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We model the pseudogap state of the hole- and electron-doped cuprates as a metal with hole
and/or electron pocket Fermi surfaces. In the absence of long-range antiferromagnetism, such Fermi
surfaces violate the Luttinger requirement of enclosing the same area as free electrons at the same
density. Using the Ancilla theory of such a pseudogap state, we describe the onset of conventional d-
wave superconductivity by the condensation of a charge e Higgs boson transforming as a fundamental
under the emergent SU(2) gauge symmetry of a background ⇡-flux spin liquid. In all cases, we find
that the d-wave superconductor has gapless Bogoliubov quasiparticles at 4 nodal points on the
Brillouin zone diagonals with significant velocity anisotropy, just as in the BCS state. This includes
the case of the electron-doped pseudogap metal with only electron pockets centered at wavevectors
(⇡, 0), (0,⇡), and an electronic gap along the zone diagonals. Remarkably, in this case too, gapless
nodal Bogoliubov quasiparticles emerge within the gap at 4 points along the zone diagonals upon
the onset of superconductivity.

I. INTRODUCTION

The remarkable phase diagram of the cuprates [1–4]
has inspired an outpouring of theoretical and experimen-
tal work to explain their highly exotic phenomenology.
Among the most extensively studied phases are the pseu-
dogap metal, a phase characterized by a carrier density
which deviates from the expectations required by Lut-
tinger’s theorem for a conventional Fermi liquid [5–7] and
d-wave superconductivity which sets in at lower temper-
atures as an instability of the pseudogap phase [8, 9].

However, despite years of theoretical and experimen-
tal progress, a clear understanding of how superconduc-
tivity emerges from the experimentally observed pseu-
dogap parent state and its associated small Fermi sur-
face or Fermi arcs remains lacking. This work seeks
to provide some basic answers as to what the exper-
imental signatures of the transition from the pseudo-
gap to superconductivity are. Although the pseudogap
phase and its associated violation of Luttinger’s the-
orem has been studied most extensively in the hole-
doped cuprates, recent photo-emission experiments in the
electron-doped cuprates have provided evidence for a re-
constructed Fermi surface at dopings where long range
antiferromagnetic order is believed to be absent [10, 11].
The pairing in the electron-doped case is also believed
to be d-wave [12]. We will therefore separately con-
sider both the electron-doped and hole-doped cases in
this work.

A number of works [13–23] have developed a model of
the pseudogap metal in which the violation of the Lut-
tinger theorem is associated with zeros of the electron
Green’s functions. Here, we view these zeros as a signal
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of the existence of an additional sector of neutral spinon
excitations, which are required by non-perturbative ex-
tensions of the Luttinger theorem [24, 25]. As we will see
below (and has also been argued earlier [26]), a full treat-
ment of the spinon sector is essential in understanding
how the nodal Bogoliubov quasiparticles in the d-wave
superconductor emerge from the pseudogap metal.
We will employ a theory [27] of the pseudogap metal

with fermionic spinons coupled to to an SU(2) gauge field
moving in a background of ⇡-flux [28–31]. The fermionic
spinons are coupled to physical electrons which carry
the doping via a charge e boson B [29, 31, 32] which
transforms under the same gauge SU(2) symmetry as the
spinons. In the hole-doped case, due to the presence of
the spin liquid, the normal state electron Fermi surface
will have pockets associated with hole density p, rather
than the free electron hole-density value 1�p [29, 31–36].
When B condenses, the gauge symmetry is fully broken,
and various symmetry breaking orders including d-wave
superconductivity and charge order can be inherited by
the electrons. Within this approach, superconductivity
and charge order are treated on equal footing and can be
viewed as low temperature, competing instabilities of a
fractionalized Fermi liquid (FL⇤) pseudogap phase. (Pre-
vious work [29, 31, 32] has considered the condensation
of such a boson from an incoherent normal state which
does not have pocket Fermi surfaces of electrons or holes,
and with a U(1) staggered flux spin liquid rather than the
⇡-flux spin liquid. The staggered flux spin liquid has a
charge e boson whose condensation leads to d-wave super-
conductivity, but not the additional possibility of charge
order; moreover, it has a trivial monopole instability [37],
so is unlikely to have significant regime of stability.)
In this work, we will consider the transition from the

pseudogap phase with electron and/or hole pockets and
a ⇡-flux spin liquid, to a conventional d-wave supercon-
ductor. We will compute electronic observables in the
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superconducting phase via the framework of the Ancilla
model [38–44]. While earlier work [26] has considered su-
perconductivity as a similar confinement transition from
a phenomenological model of the pseudogap Fermi sur-
faces, the Ancilla model has the benefit of providing a
microscopic model for the complete fermion dispersion
in the Brillouin zone which emerges in an approximation
of the Hubbard model [40].

The rest of this paper will be organized as follows.
In Sec. II A we will introduce the Ancilla model, and in
Sec. II B its mean-field representation which we will use
to compute various electronic properties of the pseudogap
normal state and d-wave superconductor.

In Sec. II C, we will describe the phenomenology of
our theory on the hole-doped side, where the pseudogap
normal state is captured by hole-like pockets enclosing a
volume associated with hole density p. We will show in
the framework of the Ancilla model that the hole pocket
Fermi surfaces of the pseudogap undergo a transition first
to a d-wave superconductor with 12 nodes, and then to
4 nodes as the strength of the superconducting pairing is
increased. We will also compute how the Fermi velocity
and v� of these nodes evolves with the superconducting
pairing strength.

In Sec IID we will turn our focus to the electron doped
side of the cuprate phase diagram. In this case, the nor-
mal state Fermi surface will be an FL⇤ state with ei-
ther (i) only electron-like pockets in the anti-nodal re-
gion of the Brillouin zone centered at wavevectors (0,⇡)
and (⇡, 0), or (ii) both anti-nodal electron-like pockets
and hole-like pockets in the nodal region [10, 45–51]. Per-
haps surprisingly, we find that even in the first case where
the normal state Fermi surface only exists at the anti-
nodal region and any states in the nodal region are fully
gapped, a condensed superconducting pairing will imme-
diately lead to the re-emergence of nodes near (⇡2 ,

⇡
2 ),

while the anti-nodal region is gapped out by the pairing.
We will also explore how the velocities of these nodes
evolve as a function of the B condensate in the electron
doped case.

II. RESULTS

A. Ancilla Model

In this section we will discuss the model we use to com-
pute the spectral properties of the d-wave superconduc-
tor. The model is the Ancilla model of Ref. [38], which
has been shown to have all the ingredients needed to re-
produce photo-emission data in both the pseudogap and
Fermi liquid regime [40, 41]. A schematic of the model is
shown in Fig. 1.

The general idea is to map the low energy physics of
the single-band Hubbard-like model of the c layer to a

a)

a) b)

c) d)

e) f)

a) b) c)

FIG. 1: Schematic of Ancilla model | We show a
schematic of the Ancilla model (a) described in Sec. IIA. We
have colored the c electrons blue, the first layer of spins S1

green, and the second layer of spins S2 red. The green and
red bonds in the first and second layer of spins represent
Heisenberg exchange interactions. The dashed line between
the first and second layers of spins represent
antiferromagnetic coupling J? and the dotted lines between
the physical c electrons and the first layer of spins represent
Kondo coupling JK . The lines connecting the c electron sites
denote the c electrons’ hopping. The red, green, blue
coloring corresponding to the third, second, and first layers
respectively will be kept consistent throughout the paper.
The original model is a Hubbard on the c layer, and the
Hubbard U has been canonically transformed away by
adding two Ancilla layers of a bilayer antiferromagnet [41].

model with free electrons on the c layer coupled to a bi-
layer square lattice antiferromagnet of the S1 and S2

layers. But we emphasize that the S1 and S2 layers are
just ancilla qubits i.e. they are useful quantum degrees
of freedom employed at intermediate stages to obtain a
wavefunction with non-trivial entanglement on the c layer
alone. There is a passing similarity to ‘hidden layers’ in
current models of machine learning wavefunctions [52],
but it is important that in our case the hidden layers
are quantum, not classical, as that is the key to obey-
ing the Luttinger-Oshikawa constraints on Fermi surface
volumes. An explicit example of an ancilla wavefunction
for the pseudogap metal was presented in Ref. [38]: a
product of Slater determinants on the top-two and bot-
tom layers was projected onto the physical top c layer
by taking the overlap with rung singlets on the S1 and
S2 layers. In the analytical theories [38, 39, 44] of the
Ancilla model, the projection is performed by emergent
gauge fields. In the following, we shall not consider the
influence of the emergent gauge fields as they are hig-
gsed in all the phases considered here. Consequently, we
maintain that the low-energy dispersions of the fermionic
excitations described below will apply also to the single-
band Hubbard model.
As has been discussed in Ref. [41], we can derive the

Ancilla model by an extension of the method used to
introduce paramagnons in the theory correlated metals.
We start from single-band Hubbard model

HU = �
X

i,j

X

↵

t
c
i,jc

†
i,↵cj,↵ + U

X

i

ni"ni# (1)
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and exactly decouple the Hubbard term by the param-
agnon field �i

H� =�
X

i,j

X

↵

t
c
i,jc

†
i,↵cj,↵

+
X

i


3

8U
�2

i ��i · c†i,↵
�↵�

2
ci,�

�
. (2)

In the traditional paramagnon method, � is treated as
a nearly Gaussian field whose correlators are damped by
coupling to the Fermi surface of c. Here we identify the
� paramagnon with the rung-triplet excitation of the
S1 and S2 layers in Fig. 1; such a triplet excitation is
clearly present when J? is large. Indeed, the model in
Fig. 1 (described explicitly below) can be mapped back
to the single-band Hubbard model in (1) via a Schrieffer-
Wolff transformation valid for small JK/J? [41]. For
other values of JK/J?, we need the fluctuations of emer-
gent gauge fields to project out the ancilla layers, but as
argued above, we expect such gauge fluctuations to not
modify the low energy excitations in the phases consid-
ered below.

The Hamiltonian of the Ancilla model in Fig. 1 is:

H = �
X

i,j

X

↵

t
c
i,jc

†
i,↵cj,↵+Hc,f1+Hf1,f2+Hf1,f1+Hf2,f2

(3)
In the above, the two spin flavors of c electrons are the
physical degrees of freedom which carry the doping and
are fixed to have filling:

1

N

X

i

X

↵

c
†
i,↵ci,↵ = 1� p (4)

Where in the above p denotes the hole doping. Hc,f1

denotes a Kondo coupling between the c electrons on each
site and a layer of spins S1:

Hc,f1 = JK

X

i

c
†
i,↵�

↵�
ci,� · S1,i

= JK

X

i

c
†
i,↵�

↵�
ci,� · f†

1,i,��
��
f1,i,�

(5)

Where we have chosen to represent the spins of the first
layer S1,i with fermionic spinons f1, subject to the local
constraint:

X

↵

f
†
1,i,↵f1,i,↵ = 1 (6)

The termHf1,f2 describes the antiferromagnetic coupling
between the layer of S1 spins and a second layer of spins
labeled S2:

Hf1,f2 = J?
X

i

S1,i · S2,i

= J?
X

i

f
†
1,i,↵�

↵�
f1,i,� · f†

2,i,��
��
f2,i,�

(7)

Where we have introduced a second set of fermionic
spinons f2 to represent the S2, which are subject to their
own local constraint:

X

↵

f
†
2,i,↵f2,i,↵ = 1 (8)

The terms Hf1,f1 and Hf2,f2 describe Heisenberg ex-
change interactions between the spins in the first and sec-
ond layers respectively. In order to reproduce the Fermi
arcs seen in experiments in the pseudogap phase [2], the
model must contain deconfined fractional degrees of free-
dom in order to violate Luttinger’s theorem [25, 53]. We
will therefore take Hf2,f2 to be described by the ⇡-flux
spin liquid [28]

Hf2,f2 = �it
f2

X

hi,ji

f
†
2,i,↵ei,jf2,j,↵ . (9)

We have written the saddle point ⇡-flux spin liquid in
the second layer of spins in the gauge previously used in
[27, 54] where ei,j = �ej,i, ei,i+x = 1, ei,i+y = (�1)x.

B. Mean-field theory

After a mean field decoupling the model can be written
in the following form:

H =
X

i,j

X

↵

h
�t

c
|i�j|c

†
i,↵cj,↵ � t

f1
|i�j|f

†
1,i,↵f1,j,↵

i

� it
f2

X

hi,ji

X

↵

f
†
2,i,↵ei,jf2,j,↵.

+
X

i

X

↵

h
�
⇣
c
†
i,↵f1,i,↵ + f

†
1,i,↵ci,↵

⌘

+iB1,if
†
2,i,↵f1,i,↵ � iB2,i✏↵�f2,i,↵f1,i,� + h.c.

i

(10)

In the above the chemical potentials µc, µf1 and µf2

must be adjusted such that Eq. 4, 6 and 8 are satis-
fied. In practice, we set the chemical potentials on an
80⇥80 momentum space grid and set an error thresh-
old of .01 for each filling. We also allow for next, next-
next, and next-next-next nearest neighbor terms for the
c and f1 electron dispersions. For the hole-doped system,
the hopping parameters in [40] were found to best match
photo-emission data taken in the pseudogap regime [55].
Therefore, for the hole-doped case, we will take tc0,1 = .22
eV, tc1,1 = �.034 eV, tc2,0 = .036 eV, and t

c
2,1 = �.007 eV

for the c electron dispersion and t
f1
0,1 = �.1 eV, tf11,1 = .03

eV, and t
f1
2,0 = .01 eV. The above hoppings were fit to

photo-emission data assuming � = .09 and p = .206. We
have not included the pairing terms which will appear in
a mean-field decoupling of the first layer Heisenberg in-
teractions, as there should be no pairing in the first layer
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in the pseudogap phase. In the second Ancilla layer, we
have taken t

f2 = .14 eV. The f1 and f2 spinons are cou-

pled via the two component, complex boson Bi =

✓
B1,i

B2,i

◆

which is spin singlet under global SU(2) spin rotations.
Bi is viewed as the Higgs field in the context of this the-
ory.

Various possible phases of Eq. 10 have been studied
in previous work on the Ancilla model [38, 40, 41]. The
pseudogap phase corresponds to the case where JK is
much larger than J?. In this case B is gapped but �
is condensed and the gauge symmetry of the spin liquid
is unbroken. The ground state in this case is described
by a fractional Fermi liquid (FL⇤) state, and it is pos-
sible to choose parameters such that the electrons will
hybridize with the f1 spinons and form hole-like pockets
with associated hole density p, where the spectral weight
of the c electrons is highest on the front-side pocket clos-
est to the center of the Brillouin zone as in the first row of
Fig. 2. A Fermi liquid can be realized in the case where
J? in Eq. 3 is much larger than JK , which leads to �
becoming gapped. In this case, the f1 and f2 spinons
will form singlets at each site, and the c electrons will
exhibit a conventional Fermi liquid Fermi surface with
hole density 1� p.

In this work, we will consider starting from a normal
state where only � is condensed such that the Fermi
surface has hole-density 1 � p and ask how the elec-
tronic spectrum evolves as a d-wave superconductor sets
in when B condenses on top of this normal state. As
discussed in previous work [27] for the case of the ⇡-flux
spin liquid and in [29, 31, 32] for the case of the U(1)
staggered flux spin liquid, the different ways in which
the two components of B condense can break different
symmetries corresponding to distinct orders which may
be inherited by the physical electrons if � is also con-
densed. Expanding about the two band minima of the
⇡-flux dispersion, we have the following expression for
the chargon B in terms of Ba+ and Ba�, the continuum
degrees of freedom associated with the + and � minima
of the ⇡-flux mean field dispersion:

Ba(r) = �Ba,+e
i⇡(x+y)/2 + (1+

p
2)Ba,�e

i⇡(x�y)/2

for x even
(11)

Ba(r) = (1 +
p
2)Ba,+e

i⇡(x+y)/2 �Ba,�e
i⇡(x�y)/2

for x odd
(12)

In the above a is a label that runs over Nambu gauge
indices. We will focus on the case where B condenses
in such a way that a d-wave pairing is inherited by the
physical electrons. In this case the following continuum
order parameter will be condensed:

� = ✏abBa+Bb� (13)

We can then choose

Ba+ =
1p
2
(�b, b) Ba� =

1p
2
(b, b) (14)

as a mean-field ansatz for a pairing which will be inher-
ited by the c electrons and ask how the electronic observ-
ables will evolve when b is nonzero.

C. Superconductor spectra with hole-doping

In this section we will discuss some qualitative features
of the superconductor which sets in when B condenses
in a normal state where � 6= 0. We show an example in
Fig. 2 of the electronic spectral density over the transition
of an FL⇤ normal state to a d-wave superconductor as B
is condensed.
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FIG. 2: Spectral density in superconductor for
hole-doped normal state with hole pockets | We show
the electron spectral density (a,c,e) and band structure
along a diagaonal cut in the Brilloun zone (b,d,f) for
different values of b and � (see Eq. 14 for the definition of
b). In the band structure plots, the bands are colored with
rgb values where blue=c electrons, green=f1 fermions, and
red=f2 fermions. We have plotted all bands in the Nambu
basis, thus the spectrum is always particle-hole symmetric.
When B = 0 but � > 0 (top row), the electron spectral
function shows hole-like Fermi pockets in the nodal region of
the Brillouin zone formed from hybridization between the c
and f1 electrons. When b is nonzero and a d-wave
superconducting order is inherited by the c fermions (middle
and bottom rows), all of the states at the Fermi level are
gapped out except for a node on the front side of the original
hole pocket of the parent state. The c electron velocity
perpendicular to the kx = ky cut is shown to increase if � is
made larger (bottom row). Spectral densities are normalized
by their maximum value A0. All spectral densities are
computed with a lifetime parameter .005i. In practice when
plotting dispersion and spectral functions, we use the gauge
of [30] which is manifestly translationally invariant for the
⇡-flux spin liquid dispersion, though we note in the case
when B is not condensed, the spinon bands are not gauge
invariant and do not appear in any physical observable.

There are several features of the electron spectra which
are of particular relevance to experiments. One impor-
tant question we will address is the number of nodes our
theory predicts will appear where B is condensed, given
the experimental evidence for 4 nodes [3, 4] in the Bril-
louin zone in the hole-doped superconducting state. We

will also study the evolution of the velocities vF and v�

as b becomes nonzero as well as discuss the phenomenol-
ogy of the pairing on the electron-doped side of the phase
diagram.

1. Number of nodes

The first question we will address is how many nodes
there are in the superconducting state. We find that
similar to past studies [26], the answer to this question
depends on the values of b and �. There are two possi-
bilities for our chosen parameters which are depicted in
Fig. 3.
If the particle-hole symmetry breaking in the first layer

of spinons is taken to be small, then there is a small but
finite window of 0 < b < bc where the spectra shows 3
nodes in each quadrant of the Brillouin zone, or 12 nodes
total. However, the appearance of a window of b with 12
nodes results from the particle-hole asymmetry of the f1

spinon bands which was found to be small when next and
next-next nearest neighbor hoppings in the second layer
were fit to experiment [40]. Thus this feature persists for
a very small window of b before two of the three nodes
in each quadrant of the Brillouin zone annihilate and we
are left with a spectrum with 4 nodes, the scenario which
is born out in experiments [3, 4].
In the above discussion on number of nodes, we have

assumed t
f2 = .14 eV. While the overall magnitude of tf2

should not change the number of nodes, the sign of tf2
will determine which 2 of the 3 nodes along the diago-
nal annihilate first and therefore qualitatively change the
mean-field dispersion. Since the case where tf2 < 0 seems
not to display the universal behavior discussed above,
we consider it separately in Supplement [56]. Additional
plots of the dispersion throughout the Brillouin zone can
also be found in [56].

2. Velocities of node

In this section we will discuss the evolution of the Fermi
velocities as b is increased for various values of �. Our
results are shown in Fig. 4.
There will be two independent velocities, vF which is

defined as the velocity parallel to the kx = ky contour in
the Brillouin zone and v�, the velocity perpendicular to
this contour. Since a region of 12 nodes appears for a rel-
atively small window of b, we consider the velocity only in
the case of the node which falls along the original c elec-
tron Fermi surface and has the highest overlap with the
c electrons. We compute vF and v� by discretizing diag-
onal cuts through a quadrant in the Brillouin zone into
80,000 momentum points and performing a least squares
fit on the 500 momentum points nearest the node.
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a) b) c)

FIG. 3: Number of nodes in hole-doped superconductor | We show the evolution of the Fermi surface along a diagonal
cut through the nodal region of the Brillouin zone, focusing on the region where the hole pocket in the normal state is present.
(a) shows the Fermi surface formed from the hybridized c electrons and f1 spinons with an isolated the Dirac cone from the
⇡-flux spin liquid of the f2 layer. For very small values of b, when the f2 spinons hybridize with the c electrons and f1 spinons,
the Fermi surface has 12 nodes as shown in (b). For larger values of b, there are 4 nodes on the Fermi surface as shown in (c).

a) b)

FIG. 4: Node velocities in superconductor for
hole-doped normal state | We show the velocities vF (a)
and v� (b) as a function of b for different values of �. For
small b, vF takes on the Fermi velocity of the normal state
Fermi surface at kx = ky, while v� begins at 0 when B = 0

and increases with finite b as the effective pairing grows. For
large b, vF approaches the Fermi velocity of the
un-hybridized c electron bands, while v� tends to 0.

The nodal velocity perpendicular to kx = ky, v�, be-
gins at zero when b = 0. When B is condensed, and
b is small relative to �, the superconducting pairing is
inherited by the c electrons and as a result v� becomes
finite and increases with b as the effective pairing gaps
out any states which are not on the Brillouin zone diago-
nal. v� will continue to increase until b is roughly of the
same order as � where v� attains a maximum. When
b is sufficiently large relative to �, v� will begin to de-
crease as the layer of c electrons becomes effectively de-
coupled from the first and second layer of spinons which
are pushed away from the Fermi level. For large enough
b, the c electrons spectral density will resemble the orig-
inal Fermi surface of the decoupled c electrons and v�

will tend towards zero as b increases.

The nodal velocity along kx = ky, vF , begins at a
finite value defined by the normal state Fermi velocity
and monotonically increases with b until it saturates in
the limit where b � � to the value of the Fermi velocity of
the decoupled c electron bands at the Fermi surface. The
ratio of v� to vF is small for all values of b as the Fermi
velocity vF originates mostly from the Fermi velocity of
the c electrons while the velocity v� is 0 in the normal
state and is a higher order effect in � and b.

D. Superconductor spectra with electron-doping

In this section we will discuss the spectra of an FL⇤

to SC transition on the electron-doped side of the phase
diagram. The principal difference from the hole-doped
case is that we now expect instead of having hole-like
pockets near (⇡2 ,

⇡
2 ), we will have either electron pockets

in the anti-nodal region of the Brillouin zone near (0,⇡)
and (⇡, 0) as in the first row of Fig. 5 or both electron
like pockets at the anti-node and hole-like pockets in the
nodal region as in the first row of Fig. 7 [45–51].
For our computations with a normal state with only

electron pockets, we will take the same c electron hop-
pings as on the hole-doped side but change the f1 spinon
hoppings, since these were previously obtained by fitting
photoemission data taken on hole-doped cuprates [40],
and have no established values on the electron-doped
side. In the first layer of spinons tf11,0 = �.1 eV as before,
but choose next nearest neighbor hopping t

f1
1,1 = �.07 eV

and set all other hoppings in the second layer to zero. We
keep the spin liquid dispersion hopping t

f2 = .14 eV. We
find whether the normal state has only electron pockets
at the anti-node or both electron pockets at the anti-node
and hole pockets near (⇡2 ,

⇡
2 ) depends on the value of �,
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FIG. 5: Spectral density in superconductor for electron-doped normal state with only electron pockets |
Evolution of spectral density of c electrons (a,d), dispersion along a diagonal cut through the Brillouin zone (b,e), and
dispersion along a vertical cut through the (0,⇡) (c,f) for B = 0 (top row) and B > 0 (bottom row). All plots are computed
at electron doping p = .15. We note the nodes which for finite b along the diagonal which were not previously present in the c
electron density in the normal state.

with larger � gapping out the hole pockets. For our com-
putations of a normal state with both electron and hole
pockets like that of Fig. 7, we take t

f1
1,1 = �.06 eV and

t
f1
0,2 = .02 eV and all other parameters the same as above.

1. Number of nodes

We will discuss the number of nodes separately for the
two types of Fermi surfaces mentioned above, beginning
first with the normal state where the only Fermi surfaces
are electron pockets at the anti-node. Naively, it might
be expected for this case that the d-wave superconductor
which will be inherited by the c electrons when B con-
denses will be fully gapped; however, this is not what we
observe. For any finite b, the electron pockets of the nor-
mal state which appeared in the anti-nodal region will
become fully gapped as shown in the rightmost column
of Fig. 5, but nodes will re-appear along the diagonal in
the nodal region of the Brillouin zone as shown in the
central column of Fig. 5. These nodes which at b = 0
were associated with the Dirac points of the ⇡-flux spin
liquid will hybridize with the c and f1 bands but cannot
be gapped unless an additional symmetry such as spin ro-
tation symmetry is strongly broken. If the above scenario
is excluded, there will always be 4 nodes on the diagonal
when B is condensed for a normal state with only elec-

tron pockets, assuming a positive spin liquid hopping in
the gauge we have chosen. We note that for small b, the
normal state Fermi surfaces at the anti-node have a gap
which may be very small and the node which appears for
small b initially has a low c electron spectral weight.
For the case of a normal state which has both electron

pockets at the anti-node and hole pockets at the node,
we observe the same transition from 4 to 12 nodes as b

is increased as we observed in the hole-doped case.
In all of our analysis on the electron-doped side of the

phase diagram, we have assumed t
f2 = .14. However,

changing the sign of tf2 will result in qualitatively dif-
ferent behavior in the number of nodes similar to the
hole-doped case as shown in the Supplement [56]. How-
ever, as was shown in Appendix 3 of [27], only the former
sign of tf2 corresponds to a chargon potential which fa-
vors the continuum superconductor ansatz we have taken
here.

2. Velocities of node

We also show how vF and v� of the superconductor
nodes on the Brillouin zone diagonal evolve for positive
electron doping as a function of b and for different values
of � in Fig. 6 for the choice of normal state with only elec-
tron pockets. For this choice of normal state, we study a



8

a) b)

FIG. 6: Node velocities in superconductor for
electron-doped normal state | We show vF (a) and v�
(b) for positive electron doping as a function of b for several
different values of �. In the limit of large b, both velocities
show the same asymptotic behavior as in the hole-doped
case.

narrower range of � than in the hole-doped case, since we
wish to choose � such that the normal state is gapped at
the node. The velocities in the case for which there are
additional hole pockets is similar to the behavior shown
in Fig. 4. Since there is no Fermi surface observable in
the electron spectral density in the nodal region at b = 0,
both vF and v� immediately jump to a finite value for
finite b. For small b, vF and v� are roughly equal as they
are essentially just inherited from the ⇡-flux spin liquid’s
Dirac points which are isotropic. As b increases, we see
vF will first slowly increase as band repulsion which flat-
tens the velocity competes with b, but in the limit b � �,
vF ultimately returns to the Fermi velocity of the decou-
pled c electrons as in the hole doped case. Similar to the
behavior of v� at large b in the hole-doped case, here v�
decreases as b increases, ultimately tending towards zero
when b � �.

E. Excitation energy and quasi-particle residue

We also show the excitation energy and quasi-particle
residue of the energetically lowest-lying excitation in the
superconducting state, as shown in Fig. 8. We plot both
quantities along a contour defined by finding the kx mo-
mentum corresponding to where the energy of the low-
est lying excitation is smallest for a given ky momen-
tum value. Effectively, this contour is well approximated
by choosing momenta along the original, decoupled c-
electron Fermi surface. We choose the first ky value plot-
ted to be at the location of the single node which appears
in the superconducting state in either the hole-doped or
electron-doped case. We may then contrast the behavior
of these quantities in the hole-doped and electron-doped
cases. While in the electron-doped case, the excitation
energy along the above specified contour increases mono-
tonically as momentum is varied from the location of the

node at (⇡2 ,
⇡
2 ) to the Brillouin zone edge, the electron-

doped case shows non-monotonic behavior as one moves
along the original c-electron Fermi surface, away from the
node. In the electron-doped case, we observe a peak in
the excitation energy roughly midway between the node
and edge of the Brillouin zone, consistent with the be-
havior observed in [11]. In the electron-doped case the
quasi-particle weight Zk is mostly flat with a very slight
dip between the node and anti-node, whereas in the hole-
doped case, the quasi-particle weight shows monotonic
behavior as momentum is varied away from the node at
(⇡2 ,

⇡
2 ).

III. DISCUSSION

In this work, we have studied how various electronic
observables evolve when the pseudogap metal transitions
to a d-wave superconductor, in the framework of the An-
cilla model [38].
For a hole-doped normal state and positive spin liquid

hopping in our chosen gauge, as discussed in Sec. II C,
we initially find a d-wave superconductor with 12 nodes,
and then a transition to 4 nodes as the pairing strength
is increased. When the normal state is chosen to repro-
duce experimental photo-emission data, the regime of 12
nodes is small, and the generic case for large b is a su-
perconducting state with 4 nodes. We also found the
velocities vF and v� associated with the surviving nodes
differ in scale, with v� much smaller than vF for all val-
ues of � and b we have studied, and tending towards 0
in the limit where b � �. It is therefore clear that the
velocities are not directly related to the spinon velocities
in the ⇡-flux phase, which are isotropic, and this is an
important difference from earlier work [29, 31, 32].
We have also separately studied the FL⇤ to supercon-

ductor transition for the electron-doped case in Sec. IID.
In this case, we find that a normal state with both
electron-like and hole-like pockets leads to the same tran-
sition from 12 to 4 nodes as observed in the hole-doped
case as a function of b. However, surprisingly we find
that in the case with only electron-like pockets near the
Brillouin zone edge, the FL⇤ state immediately transi-
tions to a state with 4 nodes along kx = ky, as shown in
Fig. 5. This feature, unique to the electron-doped side of
the phase diagram, is striking in that nodes which are not
observable in the electron spectral density in the FL⇤ case
immediately reappear for any finite b. Unlike in the hole-
doped case, vF and v� begin with nearly equal values,
since the surviving node for small b is associated with the
spin liquid Dirac point rather than the c electron Fermi
surface. This aspect of the electron-doped pairing follows
as a direct consequence from the mean-field dispersion of
the ⇡-flux spin liquid (though this behavior would be the
same had we considered another Dirac spin liquid with
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FIG. 7: Spectral density in superconductor for electron-doped normal state with both electron and hole
pockets | We show the evolution of the electron spectral density (a,d) and dispersion when superconductivity sets in for the
case of a normal state as positive electron doping which has both a hole-like pocket in the nodal region and an electron-like
pocket in the anti-nodal region at electron doping p = .15. Dispersions are shown for a cut along the diagonal of the Brillouin
zone (b,e) and for a cut which connects the anti-node and Brillouin zone center (c,f). We note that while the second row
electronic spectral density shows a finite electronic spectral weight in other regions of the Brillouin zone than the node, all
other points except the node have a finite, albeit sometimes small gap.

the same number of nodes such as the U(1) staggered flux
spin liquid state). Thus for electron-doped superconduc-
tors with only electron pockets in the normal state, it is
reasonable to state that nodal Bogoliubov quasiparticles
are remnants of Dirac spinons made visible by the onset
of superconductivity.

All our analysis was carried out for a pseudgogap
metal without without long-range antiferromagnetic or-
der. However, the appearance of antiferromagnetic order
at low temperatures within the superconducting phase
(as is the case in the electron-doped cuprates) should not
invalidate any of our computations, and so we believe our
results should continue to apply.

Recent numerical studies [57, 58] of an electron-doped
t-J model found robust d-wave supercondutivity, and
the authors speculated that their d-wave superconductor
was fully gapped. From our analysis here, we maintain
that a conventional d-wave superconductor, with pairing
strength not as large as the Fermi energy, always has 4
nodal points along the zone diagonals. A fully gapped d-
wave superconductor requires some additional features,
and can be reached via the following routes:
(i) We start from an FL* metal with electron pockets,
and then pair the electron pockets. At this point, the f2

Ancilla spin liquid is still ‘alive’ in the superconducting

state, and so such a fully gapped d-wave superconductor
is a SC* state. Furthermore, the ⇡-flux spin liquid is ul-
timately unstable [59], and this implies that a ⇡-flux-SC*
state is not stable.
(ii) Starting from a conventional d-wave superconductor
with 4 nodal points, the onset of strong, co-existing anti-
ferromagnetic order can gap out the nodes when they
annihilate in pairs across the magnetic Brillouin zone
boundary.
(iii) Finally, if the pairing interaction becomes as large
as the Fermi energy in a conventional d-wave supercon-
ductor, the four nodal points can meet at the origin (or
at (⇡,⇡)) and annihilate with each other.
It appears unlikely to us that any of these 3 routes ap-
ply to the study in Refs. [57, 58], and so we believe their
superconductor does have 4 nodal points at low temper-
atures, and possibly only electron pockets in the normal
state.

In summary, our work has provided testable predic-
tions of what signatures conventional d-wave supercon-
ductivity will have if it originates from a pseudogap phase
containing fractional degrees of freedom described by the
⇡-flux spin liquid. It would be interesting to extend the
approach taken in this work to capture other relevant
phases in the under-doped cuprates, such as charge or-
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a) b)

d)c)

e) f)

FIG. 8: Quasi-particle excitation and residue | We
show the energy of the nearest quasi-particle excitation to
the Fermi level (a) and quasi-particle residue at this
excitation energy (b) for the hole-doped case using the
normal state shown in Fig. 2. We also show the excitation
energy (c) and quasi-particle residue (d) for the electron
doped case where there is only an electron pocket at the
anti-node using the normal state shown in Fig. 5. Finally,
we also show the excitation energy (e) and quasi-particle
residue (f) for the normal state of Fig. 7 where there are
both electron and hole pockets.

der [60]. We also note that for the case of superconduc-
tivity, the quantities we computed will not necessarily
be different among different Dirac spin liquids [61]. It
is therefore interesting to conceive of experimental tests
which may be capable of distinguishing between different
FL⇤ normal states. We leave these possibilities to future
work.

IV. METHODS

All plots are computed from a tight-binding implemen-
tation of the model in Eq. 3 in momentum space using the
parameters for hoppings and dopings mentioned through-
out the text. Chemical potentials in each layer of the

Hamiltonian described in Eq. 3 are determined by the
doping for each set of parameters within an error thresh-
old of .01 via the bisection method. An 80⇥80 grid in
momentum space is used to fix the chemical potentials.
Spectral densities are computed as:

A(!,k) = � 1

⇡
Im [Gcc(!,k)] (15)

All spectral functions are computed on a quarter of the
Brillouin zone with a 200⇥200 grid. A lifetime parameter
of .005 eV is used when computing spectral densities. The
quasiparticle weight Zk is computed by first computing
the inverse of the greens function G

�1(!,k) = !�H(k)
which is then diagonalized by a unitary transformation
Uk such that U

†
kH(k)Uk = G

�1
D (!,k) where G

�1
D (!,k)

is diagonal. For an excitation at energy �k, we the com-
pute the quasiparticle residue as:

Zk = Uc",↵U
†
↵,c" (16)

where ↵ labels the eigenvector of Uk corresponding to
energy Ek.
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2

SUPPLEMENTARY TEXT

SI. ADDITIONAL DISPERSION PLOTS

In this appendix we will provide additional plots of the dispersion of the band nearest to the Fermi level for the
three types of normal states considered in the main text. In Fig. S1 we show dispersion for different values of b
and � for the hole-doped normal state with hole-like pockets at (⇡2 ,

⇡
2 ). In Fig. S1 we show dispersion for different

values of b and � for the electron-doped normal state with electron-like pockets at (0,⇡) and (⇡, 0).In Fig. S3 we
show dispersion for different values of b and � for the electron-doped normal state with electron-like pockets at
(0,⇡) and (⇡, 0) and hole-like pockets at (⇡2 ,

⇡
2 ).
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FIG. S1: We plot the dispersion of the band closest to the Fermi level for different values of b and � for hole
doping p = .2
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FIG. S2: We plot the dispersion of the band closest to the Fermi level for different values of b and � for electron
doping p = .15 with a normal state with only electron pockets at the anti-node.

SII. SIGN OF SPIN LIQUID HOPPING

Throughout the main text, we have assumed t
f2>0 for the spin liquid nearest neighbor hopping. In this appendix

we will discuss how our results change if we had assumed an opposite sign of spin liquid hopping. Multiplying t
f2

by an overall minus sign will result in the spin liquid bands changing sign. In this case case which 2 of the three
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FIG. S3: We plot the dispersion of the band closest to the Fermi level for different values of b and � for electron
doping p = .15 for a normal state with both electron and hole pockets.
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FIG. S4: We show the electronic spectral density and dispersion as b is increased in the case where t
f2 = �.14 for

a hole-doped state. Unlike in the main text hole-doped case, the node at large b appears on the backside of the
normal state hole-pocket.

nodes in the Brillouin zone are gapped out first differs from the case in the main text. In the main text, where
t
f2>0, particularly in the hole-doped case, the node in each quadrant of the Brillouin zone which survives at finite
b has appeared in the region of the Brillouin zone where the spectral weight of the c electrons is highest. When the
sign of the spin liquid hopping is flipped, the node instead first appears where the spin liquid dispersion has the
highest spectral weight as shown in Fig.S4.

We also see that unlike in the main text case, there is a reemergence of additional allowed nodes as b is further
increased and � is kept a constant. While re-emergence of additional nodes in the main text is not strictly forbidden,
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FIG. S5: We show the electronic spectral density and dispersion as b is increased in the case where t
f2 = �.14 for

a electron-doped state with only electron-like pockets. Unlike in the main text hole-doped case, the node at large
b appears on the backside of the normal state hole-pocket.

we do not observe such phenomena for our choice of normal state with Fermi surfaces close to experiments.

The electron-doped case shows different behavior with the opposite sign spin liquid hopping as well as in Fig.S5
and Fig.S6. In both cases, there are also additional nodes which appear with finite b and do not seem to disappear
as b increases. However, the additional nodes have low spectral weight on the c electrons so may not be observable
experimentally.

The correct sign of tf2 is determined by the sign of the quadratic coupling w1 in [? ] in the chargon free energy
which originates from integrating out the c electrons and two layers of spinons; in particular, w1 must be positive
for the continuum ansatz we have used in the main text to apply. The one-loop approximation of this computation
was carried out for the hole-doped spinon and electron hoppings in Appendix 3 of [? ], which found that assuming
t
f2>0 and led to w1 > 0, meaning the sign used in the main text, at least for the hole-doped case is correct to some
approximation.
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FIG. S6: We show the electronic spectral density and dispersion as b is increased in the case where t
f2 = �.14 for

a electron-doped state with both electron-like and hole-like pockets. Unlike in the main text hole-doped case, the
node at large b appears on the backside of the normal state hole-pocket.
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