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ABSTRACT. Assume ZF 4+ AD. If € is an ordinal and X is a set of ordinals, then [X]¢ is the collection

of order-preserving functions f : € — X which have uniform cofinality w and discontinuous everywhere.

The weak partition properties on wq and w2 yield partition measures on [w1]S when € < wi and [w2]$ when

€ < wz. The following almost everywhere continuity properties for functions on partition spaces with respect
to these partition measures will be shown.
For every € < wi and function ® : [w1]® — w1, there is a club C C w; and a ¢ < € so that for all

frg €[OS, if £ 1 (=g | ¢ and sup(f) = sup(g), then ®(f) = &(g).
For every € < wp and function ® : [w2]® — wa, there is an w-club C' C wo and a ¢ < € so that for all

f.9 €[CIS,if f1¢ =g ¢ and sup(f) = sup(g), then ®(f) = 2(g).

The previous two continuity results will be used to distinguish the cardinalities of some important sub-
sets of P(w2): |[w1]¥| < [fw1]<¥1]. J[w2]?| < [[w2] <] < [[w2]1] < [[w2] <92 ~([fw1] <91 < |[w2]?]).
([[wr]<r| < Jfw2] <)),

It will also be shown that [w1]% has the Jénsson property: For every ® : <¢([w1]¥) — [w1]%, there is an
X C [w1]® with | X| = |[w1]¥| so that ®[<¥ X] # [w1]“.

1. INTRODUCTION

Under the axiom of determinacy, AD, the cardinalities of sets have a very rich and non-linear structure.
The cardinalities of wellorderable sets are called cardinals. w; and ws refer to the first and second uncountable
cardinals, respectively. This article will distinguish the cardinalities of some important subsets of &?(w1)
(the power set of wy) and F(wsz) (the power set of wy) under AD. Since cardinalities are compared through
injections, a deep understanding of the behavior of functions between the relevant sets will be necessary.
This will be obtained through a complete analysis of the continuity properties of functions of the form
® : [w1]® = w; when € < w; and functions of the form ® : [ws]® — ws when € < wy. The arguments
in this article are entirely combinatorial and should be accessible with minimal knowledge of determinacy.
The necessary combinatorial consequences of determinacy such as the partition relations on w; and ws, the
ultrapower representation of ws, and some combinatorial tools to handle this ultrapower such as Kunen
functions and sliding arguments will be reviewed.

Descriptive set theorists have recently studied the definable cardinalities of quotients of equivalence re-
lations on Polish spaces through definable reductions. If E is an equivalence relation on R, then let R/E
denote the set of equivalence classes of E. If F and F' are two equivalence relations on R, then a reduction
between F and F' is a function A : R — R so that for all z,y € R, = E y if and only if A(x) F A(y).
The reduction A between E and F' induces an injection ¥ : R/E — R/F. Motivated by this, an injection
¥ :R/E — R/F is said to be a Borel definable injection if and only if ¥ is induced by a Borel reduction
A :R — R between E and F'.

There are several important dichotomy results of descriptive set theory which elucidate the structure of
the quotients of Borel equivalence relations under Borel definable injections. Silver ([17]) showed that if E
is a Borel (or even coanalytic) equivalence relation, then either

e F has countably many classes or
e there is a Borel reduction of the equality equivalence relation = on R into E.

Thus the quotient of a Borel equivalence relation F is either countable or there is a Borel definable injection
of R into R/E. Let Fy be the equivalence relation on “2 of eventual equality defined by x Ey y if and only
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if (3m)(Vn > m)(xz(n) = y(n)). Harrington, Kechris, and Louveau [9] showed that for any Borel equivalence
relation F, either

e there is a Borel reduction of E into the equality relation = or
e there is a Borel reduction of Fy into E.

Thus for any Borel equivalence relation E, either there is a Borel definable injection of R/E into R (which
is in bijection with &?(w)) or there is a Borel definable injection of R/Ey into R/E.

With the axiom of choice, this nice structure for the definable cardinalities under definable injections
collapses since all these quotients are in bijection with R. In the spirit of descriptive set theory, this paper
will be interested in definable cardinalities studied using definable maps which can either be interpreted by
restricting functions to certain classes (like the class of Borel functions, as in the classical examples above) or
by working within models of determinacy, which will be the approach taken here. The axiom of determinacy,
AD, asserts that every two player game where each player takes turns playing a natural number has a winning
strategy for one of the two players. Determinacy axioms allow the structure of the definable cardinalities of
sets (which are surjective images of R) to possess a structure that resembles the structure of Borel definable
cardinalities and this structure is established through techniques that have a descriptive set theoretic flavor.

The two dichotomy results for Borel reductions mentioned above are proved by using the Gandy-Harrington
forcing of lightface ¥} subsets of R developed in [10]. In an extension of AD called AD™| highly absolute
definitions for equivalence relations called co-Borel codes exist. The Vopénka forcing of ordinal definable
(relative to the co-Borel code) subsets of R can be used to extend Silver’s dichotomy and the FEy-dichotomy
into cardinality dichotomies in AD". Generalizing Silver’s dichotomy, Woodin’s perfect set dichotomy (3],
[1]) states that if E is an equivalence relation on R, then either

e R/E is wellorderable (that is, injects into an ordinal) or

e R injects into R/E.
Since all sets which are surjective images of R are in bijection with a quotient of an equivalence relation on R,
this can be reformulated to say that for all sets X which are surjective images of R, either X is wellorderable
or R injects into X. In L(R) = AD, Caicedo and Ketchersid [1] extended these results further by showing
every set X € L(R) is either wellorderable or R injects into X. Generalizing the FEy-dichotomy, Hjorth’s
Ey-dichtomy ([11]) states that if E is an equivalence relation on R, then either

e R/E injects into Z?(§) for some ordinal § or
e R/Ej injects into R/E.

The first two authors have recently obtained additional new cardinality results for quotients of equivalence
relations on R in L(R) = AD. Borrowing a term from classical descriptive set theory, an equivalence relation
E on R is strongly smooth if and only if R/E is in bijection with R. In L(R) = AD, many subsets of & (w;)
are in bijection with an wj-length disjoint union of quotients of strongly smooth equivalence relations on R;
however, only one cardinality can be represented in this way if each equivalence relation has only countable
equivalence classes: Combining ideas from the Woodin perfect set dichotomy and Hjorth’s Ey-dichotomy,
[5] Theorem 5.8 showed that in L(R) = AD, if (E, : a < w;) is a sequence of strongly smooth equivalence
relations on R so that each E, has all countable equivalence classes, then the disjoint union | | R/E, is
in bijection with R x wy.

Another classical cardinality result under AD is the perfect set property which asserts that every subset
of R is either countable or contains a perfect subset (a nonempty closed set with no isolated points). Since
R is in bijection with &?(w), this result completely characterizes the cardinalities of sets below Z2(w) by
establishing a suitable form of the continuum hypothesis: All subsets of #(w) are either countable or in
bijection with &?(w). This article and other recent work of the authors seek to understand the structure of
the cardinalities below & (w;) and P (ws).

By the Moschovakis coding lemma, R surjects onto #(wy) and £ (w3). Thus every subset of & (w;)
and Z(w9) is in bijection with a quotient of an equivalence relation on R. Rather than viewing these sets
as quotients of equivalence relations, the approach of this paper will be to consider these sets as sets of
increasing sequences of ordinals and use an important consequence of determinacy known as the partition
relations on w; and ws. Both the descriptive set theoretic and the combinatorial approaches seem useful
and necessary for studying cardinalities under determinacy. The following will summarize the results of this
paper and its context within determinacy.

a<wi



Let A and B be two sets. If there is an injection from A into B, then write |A| < |B|. Denote |A4| < |B]
if |A] < |B| but =(|B| < |AJ). If there is a bijection between A and B, then one writes |A| = |B|. By the
Cantor-Schroder-Bernstein theorem (proved in ZF), |A| = |B| if and only |A| < |B| and |B| < |A|. In the
absence of choice, the cardinality of A, referred to as |A|, is the equivalence class of A under the bijection
relation.

To understand cardinalities and injections, one will need to study functions between sets under determi-
nacy. One such classical result concerns continuity for functions from R to R. Assuming AD, every function
® : R — R is continuous on a comeager subset of R. As customary in descriptive set theory, thinking of R
as “w (the collection of functions from w into w), continuity can be understood using the following example:
®(£)(0), the first bit of ®(f), a priori could require global information about all of f. Continuity on a comea-
ger set implies that if f belongs to this comeager set, then ®(f)(0) only depends on a local behavior of f.
That is, there is some n € w so that for all g which belong to this appropriate comeager set, if g [ n = f [ n,
then ®(g)(0) = ®(f)(0). Continuity of ® on this comeager set means this property holds for the k*® bit of
®(f) for each k € w and f belonging to the suitable comeager set.

Identifying subsets of wy or ws by their increasing enumeration, one will prefer to work with the collection
of increasing sequences through w; and wy (primarily because the partition properties are formulated for
these sets). If e < § are two ordinals, then []€ is the collection of increasing functions f : ¢ — §. Let
[6]=¢ = U, <[0]". This paper will be particularly interested in [w1]*, [wi] <<, [wa]®, [wa]*?, and [wi]<*2.

This article will study the short functions on w; and ws (i.e. functions ® : [w1]® — w7 when € < w; or
® : [wo]® — wa when € < wg). The continuity phenomenon for full functions on wy (i.e. @ : [w1]“* — wq) is
investigated in [6], and the techniques there are quite different than what is used here. The first two authors
[6] showed that for every function ® : [wq]“* — wy, there is a club C' C w; with the property that for all
f € [C]¢*, there exists an o < wy so that for all g € [C]¥1,if g [ @ = f | «, then ®(f) = ®(g). ([C]¥ is
the collection of increasing functions from w; into C' of the correct type, which will be defined in Definition
2.1.) The authors [6] also showed an even stronger version that for every function ® : [w1]“* — “*w;, there
is a club C' C wy so that for all f € [C]¥* and S < wy, there exists an a < w;y so that for all g € [C]41,
ifgla=f1]a then ®(g) | f = ®(f) | 5. Note that this latter continuity property is just the standard
notion of continuity where the domain and range spaces are given the topology generated by sets of the form
No ={f € [w1]*“* : 0 C f} where 0 € [w1|<** (or N, = {f € “*wy : 0 C f} where 0 € <“!w;) as a basis.

As a consequence of Martin’s result that w; is a strong partition cardinal, the filter u“* on [wy]“* defined
by X € up“t if and only if there exists a club C' C wy so that [C]¥* C X is a countably complete measure
on wp. Thus in the above two continuity results, the notion of largeness given by comeagerness for classical
continuity on R is replaced with largeness on [w1]“* given by the ultrafilter y**. The continuity property
for functions mentioned in the previous paragraph can be used to show that |2 (w1)| = |[w1]“?| is “regular
cardinality” with respect to wellordered decompositions: if (X, : a < wi) is a sequence of subsets of [w;]*?
so that [w1]“t = U, .., Xa, then there is an a < w such that |X,| = [[w1]**|. This result can then be used
to show that |[w1]<*!| < |[w1]¥?|. (See Fact 3.30 for a different argument using measures and certain inner
models of ZFC.)

This article will be concerned with continuity phenomena for functions @ : [w;]¢ — w; where € < wy. The
partition measure p¢ on [w;] will serve as the notion of largeness for subsets of [w;]¢. However, continuity in
the sense described above is impossible for functions from [w;]* into wy by the following example. Consider
the function ¥ : [wq]* — wy defined by ¥(f) = sup(f). There is no club C C wy so that for all f € [C]¥,
there is an n < w such that whenever g € [C]¥ and f [ n =g [ n, U(f) = ¥(g). However, ¥ does sat-
isfy a particular continuity phenomenon in the sense that ¥(f) depends only on one piece of information,
namely sup(f). That is (by definition of W), for any f,g € [w1]“, if sup(f) = sup(g), then U(f) = ¥(g).
The first main result is that this is a general occurrence that holds for any function ® : [wq]® — w; when
€ < wj. For each f € [w1]® and a < ¢, let bound(f, ) = sup{f(B) : B < a}. Note that bound(f,0) = 0 and

bound(f, €) = sup(f).

Theorem 2.14. Assume ZF + AD. Let € < wy and @ : [w1|S — wy. Then there is a decreasing se-

quence of ordinals which are less than or equal to €, (5; : i < n), with B, =0 and a club C C wy so that if

fyg € [C]S has the property that bound(f, 8;) = bound(g, 8;) for all i <n, then ®(f) = ®(g).



This result is a continuity property which states that for any such function ®, ®(f) depends only on
local behaviors of f at certain finitely many places for pc-almost all f. The following is a more coarse but
useful consequence of the above result which states that for every function ®, there is a § < € so that ®(f)
depends only on the d-length initial segment of f and sup(f).

Theorem 2.15. Assume ZF + AD. Let € < wy and @ : [w1]S — wi. Then there is a § < € and some
club C C wy so that for all f,g € [C]S with f [ 6 =g |6 and sup(f) = sup(g), ®(f) = ®(g).

[w1]¥ and [w1]<“! are two distinguished subsets of £(w;). One natural question is whether these two sets
are different in terms of cardinality. Woodin [18] studied the cardinalities below [w;]<** under ZF+ADg+DC.
From the dichotomy results in [18], it was known to Woodin that [[w1]¥] < |[w1]<“*|. Moreover, Woodin
isolated a subset of [w1]<“* called S7 defined by S1 = {f € [w1]<“* : sup(f) = wle}. It is implicit in [18]
that |S;| is incomparable with [w1]* and hence one can conclude that |[w1]*] < |[w1]<“?].

The proofs of some of the main properties of Sy (assuming ZF + AD 4 DCg and all sets of reals have oo-
Borel codes) can be found [4] and [5]. Assuming just ZF 4+ AD, one can show that |R| < |S;| and —(wy < |S4])
(see [5] Fact 6.3). The main property of S shown in [4] is that there is no injection of S into “ON assuming
ZF + AD + DCg and all sets of reals have co-Borel codes. From this, one can conclude that |R| < |S1| and
=(]1S1] < |[w1]¥]). The argument for the main property of S; in [4] goes roughly as follows: Suppose such
an injection ® exists. Using oo-Borel codes, one can find an inner model M of ZFC that “absorbs” some
fragment of this injection in a suitable sense. Let ¢ < w} be an inaccessible cardinal of M. Since Coll(w, < ()
is countable in the real world satisfying AD, one can find a G C Coll(w, < ¢) which is Coll(w, < ()-generic
over M. One can show that G adds a g € S7 such that M[G] = M|g]. Since M “absorbs” ®, ®(g) € M|g].
Since ® is an injection, one can argue that M[g] = M[®[g]]. However, ®(g) is an w-sequence of ordinals.
By a crucial property of the Lévy collapse, there is a £ < ¢ so that U(g) € M[G | €]. Then one has that
MI|G) = M[g] = M[®(g)] = M[G T £]. This is impossible.

The authors know very little about the cardinality properties of S; in the absence of co-Borel codes. S is
a set whose definition is based upon the notion of constructibility. The two sets [w1]* and [w]<“! are very
concrete combinatorial objects. There should be no need to employ AD" concepts to distinguish these two
cardinalities. Using the continuity properties for short functions mentioned above, one can distinguish these
two sets within ZF + AD using combinatorial arguments.

Theorem 2.16. Assume ZF + AD. |[w1]*| < |[w1] <.

Recently, the authors have used Theorem 2.16 as a backbone for more general results concerning in-
jections of [wq]<“!. For example, [7] showed under just ZF + AD that there is no injection of [w1]<“! into
“(w,,), the set of w-sequences into w,,. Moreover with the addition of DCg, [7] proved in ZF + AD + DCg that
there is no injection of [wq]<“" into “ON, the class of w-sequences of ordinals. These results use a variety of
combinatorial and descriptive set theoretic consequences of determinacy to reduce back to Theorem 2.16.

Next, one will consider various subsets of Z(ws). Of particular interests are [wa]®“, [wa]<“!, [wa]*?, [wa] <2,
and [w2]“2. One would like to distinguish the cardinality of these sets from each other as well as from the
cardinality of the subsets of &?(w) considered earlier such as [w;]%, [w1]<“!, and [wy]“*.

Martin showed that ws is a weak partition cardinal and hence measurable. Using the same technique men-
tioned above (for showing |[w1]<“*| < |[w1]**|) which involved using a measure and going into an appropriate
inner model of ZFC, one can show |[wa]<“2| < |[w2]*2| under just ZF + AD.

Similar to the study of w;, one needs to establish the analogous continuity property for ws.

Theorem 3.21. Assume ZF + AD. Let € < we and @ : [ws|S — ws. Then there is a decreasing se-

quence of ordinals less than or equal to €, (B; : i < n), with B, = 0 and an w-club B C wa so that if
F,G € [B]S has the property that bound(F, 8;) = bound(G, §;) for all i < n, then ®(F) = ®(G).

Theorem 3.22. Assume ZF + AD. Let € < wy and @ : [ws]S — wa. Then there is a 6 < € and an w-
club B C wy so that for all F,G € [B]S with F [ 6 =G | § and sup(F) = sup(G), ®(F) = &(G).



Using these continuity results, one can establish the following cardinality relations:
Theorem 3.23. Assume ZF + AD. |[wz]®| < |[wa]<“].
Theorem 3.24. Assume ZF + AD. |[we]<“!| < |[wa]“].
Theorem 3.26. Assume ZF + AD. |[w2]¥!] < |[wa]<“2|.

It should be mentioned that these results concerning wy are proved in ZF + AD and the arguments
provided here are the only proofs presently known to the authors. That is, the authors do not know of an
ADT™ style proof involving some analog of S;. In the proof that S; does not inject into “ON sketched above,
one considered the forcing Coll(w, < () where ¢ < w} is an inaccessible cardinal of an inner model M of
ZFC. In that case, one was able to find, in the real world, a generic over M since the forcing is countable
in the real world. One may attempt to make analogs of S; to handle results at w,. However, the naturally
associated forcing appears to be uncountable even in the real world, and one can no longer be certain that
generics for such forcings exist in the real world.

To give a more complete picture of the relations between cardinalities, one also has the following results.

Theorem 3.29. Assume ZF + AD. —(|[w1]<“!| < |[we]“|). Thus —(|[w1]**| < [wa]*).
Theorem 3.31. Assume ZF + AD. Then —(|[w1]“] < |[we]<“*]).

From the results mentioned throughout the paper, one has the following diagram depicting the rela-
tionships between the uncountable cardinalities below £?(wy) which will be discussed in this paper. An
arrow between A and B indicates |A| < |B|. All relations among these cardinals are those derivable by
compositions of the arrows on the diagram. Of course, there are other cardinals below & (wsy) which are not
on the diagram, for instance [w1]<“! U[ws]* and [w1]¥* X [we]<*!. With additional determinacy assumptions
such as AD™, the set S; can be proved to be distinct from all of these.

g2l

wl/
wi w
/[WQ]w/[w2]< ]
RUWQ/R X Wy
by e
w w !
_— [W1]w/[wl]< e
Rle/R X W1
w1 R

The main technique used in this paper involves Kunen functions for wy. Let p be the club measure on
wp. Using the Kunen tree analysis, one can show that for any function f : w; — wj, there is a function
E: w1 Xwy — wi so that for p-almost all «, f(a) < sup{E(a, B) : B < a} and {Z(«, 8) : B < a} is an ordinal
(not just a set of ordinals). This function = will be called a Kunen function for f. = allows for a uniform
way of selecting a representative for any g <, f, i.e. there is a § < w; so that the function EP i w = w
defined by Z°(a) = Z(a, 8) is p-almost equal to g. Using these Kunen functions and sliding arguments,
Martin proved an ultrapower representation for wy = le w1/ and showed the weak partition property on
wo.

The ultrapower representation is important for studying the continuity property at ws in this paper. In
fact, these continuity properties for functions ® : [ws]® — wq expressed in Theorem 3.21 and Theorem 3.22
when € < wy and has uncountable cofinality are exceptionally remarkable and unique to ws. For instance,
one can show under AD that the ultrapower of wy by the club measure p on wy, le wa /1, is ws. Define
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U [wo]“t — wg by U(f) = [f], (where [f], is the element of this ultrapower represented by f). There is no
w-club B, ordinal § < € so that if f,g € [B]¥* with f [ § = g [ § and sup(f) = sup(g), then ¥(f) = ¥(g).
This example shows that the continuity property expressed in Theorem 3.22 fails if one considers functions
whose range is larger than wy. For partition cardinals greater than ws, the failure of the continuity property
at e of uncountable cofinality is even worse. w11 is the next strong partition cardinal after w; under AD.
The ultrapower of w,, 1 by the club measure p on wy, le W1/ My 18 wyy1. Define U : [wy,11]¥* = wyy1 by
U(f) = [flu. For the same reason as before, the continuity property expressed in Theorem 3.22 fails. These
continuity results at wo are largely possible due to the combinatorial tool available from the ultrapower
representation of ws.

The basic facts about partition properties and Kunen functions can be found in [3]. These arguments
are well known and due to Jackson, Kunen, and Martin. (See [13], [14], and [15].) However, the article will
follow [3] which develops the minimal notation and theory necessary for the results in this paper.

The final section of this paper will study functions on tuples in [w1]“ using partition properties to establish
a basic combinatorial property called the Jénsson property for [w1]“. Let X be a set. Let [X]2 = {f € "X :
(Vi <j <n)(f(i) # f(4))} Let [X]=¥ = U, co[X]2. X is n-Jénsson if and only if for every @ : [X]|2 — X,
there exists a Y C X with |Y| = |X| and ®[[Y]2] # X. X is Jénsson if and only if for every @ : [X]=¥ — X,
there is a Y C X with |Y| = |X| and ®[[Y]=¥] # X.

Under AD, Kleinberg [16] showed that w,, is Jénsson for all n € w. Jackson, Ketchersid, Schlutzenberg,
and Woodin [12] showed that under ZF + AD + V = L(R) (and also ZF 4+ AD™) that every cardinal x < ©
is Jonsson. Holshouser and Jackson showed that R and R x k for k < © are Jénsson. The first author
[2] showed in fact that for all ordinals &, R x k is Jénsson. Holshouser and Jackson showed that “2/Ej is
2-J6nsson. The first author and Meehan [8] showed that “2/FEy is not 3-Jénsson and hence not Jénsson.
The final result of this paper shows [w;]¥ has the Jénsson property:

Theorem 4.12. Assume ZF + AD. [w1]¥ is Jonsson.

2. CONTINUITY OF SHORT FUNCTIONS ON w;

For the rest of the paper, assume ZF + AD. (Not even DCg will be implicitly assumed.)
If € < k are ordinals, then [k]¢ is the collection of increasing functions f : ¢ — k.

Definition 2.1. ([14]) Let  be an ordinal and € < k. A function f : e — k has uniform cofinality w if and
only if there is a function ¢ : € X w — k with the following two properties:
(a) For all « < e and n € w, g(o,n) < g(o,n + 1).
(b) For all a < ¢, f(a) =sup{g(a,n) : n € w}.

A function f : € — k is discontinuous at « if and only if f(a) > sup{f(8): 8 < a}.

A function f : e — k is of the correct type if and only if f has uniform cofinality w and f is discontinuous
everywhere.

Let A C &, [A]S denote the collection of all increasing functions f : € — A of the correct type.

The collection of increasing functions and the collection of increasing functions of the correct type have
the same cardinality. In the following, one may use either sets for purpose of distinguishing cardinality.

Fact 2.2. Let k be a cardinal. Let € < k. [K]¢ = [K]S.

Proof. Let H : k — k be any increasing function of the correct type. Define ® : [k]¢ — [x]S by ®(f) = Ho f.
Then @ is an injection. The two sets are in bijection by the Cantor-Schréder-Bernstein theorem. (]

Definition 2.3. Let s be an ordinal and € < k. One write K —. (k) to indicate that for every P : [k]¢ — 2,
there is some club C' C w; and an i € 2 so that for all f € [C]S, ®(f) = 1.

If Kk —. (k)5, then one says that x is a strong partition cardinal.

If kK =, (k)5 for all € < K, then & is said to be a weak partition cardinal.

Fact 2.4. ([3] Section 2 and 4, [16] Chapter II, [15] Theorem 7.3 and 12.2.) (Solovay) The club measure u
on wy s a countably complete normal measure on wy. (Martin) wy is a strong partition cardinal.
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Definition 2.5. Let u denote the club measure on wy. For each e < wy, let u€ be a filter on [wq]S defined
by K € p° if and only if there is a club C' C w; so that [C]¢ C K. Since w; is a strong partition cardinal,
one has that u€ is a countably complete ultrafilter for all € < w;.

If ¢ is a formula, then one writes (VI f)¢(f) to indicate that the set {f € [w1] : ©(f)} € pe.

Definition 2.6. ([3] Section 5) Let p be the club measure on wy.

Let Z: w; X wy — wy. For each a < wy, let 6 = sup{Z(a, B) : B < a}. Let Z, : a — 6= be defined by
Ea(ﬂ):E(o‘76) - =

E is a Kunen function for f with respect to pif and only if K7 = {a <w1 : f(a) < 05 A Eq is a surjection} €
p. K7 is the set of o on which = provides a bounding for f.

For B < wy, let 28 : w; — w be defined by Z°(a) = Z(«, 3) where o > 8 and 0 otherwise.

Fact 2.7. ([3] Section 5, [14] Lemma 4.1) (Kunen) For every f : wy — w1, there is a Kunen function for f
with respect to .

Definition 2.8. Let 8 < € < wy and f € [w1]S. Let bound(f,8) = sup{f(«) : @ < 8}, where sup() is
defined to be 0.

If A C wy with |A| = wy, then let enum 4 : w1 — A denote the increasing enumeration of A.

Let C C wy be a club. Let next¥(a) denote the w'™ element of C' above a.

Fact 2.9. Let e < wjy. For all @ : [w1]S — wy, there exists a unique bg < € so that bg is the largest § < € so

(Ve f)(bound(f, B) < @(f)).

Proof. For each < € < wy, let Ag be the set of f so that § is the largest v < e so that ®(f) > bound(f,~).
[wi]$ = Up<. As. Since p° is a countably complete ultrafilter on [wi]S, there is a bg so that Ag, € p°. O

Lemma 2.10. Let € < wy. Let @ : [w1]S — wi. Then there are club subsets of wy, C' and D, so that for all
f e D], (f) < nextg (bound(f, bs)).

Proof. Let * be a new symbol. Define a linear ordering £ on e U {*} by z < y if and only if
(a) z,y€eand z <y

(b) x =%,y €¢, and y > by

(c)x €€, y=x, and z < bg.

Note that £ is a wellordering of ordertype less than wy. If f: £ — w; is an increasing function, then let
main(f) : € = wy be defined by main(f)(a) = f(«). Let extra(f) € wy be defined by extra(f) = f(x).

Define a partition P : [w1]5 — 2 by P(g) = 0 & ®(main(g)) < extra(g). By the weak partition property
of wy, there is some C C w; which is homogeneous for this partition. By intersecting with an appropriate
club, one may assume that for all f € [C]¢, bg is the largest v so that ®(f) > bound(f,~). Therefore if
bs <€, O(f) < f(ba).

The claim is that C' is homogeneous for P taking value 0: Let D = {a € C : enum¢(a) = o} which is
the club set of closure points of C. Let f € D. In the case that bg < €, since bound(f,bs) < @(f) < f(bs)
and f(bs) € D, the w'-element of C above ®(f) is below f(bg). In all cases, let g : £ — C be defined
by g(a) = f(a) for all o € € and g(*) = nextZ(®(f)). Using any function witnessing that f has uniform
cofinality w, one can show that g has uniform cofinality w. g is discontinuous everywhere. So g € [C]% and
®(main(g)) = ®(f) < next&(®(f)) = extra(g). Thus P(g) = 0 and hence C' must have been homogeneous
for P taking value 0. The establishes the claim.

Now suppose f € [D]S. In the case that by < ¢, since bound(f,bg) < ®(f) < f(bs) and f(bg) € D,
next¢ (bound(f,bs)) < f(bs). In all cases, let g : L — C be defined by g(a) = f(a) if @ < € and
g(x) = next% (bound(f,bs)). As before, g is a function of the correct type in [C]%. P(g) = 0 implies that
®(f) = ®(main(g)) < extra(g) = next?(bound(f, bs)). This completes the proof. O

Lemma 2.11. Let € < wy and @ : [w1]S — wi be such that be # 0. Then there is some club D C wy,
some Kunen function Z : wy X wy — wy, and some @' : [w1]S — wy so that for all f € [D]¥*, ®(f) =
E(bound(f, bs),®'(f)) where by < bg.

Proof. By Lemma 2.10, there are clubs C' and D, so that for all f € [D1]S, ®(f) < nextg(bound(f,bs)). Let
= be a Kunen function for next? : w; — wy. Since KnEextg € p, let Dy C Kixtué be a club subset of w;. Let
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D3 = Dy N Dy. Thus for all f € [D3]S, ®(f) < nextg(bound(f,bs)) < (found(f’bq}). Let @ : [D3]S — wy be
defined by ®'(f) is the least v < bound(f, bg) so that ®(f) = E(bound(f,bs),y). Thus one has that for all
f €[Ds]s, ©(f) = E(bound(f,bg), ®'(f)). Also (V*f)(®'(f) < bound(f,bs)) implies that by < bg as long
as bg #£ 0. O

Definition 2.12. Let € < wy and @ : [w1]¢ — w;.
A representation for ® is a tuple (Zo, ..., Z,—1; Bo, .-, Bn;7y) with the following properties
(a) n € w. If n = 0, then no E appears.
(b) Bo > B1 > ... > Bn_1 > Bn = 0 is a sequence of strictly decreasing ordinals less than or equal to e.
v < wi.
(c) Each Z; : w1 X w; — wq is a Kunen function (for some function with respect to u).
(¢) Let @,,(f) = «y. Suppose for 0 < i < n, ®; has been defined, then let &, (f) = Z;_1(bound(f, 8;—1), ®;(f)).
One has that (V1) (®o(f) = @(f)).

Theorem 2.13. Let € < wy. Every ® : [w1]S — wy has a representation.

Proof. Let T be the tree of decreasing sequences o = (0o, ..., %) in € + 1 ordered by reverse string extension
with the property that there exists some Kunen functions =g, ..., Zx_1 and functions ®g, ..., P with the
property that

(i) o = ©.

(iil) (VEf)(@:(f) = E;i(bound(f, 5;), ®iv1(f))) for all i < k.

The claim is that there there is some o = (B, ..., Bn) € T so that 3, = 0.

To see this: Suppose not. Let o = (Bo, ..., 0k) € T with S # 0. Let Zg,...,Ex_1 and Dy, ..., Py witness
that o € T. (ii) implies that by, = B > 0. Lemma 2.11 implies that there is some Ej and &’ so that
(V:f)(q)k(f) = Ek(bound(f, b@k),‘b/(f))) with be < [Jcpk = Br. Let ®pyq = ®'. Let ﬁk-‘,—l = bg/. Let
0’ =0 Bry1. Then @y, ..., Ppy 1 and =y, ..., Zp witness that o’ € T

It has been shown that any ¢ € T' can be extended to some ¢’ € T. T is a tree on € + 1 with no terminal
nodes. Since € is a wellordering, 7" must have an infinite branch. This is impossible since an infinite branch
is an infinite descending sequence of ordinals.

The claim has been shown. So let ¢ = (fo,...,5,) € T be such that 8, = 0. Let Zy,...,E,_1 and
D, ..., P, be witnesses to o € T. Since by, = £, = 0, one has that for pc-almost all f, bound(f,0)
0 < ®,(f) < f(0). This implies that by, = 0. By Lemma 2.10, there is a club C' C w; so that &, (f) <
next¢ (bound(f, b, )) = nextZ(bound(f,0)) = nextg(0). Since u¢ is countably complete and next&(0) <
w1, ®,, is p-almost everywhere a constant function taking value some v € next4(0). This implies that
(20, -, Zn—1; Bo, ---, Bn;7y) is a representation of ®. |

The theorem implies a pc-almost everywhere continuity result for functions ® : [w1]S — wy.

Theorem 2.14. Let € < wy and P : [w1|¢ — wi. Then there is a decreasing sequence of ordinals which are
less than or equal to €, (B; : i < n), with B, = 0 and a club C C wy so that if f,g € [C]S has the property
that bound(f, 8;) = bound(g, 5;) for alli <mn, then ®(f) = ®(g).

The following is an even coarser form of continuity:

Theorem 2.15. Let e < wy and ® : [w1]é — w1. Then there is a 6 < € and some club C C wy so that for all
frg € [CIS with f [ d =g |6 and sup(f) = sup(g), ®(f) = ®(g).

Proof. If n = 0, then ® is a constant function so this immediately true. If n = 1, then let § = 5y if By < €
and 6 =0if By =e€. If n > 1, then let § = ;. O

Woodin [18] has observed the conclusion of the next theorem at least under ZF +DC+ ADg or ZF +AD™.
The following gives a combinatorial proof in AD.

Theorem 2.16. |[w1]¥] < [[w1]<“"].

Proof. Observe that [w1]¥ = [w1]* and [w1]5“" & [w1]<“?. So suppose there is an injection ¥ : [wy]s“! —
[wi]?-
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For each € < wy and n € w, let 3¢ : [w1]S — wi be defined by X¢(f) = 2(f)(n). By Theorem 2.15, there
is some 0f, < € so that there is some C' C w; club with the property that for all f, g € [C]S, sup(f) = sup(g)
and f [ 05, = g | of implies that X5, (f) = X5 (g)-

For each n € w, define A,, : w1 — wy by A, (e) = 65. Each A, is a regressive function. For each n € w,
there is a club C so that A, is constant on C. Define a relation S C w x #(w1) by S(n,C) if and only if
C is a club subset of w; and A,, is constant on C. By the Moschovakis coding lemma, there is a surjection
7 :R = P(w). Define R C w x R by R(n,r) if and only if R(n,7(r)). Therefore, using ACY, there is
a function I' : w — R so that for all n € w, R(n,T'(n)). Let C,, = m('(n)) which is a club subset of w;.
Thus A, is constant on C,. Let ¢, be such that for all € € C,,, A, (¢) = §,. Let C, = ), -, Cn- Let
d = sup{d, : n € w}. Since w; is regular, § < wy.

Now fix an € > § be some limit ordinal with € € C,,. Since € € C,,, for all n, 65, = 6,,. As observed above
and since 05, = 6,, < 4, there is a club C' C wy so that for all f, g € [C]S, if sup(f) =sup(g) and f [ =g [ 4,
then X6 (f) = X6(g). Let T C w x #(wy) be defined by T'(n,C) if and only if C is a club subset of w; and
for all f,g € [C]S, if sup(f) = sup(g) and f [ 6 = g | §, then X5 (f) = 2¢(g). By an argument as above
using AC§ and the Moschovakis coding lemma, there is a sequence (D,, : n € w) so that for all n € w, D, is
a club subset of wy and for all f,g € [D,]S, if sup(f) = sup(g) and f | 6 = g | 4, then X¢(f) = 3¢ (g9). Let
D = ﬂnEw D”'

Now pick f,g € [D]S so that f [ 6 =g | ¢, sup(f) = sup(g), and f # g. Since for all n € w, 6 > §,, = J5,
one has that ¥(f) = ¥(g). This contradicts ¥ being an injection. O

new

3. CONTINUITY OF SHORT FUNCTIONS ON wy

First, one will review the notations and basic tools needed to analyze wo under AD. See [3] Section 5 and
6 for more details and the proofs of the following results.

Let p denote the club filter on w;. An important application of the Kunen function for functions f : w; —
w1 is the existence of a uniform procedure to select representatives of the ultrapower le w1/ .

Fact 3.1. Let pu be the club measure on wi. Suppose f : wy — wi and possesses a Kunen function = with
respect to p. Suppose G € [[,e,,, f(a)/p. Then there is a B < w1 so that =, =G

As a consequence, one can show that [[, wi/pu is wellfounded even without DCg.

Fact 3.2. Let f : w1 — w1 and possesses a Kunen function = with respect to p. Then [[, ., f(a)/p, ie.
the initial segment of [],,, w1/ determined by [f],, is a wellordering.

[, wi/p is wellfounded.

For each F € [, wi/p, F <wa. Thus [[, wi/p < ws.

Fact 3.3. (Martin) Assume just ZF. Let k be a strong partition cardinal.
If v is a measure on k, then [[, k/v is a cardinal.
If v is a normal k-complete measure on K, then [[, k/v is a regular cardinal.

Corollary 3.4. (Martin) Let p be the club measure on wy. wy =[], wi1/p and ws is a regular cardinal.

w1
Definition 3.5. Let u be the club measure on w;. Let h:w; — wy. Suppose h possesses a Kunen function
= with respect to p. An ordinal f < wp is a minimal code (relative to Z) if and only if for all v < 3,
(27 =, ZP). Let J be the collection of 3 which are minimal codes and satisfy Z° <, h. Define an ordering
< on J by a < B if and only if 2% <, Z°. By Fact 3.1, for every G < [h],, there is a unique B € J so
that 2% € G (i.e. [EP], = G). In this way, one says that 3 is a minimal code for G or for any g € G with
respect to =. Thus (J, <) has the same ordertype as [h],. By Fact 3.2, [h], is a wellordering. Let e € ON
denote the ordertype of ([h],, <) which is equal to the ordertype of (J, <). Let 7 : € = (J, <) be the unique
order-preserving isomorphism.

Note that the objects J, <, €, and m depend on = and h. However, within this section, one will only work
with a single = and h at a given time. It should be clear in context that these objects depend on this fixed
= and h.

Definition 3.6. Let u be the club measure on wy. Let h : w; — wy be a function so that A(a) > 0 p-almost
everywhere. Let Z be a Kunen function for h with respect to p. Let € = [h], = ot(J, <) which are defined
relative to = and h.
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Let Th = {(a, ) € w1 X w1 : B < h(a)}. Let T" = (T",C) where C is the lexicographic ordering. Note
that ot(T") = ws.

Suppose F' : T" — w; is an order-preserving function. Let g € w; — w; be such that g <, h. Let
A9 ={a:g(a) < h(a)}. Let F9: w; — w; be defined by

yoo_ [Flagl) aeas
Fo(a) = {F(a,O) otherwise

Note that if g1 <, g2 <, h, then F'9 <, F92.
If B € e, then let F®) = F=7 Let funct(F) : ¢ — ON be defined by funct(F)(«a) = [F(¥)],,.
If X C wy, then let [X ]Th' be the collection of order-preserving functions f : 7" — X. Let [X ]Ih be the

collection of correct type order-preserving functions f : 7" — w; (since T" is order-isomorphic to wy, this is
equivalent to the earlier notion of f :w; — X having the correct type).

Fact 3.7. Let u be the club measure on wy. Let h : wy — wy be a function possessing a Kunen function

= with respect to p. Suppose Fy, Fy € [wl]Th have the property that Fé’B) =, Fl(ﬁ) for all B < e. Then for
p-almost all «, Fy(e, B) = Fi(a, B) for all B < h(a).

Suppose € < we and F : € — wy. Let h : wqy — wy be such that [h], = €. Let = be a Kunen function
for h. Via a “sliding argument”, one can find an increasing function F : 7" — w; so that for all 8 < e,
[F®)],, = F(B). Hence one can study functions F : € — wy by using the strong partition property of w; on
partitions of functions in [w]7". See [3] Section 5 on the statement of the sliding lemma and how it can be
used to prove the following results:

Theorem 3.8. (Martin-Paris) Let i be the club measure on wy. Then for all a < wa, the partition relation
wa — (w2)g holds. That is, wy is a weak partition cardinal.

As a consequence of the weak partition property on ws, one can completely characterize the normal
measures on ws.

Corollary 3.9. Let W52 and W52 denote the w-club and wy-club filter, respectively.
W52 and WZ2 are the only two wa-complete normal ultrafilters on ws.

The next two results show that club subsets and w-club subsets of wy are lifts (in a certain sense) of some
club subsets of wj.

Fact 3.10. Let u be the club measure on wy. If C C wy is a club subset of wy, then [C]“Y/u is a club subset
of wa.
If D C wy is club, then there is a club C C wy so that [C]“*/pu C D.

Fact 3.11. Let p be the club measure on wy. Let C C wy be a club. Then [C]$* /1 is an w-club subset.
Moreover, for every w-club D C wa, there is a club C C wy so that [C]¥*/u C D.

Fact 3.12. Let u denote the club measure on wy. Let C C wy be club. Let B = [C]¥'/p which is an w-club
subset of wa.
Let € < wy. Let h:wy — wy with h(a) > 0 for all & < wy and [h], = €. Let Z be a Kunen function for h.

Let F € [B]S (be of correct type). Then there is an F € [C’]Ih s0 that for all a < ¢, [F(¥)], = F(a).

Definition 3.13. Let p denote the club measure on w;. Let v = W%2 denote the w-club measure on ws.
Let € < wy. Define v¢ as follows: for all A C [ws]S, A € v° if and only if there is a w-club B C wy so that
[B]s C A. v is an wa-complete measure on [wo]S by the weak partition property of ws.

Let F € [wa]S. For B <, let bound(F, 5) = sup{F(a) : o < }.

Let @ : [wo]¢ — wy. Let by be defined so that for veé-almost all F € [ws]€, bg is the largest v < e so that
®(F) > bound(F, 7).

Let h € w; — wy with h(a) > 0 be such that [h], = e. Let = be a Kunen function for h with respect to p.

Suppose F € [wy]7" and 8 < e. Define Boundg : wi; — wy by Bounds(F)(y) = sup{F(® () : a < B}. Note
that although 8 may be uncountable, for each ~, this is a supremum of a set containing at most |h(7y)| = Rg
many elements.
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For the next several results, assume the setting of Definition 3.13.
The next result states that if F € [wq]S and F € [wl]zh is a lifted representation of F, then Boundg(F')
is a lifted representation of bound(F, 3).

Fact 3.14. Let 8 < e. Let F € |wo]S. Let F € [wl]*Th be such that for all a < e, [F™)], = F(a). Then
bound(F, 8) = [Boundg(F)],.

Proof. First observe that for any F, there is an F' with the above property by Fact 3.12.

Let § < bound(F, ). Then there is some v < 3 so that § < F(y). So § < [F"],. Hence § <
[Boundg(F)],.

Now suppose that ¢ < [Boundg],. Let ¢ : w; — w; be such that [/], = §. Then for p-almost all v,
{(y) < sup{F)(y) : @ < B}. Therefore, for y-almost all 7, there is a ¢ < h(v) and, in fact, if B < ¢, there is
a ¢ < Z7B) () so that £(y) < F(7,¢). Let ¢ : w; — w; be defined so that for the set of y-almost all y with the
previous property, ¢(7) is the least such ¢ with £(v) < F(v,¢). There is some p < f so that ¢ =, Z*(*). Thus

(<, F*=, F="" = F() Hence § < F(p) where p < . This shows that [Boundg],, < bound(F,f3). O

Definition 3.15. Let 8 < e. Let C C wy be a club subset of w;.

For each F € [wl]z_h, define Fnextg o (F) : w1 — wy by Fnextg o (F)(a) = nextd (Boundg(F)(«)).

Using either Fact 3.7 or Fact 3.14, if Fy, F; € [wl]*Th have the property that for all g < e, Fo(ﬁ) =5 Fl(ﬁ),
then Fnextgyc(Fo) =pu Fnextﬁyc(Fl).

Therefore the following is well defined: if F € [w.]¢, let fnexts o (F) = [Fnextg ¢ (F)],, for any F € wr] T
such that for all « < ¢, [F(@)], = F(a).

The following gives an intuitive summary of the previous notations.

If F:e— we and B < ¢, bound(F, ) = sup{F(«) : @ < 8} which is an ordinal less than wo. If F' € [wl]zh
represents F in the sense stated in Fact 3.14, then Boundg(F') : w1 — wy is a representative for the ordinal
bound(F, 8) in the ultrapower of w; by the club measure on wy.

Now suppose C' C w; is a club, f < ¢, and F : € — wy which is represented by F : T" — w;.
Fnextg ¢ : w1 — wy is defined using F' and C to represent fnextg ¢ (F) which is roughly the next element of

the w-club on ws induced by the club C C w; after the ordinal boundg(F).

Lemma 3.16. Assume the setting of Definition 8.13. There is a club C' C wy and an w-club B C ws so that
for all F € [B]S, ®(F) < fnextp,, c(F).

Proof. For each a < wy, one will define a wellordering £,: Let %, be a distinct new object. The underlying
domain of £, is h(a) U {q}.

First assume by < €. Define the linear ordering <, by = <, v if and only if
(a) z,y € h(a) and z < y.

(b) & = %4 and y € h(a), and y > Z7(2)(q).
(c) z € h(a), y = *q, and z < E7(02) ().

If by = €, then define z <, y if and only if
(a) z,y € h(a) Nz < y.

(b) x € h(a) and y = *,.

Let £ = (L, <) be a linear ordering on L = {(o,x) : @ € w1 Az € Ly} where < is the lexicographic
ordering on L with <, on the at"-coordinate. Note that .# has ordertype w.

In the case that by = ¢, let iL(Oé) = h(a) + 1. By initially choosing = large enough, one may assume that
= is also a Kunen function for h with respect to . Note that £ is order isomorphic to 7.

Suppose K € [w1]%. Define main(K) : [wl]Th — wy by main(K)(«, 8) = K(a, 8). Define extra(K) : w; —
w1 by extra(K) (o) = K(ov, *q)-

Let P : [w1]* — 2 be defined by P(K) = 0 < ®(funct(main(K))) < [extra(K)],. By w1 —. (w1)5?, there
is a club C' C wy which is homogeneous for P.

Claim 1: C is homogeneous for P taking value 0.

By definition of bg, there is an w-club B’ C wy so that all F € [B]S, bg is the largest v < e so that
®(F) > bound(F,~v). By Fact 3.14, there is a club C” so that [C']“* /u C B. By intersecting with C’, assume
that C C C'.
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(Case I) bg <e.
Let D = {a € C : enumg(a) = a} be the closure points of C. Let B = [D]«'. Pick any F € [B]s.

* *

By Fact 3.12, there is some F € [D]Z—h so that for all @ < ¢, [F™], = F(a). Let f : w; — w; be
such that [f], = ®(F). By Fact 3.14, bound(F,bs) = [Boundp, (F)],. Since by is the least v so that
®(F) > bound(F,), one has that the set A of a’s so that Bound,, (F)(a) < f(a) < F(®2)(a) belongs to p.
Define K € [C]% by
F(a,2) z € h(a)
K(a,z) = { nexté(f(a)) a€ANZ =%, .
next$ (Boundg,, (F)(a)) ad ANz =%,

Note that since F(a, 7)) € D, K(a,*,) < K(a,Z7®®)) for all a. Thus K : £ — C is indeed an
increasing function. Since F is a function of the correct type, one can check that K is also of the correct
type.

Note that main(K) = F' and for p-almost all o, extra(K)(a) = next&(f(«)) > f(a). Thus ®(funct(main(K))) =
®(F) = [f], < [extra(K)],. Thus P(K) = 0. However since C' is homogeneous for P and K € [C]%, one has
that C' is homogeneous for P taking value 0.

(Case II) bp = €.

Let B = [C]¢*. Pick any F € [B]S. Let f :w; — wy be such that [f], = ®(F). Let g(a) = next&(f(a)).

Let G € [B]S™! be defined by

{]—"(a) a<e
(9] a=c¢

By Fact 3.12, there is some K € [C]7" = [C]£ so that for all o < €+ 1, K(® = G(a).

Then one has that ®(funct(main(K))) = ®(F) = [f], < [g9]p = [extra(K)],. Thus P(K) = 0. Since
K € [C]%, C is homogeneous for P taking value 0.

The claim has now been established.

Let D = {a € C : enumg(a) = a}. Let B = [D]¥*. Now suppose F € [B]5. By Fact 3.12, pick any

F e [D)T" so that for all @ < e, [F(®)], = F(a). Now define K € [C]¢ by

s [P € h(o)
’ nexts (Boundp, (F) ()  z=x%4

Since C' is homogeneous for P taking value 0, one has P(K) = 0. This implies ®(F) = ®(funct(main(K))) <
lextra(K)], = [Fnextp,,c(F)], = fnexty, o(F). This completes the proof. O

Definition 3.17. Suppose ¥ : w1 X wy — wy.

Suppose fo : w1 — wi and fi : w1 — wi. Let vy, 5 w1 — wi be defined by vy, 7, () = E(fo(a), fi()).
Note that if fg =, fo and fi =, fi, then vy, f, =, vy 51

Therefore, define 3 : wy X wy — wy by S(a, B) = [V, f5lus Where fo, fa 1 w1 — wp are such that [f,], =
and [fg], = B.

Lemma 3.18. Suppose by > 0. Then there is a Kunen function ¥ : w1 X w1 — wi and a function
D' : [wa]§ — we so that for ve-almost all F, ®(F) = X(bound(F, by ), ®'(F)) where by < bg.

Proof. Let B C wy be the w-club and C C w; be the club from Lemma 3.16.

Pick any F € [B]¢. Let F € [wl]zh be so that for all a < wy, [F(™], = F(a). Let f :w; — w; be such
that [f], = ®(F). By Lemma 3.16, for p-almost all o, f(«) < next(Boundy,, (F)(a)). Let £ : w1 X w1 — wq
be a Kunen function for nextg. For p-almost all a, let vy p(a) be the least v < Boundy, (F)(a) so that
f(a) = E(Boundp, (F')(c),7y). Observe that if g =, f and G € [wi]7" is such that G(®) =, F©@ for
all @ < ¢, then vy p =, vy p. Therefore, define ®'(F) = [vf p|,. Note by construction, ®(F) = [f], =
3 (bound(F, ba), [v.r],) = S(bound(F, by), & (F)). Since ' (F) < bound(F, bs), one has that bg: < b if
be > 0. O

Definition 3.19. Let € < wy and ® : [ws]S — ws.
A representation for ® is a tuple (2o, ..., Zn—1; B0, ---, Bn;y) with the following properties
12



(a) n € w. If n =0, then no = appears.

(b) Bo > B1 > ... > Bn_1 > Bn = 0 is a sequence of strictly decreasing ordinals less than or equal to e.
v < wa.

(C) Each EW W X W — Wq.

(d) Let ®,,(F) = +. Suppose for 0 < i < n, ®; has been defined, then let ®;_; (F) = Z;(bound(F, Bi_1), ®:(F)).
One has that for v¢-almost all F, ®¢(F) = ®(F).

Theorem 3.20. Let € < wy. Every ® : [wo]S — wo has a representation.

Proof. The proof is analogous to the proof of Theorem 2.13 using the wy version of the analogous lemmas. [

Now one has the analogous continuity result for functions ® : [ws]S — wo where € < ws.

Theorem 3.21. Let € < wy and ® : [ws]S — wy. Then there is a decreasing sequence of ordinals less than
or equal to €, (B; : i < n), with B, =0 and an w-club B C wy so that if F,G € [B]S has the property that
bound(F, 8;) = bound(G, 8;) for all i < n, then ®(F) = ®(G).

Theorem 3.22. Let € < wy and P : [wo]¢ — wa. Then there is a § < € and an w-club B C wy so that for all
F,G e [B]S with F =G |d and sup(F) = sup(G), ®(F) = ®(G).

Now one has some new cardinality results:
Theorem 3.23. |[w2]] < |[wa]<“].

Proof. Suppose @ : [wa]5“t — [we]¥ is a function. For each € < w; and each n € w, let ®F : [wa]¢ — wo
be defined by ®¢(F) = ®(F)(n). By Theorem 3.22, there is some § < € so that ®f(F) = @5 (G) for ve-
almost all F and G so that 7 [ § = G | 0 and sup(F) = sup(G). Let ¢, be the least such §. The function
Ayt wi — wy defined by A, (e) = &S is a regressive function. Using ACE7 there is a §, < w; and A,, € pu
so that for all e € A, Ay(€) = 6,. Let A =), ., An € pand 6 = sup,,¢, 0, < wi. Pick a limit ordinal
e € A with e > §. By AC§7 let B,, be an w-club subset of wa so that for all F,G € [B,], if sup(F) = sup(G)
and F [ 6, = G | 0p, then @5 (F) = ®@5,(G). Since v is wp-complete, B = [, ., Bn € v. Thus pick some
F,G € [B]s with F # G, sup(F) = sup(G), and F [ § = G [ §. Then for all n € w, ®(F) = D5(G). So

O(F) = ®(G). ® can not be an injection. O
Theorem 3.24. |[ws]<¥1] < [[w2]*?].

Proof. First, it will be shown that there is an injection of [wo]<“? into [w2]¥!. Let add : ws X [wa] <9t — [wg] <1
be defined as follows: if F € [wo]¢ for some € < wy, then define add(\, F) € [w2]¢ by add(A, F)(a) = A+ F(a).

If F € |we]<“1, then let fill(F) € [wa]** be defined by appending onto F the next wi-many ordinals after
sup(F).

Let @ : [wo]<¥t — [wa]“t be defined by ®(F) = fill(length(F) add(length(F), F)). In words, ®(F) starts
with length(F), then shifts up all the values of F by length(F), and fill in the rest with successive ordinals
until one reaches length w;. One can check that ® is an injection.

Next to show that [we]“! cannot inject into [we]<“'. Let ® : [wo]¥* — [w2]s“* be a function. Let
U : [wa]“t — w; be length o @, where length(F) = € if F : € = wy. Since v is wy-complete, there is a B € v
and an € < wy so that for all F € [B]¥1, U(F) = e. In other words, for all F € [B]¥1, ®(F) € |wo]s.

Let a < e. Let ®,(F) = ®(F)(). By Theorem 3.22 and ACY, there are d, < w; and w-club B, C wy 50
that for all F,G € [By|%, if F [ 0o =G | §o and sup(F) = sup(G), then @, (F) = 0,(9).

Now let U = (.. Ba € v since v is wy-complete. Let 0 = sup{d, : o < e}. Note that § < w; since w;
is regular. Pick F,G € [U]¥* with F # G, F [ d =G [ §, sup(F) = sup(G). Since F,G € [B]«*, &(F) and
®(G) both have length e. By choice, @(F)() = @o(F) = 2,(G) = (G)(«) for all @ < e. So ®(F) = &(G).
® is not an injection. |

Previously, one only needed ACE to make a countable selection of subsets of w; or wy. For the next
theorem, one will need to make an wi-length selection of club subsets of wyi. The following fact ensures this
can be done.

Fact 3.25. (]3] Section 4) Let (A, : o < wi) be such that each A, is a nonempty C-downward closed
collection of clubs subsets of wi. Then there is a sequence (Cy : o < wy) with each Cy, C w1 a club subset of
wy and Cy € Ag.
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Theorem 3.26. |[ws]“!| < |[w2]<*2].

Proof. Let @ : [wa]s¥? — [w2]¥* be a function. For each € < wy and a < wy, let @, : [wa]S — we be defined
by @¢,(F) = ®(F)(«). By Theorem 3.22, there is a minimal §¢, < € so that for v*-almost all F,G € [wo]S, if
F 165 =G |65 and sup(F) = sup(G), then @€ (F) = ®5(9).

For each o < wy, let A, : wa — wy be defined by A,(e) = 0. Since v is a normal measure on we and
A, is a regressive function, there is a minimal §, < wsy so that for v-almost all €, A, (€) = d,. By Fact 3.11,
for every B € v, there is a C' C wy club so that [C]¥*/u C B. Let A, be the collection of all club C C w;
so that for all € € [C]¥'/u, Aa(e) = d4. Ag is clearly C-downward closed. Apply Fact 3.25 to obtain a
sequence (Cy, : a < wy) so that Cy € Aa. Let B =(,,, [Cals* /e which belongs to v as v is wp-complete.
Let 6 = sup{d, : @ < w1} < wa since ws is regular. Now pick a limit ordinal € > ¢ with € € B.

For a < wy, let A/, be the collection of club C' C wy so that if D = [C]¢* /p, then D has the property that
for all F,G € [D]S, if F | o = G | 04 and sup(F) = sup(G), then ®¢(F) = ®¢(G). A, is a C-downward
closed nonempty collection of club subsets of wy. Apply Fact 3.25 to obtain a collection (C/, : @ < wy) of
club subsets of w; with the property that for all a < w1, C}, € Aj,. Let B' =, [C,]¢* /i which belongs
to v since v is we-complete. Now pick F,G € [B’]S with F [ § = G [ 6, sup(F) = sup(G), and F # G. Note
that for all @ < wy, ®(F)(a) = ®5(F) = 5(G) = ®(G)(«). Thus ®(F) = &(G). @ is not an injection. [

Theorem 3.27. |[wz]?| < [[wa] <91 ] < |[w2]“t| < |[w2]<*2].
Proof. These follow from Theorem 3.23, Theorem 3.24, and Theorem 3.26. O
Fact 3.28. wy does not inject into [w1]“*. Thus [we]* does not inject into [w]**.

Proof. This is a consequence of the measurability of ws in the same way the fact that there are no uncountable
wellordered sequences of reals follows from the measurability of wy. The details follow:

Let v be an wy-complete measure on wy. Suppose (f, @ @ < wg) is an injection of wq into [wi]¥*. Let
F, =rang(f,). Then (F, : a < wa) is an wy-sequence of distinct subsets of w;.

For each < wy, let A% ={a<wy:p¢F,}and Aé ={a <wy:p € F,}. Since u is a measure, there

is some ig € 2 so that A;B €.
By the ws-completeness of v, ﬂﬁewl Alﬁﬁ € v. Let ag,a; € ﬂﬁewl Azﬁ. Let ' C w; be defined by
B € F < ig=1. Then F, = Fg = F. This contradicts the fact that (Fi, : @ < ws) is a sequence of distinct

subsets of wj. O

Like the original argument for the cardinal relation |[w1]¥| < |[w1]<*|, the argument that [w1]<“* does
not inject into [ws]¥ passes through the set S; using co-Borel codes and forcing arguments. This originally
was proved under ZF + ADT. The following gives a purely descriptive set theoretic proof using just AD.

Theorem 3.29. —(|[w1]<¥!| < [[w2]?]). Thus =(|[w1]*!] < [wa]“).

Proof. Suppose ® : [w1]<*“* — [wo]* is an injection.

For each € < w;y and f € [w1]“?, let tail(f,€) € [w1]“* be defined by tail(f,€)(8) = f(e + 3). Note that for
all e <wq and f € [wi1]*, f = (f | e)tail(f,€). Let p denote the club measure on w;.

For each € < wy, let P, : [wi]¥* — 2 by defined by P.(f) = 0 if and only if sup(®(f [ €)) < [tail(f,€)],.
(Recall that [, wi/p=w2.)

Let C' C w be a club which is homogeneous for P.. The claim is that C is homogeneous for P, taking value
0. Suppose otherwise, then pick any o € [C]¢. For any g € [C]¥* with min(g) > sup(o), define o9 € [C]«*
by ¢”g. Then P(c?%) = 1 implies that [g], = tail(c,€) < sup(®(c? | €)) = sup(®(o)). This impossible since
o is fixed, [C]“* /1 = wa, and g can be any member of [C]¥* with min(g) > sup(o).

It has been shown that C' is homogeneous for P, taking value 0. Let ¢ € [C]¥* and let 8 = [{],. Note
that for all € < wy, £ =, tail(f,e). Let 0 € [C]S. Let 7, be the least v so that ¢(y) > sup(c). Define
fo = o'tail(¢,v,). Note that f, € [C]¥*. Thus P.(f,) = 0 implies that sup(®(c)) = sup(®(f, [ €)) <
[tail(f5, €)], = [tail(4,v5)], = [€], = B. That is, ® maps [C]S into [5]“.

For each € < wy, let B¢ be the least 8 < ws so that there exists a club C' C w; with the property that for
all o € [C], sup(®(0)) < 8. This defines a sequence (S : € < wy). Let § = sup{S. : € < wy}. Since wy is
regular, § < ws.
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For € < w1, let A¢ be the collection of clubs C' C wy so that for all o € [C]S, sup(®(0)) < Be. This defines
a sequence (A, : € < wy). Note that for all € < wy, A, is a nonempty C-downward closed collection of club
subsets of wi. By Fact 3.25, let (C. : € < wy) be a sequence so that C, € A, for all € € w;y. So for any € < wy,
if o € [C]¢, then sup(®(a)) < 4.

Note that {J, ., [Cc]s = [w1]=“*. Observe that
¢ | [ |cds| < o).
e<wi

Hence @ induces an injection of [w1]<“* into [0]“ ~ [w1]* since § < wq. By Theorem 2.16, this is impossible.
]

Fact 3.30. |[w1]<“t] < |[w1]“Y].

Proof. There is a purely descriptive set theoretic proof of this result in the flavor of the continuity argument
used throughout this paper in [6]. However, the requisite continuity property is more challenging to establish
than the analogous continuity properties in this paper. However, there is a very simple set theoretic proof
of this result:

Suppose there was an injection ® : [w]“* — [wy1]<“t. Let (I~> ={(f,8): f € [w1]“* AB € ®(f)}, where
®(z) € [w1]<** is considered as a countable subset of wy. Let L[ | & ZFC be the Godel constructible universe
built relative to ® as a predicate. Note that if f € [wi]* N L[®], then ®(f) € L[®].

Note that w) is inaccessible in L[®]: Suppose § < w) and |2(8 )L[q)]\L‘I’] > w). Since L[®] = AC,

& (5)L[¢] is a wellorderable collection of subsets of § of cardinality w}. In the real world V 0 is a countable
ordinal and hence there is a bijection of § with w. Using this bijection, one can obtain an w} -length sequence

of distinct reals from 9(5)L[é]. This is impossible under AD by a simple form of the argument in Fact 3.28.

Thus |Z(§ )L[q)] |l @) < w)'. This implies w}’ is inaccessible in L[®].

Since L[®] = ZFC, Cantor’s theorem assert that L[ | = |[w1 [ = 27| > (wY)*. Also since L[®] =
ZFC and wy is inaccessible in L[<I>] L[®] = |[w) ]<‘*’1 | = |2<“’1 | = wY. By absoluteness, L[®] = ® is an
injection. It is impossible that L[®] thinks that ® is an injection of 2¢7 into wy. O

A very similar argument can be used to show that [[wa]<“2| < |[ws]“2|. See [4] Section 4.
Theorem 3.31. ~(|lwi]!] < [[w2] "),

Proof. Let T = (w1 x 2, <) where < is the lexicographic ordering. (Note that ot(7) = w;.) If F € [w;]] and
i €2, let F; € [w1]“* be defined by F;(a) = F(a,1).

Now suppose @ : [wi]“t — [wo]<“! is an injection. Define a partition P : [w1]7 — 2 by P(F) = 0 if
and only if sup(®(Fp)) < sup(®(F1)). Let C C wy be a club homogeneous subset for P. The claim is C' is
homogeneous for P taking value 0.

Suppose C was homogeneous for P taking value 1. Let go(0) = nextg(0). Suppose gi(a) has been
defined, then let gi41(a) = nextd(gr(a)). Suppose g, (f) has been defined for all n € w and 3 < a. Then
let go(a) = nexté(sup{gn(8) :n e wA B < a}).

For each n € w, g, € [C]¥'. Define for o < wy and i € 2, G"(a, %) = gn+i(c). By the construction of

*

(gn :m € w), one has that G™ € [C]7 .

*

Thus one has that P(G™) =1 for all n € w. This implies for all n € w.

sup(®(gnt1)) = sup(®(G7)) < sup(®(Gg)) = sup(®(gn))-

It has been shown that (sup(®(g,)) : n € w) is an infinite decreasing sequence of ordinals. This contradicts
the wellfoundedness of the ordinals.

One must have that C' is homogeneous for P taking value 0. For the next part, take g, g1, and g from
the sequence (g, : n € w) constructed above. The important observation from above is that go(a) < ¢1(a) <
g2(a) < go(a+ 1) for all a.
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For each A € 12, let hy € [C]%* be defined by ha(a) = ga(a)(a). Let H* € [C]] be defined by

Aai: hA(a) t=0
Had) {gz(a) i=1

Note that H§' = hy and H{! = go. P(H?*) = 0 implies that sup(®(ha)) = sup(®(Hg")) < sup(®(H{)) =
sup(®(g2)). Let ¢ = sup(P(g2)) which is an ordinal less than ws.

Define U : “12 — [wy]<“t by ¥(A) = ®(h,). Note that ¥ is a injection. By the above, ¥ : ¥12 — [(]<%1.
Since “12 & L (w1) = [w1]“", one has shown that there is an injection of [w;]*! into []<¥! & [wy]<“'. This
is not possible by Fact 3.30. O

For the sake of completeness, one sketches the remaining well-known cardinal relations among the sets
considered in this paper:

Fact 3.32. —(w; < |R|) and —(|R| < wy).

Proof. By a simple form of the argument in the proof of Fact 3.28, there are no uncountable wellordered
sequences of distinct reals. That is, wy can not inject into R.
Under AD, R can not be wellordered. Hence R can not inject into w;. O

Fact 3.33. Let k be an ordinal. —(|[w1]¥| < &), =(|[w1]¥| £ R), =(J[w1]*] < |RUK]), and =(|[w1]¥| < |Rx ).
Similarly, ~(|[wa]*| < k), ~(|[we]“| <R), ~(|[w2]| < [RUK[), and =([fws]*] < R x #]).

Proof. Since R injects into [wq]* and R is not wellorderable, [w1]“ is not wellorderable. So [w1]“ can not
inject into any ordinal k.

Let ® : [wy]* — “2. For each n € w, define P, : [w1]® — 2 by P,(f) = f(n). By ACE, let C,, C w; be
club homogeneous for P, taking some value i, € 2. Let C =) Cy. Let r € “2 be defined by r(n) = i,.
Note that ®[[C]¥] = {r}. Thus ® is not an injection.

Now suppose ® : [w1]¥ — k UR. Define Q : [w1]* — 2 by

)0 o(f) er
an-{ 0<s

Let C' C w; be club homogeneous for Q. If C' is homogeneous for @) taking value 0, then ® maps [C]¢ into k.
By the earlier argument, ® can not be an injection. If C' is homogeneous for @) taking value 1, the ® maps
[C]¢ into R. Again by the earlier argument, ® can not be an injection.

Suppose @ : [w1]* — R x wy. Let m : R x w; — R be the projection onto the first coordinate. Then
m0® : [w1]“* — R. By the argument above, there is a club C' C wy and an r € R so that (7o ®)[[C]¥] = {r}.
Then @ : [C]¢Y — {r} x w1. Since {r} X w; is in bijection with w;, ® can not be an injection by the earlier
part of this proof.

The result for [wo]* follows by the same argument using the weak partition property for ws. ([l

new

The cardinal relations displayed in the diagram from the introduction follow from the work so far.

4. [w1]¥ 138 JONSSON

Definition 4.1. Let X be a set. Define [X]|2 = {f € "X : (Vi < j < n)(f(i) # f(4))}. Let [X]Z¥ =
UnGw[X]i

For n < w, X is n-Jénsson if and only if for every ® : [X]® — X, there is some Z C X with Z =~ X so
that ®[[Z]"] # X.

X is Joénsson if and only if for all @ : [X]=* — X, there is some Z C X with Z &~ X so that ®[[X]|=¥] # X.

Definition 4.2. Let f € <“([w;]¥). The tuple-type of f, denoted type(f), is a 4-tuple (n,m,G, D) with the
following properties:
(1) n is the length of the tuple f.
(2) Let S = {sup(f;) : i <n}. Then m = |S]|.

Let rang(f) = U,., rang(fi). Note that m also has the property that ot(rang(f)) = w-m. Let
{ag,...,am_1) be the increasing enumeration of S. Let F : w-m — rang(f) be the increasing enumera-

tion of rang(f).
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(3) G:m — P(n) is defined by G(i) = {k € n: sup(fx) = a;}.
(4) Let D :w-m — Z(n) be defined by D(a) = {i € n: F(«) € rang(f;)}.
If Z C [w;]¥, then let type(Z) = {type(f) : f € <“Z}.
Example 4.3. Consider fy, f1, f2 € [w1]* defined by
fo(x)Z{O :17:07 fl(x):{:c z=0,1

z+1 z>1 w+2(x—1) x> 2

T rz=0,1
folz)=qw+(x—2) x=2,3
w+2(z—3)+1 x >4
The first several values of fy, f1, and fy are the following:
f0=10,2,3,4,5,6,7,...) f1={(0,l,w+2,w+4,w+6,w+8 w+10,...)
fo=0,,w,w+l,w+3,w+5w+7w+9,w+11,...).
The picture looks as follows: There are w -2 many columns. Row 0, 1, and 2 indicate which values among
w - 2 are taken by fy, f1, and fa, respectively.

0 0000 -~ |
11 | 1 1 1 1 1
2 2 | 2 2 2 2 2 2

Then type((fo, f1, f2)) = (3,2,G, D) where G and D are defined as follows: G : 2 — £?(3) is defined by
G(0) = {0} and G(1) = {1,2}. The function D : w-2 — Z(3) can be read off the diagram above by

{0,1,2} a=0
(1,2} a=1
Dle) = g Zg—ijil
{1} (Fk cew)la=w+2(k+1)]
{2} (Fkew)a=w+2(k+1)+1]

With Definition 4.2 as the motivation, one makes the following abstract definition of a tuple-type:

Definition 4.4. A tuple-type t is a 4-tuple (n,m, G, D) with the following properties:
(1) n € w and n > 0 which is called the length of tuple type.
(2) 1 < m < n which is called the arrangement number of the tuple type.
(3) G :m — Z(n) with the property that for all i < m, G(i) # 0, U,c,, G(i) = n, and for all i < j < m,
G(i) NG(j) = 0. G is called the grouping order of the tuple-type.
)

(4) D :w-m — Z(n), which is called the distribution of the type, is a function with the following properties:
(a) For each i < m and [ € w,
D(w-i+1 U G() | =0.
7<1

(b) For each k < n, if k € G(i), then {{ € w: k € D(w-i+1)} is infinite.
(c) For each k < n, if k € G(i), then for each j < i, {{ €w:k € D(w-j+1)} is finite.

Observe that if f € <“(w;]¥), then the tuple-type of f, type(f), is a tuple-type as defined in Definition
4.4.

Definition 4.5. Let t = (n,m,G, D) be a tuple-type. Let h € [w1]¥™. For i < n, let ff’h be defined to be
the increasing enumeration of {h(e) : &« < w-m A4 € D(a)}. Note that the properties of the distibution
imply that ff’h € [wy]®.
Define extract(t,h) = (f&", ..., f" ). This is the n-tuple extracted from h of tuple-type t. Note that
type(extract(t, h)) =
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Definition 4.6. Let X be any set and P : w — X. P is eventually periodic if and only if there exists
k,p € w and g, ...,zp—1 € X so that for all n > k, P(n) = z; where i < p is such that n — k is congruent to
i mod p.

A tuple-type t = (n,m,G, D) is an eventually periodic tuple-type if and only if for each i < m, the
function P; : w — #(n) defined by P;(k) = D(w - i+ k) is eventually periodic.

Note that there are only countably many eventually periodic tuple-types.

Definition 4.7. Let L be the collection of finite tuples (a,n, By, ..., Bn) where a < w1, n € w, By < P1 <
... < Bn < . Let < be the lexicographic ordering on L. Let £ = (L, <). Note that ot(£) = w;.

Let H € [wy]*, that is an order-preserving function of £ into w;.

Define AT : [w]% — [w1]® by A(f)(k) = H(sup(f),k, f(0), ..., f(k)).

Lemma 4.8. A is an injection and type(A[[w1]*]) consists only of eventually periodic tuple-types.

Proof. Suppose f, g € [w1]* with f # g.

(Case I) Suppose sup(f) # sup(g). Without loss of generality, suppose sup(f) < sup(g). Then A7 (£)(0) =
Hisup(f),0, f(0)) < H(sup(9), 0,9(0)) = A" (g)(0). Therefore, A¥(f) # AHg).

(Case IT) Suppose sup(f) = sup(g). f # g implies that there is a least k so that f(k) # g(k). Without loss
of generality, suppose f(k) < g(k). Then AZ (f)(k) = H(sup(f), k, £(0), ..., f(k)) < H(sup(g), k, 9(0), ..., g(k)) =
AT(g)(k). So ATT(f) £ AT ()

It has been shown that A¥ is an injection.

Now suppose = (fos v fu-1) € <*(wi]). Let AF(f) = (A (fo), oo A (fur). Lt type(f) —
(n,m,G, D). Suppose type(AZ(f)) = (n',m/,G',D’).

For i < j < n, if sup(f;) < sup(f;), then

AR (fi)(a) = H(sup(fi), a, fi(0), -, fia)) < H(sup(f;), b, f(0), ., f3(0)) = AT (f;) (D)
for any a,b € w. This implies that if sup(f;) < sup(f;), then sup(Af(f;)) < sup(Af(f;)). This shows that
m' =m and G’ = G.

Pick any ¢ < m. Let P;j(k) = D'(w-i+ k). Pick a £ € w large enough so that for all a,b € G(2), if fo # f,
then there is some ¢ < £ so that f,(¢) # fp(¢).

Define an preordering C on G(i) by a C b if and only if f, [ £ = fy [ £ or f, | £ is lexicographically less
than f, | . The C-preordering classes of G(i) are naturally linearly ordered. Note that P; is eventually
periodic by repeating the C-preordering classes of G(i) in this natural order.

It has been established that type(A(f)) is an eventually periodic tuple-type. |

Example 4.9. Let fy, fi, and fy be the functions from Example 4.3. Let H : L — w; be any order-

preserving function of the correct type. Let type((fo, f1,f2)) = (3,2,G, D). Let A be the associated

function as defined above. Let type((AX (fo), A (f1), A (f2))) = (3,2,G, D’), where D' is defined below:
Observe that in £ = (L, <), the following objects are arranged as follows:

(w,0,0) < (w,1,0,2) < (w,2,0,2,3) < (w,3,0,2,3,4) < ... < (w-2,0,0) < (w-2,1,0,1)
< (w2,2,0,1,w) < (w2,2,0,1,w+2) < (w-2,3,0,1,w,w+1) < (w2,3,0,1,w+2, w+4) < (w-2,4,0,1,w,w+1,w+3)
< (w-2,4,0,l,w+2,w+4,w+6)<(w-2,5,0,1,w,w+1,w+3,w+5) < ..
This implies that
AT (fo)(0) < AT (fo)(1) < AT (fo)(2) < AT (fo)(3) < AT (fo)(4) < ...
< AT (£1)(0) = AT (f2)(0) < AT (fo)(1) = AT (f1)(1) < A7 (f2)(2)
< AT (f1)(2) < AT (f2)(3) < AT (F1)(3) < AT (fo)(4) < AT (f1)(4) < A (f2)(5)

From the example above, the diagram for D’ is given below. In his diagram, 0, 1, and 2 represent AH (fo),
AF(f1), and A (fy):

D> >
D> >
>



Explicitly, D' : w -2 — £(3) is

{0} a<w

o= J 2L a=wwtd

D) = 2 (Fk € w)[o = w+2(k + 1)]
! (Bk € w)la =w+2(k+1) + 1]

Note that Py(k) = D’(k) is eventually periodic by repeating {0} and P; (k) = D’'(w+k) is eventually periodic
by eventually alternating between {1} and {2}.

Fact 4.10. Let @ : <“([w1]¥) — [w1]“ be a function. Let t = (n,m,G, D) be a tuple-type. Let u denote the
club measure on wy. Let ®F : [w1]¥™ — wy be defined by ®*(h) = ®(extract(t, h)) (k).
If for p ™ -almost all h, ®“*(h) < h(0), then for u* ™-almost all h, ®“*(h) takes a constant value c;™*.

Proof. This follows from the countable additivity of p“ ™. O

Definition 4.11. Assume the setting of fact 4.10. Let d®* be the least k if it exists so that ®**(h) > h(0)
for u<m-almost all h. Otherwise, let d®? = w.

Let stem®? : d®* — w; be defined by stem®*(j) = cf’t, where j < d®?

Thus for p* ™-almost all h, stem®? C ®(extract(t, h)) and if d®! < w, then ®(extract(®,t))(d®!) > h(0).

Theorem 4.12. [w]¥ is Jonsson.

Proof. A slightly stronger version of the Jénsson property will be shown: Let ® : <“([wq]¥) — [w1]¥. A
Z C [w]*? with |Z] = |[w1]* will be found so that ®[<“Z] # [w1]¥. (The Jénsson property merely asks that
D[[Z]=] # [wi]*.)

Using AC§ and the discussion in Definition 4.11, for each (of the countably many) eventually periodic
tuple-type t, let Cy C w; be a club so that for all h € [C}]¥, stem®! C ®(extract(t, h)) and if d®! < w, then
®(extract(®,t))(d®?) > h(0).

Let ¢ be the supremum of sup(stem®?) as ¢ ranges over the countable set of eventually periodic tuple-
types. As wi is regular, ( < wy. Let C be the intersection of all C; as t ranges over all eventually periodic
tuple-types. By removing an initial segment of C, one may assume that ¢ < min(C') + 1.

Let H : £ — C be any order-preserving function of the correct type. Note that A (f) € [w1]¥, i.e. it is
also a function of the correct type for any f € [wq]®.

Let Z = AH[[w;]¥]. Since A# is an injection by Lemma 4.8, Z ~ [wq]*.

Now suppose f = (fo,..., fa_1) € <“Z. By Lemma 4.8, t = type(f) = (n,m,G, D) is an eventually
periodic tuple-type. There is a unique h € [O]¥"™ so that extract(t,h) = f. In particular, since h € [Cy]“"™,
stem®! C ®(f) and if d®! < w, ®(f)(d®*) > h(0) > min(C) > ¢. This and the definition of ¢ imply that
¢ rang(®(1). ) )

It has been shown that for all f € <¥Z, ¢ ¢ rang(®(f)). In particular, ®[<“Z] # [wy]*.

As ® was arbitrary, this implies that [wq]“ is Jénsson. O
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