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Abstract—Recent advancements in DNA-based storage pro-
totypes focus on encoding information across multiple DNA
molecules. This approach utilizes high-throughput sequencing
technologies, leading to outputs that are out-of-order. We study
the shuffling channel, where input codewords are split into
fixed-size fragments. We show that achieving channel capacity
uses index-based coding, which assigns unique indices to each
fragment. We also introduce two more complex channels, which
aim to model popular sequencing strategies in DNA sequencing.
In the torn-paper channel, the input codeword is torn up into
fragments of random sizes, while in the shotgun sequencing
channel, fixed-length random substrings of the input codeword
are observed at the output. In both of these channels, the
lack of ordering cannot be circumvented by simply adding
unique indices to the fragments. We show how the capacity of
both of these channels can be achieved using random codes.
We introduce and analyze code constructions based on index
sequences. While these codes are computationally efficient, they
are not capacity-achieving, and we leave the questions of finding
efficient capacity-achieving codes for these settings as open
problems.

Index Terms—Biological information theory, DNA, Channel
coding, Decoding.

I. INTRODUCTION

MOST standard models for communication channels
assume that the channel does not affect the order

of the input symbols. For example, a discrete memoryless
channel [1], described by a conditional probability distribution
p(y|x), takes a sequence of inputs x1, . . . , xn and outputs
the (ordered) sequence y1, . . . , yn , where yi is generated
via the conditional distribution p(yi |xi ), for i = 1, . . . ,n .
Even for some channels with memory, such as the deletion
channel, the insertion channel, or sticky channels [2], where
input symbols may be lost and new random symbols may
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be inserted into the sequence, the order of the input symbols
that “survive” the channel is maintained. The assumption
of an “ordered” channel makes sense for most practical
communication systems, where symbols are transmitted one
at a time. This ordering assumption can be violated in some
packeted network scenarios, where different packets may take
different routes to achieve their destination [3], but it can be
easily overcome in practice by placing a unique address in
the beginning of each packet. The ordering assumption also
makes sense for most practical storage systems, where bits are
stored in physically well-ordered locations.

However, with the emergence of new communication and
storage media based on biological systems, the assumption
of ordering may no longer be a valid one. For example, the
new paradigm of molecular communication has gained recent
attention due to potential applications in medical treatments
with nanonetworks [4]. In this setting, nanoscale devices
inside the patient’s body communicate with each other through
molecular diffusion, in which case the received “signals” are
out-of-order with respect to what is transmitted [5].

Another emerging technology that can be seen as “out-of-
order media” is the idea of macromolecular based storage
(and in particular DNA-based storage), which has received
significant research attention in the last few years [6], [7], [8].
By storing data on DNA molecules, one can achieve very high
storage density and longevity, and several DNA storage system
prototypes have recently been implemented [9], [10], [11],
[12]. In most of these prototypes, due to technological barriers
in DNA synthesis, one stores data across a very large number
of short DNA strands. At the time of reading, one utilizes high-
throughput sequencing platforms, which randomly sample
DNA strands from the pool and read them. For these reason,
the DNA storage system can effectively be seen as an out-
of-order communication channel. This channel has been the
topic of several papers in information theory whose goal is to
characterize their channel capacity, optimal coding schemes,
and error exponents [7], [13], [14], [15].

A first step in the analysis of out-of-order channels is to
understand how the amount of stored data scales with the
size of the output fragments. Suppose the channel input is a
codeword of length n and the channel output is an unordered
multiset Y of strings (or fragments) of (average) length ℓn .
Depending on how ℓn scales with n, the number of data bits
that can be reliably stored in the system scales as different
functions of n. Based on prior works (see, for instance, [7]), it
can be verified that the number of bits g(n) that can be reliably
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TABLE I
SCALING OF THE NUMBER OF BITS THAT CAN BE RELIABLY STORED

stored scales with the average length ℓn of the strings in Y ,
as shown in Table I. Notice that, if ℓn scales as L̄ log n for
some constant L̄ > 1, or faster, the number of stored bits scales
linearly in n, allowing us to define storage capacity in the usual
sense of lim g(n)/n . On the other hand, if ℓn is a constant, one
may consider the ratio lim g(n)/ log n as a relevant measure
of the fraction of stored bits instead. This setting was studied
in [16], [17], [18], under the name of permutation channels.

In this work, we will focus on the slowest scaling of
ℓn for which g(n) = Θ(n), namely ℓn = L̄ log n , for
L̄ > 1. A natural starting point is the deterministic length
scenario, where each fragment has length exactly ℓn =
L̄ log n . This setting was first studied in the context of the
shuffling channel [19]. The shuffling channel takes a length-
n binary string xn as its input. The channel tears xn into
n/ℓn pieces of size ℓn each, and outputs these fragments as
a multiset Y . In [19], it is shown that the capacity of this
channel is given by

Cshuf = 1− 1/L̄,

when L̄ > 1. This capacity can be achieved by a simple index-
based coding scheme, where we encode a unique identifier
in the first log (n/ℓn ) bits of each fragment. We can do this
because the fragments have deterministic lengths, and thus we
know a priori the starting location of each fragment in the
input sequence xn .

The impact of the lack of ordering in the output of a DNA-
based storage channel can be aggravated by two practically
motivated reasons:

(1) Depending on the physical storage conditions (such as
temperature and pressure), the stored DNA molecules
may be subject to random breaks, causing the readouts
to correspond to random substrings (of random lengths)
of the stored DNA strings.

(2) If the data is written onto long DNA strands but read
using short-read sequencing technologies (such as the
widely popular Illumina platforms), then the readouts
correspond to random substrings (of a fixed length) of
the stored DNA strings.

An important aspect about the lack of ordering produced
by (1) and (2) above is that it cannot be easily circumvented
via the addition of addresses/indices as we could for the
shuffling channel. This is because, in the situations created by
(1) and (2), we do not have a priori knowledge of the starting
points for the sequence pieces we will observe at the output.
Hence, one cannot place unique addresses at the beginning of
each block to help with the reordering of the output blocks.
As illustrated in Figure 1, if one attempts to spread evenly
spaced addresses throughout the input sequence xn , and the
channel output Y corresponds to random substrings (possibly

Fig. 1. Consider a channel where one observes a set Y of random substrings
of the input sequence xn . One attempt to combat the loss of ordering at the
output could be to place unique addresses throughout xn (shown here as the
numbered segments). However, since the starting point of the observed strings
is unknown, the location of the addresses in the observed strings is unknown,
and they may be only partially included in the observed strings.

of random lengths), identifying where the address is in each
substring is not a straightforward task, and it is possible
that addresses are only partially included at the ends of the
substrings.

This leads to an interesting coding question for such out-
of-order channels: How should one encode a message into
the codeword xn for out-of-order communication channels? In
particular, when the starting point of the observed fragments
are unknown, is there a way to use addresses to allow the
reordering of the channel output? We will investigate two
channel models that impose such a loss of ordering to the
channel output, and study the design of reordering codes that
can be used to communicate reliably in out-of-order settings.

The two channel models we will consider are inspired
by the aforementioned practical considerations (1) and (2)
and are illustrated in Figure 2. We refer to these two
channels as the Torn-Paper Channel (TPC) [20], [21], [22],
shown in Figure 2(a), and the Shotgun Sequencing Channel
(SSC) [23], [24], shown in Figure 2(b). The TPC breaks
the input sequence xn into pieces of random sizes, and a
subset of these pieces is observed at the output. This is
motivated by the setting where physical conditions make
the DNA molecules subject to random breaks, and a long-
read sequencing technology such as nanopore sequencing [25]
is used to read entire pieces. It can also be motivated by
applications in fingerprinting and forensics, where one may
wish to encode a serial number into a physical object (such as
a weapon), which should be recoverable even from a small set
of pieces left over from the original object [26], [27]. The SSC
extracts many reads of a fixed length from random locations
of the codeword xn , which is motivated by the setting where
one utilizes Illumina sequencing platforms [28] to read a long
synthesized DNA molecule.

Next, we describe both of these models more formally.
We start with the TPC, which takes a length-n binary string
xn as its input. We point out that all results in this paper
can be extended in a straightforward manner to non-binary
alphabets, but we focus on the binary case for simplicity.
The TPC tears xn into fragments of random sizes N1,N2, . . .
(these fragments are referred to as reads). We assume that
N1,N2, . . . are i.i.d. random variables with expected fragment
length E [N1] = ℓn . (We are yet to define a stopping criteria
to count the number of pieces. This is discussed formally in
Section II). The output of the channel is then the unordered
set of the resulting pieces (possibly with some missing ones,
as we discuss later).
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Fig. 2. Comparison between the (a) Torn Paper Channel (TPC) and the (b) Shotgun Sequencing Channel (SSC). The input to the SSC is a single (binary)
string xn and the output are K random substrings of length L.

Notice that we allow the distribution of N1 to change with
n since letting E [N1] scale as log n is the regime of interest
from a channel capacity standpoint. In particular, when the
lengths N1 ∼ Geom(1/ℓn ) (which implies E [N1] = ℓn ), the
capacity of this channel is

CTPC = e−1/L̄, (1)

where L̄ = limn→∞
ℓn

log n , as first shown in [20]. Notice that
this agrees with our intuition that the channel capacity should
increase towards 1 as L̄ grows.

As it turns out, for the general case where the distribution
of Ni is arbitrary, but still i.i.d., the capacity has an intuitive
form that can be expressed as “coverage”−“reordering-cost”.
The precise mathematical forms of these quantities will be
discussed in the section dedicated to the TPC. At a high level,
“coverage” is the fraction of bits in the input string present in
the set of output reads, after discarding all pieces of size at
most log n , which can be shown to carry no useful information
from a capacity standpoint. The reordering cost is intuitively
the cost in terms of fraction of bits effectively used to reorder
the unordered set (again after throwing out pieces of size at
most log n), and will be made more explicit later.

The Shotgun Sequencing Channel (SSC), shown in
Figure 2(b), also takes a length-n binary string as its input.
But unlike the TPC, it picks points uniformly at random on
the input string and samples K fixed-length reads of size L =
L̄ log n from this string. This unordered set is the channel
output. The capacity of the SSC is given by

CSSC = 1− e−c(1− 1
L̄ ), (2)

where c = KL/n is the coverage depth. The coverage depth
c, assumed to be a fixed constant, is a standard parameter in
practical sequencing experiments [29] and corresponds to the
expected number of times an input symbol is read.

A key difference between the SSC and the TPC is that the
SSC in general creates reads that may have overlaps with each
other. In other words, two reads with starting locations that
differ by less than L will have a matching prefix and suffix.
Intuitively, these overlaps can be used to merge reads, forming
longer pieces of sequence. Therefore, in order to characterize

the capacity of the SSC, one must understand the optimal way
to utilize overlaps for merging reads (while being careful not
to make incorrect merges due to spurious matches between
prefixes and suffixes). As we will discuss, the optimal coding
scheme for the SSC is vastly more complicated to analyze
than the optimal coding scheme for the TPC, since it requires
a careful approach to merge reads.

New Contributions: In this paper, we discuss the SSC and
TPC channel models in detail and survey existing capacity
results. While the capacity expressions have been previously
studied separately, here we study them within the same frame-
work, providing qualitative and quantitative comparisons.

Our new contributions are fourfold: (i) We present the
capacity expressions in a unified framework, which allows
them to be compared under the same choice of parameters
such as coverage and expected fragment length (e.g., see
Figures 4 and 5). This provides insight into the impact of
the fragment length distribution and overlaps in the capacity
of DNA storage systems. (ii) We present an explicit address-
based code construction for the SSC. A version of this coding
scheme had originally been proposed for the TPC, but here
we show that the approach can be seen as a general way to
code for out-of-order channels, which can be adapted to the
specifics of the channel (and in particular the SSC). (iii) We
study the zero-error capacity of a TPC with bounded fragment
lengths, which allows us to draw comparisons between the
probabilistic TPC and a recently studied TPC in an adversarial
setting. (iv) We introduce and study a noisy version of
the TPC. While an exact characterization of the capacity is
challenging, we present novel achievable rates for this channel.

The organization of this paper is as follows. In the next
section, we will discuss the channel models considered, state
their capacities and compare them. This is followed by
Section III, where we consider index-based (address-based)
reordering codes. We pay special attention to its application
for the SSC, which is unexplored in existing literature. We
further discuss unresolved open questions. We also discuss an
efficient coding scheme from [30], a code with a linear run-
time decoder for the TPC within an adversarial setting and
a method involving Varshamov-Tenengolts codes that embed
indices within the torn pieces of the TPC [31], [32]. We then
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conclude in Section IV by introducing a noisy extension of
the TPC, studying achievable rates, and posing some open
questions about this channel.

Related Work: The analysis of DNA storage channels started
with the initial prototypes of DNA-based storage systems
by Church et al. [9] and Goldman et al. [10]. Subsequent
advances demonstrated the feasibility of long-term storage
through error-correcting codes [11], selective data access [33],
high information densities [34], and scaled-up storage capabil-
ities [35]. All these prototypes utilized short DNA molecules
due to the high cost of synthesizing longer strands. For that
reason, most of the literature on DNA storage channels has
focused on short fragments. In that context, the work we
present on the SSC can be understood as an investigation into
potential storage rates achievable if we were to use long DNA
molecules instead.

The results presented in this paper are aligned with the
recent literature on modeling the DNA storage channel and
studying its capacity, which includes studies on the noisy
shuffling channel model [7], [19], [36] and multi-draw sam-
pling channels [13], [37], [38]. A comprehensive survey on
this topic can be found in [15]. Out-of-order channels have
also been considered in the context of the noisy permutation
channel [18], [39], which is a channel that breaks codewords
into individual symbols and shuffles them. The bee identifica-
tion problem [40], [41], [42], [43] is another example of an
out-of-order channel, where barcodes are output in a noisy and
unordered fashion.

Concurrent research efforts have been dedicated to devel-
oping explicit codes catering to DNA storage specifics,
addressing synthesis constraints [33], [34], [44], asymmetric
sequencing errors [45], insertion error correction [46] and
deletion error correction [47].

II. CHANNEL MODELS AND CAPACITY EXPRESSIONS

In this section we formally define the TPC and the SSC,
state and compare the capacity expressions, and discuss the
rates achieved by random coding schemes. We utilize a
standard definition of capacity:

Definition 1: A rate R is achievable if there exists a
sequence of codes with rate R and blocklength n whose error
probability satisfies P(E) → 0 as n → ∞. The capacity C is
the supremum of achievable rates R.

A. Capacity of the Torn-Paper Channel

In the TPC, let W be the message to be transmitted. The
transmitter encodes a message W ∈ {1, 2, . . . , 2nR} into a
length-n binary codeword X n ∈ {0, 1}n . The output Y of the
channel is obtained as follows: The channel tears the input
codeword X n into pieces (reads) of size N1,N2, . . . where
Ni s are i.i.d. random variables. We assume that E [Ni ] = ℓn =
L̄ log n is the expected length of the pieces, and we let Kn be
the smallest index such that

∑Kn
i=1Ni ≥ n. Notice that Kn is

also a random variable. We let X⃗i be the ith piece of length
Ni , for i = 1, . . . ,Kn − 1. As illustrated in Figure 2(a), the
channel output is the multiset

Y := {X⃗1, X⃗2, . . . , X⃗Kn }, (3)

where the segments X⃗1, . . . , X⃗kn , are given by

X⃗i =

[
X1+

∑i−1
j=1 Nj

, . . . ,X∑i
j=1 Nj

]
, (4)

for i = 1, . . . ,Kn − 1 and

X⃗Kn =

[
X1+

∑K−1
j=1 Nj

, . . . ,Xn

]
. (5)

The following theorem, which is a special case of the main
result in [22], characterizes the capacity of the TPC.

Theorem 1: The capacity CTPC of the Torn-Paper Channel
is

CTPC = lim
n→∞

1

ℓn
E
[
N11{N1≥log n}

]

− lim
n→∞

log n

ℓn
E
[
1{N1≥log n}

]
. (6)

We refer to the first term in (6) as the “coverage” and to
the second term as the “reordering-cost”. Notice that both the
coverage and the reordering-cost terms involve the indicator
function 1{N1≥log n}, which essentially discards reads in Y
of length less than log n . But why are reads of size less than
log n discarded? An intuitive reason for this is as follows:
Suppose the encoder knew where the tearing points occurred
in the string. Then an optimal way to encode messages (at least
intuitively) would be to allocate a certain portion of bits in
each individual read to encode ordering information, by using
unique binary addresses that correspond to the position where
each read starts. The number of bits per read that needs to
be allocated to achieve this (in expectation) is log(n/ℓn ) ≈
log n , since we expect the total number of reads to be n/ℓn .
Therefore pieces of lengths smaller than log n cannot store
any information about the message, and are hence useless.

We point out that under very mild conditions on the first
and second moments of N1 [22], we can rewrite (6) as

lim
n→∞

(
1

ℓn
E
[
N11{N1≥log n}

]
− log n

ℓn
E
[
1{N1≥log n}

])

=
1

L̄

∫ ∞

1
(β − 1)h(β)dβ, (7)

where limn→∞ Pr(N1 = β log n) log n ! h(β). This allows
the capacity of the TPC to be computed explicitly for several
choices for the distribution of N1. The case when Ni ∼
Geom(1/ℓn ) is particularly interesting, since it corresponds
to the situation where a tearing occurs between any two con-
secutive bits in xn independently and with a fixed probability
1/ℓn . When N1 ∼ Geom(1/ℓn ), we have

h(β) = lim
n→∞

Pr(N1 = β log n) log n

= lim
n→∞

log n

ℓn

(
1− 1

ℓn

)β log n−1

=
e−β/L̄

L̄
. (8)

Therefore, from (7) we have that the capacity expression in
this case is given by

CTPC =
1

L̄2

∫ ∞

1
(β − 1)e−β/L̄dβ = e−1/L̄, (9)

where L̄ := limn→∞ ℓn/ log n.
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TABLE II
CAPACITY EXPRESSIONS FOR VARIOUS FRAGMENT LENGTHS (Ni ) AND

READ DELETION FUNCTIONS (d̂) OF THE TPC-LP

The capacity of the TPC can also be generalized to the case
where some pieces are “lost” and not observed at the output
Y . This is reasonable from a practical standpoint as, during
the sequencing process (including nanopore sequencing), not
all the DNA in the pool is sequenced. If we assume that
a d fraction of the pieces are lost uniformly at random,
it is straightforward to modify the analysis used to prove
Theorem 1 and show that the capacity of the TPC with lost
pieces is given by

CTPC = (1− d)e−1/L̄ (10)

when Ni ∼ Geom(1/ℓn ) [22].
Remark: The parameter d can in general be a function of

the length of the reads, and can be described as d(.). It turns
out that the capacity of this new channel (referred to as the
TPC with Lost Pieces or TPC-LP), can be characterized as

CTPC−LP =
1

L̄

∫ ∞

1
(β − 1)

(
1− d̂(β)

)
h(β)dβ, (11)

where the deletion function d̂ is defined as d̂(β) :=
limn→∞ d(β log n). The following table computes capacity
explicitly for many choices of Ni and d(.)

Achievability via random coding: The achievability for
Theorem 1 is based on a random coding argument. More
precisely, a codebook with 2nR codewords of length n is
generated by picking every entry independently as Bern(1/2).
The decoder then tosses out all pieces in Y of size less than
log n and looks for the codeword that contains all the pieces in
set Y , with no overlaps between the pieces. If there is only one
codeword satisfying this, the decoder declares that codeword
as having been sent; else it declares an error.

Without loss of generality let us assume that W = 1 was
transmitted. Let Y ′ be the set of all reads with length at least
log n . If the elements of Y ′ exist as non-overlapping substrings
in some xi in the codebook, it declares the index of that
codeword as the message transmitted, i.e., Ŵ = i . We can
bound the error E averaged over all codebook choices as

Pr(E) = Pr(E|W = 1)

= Pr
(
∃j : xj ̸= 1contains all strings in Y ′∣∣W = 1

)
.(12)

To bound this error probability we need to calculate the total
number of different permutations on the order of the reads in
Y ′ and see what the probability is that any such ordering can
be placed in any codeword corresponding to W ̸= 1. However,
all these are random quantities, and the cardinality of Y ′ is

Fig. 3. Illustration of the decoding process for the achievable scheme. The
decoder tosses out reads of size at most log n , and picks the codeword from
the codebook that contains all the remaining reads as substrings. As long as
R ≤ CTPC − ϵ, the probability that a wrong codeword is decoded vanishes
as n → ∞.

also random. As it turns out, we have a handle on how many
such fragments exist in Y ′ as n → ∞, with high probability.
The following lemma [22] formalizes this.

Lemma 1: For any ϵ > 0, as n → ∞,

Pr

⎛

⎝

∣∣∣∣∣∣

Kn∑

i=1

1{Ni≥log n} −
nE

[
1{N1≥log n}

]

ℓn

∣∣∣∣∣∣
≥ nϵ′

ℓn

⎞

⎠ → 0,

(13)

where ϵ′ := ϵE [1{N1≥log n}].
Notice that the quantity

∑Kn
i=1 1{Ni≥log n} just counts

whether a fragment X⃗i from Y is in Y ′. The lemma explic-
itly states this is close (cumulatively) to the reordering-cost

E [Kn ]×E [1N1≥log n ] =
nE [1{N1≥log n}]

ℓn
with high probability.

Since picking a codeword in error implies that an inde-
pendently generated codeword (which has nothing to do with
the codeword generated for W = 1), contains all elements in
Y ′ (in a certain order), the cumulative total number of bits
amongst all reads in Y ′ for some order must match the bits in
the same order in the wrong codeword. To calculate this we
need a similar lemma [22] on the total number of bits in Y ′.

Lemma 2: For any ϵ > 0, as n → ∞,

Pr

⎛

⎝

∣∣∣∣∣∣

Kn∑

i=1

Ni1{Ni≥log n}
n

−
E
[
N11{Ni≥log n}

]

ℓn

∣∣∣∣∣∣
> ϵ′

⎞

⎠

→ 0, (14)

where ϵ′ := ϵE [N11{Ni≥log n}]/ℓn .
Again note that the quantity 1

n

∑Kn
i=1Ni1{Ni≥log n} calcu-

lates the total fraction of bits contained within the reads in Y ′

and the lemma explicitly states this is close to the coverage

(
E [N11{Ni≥log n}]

ℓn
) with high probability. These lemmas are

proved in [22].
Lemmas 1 and 2 let us define “bad” events that have

a vanishing probability as n → ∞. Let B1 = (1 +
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ϵ)
nE [1{Ni≥log n}]

ℓn
and B2 = (1− ϵ)

E [N11{Ni≥log n}]
ℓn

and define
the event

B =

{
Kn∑

i=1

1{X⃗i∈Y ′} > B1

}
∪
{
1

n

Kn∑

i=1

Ni1{X⃗i∈Y ′} < B2

}
.

(15)

Lemmas 1 and 2 imply that Pr(B) −→ 0 as n −→ ∞. Therefore

Pr(E) = Pr
(
∃xj ̸= x1containing all strings in Y ′|W = 1

)

≤ Pr
(
∃xj ̸= x1containing all strings in Y ′|W = 1,B

)

+ Pr(B)
(a)
≤ |C| n

B1

2nB2
+ Pr(B)

≤ 2nR2B1 log n2−nB2 + o(1).

Inequality (a) follows from the union bound and the fact
that given B, there are at most nB1 ways to align Y ′ to a
codeword xj . To see this note that, given |Y ′| < B1, there are
at most n places the fragments can start from to align each
piece and at most B1 such pieces. Since a non-overlapping
alignment of the strings in Y ′ to a codeword xj covers at least
nB2 positions of xj , the probability that it matches xj on all
covered positions is at most 2−nB2 .

Now Pr(E) −→ 0 if

R ≤ lim
n→∞

(1− ϵ)
1

ℓn
E
[
N11N1≥log n

]

− lim
n→∞

(1 + ϵ)
log n

ℓn
E
[
1N1≥log n

]
. (16)

Letting ϵ → 0 we prove the achievable part of Theorem 1.
As we can see, the above scheme can be used to achieve

rates arbitrarily close to the capacity. This scheme is however
intractable from a computational standpoint since it requires
matching the set Y ′ to an exponentially large number of
candidate codewords, and is hence not practically feasible.
In Section III, we will discuss a more practical scheme
which separates bits used to transmit message and ordering
information.

The converse of Theorem 1 involves partitioning the set Y
into pieces of “roughly” the same size. We can then divide
the TPC into a set of parallel channels that produce pieces of
almost fixed lengths at the output. Each of these “channels”
acts like a shuffling channel [7], [36]. The details of this
converse argument are available in [22].

B. Capacity of the Shotgun Sequencing Channel

Recall that the SSC models a setting where a long
DNA strand is synthesized and sequenced using a short-read
sequencing platform, which extracts fixed-length reads from
random locations. As in the TPC, the transmitter encodes
a message W ∈ {1, 2, . . . , 2nR} into a length-n binary
codeword X n ∈ {0, 1}n . The channel then chooses (fixed)
kn starting points uniformly at random, represented by the
random vector T kn ∈ [1 : n]kn . The vector T kn is assumed
to be sorted in a non-decreasing order. Length-L reads (L =
L̄ log n) are then sampled with Ti , i = 1, . . . , kn as their
starting points. For simplicity, we allow the reads to “wrap
around” X n ; i.e., if for any i, Ti + L > n , we concatenate

bits from the start of X n to form length-L reads. For example
if Ti = n − 2 and L = 5, then the read X⃗ associated
with this starting location is X⃗ = [Xn−2,Xn−1,Xn ,X1,X2].
As illustrated in Figure 2(b), the unordered multi-set Y =
{X⃗1, X⃗2, . . . , X⃗kn } of reads resulting from this sampling pro-
cess is the channel output. The following theorem, presented
in [24], establishes the capacity of this channel.

Theorem 2: The capacity CSSC of the SSC is given by

CSSC =
(
1− e−c(1− 1

L̄ )
)+

, (17)

where c := limn→∞KL/n , and x+ = max (x , 0).
The number of times we sample a read from the long

string affects the coverage depth, and hence the capacity. In
particular, if we look at the expression of CSSC in a high
coverage depth regime (where c → ∞, which essentially
happens if K, the number reads sampled grows faster than
n/ log n), CSSC → 1. This is where the SSC differs from
the TPC. Notice that the TPC can never achieve a capacity 1
when L = Θ(log n), while the SSC can, provided we sample
enough reads. We will discuss this comparison in more detail
in Section II-C.

Achievability via random coding. Proving that rates close
to CSSC are achievable is fairly involved, and utilizes a coding
scheme with a decoding rule that merges reads based on
their overlaps in an intricate manner. The key steps of this
achievable scheme are: (i) merging the reads correctly to form
islands, which are variable-length substrings of the input string
and (ii) noticing that these islands are actually non-overlapping
substrings so that we can use a decoder very similar to the
optimal decoder described for the TPC.

The first step involves a brute-force enumeration of all
possible potential overlaps between reads in set Y . Each
potential set of admissible merges is stored. We then employ
the rate optimal decoder that we developed for the TPC on
all the sets that this brute-force search admits. The reordering
cost for this setting is due to the fact that only one out of
all possible admissible merges within each set is the true
merge. Therefore the form of capacity we discussed previously
(“coverage”−“reordering-cost”), also applies to the SSC. This
scheme, analyzed in a careful way, can be used to show that all
rates R < CSSC are achievable. The full details of this proof
are available in [24]. We point out that this coding scheme is
also based on random coding and is therefore computationally
very expensive, just as in the TPC case.

The converse to Theorem 2 is closely related to the converse
for the TPC. Specifically it involves utilizing a genie that
merges all reads that have an overlap size greater than a certain
threshold. Now the variable-length “islands” are variable-
length substrings of the codeword and the problem can thus
be viewed as a TPC with lost reads [22]. Careful optimization
(with respect to what threshold on the merge length the genie
would be allowed to know) of the bound obtained when this
principle is applied leads to the converse proof of Theorem 2.

C. Comparing Capacity Expressions

The main value of the capacity expressions for the out-of-
order channels described in Sections II-A and II-B is that they
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Fig. 4. Comparison between the capacity of the TPC (with lengths having Geometric Distributions) and the SSC, for varying coverage depths and fixed
expected read lengths.

capture the impact of key parameters (such as read length,
tearing probability, and coverage depth) in the storage capacity.
This can provide guidelines for system design, for parameter
tuning, and in the selection of synthesis and sequencing tech-
nologies. In particular, one can think of a direct comparison
between the capacity expressions of the TPC and of the SSC
as the comparison between two system architectures: one that
uses Illumina sequencing (which is usually preceded by a PCR
amplification step [48], which creates many copies of the DNA
molecule, allowing reads to have overlaps), and one based on
nanopore sequencing (without a PCR amplification step).

Notice that a priori, it is not obvious which of the two
systems illustrated in Figure 2 should have the higher capacity.
In order to do a fair comparison, we tune parameters d
(the probability that a piece is deleted in the TPC) and c
(the number of bits covered by reads of a string that is
shotgun sequenced) Specifically, by choosing d = e−c , we
fix the coverage depth to be equal in both models. One
can then compare the capacity expressions as a function of
the normalized read length parameter L̄. Notice that this
corresponds to the average (normalized) length for the TPC
and the deterministic fixed (normalized) read length for the
SSC.

Figure 4 compares the capacity of the TPC and SSC as a
function of L̄. We can see that in general, the capacity of
the TPC dominates the capacity of the SSC in the short read
length paradigm, while the capacity of the SSC is higher when
the length of the reads increase. This is intuitively because
when the read lengths are larger (for a fixed coverage depth),
there are more overlaps of a larger length between reads
in the SSC. Intuitively larger overlaps are easier to merge
than smaller overlaps. This means that if we can merge these
overlaps, we obtain much larger pieces that cover a larger
portion of the string, which boosts the capacity. This however
is not the case when L̄ is small. Notice that the range where
the TPC capacity is larger than the SSC capacity decreases
as c increases. Intuitively this is because as the coverage c
increases, more overlaps occur, which allows for more merges
and longer resulting pieces, even for small values of L̄. In

particular, for any L̄ > 1, the capacity of the SSC tends to 1
as c → ∞, which does not happen to the capacity of the TPC.

Figure 5 shows the capacities of both systems as a function
of coverage depth for a fixed read length. As expected, as the
coverage depth increases, since more overlaps are likely to be
present in the output of the SSC, many merges can be made,
and the SSC has a higher capacity at high coverage depths.
Moreover, when the fixed length of the reads is larger, the
threshold on coverage depth above which the SSC has a larger
capacity than the TPC is smaller, again because longer reads
imply larger overlaps and thus easier merges.

III. INDEX-BASED CODING SCHEMES

In Section II, we discussed the exact capacity expressions
of the TPC and SSC. Since the achievability arguments of
Theorem 1 and Theorem 2 rely on random codes and brute-
force decoding, they provide little insight into the design of
efficient codes for the out-of-order channels considered.

As discussed in Section I, standard approaches to deal with
lack of ordering, such as the placing of unique indices in each
fragment, cannot be used in a straightforward manner for the
TPC and SSC. This is because, in both cases, we do not know
the starting point of the observed fragments. Even if we place
evenly spaced indices throughout the input codeword xn , it is
not obvious how to find an address in the output fragments.

A natural question is whether it is still possible to utilize an
index-based approach to perform the reordering of the pieces
at the output of channels such as the TPC and the SSC. The
main idea of index-based coding schemes is to separate bits
that convey actual information about the message from bits
whose purpose is only to help with the reordering.

We will first look at a simple case where the reads have
deterministic tearing lengths. Then we will look at an “inter-
leaving” approach. In this approach a predetermined “pilot”
sequence is interleaved with the information bits in a way that
we can uniquely align reads extracted from this codeword to
a generic “skeleton” codeword. This construction is used to
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Fig. 5. Comparison between the capacity of the TPC (with lengths having Geometric Distributions) and the SSC, for different coverage depths as the expected
read lengths vary.

handle the fact that the read locations are extracted from a
priori unknown starting points on the codeword.

Finally we will look at another index-based approach which
involves concatenating uniquely identifiable strings after each
index, which is then followed by information bits. This scheme
is described in detail in [30] and it was originally proposed
for an adversarial setting of the TPC, where the read lengths
are constrained to be between fixed parameters.

A. Index-Based Coding for the Shuffling Channel

In order to build some intuition, let us first consider a simple
TPC with deterministic tearing lengths. More precisely, this
channel breaks the binary codeword X n into pieces of length
Ni = ℓn = L̄ log n for i = 1, . . . ,n/ℓn . Since in this case
the tearing points are known, the effective input can be seen
as M strings of length-ℓn , where M ℓn = n . The capacity C
of this channel is (as seen in Table II)

C = 1− 1

L̄
. (18)

A very simple index-based coding scheme for this channel
is allocating ℓ′n out of ℓn bits of each read to store ordering
information and using the remaining ℓn−ℓ′n bits to store actual
message information. There are M = n/ℓn pieces. Therefore
we require ℓ′n = logM = log n − log ℓn bits to encode
ordering information. The way this is done is by encoding (in
binary) the position of the piece in the first ℓ′n bits. For the
remaining bits, we can just store message bits directly in an
uncoded fashion. The total rate thus achieved by this scheme
is just the fraction of bits used to store message information,
which is

R = lim
n→∞

ℓn − ℓ′n
ℓn

→ 1− 1

L̄
, (19)

Clearly, this is a very efficient coding scheme compared to
a random code. Specifically this scheme does not require the
decoder to have any a priori knowledge of the codebook to
find the codeword sent, which means it does not have to search
an exponentially large list to find the transmitted codeword.

B. Index-Based Coding via Interleaving for the Shotgun
Sequencing Channel

The problem with using index-based coding schemes for
the SSC is that the sampling locations are picked uniformly
at random. Thus, we do not know a priori how to allocate
bits for indexing purposes, since if we place them at evenly
separated points, they will appear at random locations on the
reads.

To solve this problem we will create a “pilot sequence” (or
synchronization sequence) p⃗ and interleave it with message
bits in order to create codewords. The idea is that any short
sequence of consecutive bits of p⃗ is unique and allows us to
determine the location of a read in the sent codeword.

1) Codebook Construction: To construct the codebook, we
will create a single pilot sequence p⃗ and several message
blocks s⃗i . Let m = L̄

2+δ and assume for simplicity that L̄
2+δ is

an integer greater than 1. We design these sequences such that
no string of length 2 log n appears in both the pilot sequence
p⃗ and s⃗i for any i. For some δ > 0, we let n

m = (2+δ)n
L̄

be
the length of p⃗ and s⃗i .

We construct p⃗ as a de Bruijn sequence [49] of order
log (n/m). This sequence has length 2log(n/m) = n/m and
it has the property that each binary string of length log(n/m)
appears in p⃗ exactly once. For example, a de Bruijn sequence
of order 4 is S = 0000100110101111. Notice that each binary
string of length 4 appears exactly once (when we view S as a
cyclic sequence).

We proceed to then interleave codewords from an erasure
code with p⃗. Let Cer be an erasure code with block length n/m.
We generate a single i.i.d. Bern(1/2) sequence and compute its
letter-wise modulo-2 sum with each codeword in Cer to form
a new codebook C̃er. This implies that the original erasure
code codewords can be obtained by computing the modulo-2
sum of the new shifted codewords with the fixed Bern(1/2)
sequence. The probability that a randomly shifted codeword
s⃗ ∈ C̃er shares an identical length-k segment with the pilot
sequence can be upper bounded as

Pr(p⃗[i : i + k − 1] = s⃗ [j : j + k − 1],
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Fig. 6. Interleaving a pilot sequence p⃗ with codewords s⃗u(1), . . . , s⃗u(m−1)
to form the codeword c⃗u .

for 1 ≤ i ≤ n/m − k , 1 ≤ j ≤ n/m − k)

≤ (n/m)22−k . (20)

Therefore, if we let k = (2 + δ) log n for δ > 0,

Pr(p⃗[i : i + k − 1] = s⃗ [j : j + k − 1],

for 1 ≤ i ≤ n/m − k , 1 ≤ j ≤ n/m − k) → 0, (21)

as n → ∞. We can then claim that, with high probability, no
string of length (2 + δ) log n appears in both p⃗ and s⃗i . This
means that for any ϵ > 0, for n large enough, it is possible
to choose the fixed binary sequence so that at least a (1− ϵ)
fraction of the shifted codewords in C̃er contain no length-
(2 + δ) log n segment that is also in the pilot sequence p⃗.
Hence, if the codebook Cer has a rate Rer and a blocklength
of n/m (and thus a total of 2(n/m)Rer codewords), we can
choose (1−ϵ)2(n/m)Rer shifted codewords in C̃er that contain
no length-(2 + δ) log n segment that is also in p⃗.

Let S⃗ = {⃗s1, . . . , s⃗|S⃗ |} ⊂ C̃er be a set with (1 − ϵ)2
n
mRer

such codewords. We build each codeword c⃗u by taking
m − 1 sequences s⃗u(1), . . . , s⃗u(m−1) from S⃗ and interleaving
their symbols with the symbols from p⃗. More precisely, for
each u ∈ {1, . . . , |S⃗ |}m−1 we build the codeword c⃗u =
(⃗cu [0], . . . , c⃗u [n − 1]) as

c⃗u [mt + j ] =

{
p⃗[t ], for j = 0,
s⃗u(j )[t ], for j = 1, . . . ,m − 1,

(22)

for t = 0, . . . ,n/m − 1. The interleaving procedure is shown
in Figure 6. We use this as the codebook for storage. We refer
to the resulting codebook as C, and it has |S⃗ |m−1 = (1 −
ϵ)m−12(1−1/m)nRer codewords. This yields a coding rate of
approximately (1− 1/m)Rer.

2) Decoding and Analysis: As illustrated in Figure 6, a
given codeword will contain one pilot bit from p⃗ for every m
bits. Hence, a given fragment of size L̄ log n contains at least

L̄ log n

m
= (2 + δ) log n

pilot bits. Since the pilot p⃗ is a priori fixed, we claim that as
long as L̄ > (2+δ), the location of every read can be uniquely
identified by aligning each read to a generic codeword, with
only the pilot bits specified. Suppose by contradiction that the
fragment can be properly aligned to c⃗i at an incorrect location.
Note that if L > (2 + δ) log n , then L̄ > (2 + δ) or m > 1.
Therefore since p⃗ is a de Bruijn sequence of size n/m, any
substring of p⃗ which is of size at least log (n/m) is unique.
In particular, sequences of size (2+ δ) log n are unique, since
(2 + δ) log n > log n > log (n/m).

Fig. 7. Comparison between the capacity of the SSC and the rate achieved on
the SSC by the explicit code construction based on index coding. We choose
a coverage depth of c = 1.4.

Since sequences of (2 + δ) log n consecutive symbols of p⃗
are unique, it must be the case that pilot symbols of c⃗i align
with (2+δ) log n non-pilot symbols of the fragment. However,
these (2 + δ) log n symbols must correspond to consecutive
symbols in one of the sequences s⃗i from S⃗ . Since no block
of length (2 + δ) log n of p⃗ appears in any s⃗i ∈ S⃗ , this is a
contradiction.

The rate is now the total number of information bits
conveyed. Since we allocate n/m bits for indexing, the rate can
be evaluated as

R =

(
1− 1

m

)
Rer. (23)

Under the scaling we choose (K = cn/L and L = L̄ log n),
the total fraction of bits (in the codeword) sequenced by the
SSC is 1− e−c as n → ∞ [24]. Therefore the total fraction
of bits erased will be e−c , as n → ∞, and we can choose the
rate of the erasure code to be Rer = 1− e−c . Letting δ → 0,
we conclude that rate

R =

(
1− 2

L̄

)(
1− e−c), (24)

is achieved by this coding scheme. This rate is compared to
CSSC in Figure 7.

As is evident from the figure, the rates achieved by the
index-based coding scheme are significantly lower than CSSC.
In fact, as c → ∞, the achievable rate R tends to (1 − 2

L̄
)

which is strictly less than 1. In the short length regime this
scheme therefore performs poorly, even if the coverage depth
is high, in comparison to the capacity of the SSC, which
satisfies CSSC → 1 as c → ∞ for all L̄ > 1.

3) Coding Complexity: When analyzing the complexity of
the coding scheme, we consider three distinct steps: code
generation (done once, independent of the message sent),
encoding, and decoding.

Code Generation: This involves construction of the pilot
sequence and the erasure code.

• Generation of the De Bruijn Pilot Sequence p⃗: A single
De Bruijn sequence of length n/m is generated and stored.
This process is independent of the message bits and
occurs only once.

• Selection of Erasure Code: Choose an existing erasure
code with rate Rer and blocklength n/m is selected.
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We can choose existing codes with efficient encod-
ing/decoding, such as a Reed-Solomon code or another
efficient erasure code [50].

• Generation of a consistent Random Binary Shift String:
This ensures no match between shifted codewords and
the pilot. To generate a string we require O(n). For
each string, we compare the string to the pilot sequence
p⃗. The complexity of this process is O(n2), for each
string we compare to the pilot. It may be required to
do this multiple times, but once we obtain a binary shift
string with no matches, we can fix it over all message
transmissions.

While the total complexity involved in generating the fixed
code amounts may big in the worst-case sense, it is important
to emphasize that this process is conducted only once at
the outset. When viewed in the context of many message
transmissions, this initial computational expense becomes
negligible.

Encoding: For the actual encoding, we can use the fixed
code from above as follows:

• Division of Message Bits: The message bits W = [1:2nR]
are divided into m − 1 blocks.

• Application of Erasure Code: Each block is encoded
using the erasure code, which has a linear complexity [50]
O(n/m).

• Applying the Shift and Interleaving: The encoded blocks
are shifted and interleaved with the pilot sequence. Both
shifting and interleaving have linear complexity O(n).

The overall encoding complexity of the algorithm would thus
be O(n).

Decoding: Using the fixed code from above, we have the
following decoding steps:

• Alignment to the Skeleton Codeword: This involves
matching each piece with the skeleton codeword, with a
complexity of O(n) per piece. As there are K pieces, the
total complexity is O(Kn) = O(n2/ log n) .

• Filling with Erasure Symbols and Undoing Interleaving:
This is performed in linear time O(n).

• Applying Shift and Erasure Decoding: Each piece under-
goes a shift and then erasure decoding, both having linear
complexities, leading to an overall decoding complexity
of O(Kn) = O(n2/ log n) . The erasure codes designed
in [50] have linear-time decoding, but are based on a ran-
domized construction. Polar codes [51] are deterministic
and also exhibit near-linear time decoding complexity,
and achieve rates arbitrarily close to capacity.

The overall decoding complexity of the algorithm would
thus be O(n2/ log n).

In summary, while setting up the code at the beginning has
a complexity of O(n2), this step is done just once. The key
parts to focus on are the encoding and decoding steps. The
encoding complexity is linear in n, while the decoding rule
has complexity of O(n2/ log n).

C. Index-Based Coding via Interleaving for the Torn-Paper
Channel

In the case of the TPC, we can construct a similar scheme as
the one for the SSC. However we need to modify it, because

Fig. 8. Comparison between the capacity of the torn-paper channel C =
e−1/L̄ and the rate achieved on the torn-paper channel by the explicit
code construction based on index coding. Note that the x-axis is 1/L̄ for
convenience, since we require L̄ → ∞ for CTPC → 1.

the TPC produces reads of a random length, many of which
might be too short to contain enough bits from the pilot
sequence. We avoid this issue by discarding all the pieces
of size 2mlogn or less and then using the previous scheme.
More precisely, just like before we create a pilot sequence p⃗
and several message blocks s⃗i . And as before we construct
these sequences such that no string of length 2logn appears
in the pilot sequence and the message blocks. The codebook
construction and encoding remain the same.

The decoding rule however varies slightly. Since only reads
length of size at least 2mlogn can be uniquely aligned to
a skeleton codeword, we discard all pieces of size at most
2mlogn. This effectively converts the channel into an erasure
channel with total number of erasures

K∑

i=1

Ni1{Ni<2m log n} = n(1− c2m ), (25)

where c2m is the fraction of bits covered by fragments of
length at least 2mlogn. It can be shown that the rate achieved
is thus

R =
(
1− 1

m

)(2m

L̄
+ 1

)
e−

2m
L̄ , (26)

where m is an integer. We can then optimize over integer
values of m to obtain the required achievable rates. See [21]
for more details. This rate is compared to CTPC in Figure 8.
As before, we notice that the gap between this efficient
interleaved-pilot approach and the actual capacity is still quite
significant.

Thus, when we consider using index-based coding for the
torn-paper channel (TPC) and the shotgun sequencing channel
(SSC), a key question comes up: Can these methods achieve
the capacity of these channels? To tackle this, we might need
to go beyond the usual ways of index coding. This could
involve developing new indexing strategies that are specifically
designed to tackle the random nature of the TPC and SSC.
Subsequent research in this domain is essential to unravel
the potential of efficient index-based coding in realizing the
capacities for this out-of-order media.
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D. Index-Based Coding via Unique Headers for the
Torn-Paper Channel

The idea of index-based coding was used in [30] to develop
an encoding-decoding scheme for the following version of
the TPC: The input sequence X n to the encoder is torn
into pieces of size between Lmin and Lmax. Instead of the
piece lengths drawn according to a distribution (as discussed
previously), they can be chosen in an adversarial manner. As
before, the unordered set of pieces is fed to the decoder.
In this subsection we shift our focus from the probabilistic
framework discussed previously to this adversarial problem
setting. This shift is underscored by an emphasis on analyzing
the redundancy of a codebook that achieves an error proba-
bility exactly zero, in comparison to the previous subsections
centered around coding schemes that achieve a vanishing error
probability. First we define the zero-error capacity:

Definition 2: The zero-error capacity CZE is the maximum
asymptotic rate that can be achieved with error probability
exactly zero.

In the context of probabilistic channels, this concept can be
reinterpreted through the lens of a genie that can select any
of the possible channel outputs for a given input. Here, the
zero-error capacity is essentially the capacity under the worst-
case error of this genie channel. For probabilistic channels
like the standard TPC [21], there is a non-zero probability
of breaking a codeword into pieces of size 1. This implies
that the zero-error capacity is zero (since breaking a codeword
into pieces of size 1 converts the channel into the permutation
channel [16], for which the capacity with standard normal-
ization is zero). However in the adversarial channel described
above the minimum length of pieces is given by Lmin. An
interesting question is whether this channel has a positive zero-
error capacity. As it turns out, this is true. In [30], an optimal
codebook that achieves the positive zero-error capacity for this
setting is constructed.

The main idea for the codebook construction is as follows:
Represent the messages W = [1 : 2nR] in binary form.
Then divide each message into equally spaced substrings of
length m. Create a set of indices to concatenate with these
substrings and pad these indices with a sequence of a fixed,
easily identifiable header ([30] uses a string of zeros). Then
convert each substring of length m to another substring (in
general having a different length) that does not contain this
header anywhere. Now concatenate the indices, the header and
the modified substrings in that order, to obtain a codeword.
Notice that given a fragment from such a codeword, one can
search for the header (a long string of zeros) and then use
the index placed right next to it to identify the location of the
fragment.

In [30], a specific construction for a (Lmin,Lmax)-single
strand torn-paper code is provided. For a codeword x⃗n , let
Sx⃗n be the set of all possible unordered sets of fragments that
can potentially be obtained such that each read has size within
[Lmin,Lmax]. A (Lmin,Lmax)-single strand torn-paper code
has the property that any x⃗ni and x⃗nj such that x⃗ni ̸= x⃗nj , Sx⃗n

i
and Sx⃗n

j
are disjoint. The following theorem is proved in [30]

for the proposed construction:

Fig. 9. The figure shows a part of the codeword: It involves an index (in
red), concatenated with a header (in green) and the information bits (in blue).
The index and information part are constructed such that no zero runs of size
f (n) appear, so as it allow the decoder to identify the 0 runs of size f (n), and
thus find the position of the indices even if the tearing locations are random.

Theorem 3: If Lmin = a log n + o(log n) for some a > 1,
then there exists a (Lmin,Lmax)-single strand torn-paper code
that achieves the zero-error capacity 1 − 1/a. Moreover, there
exists such a code with encoder and decoder that operates in
run-time which is linear in n.

The encoding rule involves a two-step process. First, an
index is generated in a careful manner using Gray codes [52].
Then it utilizes the concept of Run-Length Limited Encoding
(RLL) [53], where the encoder receives a length-m string and
converts it to a variable-length string (N) with the property
that it does not contain zero runs of size greater than a
chosen number f (n). Specifically, in [30] it is shown that when
f (n) :=

√
log n and N := Lmin − α − f (n) − 2, where α is

the length of the encoded index, we can lower bound m as

m ≥ Lmin − log n − f (n)− log n

f (n)− 1
− 9

− 2

f (n)− 1
− a log n

2(f (n)−1)
. (27)

Now, a careful concatenation of the index, the RLL encoded
string and the header (described in [30, Algorithm 1] and
Figure 9), leads to a codebook which is a (Lmin,Lmax)-single
strand torn-paper code, which achieves a zero-error rate of
1 − 1/a. Moreover, [30] shows that this achievable rate is the
zero-error capacity of the adversarial TPC.

A (Lmin,Lmax)-single strand torn-paper code can be
uniquely decoded since, for any x⃗ni ̸= x⃗nj , Sx⃗n

i
and Sx⃗n

j
are

disjoint, which means that any fragmentation of a codeword
into pieces with lengths in [Lmin,Lmax] uniquely determines
the codeword. Moreover, [30] proves that this decoding can
be done in linear time. This code can also be extended to a
multi-strand setting, where the input to the channel is a set of
sequences as opposed to just a single sequence, and the output
is the union of the fragments of all input sequences. This is
motivated by the fact that DNA storage systems encode the
information across a large number of DNA molecules, and the
information is retrieved by sequencing the entire DNA pool.
Furthermore, the scheme from [30] can be extended to a noisy
setting, which models errors that occur during DNA synthesis
and sequencing.

Comparison to the probabilistic TPC: To draw a comparison
with the probabilistic setting, we define CZE,aTPC as the
zero-error capacity in the adversarial setting with fragment
lengths in [a log n, b log n] and CpTPC as the (standard)
capacity in the probabilistic setting where Ni has a distribution
supported in [a log n, b log n]. From Theorem 3, we know
that CZE,aTPC = (1 − 1/a)+. Moreover, it is clear that
CZE,aTPC ≤ CpTPC, as the adversarial setting represents a
worst-case scenario.
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Applying Theorem 1 to this channel, we establish that:
Corollary 1: For the probabilistic TPC with fragment

length distribution supported in [a log n, b log n],

CpTPC =

(
1− lim

n→∞
log n

ℓn

)+

. (28)

Specifically, setting N1 deterministically equal to Lmin =
a log n , we find CpTPC = 1 − 1/a , which implies
CZE,aTPC ≤ 1 − 1/a . This provides a tight upper bound
CZE,aTPC ≤ (1 − 1/a)+ for the capacity CZE,aTPC =
(1− 1/a)+ established in [30]. We note that CZE,aTPC = 0
when Lmin < log n. Therefore we focus on the regime where
Lmin ≥ log n . The gap between the rate achieved by this
scheme and the capacity is given by

lim
n→∞

(
log n

Lmin
− log n

ℓn

)
:=

1

a
− 1

L̄
, (29)

where a is defined in Theorem 3 and L̄ refers to the average
length normalized by log n . In cases where the mean piece
length is close to Lmin, the scheme is more effective, as
expected. When the distribution is uniform over [Lmin,Lmax],
the gap becomes 1

a − 2
a+b = a−b

a(a+b) , with Lmax = b log n +

o(log n), similar to Lmin. This suggests that this scheme is
more effective when the minimum length of the pieces are
longer, since the value of the rate gap is inversely dependent
on a.

E. Embedded Indices for the Torn-Paper Channel

One can also adapt existing codes to suit the Torn-
Paper Channel. For instance, Varshamov-Tenengolts (VT)
codes were developed for wireless (Z and deletion) chan-
nels [54], [55] and later found applications in computer
memory technology such as Racetrack [56]. Then, the authors
in [31], [32] respectively present concatenated and nested
versions of the VT codes for the TPC. These codes are defined
as follows.

Definition 3 [32], [57]: For 0 ≤ r ≤ n , the Varshamov-
Tenengolts code, VTr (n), is a set of binary encoded strings
with length n, which is given by:

VTr (n) =
{
x ∈ {0, 1}n :

n∑

i=1

ixi ≡ r mod (n + 1)
}
,

(30)

where xi is the i th element of x, the sum is evaluated as an
ordinary integer summation, and r is referred to as the residue.

The key idea is to use the Varshamov-Tenengolts code
structure as a way to embed the “index” within the codeword.
In essence, [31], [32] use different residues in different parts
of the overall code as embedded indices, which will be used
later as signatures to put the fragments back together at the
output of the TPC, and numerically show the error declines
as the code lengths increase. However, there is no analytical
analysis in these references to show the error of such designs
vanishes as the block length tends to infinity nor have the
presented codes been studied for TPC with lost pieces [22] or
the SSC; nonetheless, the codes provide acceptable error rate
and complexity in the context of the TPC.

IV. CONCLUDING REMARKS AND EXTENSIONS

The disparity between the channel capacity and the rate
achieved by the index-based scheme can be attributed to
several factors. Firstly, the index-based approach necessitates
the creation of pieces that exceed the size of 2 log n , whereas
capacity-achieving random codes do not have this requirement.
It is intriguing to speculate if the size requirement could be
reduced to just log n . Indeed, this is the case when the tears
are deterministic and a priori known. The scheme can be
reduced to just fixing indices for each piece. Since we know
the tearing locations a priori, we can align these pieces to
the pilot codeword easily. In [21], the authors show that we
can achieve capacity when tearing locations are known, via
index based schemes. This points to potential areas for further
improvement in the structure of the index-based scheme.
Secondly, for scenarios like the SSC, where overlaps allow
for the merging of pieces, the bits used for indexing can
become redundant, leading to inefficiencies. Hence, it may
be possible to further optimize the integration of indexing
information into the codewords. For instance, the development
of an efficient scheme that forms “composite” codes, where
a single bit carries both indexing and message information,
could be a lead to potential improvement.

Specifically if we look at the random coding based achiev-
able scheme described in Section II, the codes inherently
contain both ordering and message information, without
any specific requirement to separate the bits capturing this
information. Therefore it might be of interest to develop codes
that do not separate these bits. However it is currently unclear
how we would do that efficiently.

The models considered in this manuscript capture specific
aspects of DNA storage systems that lead to lack of order-
ing at the output. However, a complete model for a DNA
storage system also needs to incorporate the per-base noise
observed at the output sequences, which may be in the form
of substitutions, insertions and deletions (commonly referred
to as indels). Some aspects of these errors can modeled
by concatenating traditional Binary Symmetric Channels or
Binary Erasure Channels to the SSC or TPC.

For illustration, we briefly discuss one such model here
(Figure 10). Let us consider a TPC with geometric tearing
lengths, as considered in Section II. Before the string X n is
passed through this channel, it is passed through a BEC(p)
channel, which erases each bit independently with probability
p. Then it is passed through a TPC, and the process of tearing
remains exactly the same. As mentioned before for simplicity,
let us assume that Ni ∼ Geom(1/ℓn )

Achievability via random coding: The achievable scheme
is closely related to the achievable scheme discussed in
Section II. Just as before we construct the codebook with i.i.d.
Bern(1/2) entries and pick (without loss of generality) the
codeword corresponding W = 1.

The decoding rule remains almost the same too. The
difference is just that, since the reads are now corrupted with
erasures, we will have to consider all codewords which have
these modified reads as “potentially” correct substrings of the
codeword, since the decoder does not know what the erased
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Fig. 10. A TPC with preceded by a Binary Erasure Channel with erasure
probability p.

bits were. Moreover it is unclear if the decoder should throw
out any of the reads. To circumvent this we say the decoder
discards all reads of size γ log n and lower, where γ ∈ [0,∞)
is a parameter. Let the new set obtained be Y ′

γ .
Following the same steps in calculating the probability of

error, we can say

Pr(E) = Pr(E|W = 1)

= Pr
(
∃j ̸= 1 : xj covers all strings in Y ′

γ

∣∣W = 1
)
.

(31)

Notice that, in the context of reads with erasures, “containing”
a string in Y ′

γ means that a segment from xj matches the
string in Y ′

γ except for in the erased positions. Now, in order
to analyze this error probability as we did in Section II-A, we
need a handle on the number of bits from a codeword xj that
are “covered” by the strings in Y ′

γ . But in this case, “covered”
refers to only positions of xj that are covered by non-erased
bits from strings in Y ′

γ . Let ZBEC,γ be the random variable
which counts the total fraction of erasures in all reads longer
than γ log n . We then have that

Pr
(
|ZBEC,γ − p| > ϵp

)
→ 0, (32)

as n → ∞ for any γ ∈ [0,∞). This can be easily proved
using basic concentration inequalities.

Now in a very similar way as in Section II, we condition on
bad events that look at deviations from this concentration. We
define α = 1/L̄ and cγ as the total fraction of bits covered
by the non-erased bits in the reads. By letting B1 = (1 +
ϵ)e−αγnpn and B2 = (1− ϵ)(αγ + 1)e−αγ(1− p), we have
the bad events

B =

{
K∑

i=1

1{X⃗i∈Y ′
γ}

> B1

}
∪
{
cγ < B2

}
, (33)

and Pr(B) → 0 as n → ∞. Therefore we can further bound
Pr(E) as

Pr(E) = Pr
(
∃xj ̸= x1 covering all strings in Y ′|W = 1

)

≤ Pr
(
∃xj ̸= x1 covering all strings in Y ′|W = 1,B

)

+ Pr(B)
(a)
≤ |C| n

B1

2nB2
+ Pr(B)

≤ 2nR−e−αγ [(1+αγ)(1−p)−α] + o(1),

which tends to 0 if (taking ϵ → 0)

R < e−αγ [(1 + αγ)(1− p)− α]. (34)

Now optimizing over γ ∈ [0,∞), we note that γ = 1
1−p

gives the highest achievable rates. This implies that all rates
R such that

R < e
− 1

L̄(1−p) (1− p) (35)

are achievable.
An interesting observation in the above decoding rule is that

the optimal discarding threshold is γ = 1
1−p . This agrees with

our intuition in the following way: On average each read of,
say, length N1 contains only a (1 − p) fraction of its original
bits. Therefore we can think of each read having an “effective”
length of (1 − p)N1. In the noise-free case, we needed to
discard all reads of size at most log n . Now if we discard all
pieces of “effective” length log n , or true length log n/(1−p),
we obtain the decoding rule described above.

It is currently unclear whether the achievable scheme
described above is the capacity of this channel. Developing
a converse for noisy out-of-order channels, even with a
discrete memoryless noise channel such as the BEC noise
described above, is generally quite difficult. Works such
as [14], [36], [37] attempt to develop converse techniques
for noisy shuffling channels, but they only work in limited
parameter regimes and do not generalize to the systems
considered here.

Also note that this scheme uses a random code, which
is a highly inefficient computationally. One could consider
implementing an index-based scheme for this system too.
The problem, however, is that to align a read to its template
codeword (containing only the pilot bits), we need the pilot
bits to be preserved. This is not guaranteed in general for
the channel described above, since pilot bits can be erased.
Therefore, in the presence of noise, developing efficient codes
for out-of-order channels that achieve rates close to the
capacity is likely very challenging.
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