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Connecting the many-body Chern number to Luttinger’s theorem through Streda’s formula
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Relating the quantized Hall response of correlated insulators to many-body topological invariants is a
key challenge in topological quantum matter. Here, we use Streda’s formula to derive an expression for
the many-body Chern number in terms of the single-particle interacting Green’s function and its derivative
with respect to a magnetic field. In this approach, we find that this many-body topological invariant can
be decomposed in terms of two contributions, N3[G]+ AN3[G], where N3[G] is known as the Ishikawa-
Matsuyama invariant, and where the second term involves derivatives of the Green’s function and the
self energy with respect to the magnetic perturbation. As a by product, the invariant N3[G] is shown to
stem from the derivative of Luttinger’s theorem with respect to the probe magnetic field. These results
reveal under which conditions the quantized Hall conductivity of correlated topological insulators is solely
dictated by the invariant N3[G], providing new insight on the origin of fractionalization in strongly-

correlated topological phases.

Introduction.—Exploring the interplay between strong
correlations and topology is at the forefront of current re-
search in condensed matter physics [1, 2]. While topolog-
ical invariants were originally defined within the frame-
work of non-interacting band theory, where they are ex-
plicitly written in terms of one-body Bloch wavefunc-
tions [3, 4], many-body generalizations have been pro-
posed to characterize interacting quantum matter. An
archetypal example is provided by the Hall conductivity
of two-dimensional insulators, which is quantized accord-
ing to 0, = Ce*/h, where C' is known as the many-body
Chern number: a topological invariant constructed from the
ground-state wavefunction and its derivatives with respect
to twisted boundary conditions [5, 6]. In the seminal works
of Refs. [7-9], winding numbers of single-particle Green’s
functions defined in frequency-momentum space were also
put forward as candidates to build up a topological clas-
sification of many-body phases of matter. In the case of
a 2D quantum anomalous Hall insulator (QAHI), such a
topological order parameter was identified as [7—11]
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where G (iw) is the continuous imaginary frequency
single-particle Green’s function (obtained in the limit of
zero temperature), k=(iw,k,,k,) is a three-momentum
including the Matsubara frequency and €** is the Levi-
Civita tensor (a summation over indices is implicit); the
trace is over the remaining internal degrees of freedom,
such as orbital or spin variables. The invariant N3[G] is
an integer associated with the third homotopy group of the
general linear group of complex matrices 75 (GL(C)) 2 Z,
as provided by an invertible and single-valued Green’s
function defined in frequency-momentum space [12] [13].
In the non-interacting case, the integral over frequencies
in Eq. (1) can be readily performed, yielding the first

N3[G]

Chern number (or TKNN invariant [5]), which quantifies
the anomalous Hall conductivity of topological band insu-
lators in two dimensions.

Broadly speaking, the Kubo-formula for the Hall con-
ductance is explicitly written as a current-current correla-
tion function [14] so that, in principle, a four-point (two-
body) Green’s function is needed to account for the quan-
tization of this transport coefficient in a correlated sys-
tem [15]. Nevertheless, Ishikawa and Matsuyama have ar-
gued, based on a Ward-Takahashi identity, that N3[G] can
still describe the quantized Hall response in the presence
of electron-electron interactions [16—18]. This has been
proved for certain tight-binding models in perturbation the-
ory [19]; see also Ref. [20] for a more recent derivation.
Conversely, Eq. (1) was shown to fail capturing the Hall
response in certain paradigmatic models of strongly inter-
acting systems, such as fractional quantum Hall states [21]
and topological Mott insulators [22].

Establishing the relationship between the topological in-
variants C' and N3[G], beyond the analysis of a particular
model [22], is a formidable task in the context of corre-
lated insulators: Under which conditions are both quanti-
ties equal and how can one quantify their difference, re-
main as key open questions. In this work, we explicitly
determine the difference between C' and N3[ G] by making
use of the Widom-Stieda formula [23-25], which expresses
04y as a density response to an external magnetic field. As
a corollary, the topological invariants C' and N3[G] are
shown to be equal whenever Luttinger’s theorem holds.
This approach reveals a new interpretation of N3[G] in
terms of the variation of Luttinger’s theorem with respect
to a probe magnetic field.

The Widom-Stieda formula.— In an insulating state of
matter, the Hall conductance can be expressed as a density
response to a uniform external magnetic field B [23-25]
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where n is the particle density. This variation is performed
at a fixed chemical potential p lying within a spectral gap
and in the limit of zero temperature 7" = 0. We can hence
express the many-body Chern number as

on
C= <Z508—B ; (3)
w,T=0

where ¢, = hc/e stands for the flux quantum. The parti-
cle density of an interacting fermionic system at thermody-
namic equilibrium is defined as [14]
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where GG(z,,) is the finite temperature single particle prop-
agator. The fermionic Matsubara frequencies are given by
Zn =twp=1(2n+1)m/[ and 0" represents an infinitesimally
small positive number that assures convergence of the sum.
Here () stands for the area of the system and the capital
trace Tr[---] involves an integration over both internal and
spatial degrees of freedom. Although Stfeda’s formula in
Eq. (2) was originally derived in the non-interacting case
within linear response theory [23], it was also proven to be
valid in generic interacting settings by making use of non-
perturbative thermodynamic arguments [24]. Recently,
fractional QAHIs in twisted bilayer samples were identi-
fied [26, 27] through this relation. It has also been particu-
larly useful to detect the first realization of a bosonic frac-
tional quantum Hall state in a cold-atom experiment [28],
without relying on transport measurements [29].

Bloch Green’s functions in a magnetic field— We aim
at formally evaluating the many-body Chern number of
an anomalous quantum Hall state of matter from Egs. (3)
and (4). In order to do so, we perform a perturbative ex-
pansion of the single-particle Green’s function in the pres-
ence of a homogeneous magnetic field up to first order in
B = V x A by closely following the approach developed in
Ref. [30]. The method builds up on the physical idea that,
even though the discrete translational invariance of a peri-
odic Hamiltonian is broken when including a vector poten-
tial A(r) with a linear spatial dependence, any measurable
quantity can be calculated in a way that explicitly preserves
the original Bloch symmetry. The Dyson’s equation of mo-
tion for G(z, ) in a lattice reads
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where the coordinates R, denote the position of the atomic
site o within the unit cell at R and the matrices H and
3(z,) are, respectively, the single-particle Hamiltonian
and the self-energy. In the presence of a small magnetic
field, the matrix elements of the single-particle Hamilto-
nian are modified as

Hg r;, = Hg_gr;,exp(iYr.R;, ), (6)

where

R,/
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PRaR ¢o Jr,
is the Peierls phase factor [31] and H? is the Hamiltonian
in the absence of the field. In the formalism of Ref. [30],
the gauge dependence of the single-particle Green’s func-
tion and of the self-energy are factored out (see also [32—
34]), so that their matrix elements in coordinate space are
expressed as
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Interestingly, the quantities identified by a supra-script (B)
depend only on the applied magnetic field and not on the
arbitrary choice of gauge to describe the vector potential.
Indeed, replacing Eqs. (8) and (9) in Eq. (5§) we find that
they satisfy the modified Dyson’s equation of motion
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which is manifestly gauge and translationally invari-
ant [35].

When Fourier transforming to k-space, Eq. (10) can be
written to all orders in the magnetic field as [30]
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where the arguments (z,,) have been omitted for the sake
of brevity [36]. Expanding both the self-energy and the
exponential up to linear order in B, we obtain
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is the fully dressed two-point Green’s function in the ab-
sence of magnetic field and X9 (z,,) its corresponding self-
energy. An equivalent form of Egs. (11) and (12) has al-
ready been obtained in Ref. [37] for systems with con-
tinuous translational symmetry by introducing the Wigner
representation in the Dyson’s equation of motion. In the
derivation presented above, which is explicitly written in
Bloch basis, the periodic potential is fully taken into ac-
count. We also note that the non-interacting version of
Eq. (12) was derived in Ref. [38]. The gauge dependent



Green’s function GRQR&,, up to first order in B, is readily
obtained as the inverse Fourier transform of Eq. (12) mul-
tiplied by the phase factor exp (i(pRa R/, ), as prescribed by
Eq. (8).

Luttinger’s theorem and the many-body Stieda
response.— We are now ready to evaluate the many-
body Stfeda response [Eq. (3)]. In order to do so, it will be
instructive to rewrite the particle density in Eq. (4) as

n=ny +no, (14)

where we respectively defined the Luttinger’s density (also
known as the Luttinger’s count [39]) and the Luttinger’s
integral [40] as
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Equation (14) is an exact decomposition, which directly
follows from the Dyson’s equation of motion of G(z,,) [41,
42]. Luttinger’s theorem [41], a cornerstore in the theory
of many-body physics, states that

limn = limny, 17)
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a result obtained by requiring a vanishing Luttinger’s in-
tegral at zero temperature. This is trivially true for non-
interacting systems (X = 0), but is expected to hold for
Fermi liquids [43] and for generic correlated systems de-
scribed by a Luttinger-Ward functional that reflects the
U(1) symmetry associated to electron-number conserva-
tion [41, 42, 44]. As pointed out in Ref. [45], the Lut-
tinger’s count at zero temperature is related to a topologi-
cal invariant, since it is directly proportional to the winding
number in frequency space N;[G], namely

lim n; = %Nl[G] (18)
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Using the definition of G™*, implicitly given in Eq. (5),
and Eqgs. (8) and (9), we can express Egs. (15) and (16) in
terms of the core or gauge-invariant propagator and self-
energy as

aG(B)
/(2 . H{W sy

where tr[---] implies summing only over internal degrees of
freedom. By considering Eqs. (12) and (13), we explicitly
obtain
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When taking the zero-temperature limit, the sum over Mat-
subara frequencies is replaced by a continuous integration
along the imaginary frequency axis 1/8Y., — [ dz/2mi.
In this regime, we can readily find from Eq. (18) and the in-
tegration of Eq. (21) in the complex plane that the response
of the Luttinger’s count to the external magnetic field is
explicitly given by
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where N3[G°] solely depends on the zero-field Green’s
function and is defined as in Eq. (1). Here we have used
that this winding number can be alternatively written in the
more compact form
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which follows from the trace properties and Gj ' 9y, G, =
—0k, GY'GY,. The last term in Eq. (22) is a contact (or
boundary) term, stemming from the integral in frequency
of the total derivative in Eq. (21). It only depends on the an-
alytical properties of the self-energy and Green’s function
at zero frequency. In an insulating state of matter with no
poles of the gauge-invariant self-energy at the Fermi level,
this term exactly vanishes [46]. Equation (22) is an exact
result, and it is remarkable as it shows that a higher-order
winding number of the fully-dressed propagator can be ob-
tained from N;[(] by taking its derivative with respect to
a magnetic field.
On the other hand, we obtain
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Combining Eqgs. (22) and (24) to compute the total density
variation with respect to the probe magnetic field, we ob-
tain that the many-body Chern number in Eq. (3) is given
by a sum of two contributions

C = N5[G°] + AN;[G], (25)



with
ANS[G] - g—ol T[ (zo+)G°(o+)]
©,B=0
. % o+a 32 (B)
Q. 27726 8B 0z G - (26)
1,B=0

Equation (25) constitutes one of the main results of the
present work: it offers an explicit expression for the
difference between C' and N3[G°] without relying on any
model nor perturbative statement. We stress that, since
it was derived from the Widom-Stfeda formula, all the
quantities are evaluated at a chemical potential p within a
spectral gap.

Analysis on some relevant cases.— i. In the absence
of inter-particle interactions (X(®) = 0), AN;3;[G] =0
strictly vanishes and we recover the well-known result
C = N3[G°]. A mean-field treatment leading to trivial
self-energies independent of both w and k, ie. that
neglects spatial and temporal correlations, would also lead
to AN3[G] =0 [47].

ii. In the particular case where OX(®)/OB|g—y = 0,
we can explicitly quantify A N3 in terms of the zero-field
Green'’s function and self-energy as
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The equation above is particularly relevant in the context
of dynamical mean-field theory approaches, in which the
self-energy is approximated as local but preserves its full
frequency dependence.
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iii. In the presence of inter-particle interactions, we can
further analyze the fate of A N3[G] by considering the ex-
istence of the Luttinger-Ward functional ®[G], which is
differentially defined as [30, 41, 42, 48]
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%ZTr [E(B)(zn)éG(B)(zn)]. (28)

The second equality holds on account of the cancellation of
the Peierls phase factors when performing the trace opera-
tion. This was noted in Ref. [30], where the functional was
perturbatively written as an infinite sum over two-particle
irreducible skeleton diagrams involving only the gauge-
invariant propagator namely
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where El( ) is the contribution of the I-th order diagram to
»®), Equations (28) and (29) imply that the self-energy
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can be written as an exact differential of the Green’s func-

tion,
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The invariance of the Luttinger-Ward functional under a
global shift of the Matsubara frequencies in dz = 27i/[,

x® -3 (30)
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We emphasize that this invariance is connected to the U (1)
symmetry of the theory describing the interacting sys-
tem. Making an integration by parts in the second term of
Eq. (26) we find that AN3[G] can be alternatively written
as
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The second term on the right-hand side of Eq. (32) can be
identified as the derivative of Eq. (31) with respect to a
magnetic field in the limit 6z — 0, so that it should vanish
in the zero-temperature limit [41, 42]. Note, however,
that this relies on regularity properties of the kernel of the
discrete sum in Eq. (31) near zero frequency [48, 50, 51].
On the other hand, the first term in Eq. (32) vanishes
whenever the insulating state does not exhibit zeros of
the Green’s function at the Fermi level, also known as
Luttinger’s surface [49, 51]. Whenever all these conditions
are satisfied, the many-body Chern number C, and hence
0 .y» should necessarily be given by the integer N3[G°].

iv. Based on the previous discussion, we conclude that
any disconnection between the integer N3[G] and the
many-body Chern number C' is necessarily associated with
a failure of Luttinger’s theorem [39]. This violation has
been reported in a variety of systems [40, 52-55]. In sev-
eral cases, it has been associated with the existence of
zeros of the Green’s function (poles of the self-energy),
an ubiquitous situation in Mott insulators [54, 56], which
also signals the breakdown of perturbation theory. The
disagreement N3[G"] # C that was recently identified in
strongly correlated Hatsugai-Kohmoto Mott insulators [22]
falls into this category.

Concluding remarks.— We have formally evaluated the
Widom-Stfeda response of a correlated QAHI. As a first
step, we have perturbatively derived the corrections of the
fully-dressed single-particle Bloch Green’s function in the



presence of an external probe magnetic field. This allowed
us to compute the first-order responses of both the Lut-
tinger’s density and the Luttinger’s integral in the presence
of the field. We have found that the many-body Chern
number is generically given by a sum of two contributions:
the Ishikawa-Matsuyama invariant N3[G°] [Eq. (1)] and
a correction AN3[G] [Eq. (26) or (32)]. When Eq. (17)
is satisfied, and in the absence of self-energy poles at the
Fermi level, the correction AN3[G] strictly vanishes. In
this case, the many-body Chern number is directly given
by the derivative of the Luttinger’s count with respect to
the probe magnetic field

O = 5, OMIC)
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providing an important, so far overlooked, connection be-
tween the validity of Luttinger’s theorem and the quantiza-
tion of the Hall conductance with N3[G°]. We have rigor-
ously established the disconnection between the Ishikawa-
Matsuyama invariant and the many-body Chern number in
strongly correlated phases of matter where Luttinger’s the-
orem is violated, signaling the breakdown of the adiabatic
continuity between the non-interacting and fully interact-
ing ground state. Although our calculations were done
by considering a magnetic perturbation on a QAHI, these
can be easily generalized to the conventional quantum Hall
(Landau level) scenario. In that case, the perturbative ex-
pansion can still be done with the probe field, while the
preexistence of a strong quantizing magnetic field can be
taken into account by using a magnetic Brillouin zone to
define the gauge-invariant propagator in quasi-momentum
space.

Our results raise intriguing questions, such as the con-
tribution of N3[G°] and AN3[G] to the fractional Hall
response of strongly-correlated states. Importantly, our re-
sults indicate that the fractionalization of the many-body
Chern number must be encoded in AN3[G], as provided
in Egs. (26) and (32). A numerical evaluation of AN3[G]
would thus provide insight on the emergence of fractional-
ization in strongly-correlated topological matter.
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