ which is an ω-club

subset of ω2.
Let ϵ < ω2. Let h : ω1 → ω1 with h(α) > 0 for all α < ω1 and [h]µ = ϵ. Let Ξ be a Kunen function for h.

Let F ∈ [B]ϵ∗ (be of correct type). Then there is an F ∈ [C]T
h

∗ so that for all α < ϵ, [F (α)]µ = F(α).

Definition 3.13. Let µ denote the club measure on ω1. Let ν = Wω2
ω denote the ω-club measure on ω2.

Let ϵ < ω2. Define νϵ as follows: for all A ⊆ [ω2]
ϵ
∗, A ∈ νϵ if and only if there is a ω-club B ⊆ ω2 so that

[B]ϵ∗ ⊆ A. νϵ is an ω2-complete measure on [ω2]
ϵ
∗ by the weak partition property of ω2.

Let F ∈ [ω2]
ϵ
∗. For β ≤ ϵ, let bound(F , β) = sup{F(α) : α < β}.

Let Φ : [ω2]
ϵ
∗ → ω2. Let bΦ be defined so that for νϵ-almost all F ∈ [ω2]

ϵ
∗, bΦ is the largest γ ≤ ϵ so that

Φ(F) ≥ bound(F , γ).
Let h ∈ ω1 → ω1 with h(α) > 0 be such that [h]µ = ϵ. Let Ξ be a Kunen function for h with respect to µ.

Suppose F ∈ [ω1]
T h

∗ and β ≤ ϵ. Define Boundβ : ω1 → ω1 by Boundβ(F )(γ) = sup{F (α)(γ) : α < β}. Note
that although β may be uncountable, for each γ, this is a supremum of a set containing at most |h(γ)| = ℵ0

many elements.
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For the next several results, assume the setting of Definition 3.13.

The next result states that if F ∈ [ω2]
ϵ
∗ and F ∈ [ω1]

T h

∗ is a lifted representation of F , then Boundβ(F )
is a lifted representation of bound(F , β).

Fact 3.14. Let β ≤ ϵ. Let F ∈ [ω2]
ϵ
∗. Let F ∈ [ω1]

T h

∗ be such that for all α < ϵ, [F (α)]µ = F(α). Then
bound(F , β) = [Boundβ(F )]µ.

Proof. First observe that for any F , there is an F with the above property by Fact 3.12.
Let δ < bound(F , β). Then there is some γ < β so that δ < F(γ). So δ < [F (γ)]µ. Hence δ <

[Boundβ(F )]µ.
Now suppose that δ < [Boundβ ]µ. Let ℓ : ω1 → ω1 be such that [ℓ]µ = δ. Then for µ-almost all γ,

ℓ(γ) < sup{F (α)(γ) : α < β}. Therefore, for µ-almost all γ, there is a ζ < h(γ) and, in fact, if β < ϵ, there is
a ζ < Ξπ(β)(γ) so that ℓ(γ) < F (γ, ζ). Let ι : ω1 → ω1 be defined so that for the set of µ-almost all γ with the
previous property, ι(γ) is the least such ζ with ℓ(γ) < F (γ, ζ). There is some ρ < β so that ι =µ Ξπ(ρ). Thus

ℓ <µ F ι =µ FΞπ(ρ)

= F (ρ). Hence δ < F(ρ) where ρ < β. This shows that [Boundβ ]µ < bound(F , β). □

Definition 3.15. Let β ≤ ϵ. Let C ⊆ ω1 be a club subset of ω1.

For each F ∈ [ω1]
T h

∗ , define Fnextβ,C(F ) : ω1 → ω1 by Fnextβ,C(F )(α) = nextωC(Boundβ(F )(α)).

Using either Fact 3.7 or Fact 3.14, if F0, F1 ∈ [ω1]
T h

∗ have the property that for all β ≤ ϵ, F
(β)
0 =µ F

(β)
1 ,

then Fnextβ,C(F0) =µ Fnextβ,C(F1).

Therefore the following is well defined: if F ∈ [ω2]
ϵ
∗, let fnextβ,C(F) = [Fnextβ,C(F )]µ, for any F ∈ [ω1]

T h

∗
such that for all α < ϵ, [F (α)]µ = F(α).

The following gives an intuitive summary of the previous notations.

If F : ϵ → ω2 and β ≤ ϵ, bound(F, β) = sup{F(α) : α < β} which is an ordinal less than ω2. If F ∈ [ω1]
T h

∗
represents F in the sense stated in Fact 3.14, then Boundβ(F ) : ω1 → ω1 is a representative for the ordinal
bound(F , β) in the ultrapower of ω1 by the club measure on ω1.

Now suppose C ⊆ ω1 is a club, β ≤ ϵ, and F : ϵ → ω2 which is represented by F : T h → ω1.
Fnextβ,C : ω1 → ω1 is defined using F and C to represent fnextβ,C(F) which is roughly the next element of
the ω-club on ω2 induced by the club C ⊆ ω1 after the ordinal boundβ(F).

Lemma 3.16. Assume the setting of Definition 3.13. There is a club C ⊆ ω1 and an ω-club B ⊆ ω2 so that
for all F ∈ [B]ϵ∗, Φ(F) < fnextbΦ,C(F).

Proof. For each α < ω1, one will define a wellordering Lα: Let ∗α be a distinct new object. The underlying
domain of Lα is h(α) ∪ {∗α}.

First assume bΦ < ϵ. Define the linear ordering ≺α by x ≺α y if and only if
(a) x, y ∈ h(α) and x < y.
(b) x = ∗α and y ∈ h(α), and y ≥ Ξπ(bΦ)(α).
(c) x ∈ h(α), y = ∗α, and x < Ξπ(bΦ)(α).

If bΦ = ϵ, then define x ≺α y if and only if
(a) x, y ∈ h(α) ∧ x < y.
(b) x ∈ h(α) and y = ∗α.

Let L = (L,≺) be a linear ordering on L = {(α, x) : α ∈ ω1 ∧ x ∈ Lα} where ≺ is the lexicographic
ordering on L with ≺α on the αth-coordinate. Note that L has ordertype ω1.

In the case that bΦ = ϵ, let h̃(α) = h(α) + 1. By initially choosing Ξ large enough, one may assume that

Ξ is also a Kunen function for h̃ with respect to µ. Note that L is order isomorphic to T h̃.

Suppose K ∈ [ω1]
L
∗ . Define main(K) : [ω1]

T h → ω1 by main(K)(α, β) = K(α, β). Define extra(K) : ω1 →
ω1 by extra(K)(α) = K(α, ∗α).

Let P : [ω1]
L → 2 be defined by P (K) = 0 ⇔ Φ(funct(main(K))) < [extra(K)]µ. By ω1 →∗ (ω1)

ω1
2 , there

is a club C ⊆ ω1 which is homogeneous for P .
Claim 1: C is homogeneous for P taking value 0.
By definition of bΦ, there is an ω-club B′ ⊆ ω2 so that all F ∈ [B]ϵ∗, bΦ is the largest γ ≤ ϵ so that

Φ(F) ≥ bound(F , γ). By Fact 3.14, there is a club C ′ so that [C ′]ω1
∗ /µ ⊆ B. By intersecting with C ′, assume

that C ⊆ C ′.
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(Case I) bΦ < ϵ.
Let D = {α ∈ C : enumC(α) = α} be the closure points of C. Let B = [D]ω1

∗ . Pick any F ∈ [B]ϵ∗.

By Fact 3.12, there is some F ∈ [D]T
h

∗ so that for all α < ϵ, [F (α)]µ = F(α). Let f : ω1 → ω1 be
such that [f ]µ = Φ(F). By Fact 3.14, bound(F , bΦ) = [BoundbΦ

(F )]µ. Since bΦ is the least γ so that

Φ(F) ≥ bound(F , γ), one has that the set A of α’s so that BoundbΦ
(F )(α) ≤ f(α) < F (bΦ)(α) belongs to µ.

Define K ∈ [C]L∗ by

K(α, z) =


F (α, z) z ∈ h(α)

nextωC(f(α)) α ∈ A ∧ z = ∗α
nextωC(BoundbΦ

(F )(α)) α /∈ A ∧ z = ∗α
.

Note that since F (α,Ξπ(bΦ)) ∈ D, K(α, ∗α) < K(α,Ξπ(bΦ)) for all α. Thus K : L → C is indeed an
increasing function. Since F is a function of the correct type, one can check that K is also of the correct
type.

Note thatmain(K) = F and for µ-almost all α, extra(K)(α) = nextωC(f(α)) > f(α). Thus Φ(funct(main(K))) =
Φ(F) = [f ]µ < [extra(K)]µ. Thus P (K) = 0. However since C is homogeneous for P and K ∈ [C]L∗ , one has
that C is homogeneous for P taking value 0.

(Case II) bΦ = ϵ.
Let B = [C]ω1

∗ . Pick any F ∈ [B]ϵ∗. Let f : ω1 → ω1 be such that [f ]µ = Φ(F). Let g(α) = nextωC(f(α)).
Let G ∈ [B]ϵ+1

∗ be defined by

G(α) =

{
F(α) α < ϵ

[g]µ α = ϵ

By Fact 3.12, there is some K ∈ [C]T
h̃

∗ = [C]L∗ so that for all α < ϵ+ 1, K(α) = G(α).
Then one has that Φ(funct(main(K))) = Φ(F) = [f ]µ < [g]µ = [extra(K)]µ. Thus P (K) = 0. Since

K ∈ [C]L∗ , C is homogeneous for P taking value 0.
The claim has now been established.
Let D = {α ∈ C : enumC(α) = α}. Let B = [D]ω1

∗ . Now suppose F ∈ [B]ϵ∗. By Fact 3.12, pick any

F ∈ [D]T
h

∗ so that for all α < ϵ, [F (α)]µ = F(α). Now define K ∈ [C]L∗ by

K(α, z) =

{
F (α, z) z ∈ h(α)

nextωC(BoundbΦ
(F )(α)) z = ∗α

.

Since C is homogeneous for P taking value 0, one has P (K) = 0. This implies Φ(F) = Φ(funct(main(K))) <
[extra(K)]µ = [FnextbΦ,C(F )]µ = fnextbΦ,C(F). This completes the proof. □

Definition 3.17. Suppose Σ : ω1 × ω1 → ω1.
Suppose f0 : ω1 → ω1 and f1 : ω1 → ω1. Let vf0,f1 : ω1 → ω1 be defined by vf0,f1(α) = Σ(f0(α), f1(α)).

Note that if f ′
0 =µ f0 and f ′

1 =µ f1, then vf0,f1 =µ vf ′
0,f

′
1
.

Therefore, define Σ̂ : ω2×ω2 → ω2 by Σ̂(α, β) = [vfα,fβ ]µ, where fα, fβ : ω1 → ω1 are such that [fα]µ = α
and [fβ ]µ = β.

Lemma 3.18. Suppose bΦ > 0. Then there is a Kunen function Σ : ω1 × ω1 → ω1 and a function
Φ′ : [ω2]

ϵ
∗ → ω2 so that for νϵ-almost all F , Φ(F) = Σ̂(bound(F , bΦ),Φ

′(F)) where bΦ′ < bΦ.

Proof. Let B ⊆ ω2 be the ω-club and C ⊆ ω1 be the club from Lemma 3.16.

Pick any F ∈ [B]ϵ∗. Let F ∈ [ω1]
T h

∗ be so that for all α < ω1, [F
(α)]µ = F(α). Let f : ω1 → ω1 be such

that [f ]µ = Φ(F). By Lemma 3.16, for µ-almost all α, f(α) < nextωC(BoundbΦ(F )(α)). Let Σ : ω1×ω1 → ω1

be a Kunen function for nextωC . For µ-almost all α, let vf,F (α) be the least γ < BoundbΦ(F )(α) so that

f(α) = Σ(BoundbΦ(F )(α), γ). Observe that if g =µ f and G ∈ [ω1]
T h

is such that G(α) =µ F (α) for
all α < ϵ, then vf,F =µ vg,F . Therefore, define Φ′(F) = [vf,F ]µ. Note by construction, Φ(F) = [f ]µ =

Σ̂(bound(F , bΦ), [vf,F ]µ) = Σ̂(bound(F , bΦ),Φ
′(F)). Since Φ′(F) < bound(F , bΦ), one has that bΦ′ < bΦ if

bΦ > 0. □

Definition 3.19. Let ϵ < ω2 and Φ : [ω2]
ϵ
∗ → ω2.

A representation for Φ is a tuple (Ξ0, ...,Ξn−1;β0, ..., βn; γ) with the following properties
12



(a) n ∈ ω. If n = 0, then no Ξ appears.
(b) β0 > β1 > ... > βn−1 > βn = 0 is a sequence of strictly decreasing ordinals less than or equal to ϵ.
γ < ω2.
(c) Each Ξi : ω1 × ω1 → ω1.

(d) Let Φn(F) = γ. Suppose for 0 < i ≤ n, Φi has been defined, then let Φi−1(F) = Ξ̂i(bound(F , βi−1),Φi(F)).
One has that for νϵ-almost all F , Φ0(F) = Φ(F).

Theorem 3.20. Let ϵ < ω2. Every Φ : [ω2]
ϵ
∗ → ω2 has a representation.

Proof. The proof is analogous to the proof of Theorem 2.13 using the ω2 version of the analogous lemmas. □

Now one has the analogous continuity result for functions Φ : [ω2]
ϵ
∗ → ω2 where ϵ < ω2.

Theorem 3.21. Let ϵ < ω2 and Φ : [ω2]
ϵ
∗ → ω2. Then there is a decreasing sequence of ordinals less than

or equal to ϵ, (βi : i ≤ n), with βn = 0 and an ω-club B ⊆ ω2 so that if F ,G ∈ [B]ϵ∗ has the property that
bound(F , βi) = bound(G, βi) for all i ≤ n, then Φ(F) = Φ(G).
Theorem 3.22. Let ϵ < ω2 and Φ : [ω2]

ϵ
∗ → ω2. Then there is a δ < ϵ and an ω-club B ⊆ ω2 so that for all

F ,G ∈ [B]ϵ∗ with F ↾ δ = G ↾ δ and sup(F) = sup(G), Φ(F) = Φ(G).
Now one has some new cardinality results:

Theorem 3.23. |[ω2]
ω| < |[ω2]

<ω1 |.
Proof. Suppose Φ : [ω2]

<ω1
∗ → [ω2]

ω
∗ is a function. For each ϵ < ω1 and each n ∈ ω, let Φϵ

n : [ω2]
ϵ
∗ → ω2

be defined by Φϵ
n(F) = Φ(F)(n). By Theorem 3.22, there is some δ < ϵ so that Φϵ

n(F) = Φϵ
n(G) for νϵ-

almost all F and G so that F ↾ δ = G ↾ δ and sup(F) = sup(G). Let δϵn be the least such δ. The function

Λn : ω1 → ω1 defined by Λn(ϵ) = δϵn is a regressive function. Using ACR
ω, there is a δn < ω1 and An ∈ µ

so that for all ϵ ∈ An, Λn(ϵ) = δn. Let A =
⋂

n∈ω An ∈ µ and δ = supn∈ω δn < ω1. Pick a limit ordinal

ϵ ∈ A with ϵ > δ. By ACR
ω, let Bn be an ω-club subset of ω2 so that for all F ,G ∈ [Bn]

ϵ
∗, if sup(F) = sup(G)

and F ↾ δn = G ↾ δn, then Φϵ
n(F) = Φϵ

n(G). Since ν is ω2-complete, B =
⋂

n∈ω Bn ∈ ν. Thus pick some
F ,G ∈ [B]ϵ∗ with F ̸= G, sup(F) = sup(G), and F ↾ δ = G ↾ δ. Then for all n ∈ ω, Φϵ

n(F) = Φϵ
n(G). So

Φ(F) = Φ(G). Φ can not be an injection. □

Theorem 3.24. |[ω2]
<ω1 | < |[ω2]

ω1 |.
Proof. First, it will be shown that there is an injection of [ω2]

<ω1 into [ω2]
ω1 . Let add : ω2×[ω2]

<ω1 → [ω2]
<ω1

be defined as follows: if F ∈ [ω2]
ϵ for some ϵ < ω1, then define add(λ,F) ∈ [ω2]

ϵ by add(λ,F)(α) = λ+F(α).
If F ∈ [ω2]

<ω1 , then let fill(F) ∈ [ω2]
ω1 be defined by appending onto F the next ω1-many ordinals after

sup(F).
Let Φ : [ω2]

<ω1 → [ω2]
ω1 be defined by Φ(F) = fill(length(F )̂ add(length(F),F)). In words, Φ(F) starts

with length(F), then shifts up all the values of F by length(F), and fill in the rest with successive ordinals
until one reaches length ω1. One can check that Φ is an injection.

Next to show that [ω2]
ω1 cannot inject into [ω2]

<ω1 . Let Φ : [ω2]
ω1
∗ → [ω2]

<ω1
∗ be a function. Let

Ψ : [ω2]
ω1
∗ → ω1 be length ◦ Φ, where length(F) = ϵ if F : ϵ → ω2. Since ν is ω2-complete, there is a B ∈ ν

and an ϵ < ω1 so that for all F ∈ [B]ω1
∗ , Ψ(F) = ϵ. In other words, for all F ∈ [B]ω1

∗ , Φ(F) ∈ [ω2]
ϵ
∗.

Let α < ϵ. Let Φα(F) = Φ(F)(α). By Theorem 3.22 and ACR
ω, there are δα < ω1 and ω-club Bα ⊆ ω2 so

that for all F ,G ∈ [Bα]
ω1
∗ , if F ↾ δα = G ↾ δα and sup(F) = sup(G), then Φα(F) = Φα(G).

Now let U =
⋂

α<ϵ Bα ∈ ν since ν is ω2-complete. Let δ = sup{δα : α < ϵ}. Note that δ < ω1 since ω1

is regular. Pick F ,G ∈ [U ]ω1
∗ with F ̸= G, F ↾ δ = G ↾ δ, sup(F) = sup(G). Since F ,G ∈ [B]ω1

∗ , Φ(F) and
Φ(G) both have length ϵ. By choice, Φ(F)(α) = Φα(F) = Φα(G) = Φ(G)(α) for all α < ϵ. So Φ(F) = Φ(G).
Φ is not an injection. □

Previously, one only needed ACR
ω to make a countable selection of subsets of ω1 or ω2. For the next

theorem, one will need to make an ω1-length selection of club subsets of ω1. The following fact ensures this
can be done.

Fact 3.25. ([3] Section 4) Let ⟨Aα : α < ω1⟩ be such that each Aα is a nonempty ⊆-downward closed
collection of clubs subsets of ω1. Then there is a sequence ⟨Cα : α < ω1⟩ with each Cα ⊆ ω1 a club subset of
ω1 and Cα ∈ Aα.
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Theorem 3.26. |[ω2]
ω1 | < |[ω2]

<ω2 |.

Proof. Let Φ : [ω2]
<ω2
∗ → [ω2]

ω1
∗ be a function. For each ϵ < ω2 and α < ω1, let Φ

ϵ
α : [ω2]

ϵ
∗ → ω2 be defined

by Φϵ
α(F) = Φ(F)(α). By Theorem 3.22, there is a minimal δϵα < ϵ so that for νϵ-almost all F ,G ∈ [ω2]

ϵ
∗, if

F ↾ δϵα = G ↾ δϵα and sup(F) = sup(G), then Φϵ
α(F) = Φϵ

α(G).
For each α < ω1, let Λα : ω2 → ω2 be defined by Λα(ϵ) = δϵα. Since ν is a normal measure on ω2 and

Λα is a regressive function, there is a minimal δα < ω2 so that for ν-almost all ϵ, Λα(ϵ) = δα. By Fact 3.11,
for every B ∈ ν, there is a C ⊆ ω1 club so that [C]ω1

∗ /µ ⊆ B. Let Aα be the collection of all club C ⊆ ω1

so that for all ϵ ∈ [C]ω1
∗ /µ, Λα(ϵ) = δα. Aα is clearly ⊆-downward closed. Apply Fact 3.25 to obtain a

sequence ⟨Cα : α < ω1⟩ so that Cα ∈ Aα. Let B =
⋂

α<ω1
[Cα]

ω1
∗ /µ which belongs to ν as ν is ω2-complete.

Let δ = sup{δα : α < ω1} < ω2 since ω2 is regular. Now pick a limit ordinal ϵ > δ with ϵ ∈ B.
For α < ω1, let A′

α be the collection of club C ⊆ ω1 so that if D = [C]ω1
∗ /µ, then D has the property that

for all F ,G ∈ [D]ϵ∗, if F ↾ δα = G ↾ δα and sup(F) = sup(G), then Φϵ
α(F) = Φϵ

α(G). A′
α is a ⊆-downward

closed nonempty collection of club subsets of ω1. Apply Fact 3.25 to obtain a collection ⟨C ′
α : α < ω1⟩ of

club subsets of ω1 with the property that for all α < ω1, C
′
α ∈ A′

α. Let B
′ =

⋂
α<ω1

[C ′
α]

ω1
∗ /µ which belongs

to ν since ν is ω2-complete. Now pick F ,G ∈ [B′]ϵ∗ with F ↾ δ = G ↾ δ, sup(F) = sup(G), and F ̸= G. Note
that for all α < ω1, Φ(F)(α) = Φϵ

α(F) = Φϵ
α(G) = Φ(G)(α). Thus Φ(F) = Φ(G). Φ is not an injection. □

Theorem 3.27. |[ω2]
ω| < |[ω2]

<ω1 | < |[ω2]
ω1 | < |[ω2]

<ω2 |.

Proof. These follow from Theorem 3.23, Theorem 3.24, and Theorem 3.26. □

Fact 3.28. ω2 does not inject into [ω1]
ω1 . Thus [ω2]

ω does not inject into [ω1]
ω1 .

Proof. This is a consequence of the measurability of ω2 in the same way the fact that there are no uncountable
wellordered sequences of reals follows from the measurability of ω1. The details follow:

Let ν be an ω2-complete measure on ω2. Suppose ⟨fα : α < ω2⟩ is an injection of ω2 into [ω1]
ω1 . Let

Fα = rang(fα). Then ⟨Fα : α < ω2⟩ is an ω2-sequence of distinct subsets of ω1.
For each β < ω1, let A

0
β = {α < ω2 : β /∈ Fα} and A1

β = {α < ω2 : β ∈ Fα}. Since µ is a measure, there

is some iβ ∈ 2 so that A
iβ
β ∈ ν.

By the ω2-completeness of ν,
⋂

β∈ω1
A

iβ
β ∈ ν. Let α0, α1 ∈

⋂
β∈ω1

A
iβ
β . Let F ⊆ ω1 be defined by

β ∈ F ⇔ iβ = 1. Then Fα = Fβ = F . This contradicts the fact that ⟨Fα : α < ω2⟩ is a sequence of distinct
subsets of ω1. □

Like the original argument for the cardinal relation |[ω1]
ω| < |[ω1]

<ω1 |, the argument that [ω1]
<ω1 does

not inject into [ω2]
ω passes through the set S1 using ∞-Borel codes and forcing arguments. This originally

was proved under ZF+ AD+. The following gives a purely descriptive set theoretic proof using just AD.

Theorem 3.29. ¬(|[ω1]
<ω1 | ≤ |[ω2]

ω|). Thus ¬(|[ω1]
ω1 | ≤ [ω2]

ω).

Proof. Suppose Φ : [ω1]
<ω1 → [ω2]

ω is an injection.
For each ϵ < ω1 and f ∈ [ω1]

ω1 , let tail(f, ϵ) ∈ [ω1]
ω1 be defined by tail(f, ϵ)(β) = f(ϵ+ β). Note that for

all ϵ < ω1 and f ∈ [ω1]
ω1 , f = (f ↾ ϵ)̂ tail(f, ϵ). Let µ denote the club measure on ω1.

For each ϵ < ω1, let Pϵ : [ω1]
ω1
∗ → 2 by defined by Pϵ(f) = 0 if and only if sup(Φ(f ↾ ϵ)) < [tail(f, ϵ)]µ.

(Recall that
∏

ω1
ω1/µ = ω2.)

Let C ⊆ ω1 be a club which is homogeneous for Pϵ. The claim is that C is homogeneous for Pϵ taking value
0. Suppose otherwise, then pick any σ ∈ [C]ϵ∗. For any g ∈ [C]ω1

∗ with min(g) > sup(σ), define σg ∈ [C]ω1
∗

by σ ĝ. Then P (σg) = 1 implies that [g]µ = tail(σg, ϵ) ≤ sup(Φ(σg ↾ ϵ)) = sup(Φ(σ)). This impossible since
σ is fixed, [C]ω1/µ = ω2, and g can be any member of [C]ω1

∗ with min(g) > sup(σ).
It has been shown that C is homogeneous for Pϵ taking value 0. Let ℓ ∈ [C]ω1

∗ and let β = [ℓ]µ. Note
that for all ϵ < ω1, ℓ =µ tail(ℓ, ϵ). Let σ ∈ [C]ϵ∗. Let γσ be the least γ so that ℓ(γ) > sup(σ). Define
fσ = σ t̂ail(ℓ, γσ). Note that fσ ∈ [C]ω1

∗ . Thus Pϵ(fσ) = 0 implies that sup(Φ(σ)) = sup(Φ(fσ ↾ ϵ)) <
[tail(fσ, ϵ)]µ = [tail(ℓ, γσ)]µ = [ℓ]µ = β. That is, Φ maps [C]ϵ∗ into [β]ω.

For each ϵ < ω1, let βϵ be the least β < ω2 so that there exists a club C ⊆ ω1 with the property that for
all σ ∈ [C]ϵ∗, sup(Φ(σ)) < β. This defines a sequence ⟨βϵ : ϵ < ω1⟩. Let δ = sup{βϵ : ϵ < ω1}. Since ω2 is
regular, δ < ω2.
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For ϵ < ω1, let Aϵ be the collection of clubs C ⊆ ω1 so that for all σ ∈ [C]ϵ∗, sup(Φ(σ)) < βϵ. This defines
a sequence ⟨Aϵ : ϵ < ω1⟩. Note that for all ϵ < ω1, Aϵ is a nonempty ⊆-downward closed collection of club
subsets of ω1. By Fact 3.25, let ⟨Cϵ : ϵ < ω1⟩ be a sequence so that Cϵ ∈ Aϵ for all ϵ ∈ ω1. So for any ϵ < ω1,
if σ ∈ [Cϵ]

ϵ
∗, then sup(Φ(σ)) < δ.

Note that
⋃

ϵ<ω1
[Cϵ]

ϵ
∗ ≈ [ω1]

<ω1 . Observe that

Φ

[ ⊔
ϵ<ω1

[Cϵ]
ϵ
∗

]
⊆ [δ]ω.

Hence Φ induces an injection of [ω1]
<ω1 into [δ]ω ≈ [ω1]

ω since δ < ω2. By Theorem 2.16, this is impossible.
□

Fact 3.30. |[ω1]
<ω1 | < |[ω1]

ω1 |.

Proof. There is a purely descriptive set theoretic proof of this result in the flavor of the continuity argument
used throughout this paper in [6]. However, the requisite continuity property is more challenging to establish
than the analogous continuity properties in this paper. However, there is a very simple set theoretic proof
of this result:

Suppose there was an injection Φ : [ω1]
ω1 → [ω1]

<ω1 . Let Φ̃ = {(f, β) : f ∈ [ω1]
ω1 ∧ β ∈ Φ(f)}, where

Φ(x) ∈ [ω1]
<ω1 is considered as a countable subset of ω1. Let L[Φ̃] |= ZFC be the Gödel constructible universe

built relative to Φ̃ as a predicate. Note that if f ∈ [ω1]
ω1 ∩ L[Φ̃], then Φ(f) ∈ L[Φ̃].

Note that ωV
1 is inaccessible in L[Φ̃]: Suppose δ < ωV

1 and |P(δ)
L[Φ̃]|L[Φ̃] ≥ ωV

1 . Since L[Φ̃] |= AC,

P(δ)
L[Φ̃]

is a wellorderable collection of subsets of δ of cardinality ωV
1 . In the real world V , δ is a countable

ordinal and hence there is a bijection of δ with ω. Using this bijection, one can obtain an ωV
1 -length sequence

of distinct reals from P(δ)
L[Φ̃]

. This is impossible under AD by a simple form of the argument in Fact 3.28.

Thus |P(δ)
L[Φ̃]|L[Φ̃] < ωV

1 . This implies ωV
1 is inaccessible in L[Φ̃].

Since L[Φ̃] |= ZFC, Cantor’s theorem assert that L[Φ̃] |= |[ωV
1 ]ω

V
1 | = |2ωV

1 | ≥ (ωV
1 )+. Also since L[Φ̃] |=

ZFC and ωV
1 is inaccessible in L[Φ̃], L[Φ̃] |= |[ωV

1 ]<ωV
1 | = |2<ωV

1 | = ωV
1 . By absoluteness, L[Φ̃] |= Φ is an

injection. It is impossible that L[Φ̃] thinks that Φ is an injection of 2ω
V
1 into ωV

1 . □

A very similar argument can be used to show that |[ω2]
<ω2 | < |[ω2]

ω2 |. See [4] Section 4.

Theorem 3.31. ¬(|[ω1]
ω1 | ≤ |[ω2]

<ω1 |).

Proof. Let T = (ω1× 2,≺) where ≺ is the lexicographic ordering. (Note that ot(T ) = ω1.) If F ∈ [ω1]
T
∗ and

i ∈ 2, let Fi ∈ [ω1]
ω1 be defined by Fi(α) = F (α, i).

Now suppose Φ : [ω1]
ω1 → [ω2]

<ω1 is an injection. Define a partition P : [ω1]
T → 2 by P (F ) = 0 if

and only if sup(Φ(F0)) ≤ sup(Φ(F1)). Let C ⊆ ω1 be a club homogeneous subset for P . The claim is C is
homogeneous for P taking value 0.

Suppose C was homogeneous for P taking value 1. Let g0(0) = nextωC(0). Suppose gk(α) has been
defined, then let gk+1(α) = nextωC(gk(α)). Suppose gn(β) has been defined for all n ∈ ω and β < α. Then
let g0(α) = nextωC(sup{gn(β) : n ∈ ω ∧ β < α}).

For each n ∈ ω, gn ∈ [C]ω1
∗ . Define for α < ω1 and i ∈ 2, Gn(α, i) = gn+i(α). By the construction of

⟨gn : n ∈ ω⟩, one has that Gn ∈ [C]T∗ .
Thus one has that P (Gn) = 1 for all n ∈ ω. This implies for all n ∈ ω.

sup(Φ(gn+1)) = sup(Φ(Gn
1 )) < sup(Φ(Gn

0 )) = sup(Φ(gn)).

It has been shown that ⟨sup(Φ(gn)) : n ∈ ω⟩ is an infinite decreasing sequence of ordinals. This contradicts
the wellfoundedness of the ordinals.

One must have that C is homogeneous for P taking value 0. For the next part, take g0, g1, and g2 from
the sequence ⟨gn : n ∈ ω⟩ constructed above. The important observation from above is that g0(α) < g1(α) <
g2(α) < g0(α+ 1) for all α.
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For each A ∈ ω12, let hA ∈ [C]ω1
∗ be defined by hA(α) = gA(α)(α). Let H

A ∈ [C]T∗ be defined by

HA(α, i) =

{
hA(α) i = 0

g2(α) i = 1
.

Note that HA
0 = hA and HA

1 = g2. P (HA) = 0 implies that sup(Φ(hA)) = sup(Φ(HA
0 )) ≤ sup(Φ(HA

1 )) =
sup(Φ(g2)). Let ζ = sup(Φ(g2)) which is an ordinal less than ω2.

Define Ψ : ω12 → [ω2]
<ω1 by Ψ(A) = Φ(hA). Note that Ψ is a injection. By the above, Ψ : ω12 → [ζ]<ω1 .

Since ω12 ≈ P(ω1) ≈ [ω1]
ω1 , one has shown that there is an injection of [ω1]

ω1 into [ζ]<ω1 ≈ [ω1]
<ω1 . This

is not possible by Fact 3.30. □

For the sake of completeness, one sketches the remaining well-known cardinal relations among the sets
considered in this paper:

Fact 3.32. ¬(ω1 ≤ |R|) and ¬(|R| ≤ ω1).

Proof. By a simple form of the argument in the proof of Fact 3.28, there are no uncountable wellordered
sequences of distinct reals. That is, ω1 can not inject into R.

Under AD, R can not be wellordered. Hence R can not inject into ω1. □

Fact 3.33. Let κ be an ordinal. ¬(|[ω1]
ω| ≤ κ), ¬(|[ω1]

ω| ≤ R), ¬(|[ω1]
ω| ≤ |R⊔κ|), and ¬(|[ω1]

ω| ≤ |R×κ|).
Similarly, ¬(|[ω2]

ω| ≤ κ), ¬(|[ω2]
ω| ≤ R), ¬(|[ω2]

ω| ≤ |R ⊔ κ|), and ¬(|[ω2]
ω| ≤ |R× κ|).

Proof. Since R injects into [ω1]
ω and R is not wellorderable, [ω1]

ω is not wellorderable. So [ω1]
ω can not

inject into any ordinal κ.
Let Φ : [ω1]

ω → ω2. For each n ∈ ω, define Pn : [ω1]
ω → 2 by Pn(f) = f(n). By ACR

ω, let Cn ⊆ ω1 be
club homogeneous for Pn taking some value in ∈ 2. Let C =

⋂
n∈ω Cn. Let r ∈ ω2 be defined by r(n) = in.

Note that Φ[[C]ω∗ ] = {r}. Thus Φ is not an injection.
Now suppose Φ : [ω1]

ω → κ ⊔ R. Define Q : [ω1]
ω → 2 by

Q(f) =

{
0 Φ(f) ∈ κ

1 Φ(f) ∈ R

Let C ⊆ ω1 be club homogeneous for Q. If C is homogeneous for Q taking value 0, then Φ maps [C]ω∗ into κ.
By the earlier argument, Φ can not be an injection. If C is homogeneous for Q taking value 1, the Φ maps
[C]ω∗ into R. Again by the earlier argument, Φ can not be an injection.

Suppose Φ : [ω1]
ω → R × ω1. Let π1 : R × ω1 → R be the projection onto the first coordinate. Then

π1 ◦Φ : [ω1]
ω1 → R. By the argument above, there is a club C ⊆ ω1 and an r ∈ R so that (π ◦Φ)[[C]ω∗ ] = {r}.

Then Φ : [C]ω∗ → {r} × ω1. Since {r} × ω1 is in bijection with ω1, Φ can not be an injection by the earlier
part of this proof.

The result for [ω2]
ω follows by the same argument using the weak partition property for ω2. □

The cardinal relations displayed in the diagram from the introduction follow from the work so far.

4. [ω1]
ω is Jónsson

Definition 4.1. Let X be a set. Define [X]n= = {f ∈ nX : (∀i < j < n)(f(i) ̸= f(j))}. Let [X]<ω
= =⋃

n∈ω[X]n=.
For n < ω, X is n-Jónsson if and only if for every Φ : [X]n= → X, there is some Z ⊆ X with Z ≈ X so

that Φ[[Z]n=] ̸= X.
X is Jónsson if and only if for all Φ : [X]<ω

= → X, there is some Z ⊆ X with Z ≈ X so that Φ[[X]<ω
= ] ̸= X.

Definition 4.2. Let f̄ ∈ <ω([ω1]
ω). The tuple-type of f̄ , denoted type(f̄), is a 4-tuple (n,m,G,D) with the

following properties:
(1) n is the length of the tuple f̄ .
(2) Let S = {sup(fi) : i < n}. Then m = |S|.

Let rang(f̄) =
⋃

i<n rang(fi). Note that m also has the property that ot(rang(f̄)) = ω · m. Let

⟨a0, ..., am−1⟩ be the increasing enumeration of S. Let F : ω · m → rang(f̄) be the increasing enumera-
tion of rang(f̄).
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(3) G : m → P(n) is defined by G(i) = {k ∈ n : sup(fk) = ai}.
(4) Let D : ω ·m → P(n) be defined by D(α) = {i ∈ n : F (α) ∈ rang(fi)}.

If Z ⊆ [ω1]
ω, then let type(Z) = {type(f̄) : f̄ ∈ <ωZ}.

Example 4.3. Consider f0, f1, f2 ∈ [ω1]
ω defined by

f0(x) =

{
0 x = 0

x+ 1 x ≥ 1
, f1(x) =

{
x x = 0, 1

ω + 2(x− 1) x ≥ 2

f2(x) =


x x = 0, 1

ω + (x− 2) x = 2, 3

ω + 2(x− 3) + 1 x ≥ 4

The first several values of f0, f1, and f2 are the following:

f0 = ⟨0, 2, 3, 4, 5, 6, 7, ...⟩ f1 = ⟨0, 1, ω + 2, ω + 4, ω + 6, ω + 8, ω + 10, ...⟩
f2 = ⟨0, 1, ω, ω + 1, ω + 3, ω + 5, ω + 7, ω + 9, ω + 11, ...⟩.

The picture looks as follows: There are ω · 2 many columns. Row 0, 1, and 2 indicate which values among
ω · 2 are taken by f0, f1, and f2, respectively.

0 0 0 0 0 ... |
1 1 | 1 1 1 1 1 ...

2 2 | 2 2 2 2 2 2 ...

Then type((f0, f1, f2)) = (3, 2, G,D) where G and D are defined as follows: G : 2 → P(3) is defined by
G(0) = {0} and G(1) = {1, 2}. The function D : ω · 2 → P(3) can be read off the diagram above by

D(α) =



{0, 1, 2} α = 0

{1, 2} α = 1

{0} 2 ≤ α < ω

{2} α = ω, ω + 1

{1} (∃k ∈ ω)[α = ω + 2(k + 1)]

{2} (∃k ∈ ω)[α = ω + 2(k + 1) + 1]

With Definition 4.2 as the motivation, one makes the following abstract definition of a tuple-type:

Definition 4.4. A tuple-type t is a 4-tuple (n,m,G,D) with the following properties:
(1) n ∈ ω and n > 0 which is called the length of tuple type.
(2) 1 ≤ m ≤ n which is called the arrangement number of the tuple type.
(3) G : m → P(n) with the property that for all i < m, G(i) ̸= ∅,

⋃
i∈m G(i) = n, and for all i < j < m,

G(i) ∩G(j) = ∅. G is called the grouping order of the tuple-type.
(4) D : ω ·m → P(n), which is called the distribution of the type, is a function with the following properties:

(a) For each i < m and l ∈ ω,

D(ω · i+ l) ∩

⋃
j<i

G(j)

 = ∅.

(b) For each k < n, if k ∈ G(i), then {l ∈ ω : k ∈ D(ω · i+ l)} is infinite.
(c) For each k < n, if k ∈ G(i), then for each j < i, {l ∈ ω : k ∈ D(ω · j + l)} is finite.

Observe that if f̄ ∈ <ω([ω1]
ω), then the tuple-type of f̄ , type(f̄), is a tuple-type as defined in Definition

4.4.

Definition 4.5. Let t = (n,m,G,D) be a tuple-type. Let h ∈ [ω1]
ω·m. For i < n, let f t,h

i be defined to be
the increasing enumeration of {h(α) : α < ω · m ∧ i ∈ D(α)}. Note that the properties of the distibution

imply that f t,h
i ∈ [ω1]

ω.

Define extract(t, h) = (f t,h
0 , ..., f t,h

n−1). This is the n-tuple extracted from h of tuple-type t. Note that
type(extract(t, h)) = t.
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Definition 4.6. Let X be any set and P : ω → X. P is eventually periodic if and only if there exists
k, p ∈ ω and x0, ..., xp−1 ∈ X so that for all n > k, P (n) = xi where i < p is such that n− k is congruent to
i mod p.

A tuple-type t = (n,m,G,D) is an eventually periodic tuple-type if and only if for each i < m, the
function Pi : ω → P(n) defined by Pi(k) = D(ω · i+ k) is eventually periodic.

Note that there are only countably many eventually periodic tuple-types.

Definition 4.7. Let L be the collection of finite tuples (α, n, β0, ..., βn) where α < ω1, n ∈ ω, β0 < β1 <
... < βn < α. Let ≺ be the lexicographic ordering on L. Let L = (L,≺). Note that ot(L) = ω1.

Let H ∈ [ω1]
L, that is an order-preserving function of L into ω1.

Define ΛH : [ω1]
ω → [ω1]

ω by Λ(f)(k) = H(sup(f), k, f(0), ..., f(k)).

Lemma 4.8. ΛH is an injection and type(ΛH [[ω1]
ω]) consists only of eventually periodic tuple-types.

Proof. Suppose f, g ∈ [ω1]
ω with f ̸= g.

(Case I) Suppose sup(f) ̸= sup(g). Without loss of generality, suppose sup(f) < sup(g). Then ΛH(f)(0) =
H(sup(f), 0, f(0)) < H(sup(g), 0, g(0)) = ΛH(g)(0). Therefore, ΛH(f) ̸= ΛH(g).

(Case II) Suppose sup(f) = sup(g). f ̸= g implies that there is a least k so that f(k) ̸= g(k). Without loss
of generality, suppose f(k) < g(k). Then ΛH(f)(k) = H(sup(f), k, f(0), ..., f(k)) < H(sup(g), k, g(0), ..., g(k)) =
ΛH(g)(k). So ΛH(f) ̸= ΛH(g).

It has been shown that ΛH is an injection.
Now suppose f̄ = (f0, ..., fn−1) ∈ <ω([ω1]

ω). Let ΛH(f̄) = (ΛH(f0), ...,Λ
H(fn−1). Let type(f̄) =

(n,m,G,D). Suppose type(ΛH(f̄)) = (n′,m′, G′, D′).
For i < j < n, if sup(fi) < sup(fj), then

ΛH(fi)(a) = H(sup(fi), a, fi(0), ..., fi(a)) < H(sup(fj), b, fj(0), ..., fj(b)) = ΛH(fj)(b)

for any a, b ∈ ω. This implies that if sup(fi) < sup(fj), then sup(ΛH(fi)) < sup(ΛH(fj)). This shows that
m′ = m and G′ = G.

Pick any i < m. Let Pi(k) = D′(ω · i+ k). Pick a ℓ ∈ ω large enough so that for all a, b ∈ G(i), if fa ̸= fb,
then there is some ι < ℓ so that fa(ι) ̸= fb(ι).

Define an preordering ⊑ on G(i) by a ⊑ b if and only if fa ↾ ℓ = fb ↾ ℓ or fa ↾ ℓ is lexicographically less
than fb ↾ ℓ. The ⊑-preordering classes of G(i) are naturally linearly ordered. Note that Pi is eventually
periodic by repeating the ⊑-preordering classes of G(i) in this natural order.

It has been established that type(ΛH(f̄)) is an eventually periodic tuple-type. □

Example 4.9. Let f0, f1, and f2 be the functions from Example 4.3. Let H : L → ω1 be any order-
preserving function of the correct type. Let type((f0, f1, f2)) = (3, 2, G,D). Let ΛH be the associated
function as defined above. Let type((ΛH(f0),Λ

H(f1),Λ
H(f2))) = (3, 2, G,D′), where D′ is defined below:

Observe that in L = (L,⪯), the following objects are arranged as follows:

(ω, 0, 0) ≺ (ω, 1, 0, 2) ≺ (ω, 2, 0, 2, 3) ≺ (ω, 3, 0, 2, 3, 4) ≺ ... ≺ (ω · 2, 0, 0) ≺ (ω · 2, 1, 0, 1)

≺ (ω·2, 2, 0, 1, ω) ≺ (ω·2, 2, 0, 1, ω+2) ≺ (ω·2, 3, 0, 1, ω, ω+1) ≺ (ω·2, 3, 0, 1, ω+2, ω+4) ≺ (ω·2, 4, 0, 1, ω, ω+1, ω+3)

≺ (ω · 2, 4, 0, 1, ω + 2, ω + 4, ω + 6) ≺ (ω · 2, 5, 0, 1, ω, ω + 1, ω + 3, ω + 5) ≺ ...

This implies that

ΛH(f0)(0) < ΛH(f0)(1) < ΛH(f0)(2) < ΛH(f0)(3) < ΛH(f0)(4) < ...

< ΛH(f1)(0) = ΛH(f2)(0) < ΛH(f2)(1) = ΛH(f1)(1) < ΛH(f2)(2)

< ΛH(f1)(2) < ΛH(f2)(3) < ΛH(f1)(3) < ΛH(f2)(4) < ΛH(f1)(4) < ΛH(f2)(5)

From the example above, the diagram for D′ is given below. In his diagram, 0̂, 1̂, and 2̂ represent ΛH(f0),
ΛH(f1), and ΛH(f2):

0̂ 0̂ 0̂ 0̂ 0̂ 0̂ ... |
| 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ ...

| 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ ...
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Explicitly, D′ : ω · 2 → P(3) is

D′(α) =


{0} α < ω

{1, 2} α = ω, ω + 1

{2} (∃k ∈ ω)[α = ω + 2(k + 1)]

{1} (∃k ∈ ω)[α = ω + 2(k + 1) + 1]

Note that P0(k) = D′(k) is eventually periodic by repeating {0} and P1(k) = D′(ω+k) is eventually periodic
by eventually alternating between {1} and {2}.

Fact 4.10. Let Φ : <ω([ω1]
ω) → [ω1]

ω be a function. Let t = (n,m,G,D) be a tuple-type. Let µ denote the
club measure on ω1. Let Φt,k : [ω1]

ω·m
∗ → ω1 be defined by Φt,k(h) = Φ(extract(t, h))(k).

If for µω·m-almost all h, Φt,k(h) < h(0), then for µω·m-almost all h, Φt,k(h) takes a constant value cΦ,t
k .

Proof. This follows from the countable additivity of µω·m. □

Definition 4.11. Assume the setting of fact 4.10. Let dΦ,t be the least k if it exists so that Φt,k(h) ≥ h(0)
for µω·m-almost all h. Otherwise, let dΦ,t = ω.

Let stemΦ,t : dΦ,t → ω1 be defined by stemΦ,t(j) = cΦ,t
j , where j < dΦ,t

Thus for µω·m-almost all h, stemΦ,t ⊆ Φ(extract(t, h)) and if dΦ,t < ω, then Φ(extract(Φ, t))(dΦ,t) ≥ h(0).

Theorem 4.12. [ω1]
ω is Jónsson.

Proof. A slightly stronger version of the Jónsson property will be shown: Let Φ : <ω([ω1]
ω) → [ω1]

ω. A
Z ⊆ [ω1]

ω with |Z| = |[ω1]
ω will be found so that Φ[<ωZ] ̸= [ω1]

ω. (The Jónsson property merely asks that
Φ[[Z]<ω

= ] ̸= [ω1]
ω.)

Using ACR
ω and the discussion in Definition 4.11, for each (of the countably many) eventually periodic

tuple-type t, let Ct ⊆ ω1 be a club so that for all h ∈ [Ct]
ω
∗ , stem

Φ,t ⊆ Φ(extract(t, h)) and if dΦ,t < ω, then
Φ(extract(Φ, t))(dΦ,t) ≥ h(0).

Let ζ be the supremum of sup(stemΦ,t) as t ranges over the countable set of eventually periodic tuple-
types. As ω1 is regular, ζ < ω1. Let C be the intersection of all Ct as t ranges over all eventually periodic
tuple-types. By removing an initial segment of C, one may assume that ζ < min(C) + 1.

Let H : L → C be any order-preserving function of the correct type. Note that ΛH(f) ∈ [ω1]
ω
∗ , i.e. it is

also a function of the correct type for any f ∈ [ω1]
ω.

Let Z = ΛH [[ω1]
ω]. Since ΛH is an injection by Lemma 4.8, Z ≈ [ω1]

ω.
Now suppose f̄ = (f0, ..., fn−1) ∈ <ωZ. By Lemma 4.8, t = type(f̄) = (n,m,G,D) is an eventually

periodic tuple-type. There is a unique h ∈ [C]ω·m
∗ so that extract(t, h) = f̄ . In particular, since h ∈ [Ct]

ω·m
∗ ,

stemΦ,t ⊆ Φ(f̄) and if dΦ,t < ω, Φ(f̄)(dΦ,t) ≥ h(0) ≥ min(C) > ζ. This and the definition of ζ imply that
ζ /∈ rang(Φ(f̄)).

It has been shown that for all f̄ ∈ <ωZ, ζ /∈ rang(Φ(f̄)). In particular, Φ[<ωZ] ̸= [ω1]
ω.

As Φ was arbitrary, this implies that [ω1]
ω is Jónsson. □

References

1. Andrés Eduardo Caicedo and Richard Ketchersid, A trichotomy theorem in natural models of AD+, Set theory and its

applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 227–258. MR 2777751

2. William Chan, Ordinal definability and combinatorics of equivalence relations, J. Math. Log. 19 (2019), no. 2, 1950009,
24. MR 4014889

3. , An introduction to combinatorics of determinacy, Trends in Set Theory, Contemp. Math., vol. 752, Amer. Math.

Soc., Providence, RI, 2020, pp. 21–75. MR 4132099
4. William Chan and Stephen Jackson, Applications of infinity-borel codes to definability and definable cardinals, Submitted.
5. William Chan and Stephen Jackson, Cardinality of wellordered disjoint unions of quotients of smooth equivalence relations,

Ann. Pure Appl. Logic 172 (2021), no. 8, 102988. MR 4256846
6. , Definable combinatorics at the first uncountable cardinal, Trans. Amer. Math. Soc. 374 (2021), no. 3, 2035–2056.

MR 4216731

7. William Chan, Stephen Jackson, and Nam Trang, The size of the class of countable sequences of ordinals, Trans. Amer.
Math. Soc. 375 (2022), no. 3, 1725–1743. MR 4378077

8. William Chan and Connor Meehan, Definable Combinatorics of Some Borel Equivalence Relations, ArXiv e-prints (2017).

19



9. L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer.
Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041

10. Leo Harrington, A powerless proof of a theorem of Silver, Unpublished.

11. Greg Hjorth, A dichotomy for the definable universe, J. Symbolic Logic 60 (1995), no. 4, 1199–1207. MR 1367205
12. S. Jackson, R. Ketchersid, F. Schlutzenberg, and W. H. Woodin, Determinacy and Jónsson cardinals in L(R), J. Symb.

Log. 79 (2014), no. 4, 1184–1198. MR 3343535

13. Steve Jackson, A computation of δ15 , Mem. Amer. Math. Soc. 140 (1999), no. 670, viii+94. MR 1606035
14. , Structural consequences of AD, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1753–1876.

MR 2768700
15. Alexander S. Kechris, AD and projective ordinals, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77),

Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 91–132. MR 526915

16. Eugene M. Kleinberg, Infinitary combinatorics and the axiom of determinateness, Lecture Notes in Mathematics, Vol. 612,
Springer-Verlag, Berlin-New York, 1977. MR 0479903

17. Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic

18 (1980), no. 1, 1–28. MR 568914
18. W. Hugh Woodin, The cardinals below |[ω1]<ω1 |, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 161–232. MR 2224057

Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213

Email address: wchan3@andrew.cmu.edu

Department of Mathematics, University of North Texas, Denton, TX 76203

Email address: Stephen.Jackson@unt.edu

Department of Mathematics, University of North Texas, Denton, TX 76203

Email address: Nam.Trang@unt.edu

20


	1. Introduction
	2. Continuity of Short Functions on 1
	3. Continuity of Short Functions on 2
	4. [1] is Jónsson
	References

