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Using holographic duality, we present an analytically controlled theory of quantum critical points
without quasiparticles, at finite disorder and finite charge density. These fixed points are obtained by
perturbing a disorder-free quantum critical point with relevant disorder whose operator dimension
is perturbatively close to Harris-marginal. We analyze these fixed points both using field theoretic
arguments, and by solving the bulk equations of motion in holography. We calculate the critical
exponents of the IR theory, together with thermoelectric transport coe�cients. Our predictions
for the critical exponents of the disordered fixed point are consistent with previous work, both in
holographic and non-holograpic models.

I. INTRODUCTION

Quantum field theory has proven to be a powerful
tool to study and classify quantum phases of matter [1].
In real experiments, of course, there is always disorder;
the Harris criterion [2] determines whether such disor-
der qualitatively changes the IR fixed point (whether
it is relevant or irrelevant). When disorder is Harris-
relevant, it is challenging to understand the intrinsically

disordered IR fixed points that arise. Existing construc-
tions in higher dimensions are often analyzed close to
fixed points with quasiparticles, such as free theories or
large-N vector models [3–12]. The problem is especially
di�cult in theories at finite charge density, and/or with a
Fermi surface, where controlled field theories of strongly
interacting non-Fermi liquids are di�cult to construct [1].

This Letter presents a controlled calculation, wherein
we perturb a UV quantum critical point by Harris-
relevant disorder, and analytically deduce the properties
(critical exponents and transport coe�cients) of the re-
sulting compressible IR fixed point. Our construction
relies on holographic duality [13, 14], which maps certain
models of “matrix large-N” strongly interacting quantum
field theories to classical gravity in one higher dimension.
These models holographically describe maximally chaotic
[14, 15] field theories, which do not have any (known)
quasiparticles. Through a careful non-perturbative anal-
ysis of the nonlinear gravitational equations, we deter-
mine the scaling exponents and transport coe�cients of
the emergent IR fixed point, at finite disorder and finite
density.

II. MAIN RESULT

Let us summarize the main physical conclusions of the
calculations. We consider theories perturbed by disorder
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which couples to scalar operator O:

S = S0 +

Z
dtddx h(x)O(x, t). (1)

with S0 a disorder-free action describing a quantum crit-
ical point with dynamical critical exponent z and hyper-
scaling violation ✓. h(x) is zero-mean Gaussian disorder:

h(x)h(y) ⇡ D�(x� y). (2)

The Harris criterion [2] tells us that disorder is relevant
when the operator dimension [D] > 0. If the operator di-
mension of O is �, defined by hO(x, 0)O(0, 0)i ⇠ |x|

�2�,
then [16]

[D] = �2�+ d� ✓ + 2z. (3)

It is useful to write

� =
d� ✓

2
+ z � ⌫, (4)

so that ⌫ = 0 corresponds to Harris-marginal disorder,
while ⌫ > 0 implies Harris-relevant disorder. For conve-
nience, we also require O not to be described by alternate
quantization in holography, so � > (d+ z)/2 [16].
We first discuss a minimal theory: a charge-neutral

conformal field theory (CFT) in d = 1 spatial dimen-
sion, perturbed by disorder as in (1), with ⌫ = 0. Af-
ter a series of works [9, 17–21], it was shown that disor-
der is marginally irrelevant : the scale-dependent disorder
strength is captured by a beta function

�D =
dD

d logE
=

|COOT |

CTT
D

2; (5)

COOT , CTT are operator product expansion coe�cients
within the CFT.
This Letter concludes this search for a disordered fixed

point without quasiparticles as follows. Just as the
Wilson-Fisher fixed point can be perturbatively accessed
in d = 3�✏ spatial dimensions [22], with ✏ perturbatively
small, if we turn on a perturbatively small ⌫ in (4),

�D =
|COOT |

CTT
D

2
� 2⌫D. (6)
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This flow equation has a stable fixed point as E ! 0 if
⌫ > 0: the value of disorder at the critical point is finite
and non-zero, and takes the universal value

D
⇤ =

2⌫CTT

|COOT |
. (7)

Invoking a universal relation [9] between D
⇤ and z

⇤, valid
for perturbations away from a conformal field theory, we
obtain dynamical critical exponent

z
⇤ = 1 +

|COOT |

CTT
D

⇤ = 1 + 2⌫. (8)

The argument above can be justified both using our
holographic models, and using conformal perturbation
theory to derive the exact prefactor of (5): see Appendix
A for the latter. However, we do not know any field the-
oretic tools to generalize (8) to perturbations of scaling
theories where z 6= 1. Yet these z 6= 1 theories include
many interesting models of strange metals [1]. In con-
trast, we can more naturally generalize this argument to
holographic models of a quantum critical point in d spa-
tial dimensions, at finite density ⇢ of a conserved U(1)
charge. We take the exponents z > max(1 + ✓/d, ✓) and
✓  d � 1, so that the holographic model obeys bulk
energy conditions [14]. We then add Harris-relevant dis-
order through (1), satisfying (2) and (4) with 1 � ⌫ > 0.
The system flows to a disordered IR fixed point charac-
terized by a new set of scaling exponents z⇤, ✓⇤:

z
⇤
⇡ z +

2⌫

d
(z � ✓), ✓

⇤ = ✓. (9)

While the hyperscaling violation ✓ remains the same as
that in the disorder-free critical point for any ⌫, the dy-
namical exponent z will increase linearly in ⌫ at the lead-
ing order.

We have calculated the ac electrical conductivity �(!)
at finite density IR fixed points. We find (schematically)
that

�(!) ⇠
KT

�
2+d�✓⇤

z⇤

1� i!⌧
+ F (!/T )!2+ d�✓⇤�2

z⇤ , (10)

where K ⇠ ⇢
2
/D

⇤ is a temperature-independent con-
stant, and F is a scaling function. When z

⇤
< 2+d� ✓

⇤,
we find that ⌧T scales anomalously (diverges) as T ! 0:
see (31). If ! ⌧ T , therefore, there is a sharp Drude
peak, and the first term in (10) dominates. The physi-
cal reason for this Drude peak is that the IR fixed point
has perturbatively weak disorder (D⇤

⇠ ⌫), so the low
frequency conductivity will be dominated by slow mo-
mentum relaxation: this is called a “coherent” contri-
bution to transport [23]. The lifetime of momentum ⌧

can be calculated using established methods [24], and
we argue that it can be sensitive to UV thermodynamic
data. Hence, although the static properties of the IR
fixed point are universal, the width of any Drude peak
is not. If z⇤ � 2 + d � ✓

⇤, ⌧ <
⇠ 1/T would naively be

sub-Planckian, so our conclusion is that that there is
no well-defined Drude peak: the frequency dependence
of the second term in (10) is more important. When
! � T , the second term in (10) dominates. This is
called the “incoherent” conductivity, and is associated
with current-relaxing dynamics decoupled from momen-
tum relaxation. The incoherent conductivity of the IR
fixed point theory is universal and exhibits Planckian
!/T scaling; the function F is insensitive to UV physics.

III. HOLOGRAPHY

Having summarized the physics of the disordered fixed
points, let us explain the holographic models we studied.
In general, holography (“AdS/CMT”) [14] is a powerful
framework for building toy models of quantum matter
without quasiparticles by mapping the physics on to a
gravitational theory in one higher dimension. Fields in
the higher-dimensional “bulk” theory correspond to low-
dimension operators in the quantum field theory (QFT).
All QFTs have a stress tensor, which is dual to the space-
time metric gab in the bulk. A finite density system re-
quires a conserved U(1) current, dual to a bulk gauge
field Aa. A scalar field (dilaton) � in the bulk represents
a scalar (spin-0) operators in QFT. Following [16, 25, 26],
we consider specifically the Einstein-Maxwell-Dilaton ac-
tion in d+ 2-dimensional spacetime

S0 =

Z
dd+2

x
p
�g

�
R� 2(@�)2 � V (�)

�
�

Z(�)

4
F

2

�
,

(11)

with coordinates (r, t,x). The bulk coordinate r can in-
tuitively be thought of as encoding energy scale in the
QFT: the UV corresponds to r ! 0, while the IR is
r ! 1. These EMD models are a standard holographic
model capable of realizing fixed points for generic z, ✓. To
study Harris-relevant disorder, we introduce a bulk scalar
field  , dual to the disorder operator O in the QFT, and
consider bulk action S = S0 + S , with

S = �

Z
dd+2

x
p
�g


1

2
(@ )2 +

B(�)

2
 
2

�
. (12)

We emphasize that this di↵ers from the usual strategy
of studying disordered QFTs by introducing replicas [3]:
here, we study a single realization of the disorder, which
is encoded by holographic duality in the boundary condi-

tions :  (r ! 0, t,x) ⇠ r
#
h(x). Note that the disordered

boundary condition is random in x, but static in t.
We will reveal the emergent IR fixed point by solv-

ing the nonlinear bulk equations of gravity, subject to
these boundary conditions. Details of the construction,
including precise functional forms for V, Z,B, etc., are
in Appendix B. In the absence of disorder, the metric is
given by

ds2 =
1

r2


a(r)

b(r)
dr2 � a(r)b(r)dt2 + dx2

�
, (13)
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while the dilaton and gauge fields are

� = �(r), A = p(r)dt. (14)

The scaling exponents z, ✓ are captured by the constants
a0 and b0 in a(r) ⇠ r

a0 and b(r) ⇠ r
b0 . To study a finite

density black hole, we can identify the charge density
with

⇢ = �
Zp

0

ard�2
. (15)

In the presence of spatially inhomogeneous  , an an-
alytical solution of the classical bulk equations cannot
be found. Indeed, with hindsight, (9) shows that a0

and b0 will get linear corrections in ⌫, which are non-
perturbative corrections in ⌫ to the actual bulk fields. To
understand how to solve these complicated bulk equa-
tions, let us begin with a physical picture for the ra-
dial evolution of the geometry from UV (r = 0) to IR
(r = 1). If the disorder is self-averaging (the geometry
is, at leading order, independent of disorder realization),
then the geometry must be approximately homogeneous
in x: after averaging over disorder realizations, transla-
tion invariance is restored. The bulk geometry is con-
structed holographically by varying the action (11) and
solving the equation of motion for each field; e.g. for the
metric, we obtain:

Rab �
R

2
gab =

1

2

⇣
T

A
ab + T

�
ab + T

 
ab

⌘
, (16)

where T
A,�, 
ab denote the bulk stress tensors associated

with each of these fields, and · · · denotes disorder aver-
aging. We then solve for the bulk fields a, b, p,� non-
perturbatively, assuming that they are sourced by the

homogeneous T 
ab. We make the general ansatz

a(r) ⇡ ↵0r
a0��a(r), (17a)

b(r) ⇡ �0r
b0��b(r), (17b)

�(r) ⇡ c�(r) log r, (17c)

p(r) ⇡ ⇡0r
p0��p(r). (17d)

which readily suggests a physical interpretation: �a,b,p

will encode the flow of critical exponents from the UV to
IR fixed points.

Plugging in (17) into the homogenized bulk equation of
motions, we obtain equations to solve for �a,b,p and c�.
Together with the equation of motion for each Fourier
mode  (r,k), we can then solve for all bulk fields and
obtain a self-consistent solution to (16). While we leave
most details of this calculation to Appendix B, let us
describe the critical part of the calculation. The bulk
equations of motion imply that c� remains constant and
�a ⇡ �b ⇡ �p = �, which in turn obeys

� + r log r�0
�ADr

2d⌫
d�✓�

d
z�✓ �

=
(d� ✓)r

d(d+ z � ✓)
@r (� + r log r�0) . (18)

A is a constant depending on z and ✓. Applying dominant
balance to (18), the right hand side is negligible, and

�(r) ⇡
z � ✓

d log r
log


1 +AD

(d� ✓)

2⌫(z � ✓)
r

2d⌫
d�✓

�
. (19)

The bulk geometry locally looks like a scaling geometry,
with z varying extremely slowly; this enables us to an-
alytically solve for the eventual fixed point. Numerical
solutions confirm that this fixed point is the only one
consistent with an approximately homogeneous bulk ge-
ometry (see Appendix C).
To illustrate what (19) implies, we define a dimension-

less e↵ective disorder strength

De↵ ⌘ Dr
2d⌫
d�✓�

d
z�✓ � =

Dr
2d⌫
d�✓

1 +DA
(d�✓)

2⌫(z�✓)r
2d⌫
d�✓

. (20)

Notice that De↵ ! 0 as r ! 0, since disorder is Harris-
relevant. In the IR,

De↵ ! D
⇤ =

2⌫(z � ✓)

A(d� ✓)
(21)

approaches a universal constant. This is the disorder
strength of exactly Harris marginal disorder that sup-
ports the IR fixed point! Since (19) implies that � = AD

⇤

at the IR fixed point, we can solve for the IR critical ex-
ponents z

⇤
, ✓

⇤, and we find (9). The crossover energy
scale Ec between the UV and IR fixed points occurs at
the non-perturbatively large scale

Ec ⇠

✓
D

⌫

◆ z⇤
2⌫

, (22)

emphasizing the non-perturbative nature of our (approx-
imate) solution to the nonlinear bulk equations. It is in-
teresting that such a detailed analysis of the bulk equa-
tions is needed to reproduce what, in a field theoretic
language (6), is a perturbative one-loop e↵ect.
It remains to explain why the geometry is self-

averaging [20]. While at O(D) the disorder contributed

to a homogeneous source T
 
ab for gravity in (16), there

will also be inhomogeneous source terms proportional to
h(k)h(q) with k + q 6= 0. These inhomogeneous source
terms would not matter if the left hand side of (16) was
linear; since it is nonlinear in gab, such source terms
do feed back and correct the metric beyond our ansatz.
However, to correct the disorder averaged metric, we will
need at least two such powers of the source term, meaning
that there are four factors of h. Thus, the corrections to
our approximation are O(D2) = O(⌫2). Since at the IR
fixed point, disorder remains perturbatively small, this
correction can be neglected at leading non-trivial order,
thus justifying that the geometry is self-averaging at the
perturbatively accessible fixed point.
We studied a charge-neutral critical point with a non-

trivial hyperscaling violation ✓ 6= 0. This is done by turn-
ing o↵ the bulk gauge field (Aa = 0); Lorentz invariance
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in the boundary directions demands z = 1. The dila-
ton field will get renormalized (c� is no longer constant),
and the disordered IR fixed point has critical exponents
(Appendix D)

z
⇤ = 1 +

6⌫(1� ✓)(d� ✓)

d(3d+ (✓ � 5)✓)
, (23a)

✓
⇤ = ✓ +

2⌫(✓ � 1)(d� ✓)

d(3d+ (✓ � 5)✓)
✓. (23b)

We see that ✓ is renormalized. Interestingly, as long as
✓ 6= 0, we have a di↵erent fixed point from (9) by taking
z ! 1 there, and this is because when z 6= 1, ✓ is not
renormalized. Nevertheless, (9) and (23) agree in the
CFT limit: z = 1 and ✓ = 0.

Observe that (9) and (23) are consistent with the gen-
eral expectation that disorder should become exactly
marginal at the IR fixed point: if it was relevant, it would
drive us to a new fixed point; if it was irrelevant, then the
IR would not have finite disorderD⇤! To confirm that the
disorder is exactly Harris-marginal at the IR fixed point,
we compute its scaling dimension �IR. In AdS space, the
mass of a bulk field determines the dual operator’s scal-
ing dimension; for us, �IR is fixed by B(�). Calculating
�IR from B(�) and demanding that it is Harris-marginal
(�IR = d�✓⇤

2 + z
⇤), we find the condition that

d

z � ✓
(z⇤ � z) +

2dz � d✓

(z � ✓)(d� ✓)
(✓⇤ � ✓) = 2⌫. (24)

Obviously, (9) and (23) satisfy the above equation.
Previous literature [27, 28] has studied theories with

z/(�✓) = ⌘ > 0 fixed, while z ! 1. Such theories are
analyzed in Appendix F.

IV. CONDUCTIVITIES

We now discuss the thermoelectric transport proper-
ties of the disordered IR fixed point. We study the the-
ory at temperatures T ⌧ Ec, whereby the geometry is
approximately that of the IR fixed point, but contains
a black hole horizon r = r+ with Hawking temperature
T . This corresponds to modifying the geometry found in
(17) via [14]

b(r) ! b(r)

 
1�

✓
r

r+

◆d+ dz⇤
d�✓⇤

!
, (25)

where T ⇠ r
�

dz⇤
d�✓⇤

+ . At the horizon, the entropy density

s scales s ⇠ r
�d
+ ⇠ T

d�✓⇤
z⇤ .

In general, if we apply a temperature gradient
�rT e�i!t and electric field Ee�i!t, the charge current
Je�i!t and heat current Qe�i!t are proportional to these
sources:

✓
J
Q

◆
=

✓
�(!) ↵(!)
T↵(!) ̄(!)

◆✓
E

�rT

◆
. (26)

Let us first discuss the dc (! = 0) conductivities. Via
the membrane paradigm [29, 30], we can evaluate them
by analyzing the geometry at the horizon: see Appendix
E. We find that the thermoelectric conductivities are all
approximated by a Drude-like form, signifying that the
transport coe�cients are dominated by slow momentum
relaxation: [14]

�dc ⇡
⇢
2

�
, ↵dc ⇡

⇢s

�
, ̄dc ⇡

Ts
2

�
, (27)

where

� ⇠ D
⇤
T

d�✓⇤+2
z⇤ . (28)

Remarkably, (27) agrees with the perturbative result in
[16] with Harris-marginal disorder (in the IR), again con-
firming the criterion in (24).
Following [31–33], we now analyze the subleading (in

D⇤) corrections to transport coe�cients that describe
transport decoupled from momentum relaxation. As we
show in Appendix E, in this holographic model such cor-
rections to thermoelectric transport coe�cients are cap-
tured by the open-circuit thermal conductivity

dc ⌘ ̄dc � T↵
2
dc�

�1
dc ⇠ T

z⇤+d�✓⇤�2
z⇤ . (29)

In ordinary metals, one finds that dc ⇠ T�dc as T ! 0
with a precise prefactor (this is called the Wiedemann-
Franz law) [14]; clearly, this is badly violated at these
disordered fixed points, since

L ⌘
dc

T�dc
⇠ D

⇤
T

2 d�✓⇤
z⇤ (30)

vanishes as T ! 0. Anomalous scaling of L is not too sur-
prising given that the leading order results (27) exactly
cancel in dc; indeed, it is the subleading corrections to
�dc that are responsible for non-vanishing dc. One calls
such contributions to thermoelectric transport “incoher-
ent” [23] as they are decoupled from slow momentum
relaxation.
Let us now extend the discussion to ac (! > 0)

conductivity; for simplicity, we focus only on the elec-
trical conductivity �(!). Following [24], we find that
there can be a Drude peak at low frequency ! ⌧ T :
�(!) ⇠ �dc/(1 � i!⌧), where ⌧ = M/�. We argue in
Appendix E that M ⇠ T

0 is a UV-sensitive quantity,
implying that ⌧ is not universal, and exhibits anomalous
temperature dependence:

⌧ ⇠ T
�

2+d�✓⇤
z⇤ . (31)

The holographic calculation of ⌧ is only accurate if
⌧ � 1/T , so there is a sharp Drude peak only when
2 + d � ✓

⇤
� z

⇤. For theories that violate this inequal-
ity, we expect no sharp features in �(!) until the scale
! ⇠ T . For frequencies ! � T , we find that the incoher-
ent conductivity dominates the response function:

�(!) ⇠ !
2+ d�✓⇤�2

z⇤ . (32)
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The various power laws found above are consistent
with recent holographic scaling theories for IR fixed
points at finite density [33, 34]. Following [35], we assign
the charge density operator an anomalous dimension �⇢:

[⇢] = d� ✓
⇤ + �⇢. (33)

Scaling analysis shows that [�dc] = d� ✓
⇤
� 2+ 2�⇢ [33].

In order to match with (28), we find �⇢ = �d+✓
⇤, which

implies [⇢] = 0. It has previously been observed [34] that
[⇢] = 0 ensures the IR fixed point thermodynamics is con-
sistent with scaling theories, and thus (28) is consistent
with this expectation. A more careful analysis reveals
that the incoherent conductivity has a di↵erent IR scal-
ing dimension: [�inc] = 3(d � ✓

⇤) � 2 + 2z⇤ + 2�⇢ [34].
This is consistent with (32), and a direct calculation of
the dc incoherent conductivity in Appendix E.

V. OUTLOOK

In this letter, we have analytically predicted the emer-
gence of a disordered fixed point in a strongly interacting
QFT, at either zero or finite density. The exponents z

⇤

and ✓
⇤ are independent of UV disorder strength D, as

are the dc thermoelectric transport coe�cients.
The holographic formalism described here is versatile

and could be used to study the emergence of finite dis-
order fixed points in more general settings, such as in
background magnetic fields [13], or in the presence of
non-trivial topological e↵ects [36]. It would also be inter-
esting to generalize to models with inhomogeneous charge
disorder, where lattice constructions can reveal robust T -
linear resistivity [37].

We encourage further numerical work [38] to solve the
fully inhomogeneous Einstein equations, and analyze the
fixed points described here. The most promising direc-
tion may be to focus on one-dimensional disordered sys-
tems; prior work [19] constructed black holes with rele-
vant disorder, but their value of ⌫ = 3/4 may be beyond
the regime of validity of our perturbation theory. At
strong disorder, it may be possible for the horizon to frag-
ment into disconnected pieces, a fascinating phenomenon
whose implications for the boundary theory deserve fur-
ther investigation [39, 40].

Our result (9) may extend beyond holographic mod-
els. In a (charge-neutral) large-N vector model with non-
disordered fixed point with d = 2, z = 1, ✓ = 0, the mass
disorder at the critical point is relevant with ⌫ = 16

3⇡2N ;
a recent calculation [11] found that z

⇤
⇡ 1 + ⌫ at the

disordered fixed point. This agrees with (9). It would be
fascinating if our results can be extended to recent mod-
els [41, 42] of compressible, disordered non-Fermi liquids
based on field theories, including those based on Sachdev-
Ye-Kitaev models which display � ⇠ !

�1.
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Appendix A: Field theory perspective

Holographic duality describes some “matrix large-N” theories using classical gravity [14]. What is important about
this large-N limit is that the theory is not quite described by a “generalized free-field theory” where all non-trivial
operator product expansion (OPE) coe�cients are suppressed; see e.g. [5], where classical disorder remained exactly
marginal at leading order in large N . Indeed, the simple description of the field theory is in terms of classical gravity
in one higher dimension!

Nevertheless, with some minor adjustments, we can still use field theory ideas to understand the holographic results
found in the main text. For simplicity, we focus on the case z = 1 and ✓ = 0, and assume charge neutrality, so that
the more powerful technology of CFTs can be invoked. What follows is similar to [21]; however some technical steps
di↵er.

The key observation is that given a bulk holographic action (we do not write down the counterterms at the boundary
of the bulk spacetime for ease of presentation)

Sbulk = N

Z
dd+2

x
p
�g

✓
R� 2⇤+

1

2
(@ )2 �

1

2
m

2
 
2
� ↵ 

3 + · · ·

◆
, (A1)

the OPE coe�cients of the CFT are encoded in the prefactors of terms within Sbulk. In particular, if we expand the
metric g = gAdS + �g around an AdS background and  = � around 0, any OPE coe�cient relating n copies of the
stress tensor T and m copies of the scalar operator O (dual to  ) can be read o↵ (schematically) as

COO ⇠
�
2
Sbulk

� 2
, CTOO ⇠

�
3
Sbulk

�g� 2
, etc. (A2)

Note that here N scales as some power of N depending on dimension (and can be derived from string theory [] in
some cases). The upshot of this paragraph is that for a quadratic bulk action in (11), the only leading order OPE
coe�cients at large N are CTT , COO, CTTT , COOT .

Now, let us try to understand a field theory where the listed OPE coe�cients are the dominant ones, in the presence
of quenched random-field disorder. Unlike in holography, we now consider the replicated action

Sn =
nX

A

S0,A �
D

2

X

AB

Z
ddxdtdt0 OA(x, t)OB(x, t

0). (A3)

This action arises upon using the replica trick to analyze (1), given disorder (2). For now let us assume marginal
disorder � = d/2 + 1 (i.e. ⌫ = 0). Due to the double time integral, terms with A = B at t0 ! t are singular. Now,
perform the OPE at t0 ! t, and we find following [9] that

OA(x, t)OB(x, t
0) �

�|COOT |

CTT

1

|t� t0|
T00,A(x, t)�AB + · · · , (A4)

Plugging it into (A3) and regularizing the time integral using a Wilsonian cuto↵: ⇤�1
< |t � t

0
| < b⇤�1 where

b ⌘ ⇤/E, we find

�Sn = D
|COOT |

CTT
log b

X

A

Z
ddxdt T00,A(x, t). (A5)

Observe that this correction to �Sn appears as though we are simply rescaling the time coordinate: t ! tZt, where
[9, 21]

Zt = 1 +D
|COOT |

CTT
log b. (A6)

Here comes the key observation: in holographic duality, as explained above, the ratio COOT /CTT remains finite as
N ! 1. To obtain the beta function �D, we expand the action in perturbatively small D, and we find

e�Sn =e�
P

A S0,A

"
1 +

D

2

X

AB

Z
ddxdtdt0 OA(x, t)OB(x, t

0) + (Z�2
t � 1)

D

2

X

AB

Z
ddxdtdt0 OA(x, t)OB(x, t

0)

�
D

2

2

|COOT |

CTT
log b

X

ABC

Z
ddx1dt1d

d
x2dt2dt

0

2 T00,A(x1, t1)OB(x2, t2)OC(x2, t
0

2) +O(D3)

#
, (A7)
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where the last term in the first line accounts for the rescaling of time in the double time integral. Because the
higher-order OPE coe�cients such as COOO = 0 in the large-N limit of interest, OA(x)OB(0) ⇠ x

�2�
�AB , and

X

AB

OAOB(x)
X

BC

OCOD(0) ⇠
4n

x2�

X

AB

OAOB(0) (A8)

vanishes in the replica limit n ! 0. To see that O(D2) terms in (A7) are the leading corrections that will renormalize
D, we evaluate (part of) the second line following [9] as

Z
ddx1dt1hT00,A(x1, t1)OA(x2, t2)OA(x2, t

0

2)i = �
COO(d+ 2)

|t2 � t02|
d+2

⇠ �(d+ 2)hOA(x2, t)OA(x2, t
0)i. (A9)

A natural RG scheme is to require that the one-point function of (A7) has no dependence on log b:

h1 + · · · i = 1 +
D + �D

2

X

A

Z
ddxdtdt0hOA(x, t)OA(x, t

0)i. (A10)

Hence we can interpret the di↵usion constant as flowing under RG, with

�D = �
(d+ 2)|COOT |

CTT
D

2 log b+
2|COOT |

CTT
D

2 log b = �
d|COOT |

CTT
D

2 log b. (A11)

Therefore, the beta-function reads

�D = �
@�D

@ log b
=

d|COOT |

CTT
D

2
. (A12)

We see that the disorder is marginally irrelevant.

Appendix B: Details of holographic models

In the scaling limit, the expressions of (13) and (14), or the bare value of (17), are

a(r) = r
�

d(z�1)�✓
d�✓ , (B1a)

b(r) = r
�

d(z�1)+✓
d�✓ , (B1b)

�(r) =

s
d(d(z � 1)� ✓)

2(d� ✓)
log r, (B1c)

p(r) = 2
d(z � 1)

d� ✓
r
�

d(z+d�✓)
d�✓ , (B1d)

and we take ↵0 = �0 = 1 for simplicity. For � to be real, we obtain the null energy condition

d(z � 1)� ✓

d� ✓
� 0. (B2)

The potentials in the bulk action take the form V (�) = �V0e���
, Z(�) = Z0e↵� with

↵
2 =

8(d(d� ✓) + ✓)2

d(d� ✓)(d(z � 1)� ✓)
, (B3a)

�
2 =

8✓2

d(d� ✓)(d(z � 1)� ✓)
, (B3b)

V0 =
d
2(z + d� ✓)(z � 1 + d� ✓)

(d� ✓)2
, (B3c)

Z0 =
(d� ✓)2

2d2(z + d� ✓)(z � 1)
. (B3d)
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In order to maintain the scale invariance, the mass term for the scalar field has to take the form [16]

B(�) = B0
b(r)

a(r)
= B0e

���
. (B4)

Since b(r)/a(r) ⇠ r
�2✓/(d�✓), we see how the hyperscaling violation ✓ is supported by the dilaton field �. The bulk

equations of motion are given by

✓
Zp

0

ard�2

◆0

= 0, (B5a)

�
da

0

ra
� 2�02 =

1

2
 
02
, (B5b)

r
d
a

✓
(ab)0

rda

◆0

� Zr
2
p
02 =

a
2

d
(@i )

2
, (B5c)

4

✓
b

rd
�0

◆0

�
a

rd+2
@�V +

p
02

2ard�2
@�Z =

a

2rd+2
@�B 

2
, (B5d)

In order, they come from the t components of Maxwell’s equation, the rr + tt and tt + ii components of Einstein’s
equation, and the dilaton equation. Note that we have divided by 1/d in the third equation above: assuming that
the disorder is isotropic, any one component @x @x ⇡

1
d@i @i (with sum over i). Together with  ’s equation of

motion:

 
00(r) +

rb
0(r)� db(r)

rb(r)
 
0(r)�

✓
a(r)

b(r)
k
2 +

B0

r2

◆
 (r) = 0, (B6)

we can determine the bulk fields in the scaling limit described in the main text.
First, let us assume a renormalized metric with constant scaling exponents z̃ and ✓̃, that may di↵er from their

UV values. The key idea is that disorder at wave number k will be sensitive to the e↵ective values of the exponents
at length scale k

�1. Since we will show (as part of our self-consistency check) that z̃ and ✓̃ vary slowly relative to
k
�1 (and the bulk scalar field), we will ultimately justify this approximation. Moving forward and solving the scalar

equation of motion (B6) subject to the asymptotic boundary condition  (r ! 0) ⇠ r
#
h(k), we find

 (r) ⇡ h(k)
21��̃

⇣
d�✓̃
d

⌘�̃

�[�̃]
r

d(z̃+d�✓̃)

2(d�✓̃) k
�̃
K�̃

 
d� ✓̃

d
kr

d
d�✓̃

!
, (B7)

where

�̃
2 =

 
z̃ + d� ✓̃

2

!2

+

 
d� ✓̃

d

!2

B0. (B8)

We demand �̃ > 0 throughout the bulk in order to avoid alternate quantization. The operator dimension will also get
renormalized and is fixed by

�̃ =
d+ z̃

2
+ �̃. (B9)

For a relevant operator, the no alternate quantization condition translates into z > ✓. As seen in the main text, this
leads to a definite increase of z under renormalization. Since B0 is a fixed coe�cient, we can determine it using the
disorder-free critical point with the scaling exponents z and ✓, and we have

B0 = �
d
2(d+ 2⌫)(d+ 2(z � ✓ � ⌫))

4(d� ✓)2
. (B10)

Substituting (B7) into (B5), we can then solve for z̃ and ✓̃. As mentioned in the main text, it is enough to solve the
disorder-averaged bulk equations of motion. To this end, we list useful expressions of disorder-averaged scalar fields.
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The full non-perturbative expressions are given by

 2 = D

p
⇡Sd4��̃

(2⇡)d

 
d� ✓̃

d

!�d
�[d2 ]�[

d
2 + �̃]�[d2 + 2�̃]

�[�̃]2�[ 1+d
2 + �̃]

r
d

d�✓̃
(z̃�✓̃�2�̃)

, (B11a)

k2 2 = D

p
⇡Sd4��̃

(2⇡)d

 
d� ✓̃

d

!�d�2
�[ 2+d

2 ]�[ 2+d
2 + �̃]�[ 2+d

2 + 2�̃]

�[�̃]2�[ 3+d
2 + �̃]

r
d

d�✓̃
(z̃�✓̃�2�̃�2)

, (B11b)

 02 = D

p
⇡Sd2�1�2�̃

d(2⇡)d

 
d� ✓̃

d

!�d�2✓
d(2 + d)(d+ 2�̃)

1 + d+ 2�̃
� (d+ 2�̃ + ✓̃ � z̃)(d� 2�̃ � ✓̃ + z̃)

◆

⇥
�[1 + d

2 ]�[
d
2 + �̃]�[d2 + 2�̃]

�[�̃]2�[ 1+d
2 + �̃]

r
d

d�✓̃
(z̃�✓̃�2�̃)�2

, (B11c)

where

Sd =
2⇡

d
2

�(d2 )
, (B12)

By keeping only linear terms in a small ⌫ expansion, we have

 2 ⇡ D

p
⇡Sd2✓�z

(2⇡)d

✓
d� ✓

d

◆�d �[d2 ]�[
d+z�✓

2 �]�[d2 + z � ✓]

�[ z�✓
2 ]2�[ 1+d+z�✓

2 ]
r

2d⌫
d�✓+

d
2 �a�

d(z�✓+2)
2(z�✓) �b

, (B13a)

k2 2 ⇡ D

p
⇡Sd2✓�z

(2⇡)d

✓
d� ✓

d

◆�d�2 �[ 2+d
2 ]�[ 2+d+z�✓

2 �]�[ 2+d
2 + z � ✓]

�[ z�✓
2 ]2�[ 3+d+z�✓

2 ]
r

2d(�1+⌫)
d�✓ + d+2

2 �a�
(2+d)(z�✓)+2d

2(z�✓) �b
, (B13b)

 02 ⇡ D
d
p
⇡Sd2�2+✓�z

(2⇡)d

✓
d� ✓

d

◆�d�2 �[d2 ]�[
d+z�✓

2 ]�[ 2+d
2 + z � ✓]

�[ z�✓
2 ]2�[ 3+d+z�✓

2 ]
r

2d⌫
d�✓+

d
2 �a�

d(z�✓+2)
2(z�✓) �b�2

, (B13c)

where we used the transformation

z̃ = z +
d� ✓

2d
(�az � �b(z � 2)) , (B14a)

✓̃ = ✓ �
(d� ✓)2

2d
(�a � �b) . (B14b)

At finite charge density, we find �a ⇡ �b ⇡ �p ⌘ � in order for both (B5c) and (B5d) to have a consistent r-scaling.
This is because di↵erent terms appearing in the same equation should have the same r-dependence, otherwise we
would have nonvanishing O(1) terms which is inconsistent with disorders of O(⌫). (B5b) results in the first line of
(18) with a constant

A(z, ✓) =

p
⇡Sd2�3+✓�z

(2⇡)d

✓
d� ✓

d

◆�d�2 �[d2 ]�[
d+z�✓

2 ]�[ 2+d
2 + z � ✓]

�[ z�✓
2 ]2�[ 3+d+z�✓

2 ]
. (B15)

We will come back to recover the whole (18). In the main text, we give a complete solution to (18) using dominant
balance and extract the IR behavior from it. Here, we find that the physics at r � rc can be directly inferred from a
self-consistent solution of (the first line of) (18):

�(r) = A(z, ✓)D⇤ +
c1

log r
⌘ �

⇤ +
c1

log r
,

�
⇤ =

2⌫(z � ✓)

(d� ✓)
,

c1 =
z � ✓

d
log

D

D⇤
, (B16)

and �
⇤ = �(r ! 1) and D

⇤ = De↵(r ! 1). To obtain the second line of (18), it is helpful to parameterize a(r) as

a(r) = (1 + �a(r)) r�
d(z�1)�✓

d�✓ ��a(r), (B17)
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where �a(r) ⇠ O(⌫) indicates the flow of the prefactor. Notice that we may now fix �a(r) = �(r) to be exactly given
by (19), since all corrections are parameterized by �a(r). Using the Maxwell equation (B5a) to fix �a(r) in terms of
�(r), we find (18) changes to

�(r) + r log(r)�0(r)�
d� ✓

d(z + d� ✓)
r@r(�(r) + r log(r)�0(r)) = A(z, ✓)Dr

2d⌫
d�✓�

d
z�✓ �(r). (B18)

Hence, we recovered the second line of (18). To justify the dominant balance, we find the r@r term is negligible
compared to the leading term:

r@r(�(r) + r log(r)�0(r)) ⇠ r@rDe↵(r) ⇠ r@r

⇣
const.+ r

�
2d⌫
d�✓

⌘
⌧ De↵(r). (B19)

While (18) comes from one of the four equations of motion, (19) does not exactly solve the other equations of
motion. For instance, (B5c) leads to

�(r) + r log(r)�0(r)�
d� ✓

d(1 + d� ✓)
r@r(�(r) + r log(r)�0(r)) = B(z, ✓)Dr

2d⌫
d�✓�

d
z�✓ �(r), (B20)

where

B(z, ✓) =

p
⇡Sd2�1+✓�z

d(1 + d� ✓)(2⇡)d

✓
d� ✓

d

◆�d�1 �[ 2+d
2 ]�[ 2+d+z�✓

2 �]�[ 2+d
2 + z � ✓]

�[ z�✓
2 ]2�[ 3+d+z�✓

2 ]
. (B21)

According to (B19), one can solve it by ignoring the r@r term and using dominant balance, but we will get a distinct
�new(r) from (19) due to B(z, ✓) 6= A(z, ✓). Before solving it exactly, we can quickly see that �new(r) will not a↵ect
the IR fixed point since the di↵erence

�new(r)� �(r) = �
z � ✓

d log r
log

A(z, ✓)

B(z, ✓)
! 0, r ! 1 (B22)

is negligible at IR.
To resolve the discrepancy and find a more accurate solution to all equations of motion in (B5), we consider

perturbative corrections to the “constant” prefactors of r�#: we take (B17) together with

b(r) ⇡ (1 + �b(r)) r�
d(z�1)+✓

d�✓ ��b(r), (B23a)

p(r) ⇡ 2
d(z � 1)

d� ✓
(1 + �p(r)) r�

d(z+d�✓)
d�✓ ��p(r). (B23b)

Since only �a(r) enters (18), we will see that similar to the above, (19) remains valid using the argument of dominant
balance. Substituting into (B5a), (B5c) and (B5d), and using (19), we find

�a(r) = C1De↵(r), (B24a)

d(d+ z � ✓)�b(r)� (d� ✓)r�b0(r) = C2De↵(r), (B24b)

d(d+ z � ✓)�p(r)� (d� ✓)r�p0(r) = C3De↵(r), (B24c)

where C1,2,3 are constants just like A,B whose expressions are not illuminating, and De↵(r) is given by (20). In
the equations of motion, one generally will encounter additional terms that are precisely r-derivatives of the l.h.s. of
(B24), but those are negligible due to (B19). Using (21), the solutions in the limit r ! 1 are given by

�a(r ! 1) = 2C1
z � ✓

d� ✓
⌫, (B25a)

�b(r ! 1) = 2C2
z � ✓

d(d+ z � ✓)(d� ✓)
⌫, (B25b)

�p(r ! 1) = 2C3
z � ✓

d(d+ z � ✓)(d� ✓)
⌫. (B25c)

Importantly, these prefactors will not a↵ect the scaling exponents z, ✓, thus, they do not a↵ect the IR fixed point.
Finally, the IR fixed point is controlled by the order O(⌫), hence, as long as ⌫ ⌧ 1, it is reasonable to neglect

higher-order terms O(⌫2) appearing in the equations of motion.
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Appendix C: Numerical solution of the spatially homogeneous gravitational equations

In this section, we perform a controlled numerical calculation of spatially homogeneous Einstein equations (in the
field theory directions, but not the bulk radial direction). A full solution of the Einstein equations with spatial
inhomogeneity is an extraordinary challenge with rather limited results (often only at fairly high temperature) [38].
In this appendix, our aim is to numerically demonstrate that there is a unique finite disorder fixed point consistent
with the assumption of statistical stationarity, and that it is (up to nonlinear corrections in ⌫) identical to the one
predicted in the main text.

To perform the simplest consistency check, we assume that there is Harris-relevant disorder added to a clean fixed
point with d = z = 1 and ✓ = 0. This means that the only dynamical variables are the metric components a(r)
and b(r), and the disordered scalar field modes  (k, r) at each wave number. Before moving on to the details, let
us summarize the numerical scheme. We use the Newton-Raphson method (see e.g. [38]) to solve bulk equations for
a(r), b(r) and  (k, r) iteratively based on disorder-free solutions. As we have seen in the main text, the scale Ec in
the bulk at which we expect to crossover to the true IR fixed point is non-perturbatively large, and is prohibitively
di�cult to access in numerics. Therefore, we opt to instead look directly for the fixed point solution, by looking
for self-consistent scaling solutions directly in the IR geometry. (Note that because we are directly probing the IR
fixed point, the value of the radial coordinate r will no longer carry much meaning, since the IR fixed point is scale-
invariant!) One di�culty becomes that a priori, we do not know any boundary conditions on any bulk fields, save
for regularity in the IR. To resolve the problem, we randomly search the UV and IR boundary conditions in our
numerical integration domain that leads to the solution to the equation of motion most consistent with a scaling
theory. The simple random search converges quickly for deep and unique minimum in our calculation. However, due
to the computational expense of needing to perform these random searches for a large number of  (k, r) fields (whose
equations of motion have solutions ⇠ e±kr and hence are numerically very sensitive to boundary conditions), we are
restricted to relatively short domain sizes in bulk coordinate r.

Having sketched our strategy above, we observe that we now need to solve two nonlinear bulk ODEs (B5b) and
(B5c) for a(r) and b(r), and one linear scalar ODE (B6). Given the analysis in Appendix B, we take the following
parameterization

a(r) = ↵(r)r�z(r)+1
, b(r) = r

�z(r)+1
, (C1)

so that ↵(r) and z(r) are the two functions we will solve for. Let us denote the bulk ODEs as Ej(r;↵, z) = Tj( ), j =
1, 2, where Tj are averaged disorder stress tensors. We start our numerical algorithm with ↵

(0)(r) = ↵̂
(0) = 1,

z
(0)(r) = z

(0) = z0, where we use variables with hats to denote constants. Notice that even though only z0 = 1
corresponds to the CFT limit, we have checked that the choice of z0 � 1 in numerics does not change the eventual
fixed point of the algorithm. The domain for ODE is denoted as [ri, rf ]. We now proceed as follows:

1. Solve the scalar ODE with ↵
(n)(r), z(n)(r) subject to the initial condition [ z(n) , @r z(n) ](k, ri), where ri is the

initial point and  z(n) is determined through (B7) with z̃ = z
(n). For each wavevector k, we obtain  

(n)(k, r).
The disorder average is performed by summing over di↵erent k, and the disorder strength is fixed to be D = D0.

2. Now we solve the bulk equations of motion. Randomly search initial conditions by

[�z, �z0, �↵](ri) =
n
[�ẑ, 0, �↵̂] 2 B|min

⇣
Ej(↵̂

(n) + �↵̂, ẑ
(n) + �ẑ)� Tj( (n))

⌘o
, (C2)

where B is a domain from which our initial conditions are drawn uniformly.

3. Expand the bulk ODEs by ↵ = ↵
(n) + �↵, z = z

(n) + �z, and

Ej(↵
(n)

, z
(n)) +

�Ej

�↵
(↵(n)

, z
(n))�↵(r) +

�Ej

�z
(↵(n)

, z
(n))�z(r) = Tj( (n)), (C3)

where �Ej/�↵, �Ej/�z are di↵erential operators [38]. We solve for �↵, �z subject to the initial condition (C2).

4. Update various variables following

↵
(n+1)(r) = ↵

(n)(r) + �↵(r),

z
(n+1)(r) = z

(n)(r) + �z(r),

↵̂
(n+1) = ↵̂

(n) + �↵(ri),

ẑ
(n+1) = ẑ

(n) + �z(ri). (C4)

Then, repeat Step 1, 2, 3 with the new variables until the convergence is reached.



12

0 5 10 15 20 25 30 35 40
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

0 10 20 30 40
3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12 14 16 18 20
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

2 4 6 8 10
1.08

1.09

1.1

1.11

1.12

(a) (b)

FIG. 1. Numerical results for constructing the disordered fixed point geometry, based on iterative Newton-Raphson method.
We choose ⌫ = 0.05 and B = [�0.01, 0.01] with 5000 random searches. (a) Evolution of the mean value of z(r) based on Step
1 to 4. Di↵erent initial conditions are chosen with D0 = 3.5, z0 = 1 (blue), D0 = 5, z0 = 1.2 (red), and D0 = 6, z0 = 1.2
(yellow). From dark to light colors, they correspond to di↵erent ranges of r: [1, 2]⇥ 102 � 1010; see inset for the end point of z
against di↵erent ranges of r. Black dashed line indicates the nonlinear fixed point predicted by our theory (C6). (b) evolution
of the mean value of z(r) with updated disorder strength D. Updates of D begin at iteration 20 with BD = [�0.2, 0.2]. For
D0 = 3.5, we needed to reject updates that drive the system towards the disorder free fixed point D = 0, z = 1 for the first
such iterations. The black dashed line in the inset denotes the analytic fixed point in (C11).

There are two sets of variables under iteration, the hatted ↵̂, ẑ and un-hatted ↵(r), z(r). We emphasize that the
hatted ones are constant in r, while the un-hatted ones are solutions to the linearized ODEs. The reason to use
hatted variables in random search is that we wish both ↵(r), z(r) to reach a fixed point so that they will not depend
on r, and the target function in (C2) is exactly to achieve the goal. At the same time, we fix the initial condition for
the first-order derivative to be zero �z

0(ri) = 0 in order to be consistent with the fixed point solution.
We see that both ↵(r), z(r) will approach a constant value once convergence is achieved; see Figure 1(a) for the

evolution of the mean value of z(r). To compare to our theory, we use the non-perturbative disorder average in (B11).
Following the analysis in Appendix B, we find the full nonlinear fixed point satisfies

z
⇤
� 2�⇤ = 0. (C5)

In Figure 1, we chose ⌫ = 0.05, such that

z
⇤

full = 1.095. (C6)

Recall that the linear fixed point is z
⇤

linear = 1 + 2⌫ = 1.1. We plot the convergence of z(r) for di↵erent ranges of r
domain. The inset of Fig.1(a) shows that by increasing rrange the end point of z(r) will approach some fixed values
at a slow logarithmic rate. The reason is that the algorithm indeed converges to some approximate fixed point, but if
the value of D = D0 is held fixed, it is not able to find the true fixed point – thus, the precise domain of r in which
we solve for modifies the ultimate value of z.

To find a true scale invariant fixed point, at which the scale r drops out of the final critical exponents, we must
further allow the value of D to change in the iterations. We thus perform additional steps as follows. Choosing
D

(0) = D0,

20. In addition to Step 2, we perturb the disorder strength by D
(n) + �D and optimize over �D for each realization

of B. Specifically, the initial condition becomes

[�z, �z0, �↵](ri) =
n
[�ẑ, 0, �↵̂] 2 B|min

⇣
Ej(↵̂

(n) + �↵̂, ẑ
(n) + �ẑ)� Tj( (n))D(n)+�D(�↵̂,�ẑ)

⌘o
, (C7)

where

�D(�↵̂,�ẑ) =
n
�D 2 BD|min

⇣
Ej(↵̂

(n) + �↵̂, ẑ
(n) + �ẑ)� Tj( (n))D(n)+�D

⌘o
. (C8)
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40. We only update the fields if the minimum value of the random search in (C7) is smaller than the one in the
previous iteration. The disorder strength is updated through

D
(n+1) = D

(n) + �D(�↵̂=�↵(ri),�ẑ=�z(ri)). (C9)

Based on Figure 1(a), we start to update D after iteration 20 and obtain Figure 1(b). We see that all the curves
converge to the fixed point predicted by our theory (C6), and, at the same time, the inset shows that the disorder
strength will also converge to the same value. This demonstrates that there is indeed a unique stable fixed point,
consistent with homogeneous geometry.

Now let us compare this fixed point to our theoretical predictions. The prediction in (21) is valid to the first order
in ⌫. The full non-perturbative result is (assuming z > 1, ✓ 6= 0 at the clean fixed point)

D
⇤ =

d(z⇤ � 1)� ✓

A(z⇤, ✓)(d� ✓)
. (C10)

This leads to the fixed point of disorder strength in the CFT limit as

D
⇤

full =
z
⇤

full � 1

A(z⇤full, ✓ = 0)
⇡ 4.23, (C11)

where we used (C6) and (B15). We have confirmed that the end point of D shown in the inset of Figure 1(b) agrees
perfectly with (C11) .

Appendix D: Charge-neutral disordered fixed point

In this appendix, we discuss how the calculation is modified for charge-neutral systems. Since the steps are analogous
to what we did for charged black holes, we will be relatively brief.

At charge neutrality by turning o↵ the Maxwell field, we have the following equations of motion

2�a(r)� �b(r) + r log(r)(2�0

a(r)� �
0

b(r)) = A(z = 1, ✓)Dr
2d⌫
d�✓+

d
2 �a�

d(3�✓)
2(1�✓) �b

, (D1a)

�a(r) + �b(r) + r log(r)(�0

a(r) + �
0

b(r))

�
d� ✓

d(1 + d� ✓)
r@r(�a(r) + �b(r) + r log(r)(�0

a(r) + �
0

b(r))) = 2B(z = 1, ✓)Dr
2d⌫
d�✓+

d
2 �a�

d(3�✓)
2(1�✓) �b

, (D1b)

where, in order, they come from (B5b) and (B5c). In the above equation, we used c�(r) ⌘ c�,0 � ��, where c�,0 is
given in (B1), and ��� = �a � �b; the latter constraint comes from (B4). Here, we present the self-consistent solution
as the IR fixed point, and argue for its stability via the same dominant balance arguments as we described above. We
find

�a(r) + �b(r) = 2B(z = 1, ✓)D⇤ +
2c1
log r

⌘ �
⇤

a + �
⇤

b +
2c1
log r

,

2�a(r)� �b(r) = A(z = 1, ✓)D⇤ +
c1

log r
⌘ 2�⇤

a � �
⇤

b +
c1

log r
,

0 =
2d⌫

d� ✓
+

d

2
�
⇤

a �
d(3� ✓)

2(1� ✓)
�
⇤

b ,

c1 =
1� ✓

d
log

D

D⇤
. (D2)

Note, we assume that both �a(r) and �b(r) will approach their IR fixed point at the same rate. This is because their
di↵erence / 1/ log r will only change the cut-o↵ through the constraint �� / �a��b so is not important in the scaling
limit. Solving the above, we obtain

�
⇤

a =
2⌫(1� ✓)(3d� 2✓)

(d� ✓)(3d+ (✓ � 5)✓)
, (D3a)

�
⇤

b =
2⌫(1� ✓)(3d� 4✓)

(d� ✓)(3d+ (✓ � 5)✓)
, (D3b)

�
⇤

� =
4⌫(1� ✓)✓

(d� ✓)(3d+ (✓ � 5)✓)

r
�d(d� ✓)

8✓
. (D3c)

Note that ✓ < 0 due to (B2). Using (B14), we arrive at the IR geometry (23).
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Appendix E: Details of the holographic calculation of conductivity

This appendix contains details of the holographic calculation of conductivity. Here we assume that the system is
at finite density, and that z

⇤
< 1. Thermoelectric conductivities were calculated in rather general inhomogeneous

backgrounds in [30]. As we explained in the main text, the dominant inhomogeneity is only in the bulk scalar  , and
so at leading order at small ⌫, the dc thermoelectric conductivity matrix is given by

�dc =
sZ

(0)
r
2
+

4⇡
+

4⇡⇢2

sh(@i (x))2i
, (E1a)

↵dc =
4⇡⇢

h(@i (x))2i
, (E1b)

̄dc =
4⇡Ts

h(@i (x))2i
, (E1c)

where

h(@i (x))
2
i =

1

V

Z
ddx (@i (x, r+))

2
. (E2)

where V is the spatial volume in the boundary theory. The terms inversely proportional to h(@i (x))2i will dominate,
and it is useful to denote the relaxation rate as

� =
s

4⇡
h(@i (x))

2
i. (E3)

Various T -scalings are shown in (27).
There are also contributions to the conductivity that do not depend explicitly on the disorder (beyond how disorder

flows to a particular fixed point with fixed z
⇤ and ✓

⇤!). Applying (E1) to calculate the incoherent conductivity that
is insensitive to momentum relaxation, we find

�dc,inc =
(sT )2�dc � 2sT⇢↵dc + ⇢

2
T ̄dc

M2
=

✓
sT

M

◆2
sZ

(0)
r
2
+

4⇡
⇠ T

2+ d�✓⇤�2
z⇤ , (E4)

since, as we will argue later, for generic models we expect the constant prefactor M ⇠ T
0.

To obtain the optical conductivity, we need to solve the perturbed bulk equations of motion. Consider perturbing
the system by a small AC electric field along the x̂ direction. Such a perturbation couples to

�gtx =
htx(r)

r2
e�i!t

, (E5a)

�A = �Ax(r)e
�i!tdx, (E5b)

� =  (r,x)�P (r,x)e�i!t
, (E5c)

where  (r,x) is the background inhomogeneous scalar field. The rx-component of Einstein’s equations, the x-
component of Maxwell’s equation, and the scalar equation read

h
0
tx

rda
� ⇢�Ax +

b

!rd

Z
ddk

(2⇡)d
kx 

2(k)�P 0(k) = 0, (E6a)

�
�⇢htx + r

2�d
Zb�A

0

x

�0
+

r
2�d

Z!
2

b
�Ax = 0, (E6b)

✓
b 

2(k)

rd
�P

0(k)

◆0

+
!kx

rdb
 
2(k)htx +

!
2

rdb
 
2(k)�P (k) = 0, (E6c)

where �Ax = �Ax(k = 0) and htx = htx(k = 0) are at zero momentum. In deriving (E6a), we ignored the term
@x  

0
�P , which can be regarded as a higher order correction.

At high frequency, ! � T , the term proportional to �P in (E6a) is perturbatively small for weak disorder  
2
/

D
⇤
⌧ 1. Meanwhile, this term has the same r-dependence, r�

d2�d✓⇤+d
d�✓⇤ , as the other terms in (E6a) since the disorder
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is exactly marginal at the IR fixed point. Hence, we can approximate �P = 0 at leading order, and the resulting
system of ODEs is closed for �Ax and htx. Combining (E6a) and (E6b), we have

�
r
2�d

Zb�A
0

x

�0
+

✓
r
2�d

Z

b
!
2
� r

d
a⇢

2

◆
�Ax = 0. (E7)

Applying the change of variables,

dw

dr
=

1

b
, �Āx =

p

r2�dZ�Ax, (E8)

we obtain

�
@
2
w + !

2
�
�Āx + c1�Āx = 0, (E9)

where

c1 = �
r
d
ab⇢

2

r2�dZ
�

b
p

r2�dZ

✓
b(r2�d

Z)0

2
p

r2�dZ

◆0

. (E10)

We find c1 ⇠ w
�2 meaning the solution can be written as �Āx = G(w!). Applying the holographic dictionary,

together with a matching argument [14] to connect with the UV scaling, we obtain

Re �(! � T ) =
1

!
Im G

R
�Ax�Ax

⇠ !
2+ d�✓⇤�2

z⇤ . (E11)

At low frequency ! ⌧ T , however, we cannot neglect the contribution of �P in (E6a), and it will contribute to the
relaxation time ⌧ / D

⇤�1 in the ac conductivity. Following [24], we work in the limit !/T ! 0, but keep !⌫
�1 finite.

Define

�Px ⌘
b

!rd

Z
ddk

(2⇡)d
kx 

2(k)�P 0(k), (E12)

With this overall factor of !�1, we will be able to safely take the ! ! 0 limit below. At leading order in !, (E6)
becomes

1

ard
h
0

tx � ⇢�Ax + �Px = 0, (E13a)

⇢h
0

tx �
�
br

2�d
Z�A

0

x

�0
= 0, (E13b)

�P
0

x + htx


1

brd

Z
ddk

(2⇡)d
k
2
x (k)

2

�
= 0. (E13c)

Let us now solve these equations subject to appropriate boundary conditions. It is helpful to first identify all
solutions without regards to boundary conditions, and then stitch together the correct solution (compatible with
boundary conditions) at the end. The first solution is given by

�Ax = �A
0
x, �Px = ⇢�A

0
x, htx = 0, (E14)

which directly couples to the disorder. The second solution of interest is the “Galilean boost” mode:

�Ax = c1(p(r) + p(r+)), htx = c2 � a(r)b(r)c1, �Px = 0, (E15)

where we have modified its form in [24] by noting that the coe�cients c1,2 must (from our UV theory’s perspective)
have di↵ering dimensions. It was shown in [24] that the remaining two solutions to (E13) do not contribute at leading
order to �(!), and the conclusion is unchanged here. Note that when the system is Lorentz invariant (z = 1), there is
no need to include c1,2. One way to fix these parameters is to use a UV-completion of our scaling theory to AdS, in
which case we would find that c1,2 are related by the UV scale at which we crossover to an AdS UV-completion. In
this particular UV-completion, c1,2 can be chosen to scale independently of T . We expect that this conclusion is more
general, although a detailed analysis requires a careful holographic renormalization calculation which is non-trivial
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for these Lifshitz and hyperscaling-violating backgrounds [43, 44]. Using b(r ! r+) ⇡ 4⇡T (r+ � r) and (B5c), we can
determine p(r+) = sT/⇢ up to O(D) corrections. Now, let us start from (E14) with infalling boundary condition:

�Ax(r ! r+) = �A
0
x

✓
1 +

i!

4⇡T
log

r+

r+ � r

◆
, (E16a)

�Px(r ! r+) = ⇢�A
0
x

✓
1 +

i!

4⇡T
log

r+

r+ � r

◆
. (E16b)

Plugging it in (E13c) at r ! r+, we find

i!

4⇡T
⇢�A

0
x

1

r+ � r
= �

htx

4⇡T (r+ � r)rd+

Z
ddk

(2⇡)d
k
2
x (k)

2

�
. (E17)

Therefore, using (E15), the leading contributions to �Ax are given by

�Ax = �A
0
x(1� i!C(p+ p(r+)), (E18)

where

C ⌘ ⇢

✓
1

rd+

Z
ddk

(2⇡)d
k
2
x (k)

2

◆�1
c1

c2
. (E19)

We can then define the relaxation time ⌧ using �Ax at UV:

⌧ ⌘ C(p(r = 0) + p(r+)) = M��1 (E20)

Recalling that the conductivity is determined by �(!) ⇠ �A(1)
x

�A(0)
x

, where �A
(0)
x (�A(1)

x ) is the coe�cient for the leading

(subleading) order in the asymptotic expansion at r ! 0, we obtain the Drude peak �(!) ⇠ (1� i!⌧)�1. As long as
c1, c2, µ are T -independent, ⌧ and � have the T -dependent scaling

⌧ ⇠ ��1
⇠ T

�
2+d�✓⇤

z⇤ . (E21)

As explained in the main text, we can only trust the existence of the Drude peak when ⌧ � T
�1, which means

2 + d � ✓
⇤
� z

⇤
> 0. If this criterion does not hold, our evaluation of the IR conductivity at the horizon is exact,

but we cannot controllably calculate the leading order !-dependent corrections to �(!); we would then have analytic
control only at ! = 0 and ! � T .

Appendix F: Local criticality with z = 1 and ✓ = �⌘z

In this appendix, we generalize our calculation to the case where

z ! 1, ✓ = �⌘z ! �1, (F1)

with a finite and fixed ⌘ > 0. The metric will then scale as

a(r) ⇠ r
�

d+⌘
⌘ , b(r) ⇠ r

�
d�⌘
⌘ . (F2)

As before, we consider the renormalized metric with ⌘ ! ⌘̃. The scalar equation of motion becomes

 
00
�

d+ d⌘̃ � ⌘̃

⌘̃r
 
0
�

B0 + k
2

r2
 = 0. (F3)

This equation admits power-law solutions

 (k, r) = h(k)r
d+d⌘̃
2⌘̃ ��̃

, �̃
2 =

✓
d+ d⌘̃

2⌘̃

◆2

+ k
2 +B0, (F4)

where we neglected the normalizable solution. Observe that ! ⇠ k
z and r

�1
⇠ k

(d�✓)/d, therefore, under (F1), k
does not scale and the theory realizes “local criticality” [28]. Based on this, we can deduce that when B0 = 0 the
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disorder is Harris-marginal since  (k = 0, r) has no r-dependence, and when B0 < 0 (B0 > 0), it corresponds to
Harris-relevant(irrelevant) disorder. Evaluating the disorder average for a relevant disorder with |B0| ⌧ 1, we obtain
for r⇤ � 1

 2 =

Z
ddk

(2⇡)d
 (k)2 ⇡

Sd

(2⇡)d
D

Z
dkkd�1

r
�

(k2+B0)⌘̃
d+d⌘̃ ⇠

D

(log r)d/2
r
�

B0⌘̃
d+d⌘̃ . (F5)

We find that no matter how the renormalized exponent ⌘̃ behaves, this contribution to the stress tensor will always
blow up for relevant disorders in the deep IR, making the bulk equations of motion inconsistent. However, we do
not exclude the existence of a valid IR fixed point, possibly extending our scheme to a more general renormalized
geometry.

Nevertheless, it is still sensible to discuss the marginal disorder and its corresponding fixed point. When B0 = 0,
we obtain, using dominant balance,

�(r) + r log r�0(r) ⇠
D

(log r)d/2
, (F6)

where we used the same parametrization �a ⇡ �b ⇡ �p ⌘ � as before in Appendix B. The solution to (F6) scales as

�(r) ⇠

(
D

2
2�d

1
(log r)d/2

, d 6= 2

D
log(log r)

log r , d = 2
(F7)

Since �(r ! 1) ! 0, the disorder will become marginally irrelevant at deep IR. This is similar to the conclusion
made in [20], but the scaling (F7) is dramatically di↵erent.

The marginal disorder will support to a Drude-like dc conductivity. Introducing the horizon as before, we have

T ⇠ r
�d/⌘
+ and s ⇠ T

⌘. We can then evaluate the relaxation rate as

� =
1

rd+

Z
ddk

(2⇡)d
k
2
x (k)

2
⇡

Sd

d(2⇡)d
D

rd+

Z
dkkd+1

r
�

k2⌘
d+d⌘

+ ⇠
D

rd+

1

(log r+)d/2+1
(F8)

Hence, for D ⌧ 1, the T -scaling of the dc electrical conductivity is dominated by the Drude form

�dc ⇠ ��1
⇠

1

D
T

�⌘(log T )d/2+1
. (F9)

The Drude form manifests the fact that the disorder is the leading contribution to the momentum relxation, thus,
even it is marginally irrelevant at the IR fixed point, the disorder is a dangerously irrelevant operator for the transport
properties. Interestingly, when ⌘ = 1, (F9) has a linear-in-T resistivity (up to logarithm), and, at the same time,
has an entropy s ⇠ T . This fixed point corresponds to the Gubser-Rocha model [27], which has been generalized to
inhomogeneous charge density at fixed wave number, where numerics suggest robust linear-in-T resistivity [37].
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[38] Óscar J. C. Dias, Jorge E. Santos, and Benson Way, “Numerical Methods for Finding Stationary Gravitational Solutions,”

Class. Quant. Grav. 33, 133001 (2016), arXiv:1510.02804 [hep-th].
[39] Dionysios Anninos, Tarek Anous, Frederik Denef, and Lucas Peeters, “Holographic Vitrification,” JHEP 04, 027 (2015),

arXiv:1309.0146 [hep-th].
[40] Gary T. Horowitz, Nabil Iqbal, Jorge E. Santos, and Benson Way, “Hovering Black Holes from Charged Defects,” Class.

Quant. Grav. 32, 105001 (2015), arXiv:1412.1830 [hep-th].
[41] Erik E. Aldape, Tessa Cookmeyer, Aavishkar A. Patel, and Ehud Altman, “Solvable theory of a strange metal at the

breakdown of a heavy Fermi liquid,” Phys. Rev. B 105, 235111 (2022), arXiv:2012.00763 [cond-mat.str-el].
[42] Aavishkar A. Patel, Haoyu Guo, Ilya Esterlis, and Subir Sachdev, “Universal theory of strange metals from spatially

random interactions,” (2022), arXiv:2203.04990 [cond-mat.str-el].

http://dx.doi.org/10.1103/PhysRevB.101.144506
http://arxiv.org/abs/1909.09167
http://dx.doi.org/%2010.21468/SciPostPhys.14.3.039
http://arxiv.org/abs/2205.11542
http://dx.doi.org/%2010.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
http://arxiv.org/abs/1503.01409
http://dx.doi.org/%2010.1103/PhysRevD.89.066018
http://dx.doi.org/%2010.1103/PhysRevD.90.046007
http://dx.doi.org/%2010.1103/PhysRevD.90.046007
http://dx.doi.org/10.1103/PhysRevLett.112.231601
http://dx.doi.org/10.1103/PhysRevLett.112.231601
http://arxiv.org/abs/1402.0872
http://dx.doi.org/%2010.1007/JHEP04(2016)022
http://arxiv.org/abs/1508.04435
http://dx.doi.org/10.1007/JHEP06(2020)023
http://arxiv.org/abs/2004.06543
http://dx.doi.org/%2010.1103/PhysRevD.105.066016
http://arxiv.org/abs/2110.11978
http://dx.doi.org/%2010.1103/PhysRevLett.28.240
http://dx.doi.org/%2010.1038/nphys3174
http://arxiv.org/abs/1405.3651
http://arxiv.org/abs/1405.3651
http://dx.doi.org/%2010.1007/JHEP03(2015)071
http://arxiv.org/abs/1501.05656
http://dx.doi.org/%2010.1103/PhysRevB.85.035121
http://arxiv.org/abs/1112.0573
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.017
http://arxiv.org/abs/1411.3331
http://dx.doi.org/10.1103/PhysRevD.81.046001
http://dx.doi.org/10.1103/PhysRevD.81.046001
http://dx.doi.org/%2010.1007/JHEP07(2012)078
http://arxiv.org/abs/1203.4236
http://dx.doi.org/%2010.1103/PhysRevD.79.025023
http://dx.doi.org/%2010.1103/PhysRevD.79.025023
http://dx.doi.org/10.1007/JHEP10(2015)103
http://arxiv.org/abs/1507.00234
http://dx.doi.org/%2010.1007/JHEP09(2015)090
http://arxiv.org/abs/1505.05092
http://arxiv.org/abs/1505.05092
http://dx.doi.org/%2010.1007/JHEP09(2015)010
http://arxiv.org/abs/1505.06992
http://arxiv.org/abs/1505.06992
http://dx.doi.org/10.1007/JHEP10(2015)112
http://arxiv.org/abs/1507.07137
http://dx.doi.org/%2010.1103/PhysRevD.100.086020
http://arxiv.org/abs/1812.11060
http://dx.doi.org/%2010.1103/PhysRevB.91.155126
http://arxiv.org/abs/1501.03165
http://dx.doi.org/10.1016/j.physletb.2015.12.052
http://arxiv.org/abs/1505.04772
http://arxiv.org/abs/1505.04772
http://arxiv.org/abs/2211.05492
http://dx.doi.org/10.1088/0264-9381/33/13/133001
http://arxiv.org/abs/1510.02804
http://dx.doi.org/10.1007/JHEP04(2015)027
http://arxiv.org/abs/1309.0146
http://dx.doi.org/10.1088/0264-9381/32/10/105001
http://dx.doi.org/10.1088/0264-9381/32/10/105001
http://arxiv.org/abs/1412.1830
http://dx.doi.org/10.1103/PhysRevB.105.235111
http://arxiv.org/abs/2012.00763
http://arxiv.org/abs/2203.04990


19

[43] Wissam Chemissany and Ioannis Papadimitriou, “Lifshitz holography: The whole shebang,” JHEP 01, 052 (2015),
arXiv:1408.0795 [hep-th].

[44] Marika Taylor, “Lifshitz holography,” Class. Quant. Grav. 33, 033001 (2016), arXiv:1512.03554 [hep-th].

http://dx.doi.org/10.1007/JHEP01(2015)052
http://arxiv.org/abs/1408.0795
http://dx.doi.org/10.1088/0264-9381/33/3/033001
http://arxiv.org/abs/1512.03554

	Disordered quantum critical fixed points from holography
	Abstract
	Introduction
	Main result
	Holography
	Conductivities
	Outlook
	Acknowledgements
	Field theory perspective
	Details of holographic models
	Numerical solution of the spatially homogeneous gravitational equations
	Charge-neutral disordered fixed point
	Details of the holographic calculation of conductivity
	Local criticality with z= and =-z
	References


