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Abstract
Summary: Multiple sequence alignment is an important problem in computational biology with applications that include phylogeny and the de-
tection of remote homology between protein sequences. UPP is a popular software package that constructs accurate multiple sequence align-
ments for large datasets based on ensembles of hidden Markov models (HMMs). A computational bottleneck for this method is a sequence-to- 
HMM assignment step, which relies on the precise computation of probability scores on the HMMs. In this work, we show that we can speed 
up this assignment step significantly by replacing these HMM probability scores with alternative scores that can be efficiently estimated. Our 
proposed approach utilizes a multi-armed bandit algorithm to adaptively and efficiently compute estimates of these scores. This allows us to 
achieve similar alignment accuracy as UPP with a significant reduction in computation time, particularly for datasets with long sequences.
Availability and implementation: The code used to produce the results in this paper is available on GitHub at: https://github.com/ilanshom/ 
adaptiveMSA.

1 Introduction
Multiple sequence alignment (MSA) is a central problem in 
computational biology with applications that include phylog-
eny inference (Morrison and Ellis 1997), detection of remote 
homology between protein sequences, protein structure and 
function inference (Bork and Koonin 1998, Ju et al. 2021), 
and DNA data storage (Antkowiak et al. 2020). While signif-
icant progress in MSA algorithms has been made in recent 
years, achieving high alignment accuracy on very large 
datasets in a computationally efficient manner remains 
a challenge.

One algorithm that has been shown to produce high- 
quality alignments on large datasets is ultra-large alignments 
using phylogeny-aware profiles (UPP) (Nguyen et al. 2015). 
In particular, UPP has been shown to produce higher-quality 
alignments than other algorithms on large datasets with high 
levels of sequence length heterogeneity, while giving similar 
levels of performance on large datasets with little sequence 
length heterogeneity. While UPP gives improved alignment 
accuracy on large datasets, it is often slower than other 
widely used software packages such as MUSCLE (Edgar 
2004), MAFFT (Katoh and Toh 2007), and Clustal-Omega 
(Sievers et al. 2011).

At a high level, UPP begins by creating an initial alignment 
and a maximum likelihood (ML) tree from a subset of the in-
put sequences called backbone sequences. These backbone 
sequences are selected randomly from the set of input sequen-
ces that are close to the median input sequence length. All 
sequences that are not part of the backbone are called query 
sequences. The ML tree is then decomposed to form sets of 
related sequences. For each of these sets of sequences, a hid-
den Markov model (HMM) is formed from its multiple align-
ment using HMMer (Finn et al. 2011). This yields an 
ensemble of HMMs, as illustrated in Fig. 1. Next, each query 
sequence is assigned to the HMM that has the highest proba-
bility of generating it. For each HMM, the assigned query 

sequences are added to the alignment corresponding to the 
HMM using HMMer, one by one. The resulting alignment 
for each HMM is then merged with the backbone alignment, 
producing an MSA for the full set of sequences.

For large datasets, the query-to-HMM assignment step is 
by far the most time-consuming task in UPP. This is because, 
for each query sequence and each HMM, the probability of 
the HMM producing the sequence is calculated in OÖ‘2Ü time 
where ‘ is the (maximum) input sequence length. If there are 
n query sequences and m HMMs, the query-to-HMM assign-
ment step takes OÖnm‘2Ü time. In a recent work (Park et al. 
2023), a new algorithm named UPP2 (Park et al. 2023) was 
designed to speed up the query-to-HMM assignment step. 
For each query sequence, UPP2 only computes the probabil-
ity for certain HMMs, chosen according to the structure of 
the ML tree. This reduces the run-time to OÖn logÖmÜ‘2Ü, 
which leads to very substantial time savings, at the price of a 
small decrease in alignment quality.

In this work [originally developed independently and with-
out knowledge of Park et al. (2023)], we pursue a different 
route to speed up the query-to-HMM assignment step. 
Rather than reducing how many HMMs each query sequence 
is compared against, we reduce how much computation is 
spent in each query-to-HMM comparison. To do so, we in-
troduce two algorithmic ideas:

1) A new k-mer-based similarity score JÖq; hÜ that works as 
a proxy for the probability that a query sequence q was 
generated by HMM h. We refer to JÖq; hÜ as the J-score. 
Notably, JÖq;hÜ can be efficiently estimated by sampling 
k-mers in time sublinear in ‘. 

2) We leverage the fact that JÖq; hÜ can be estimated using 
random k-mer samples to propose an adaptive estima-
tion framework for finding arg maxhJÖq; hÜ. We take in-
spiration from the recent literature on using Multi- 
Armed Bandits (MABs) to speed up large-scale 
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computations via adaptivity (Bagaria et al. 2018, 2021, 
Heckel et al. 2018, Tiwari et al. 2020, Kamath 
et al. 2020). 

An overview of the adaptive search for arg maxhJÖq; hÜ is 
shown in Fig. 2. By drawing random subsets of k-mers, 
estimates of the score JÖq;hÜ can be efficiently computed. This 
allows for iterative refinement of estimates of JÖq; hÜ for more 
promising HMMs. Building on theoretical results for MABs, 
we show that using the Upper Confidence Bound algorithm 
(Lai and Robbins 1985), it is possible to identify 
arg maxhJÖq; hÜ with high probability in time OÖmn log mÜ. 
However, for our practical implementation, we opt for an al-
gorithm based on the Sequential Halving MAB algorithm 
(Karnin et al. 2013). This implementation runs in time 
OÖmnám‘Ü and achieves very good performance. In particu-
lar, when used in the UPP pipeline, it reduces the overall run- 
time substantially for datasets containing long sequences (with 
similar alignment accuracy), even when compared to UPP2.

2 Adaptive search for best HMM
As described in Section 1, our approach for accelerating UPP 
is based on a new similarity metric, the J-score, which admits 
an adaptive search for arg maxhJÖq;hÜ. In Sections 2.1 and 
2.2, we first introduce the J-score and then we describe the 
adaptive search based on sequential halving.

2.1 J-score
We first introduce some notation. For a sequence s, let jsj denote 
the length of s. A k-mer of a string s is simply a length-k sub-
string of s. For a given sequence s, let NkÖsÜ be the set of k-mers 
in s. For a set S of sequences, let NkÖSÜ à [s2SNkÖsÜ. For a se-
quence s and k-mer a, let csÖaÜ be the number of times a appears 
in s. For a set of sequences S, let cSÖaÜ à 1

jSj
P

s2S csÖaÜ. Let n be 
the number of query sequences, m be the number of HMMs, 
and ‘ be the maximum length over all sequences in the dataset.

In the original UPP pipeline (Nguyen et al. 2015), each of the 
HMMs is built from a subset of the backbone sequences. For an 
HMM h, we let Sh be the subset of backbone sequences used by 
UPP to create the HMM (which is done using HMMer; Finn 
et al. 2011). Our similarity score JÖs; hÜ can be thought of as a 
kind of weighted Jaccard similarity (Jaccard 1912) between the 
k-mers in q and in Sh. We formally define it as 

JÖq; hÜ à
P

a2NkÖqÜminÖcqÖaÜ; cShÖaÜÜ

Öjqj−ká1Üá
P

s2Sh
Öjsj−ká1Ü
jShj

: (1) 

Each k-mer a that appears in both q and Sh, contributes an 
additive term of minÖcqÖaÜ; cShÖaÜÜ to the numerator in (1). 
This can be thought of as a kind of intersection between the 
k-mers of q and the k-mers of an “average” of the sequences 
in Sh (since cSh has a normalization factor of jShj). The de-
nominator is simply the number of k-mers in q plus the aver-
age number of k-mers in Sh. The J-score is inspired by the 
k-mer Jaccard similarity and its usefulness in estimating pair-
wise sequence alignment scores (Berlin et al. 2015, Jain et al. 
2018, Kamath et al. 2020). In particular, the J-score is equiv-
alent to the multiset Jaccard similarity (Rajaraman and 
Ullman 2011), except that each k-mer can appear a rational 
number of times in a multiset.

We propose to perform the query-to-HMM assignment 
based on the J-score, i.e. assigning query q to 

h⇤ à arg max
h

JÖq; hÜ; (2) 

instead of doing this assignment based on the bit-score 
(which corresponds to the probability of the HMM generat-
ing the query sequence), which is employed in UPP. As we 
verify empirically (see Fig. 3), the J-score is roughly monoton-
ically increasing in the bit-score (which is the score UPP uti-
lizes to perform the query-to-HMM assignment). This 
monotonic trend tends to hold particularly well for larger val-
ues of J-score/bit-score, which is what is important when try-
ing to choose arg maxhJÖq; hÜ.

We analyze the relationship between J-score and bitscore 
in detail for the 16S.3 and 16S.T nucleotide datasets from the 
Comparative Ribosomal Website (Cannone et al. 2002), and 
the adh amino acid dataset from homfam (Sievers et al. 
2011). The 16S.3 dataset has 6323 sequences. Using a back-
bone size of 1000, UPP produces 271 HMMs. The UPP algo-
rithm therefore compares 5323 sequences to 271 HMMs. 
The 16S.3 dataset has 7350 sequences, and the adh dataset 

Figure 1. High-level description of the UPP pipeline. The input sequences 
are split into two parts, the backbone sequences and the query 
sequences. An alignment and tree are estimated for the backbone 
sequences, and an ensemble of HMMs is constructed based on the 
backbone alignment and tree. This is followed by a query-to-HMM 
assignment step, which in principle requires computing the probability 
that each HMM could have generated each query sequence.

Figure 2. Adaptive search for the HMM hi , i à 1; . . . ;m, that maximizes 
JÖq; hiÜ. We first estimate the similarity score JÖq; hÜ for each HMM 
based on a random k-mer batch, and discard HMMs with a low score. The 
score for the remaining HMMs is refined based on a new k-mer batch, 
and this process can be repeated. In the end, the exact value of JÖq; hÜ is 
computed for a small number of HMMs, and the best one is chosen.
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contains 21 331 sequences. The average sequence lengths of 
16S.3, 16S.T and adh are 1492, 1557, and 124, respectively. 
We define d0 to be the fraction of query sequences where the 
top-scoring HMM according to bitscore is the top-scoring 
HMM according to J-score. We define dx to be the fraction 
of query sequences where the top scoring HMM according to 
bitscore is among the top x percent of HMMs according to 
J-score. For each query sequence, we also compute the ordering 
of the HMMs according to bitscore, and the ordering of the 
HMMs according to J-score. We then compute the Spearman’s 
rank correlation coefficient (Spearman 2015) between the bit-
score HMM ordering and the J-score HMM ordering, along 
with its associated P-value. This correlation coefficient meas-
ures how well the relationship between the J-score and the bit-
score can be described using a monotonic function. The 
Spearman coefficient ranges from −1 to 1, with 0 implying no 
correlation, and 1 implying an exact monotonic relationship. 
We report this information for the three datasets in Table 1. 
Observe that in Table 1, the value of k that causes the J-score 
to correlate best with bitscore is lower for the amino acid data-
set adh compared to the two nucleotide datasets. This is be-
cause it is harder for the short amino acid query sequences in 
adh to share long k-mers with the backbone sequences used to 
form the HMMs, and thus yield non-zero J-scores. It is harder 
for adh query sequences to share long k-mers with the back-
bone sequences because there are 20 amino acids as opposed to 

four nucleotides and because the sequences in adh are much 
shorter and therefore have far less kmers than sequences in the 
16S datasets. When a query sequence does not share any k- 
mers with any backbone sequences, the J-scores are zero for all 
HMMs, and thus do not correlate well with the bitscores 
(which are generally not constant across HMMs).

We note that the J-score can be computed naively for all 
pairs of query sequences and HMMs in amortized OÖnm‘Ü
time by building a hash table for q that maps each k-mer a 
present in q to csÖaÜ, and building a hash table that maps each 
k-mer a present in Sh to cShÖaÜ. The summation in the numera-
tor in (1) can then be computed in amortized OÖ‘Ü time.

While the specific form of the score in (1) may seem arbi-
trary, our main motivation for working with it is that it 
allows for the computation of unbiased estimates of JÖq; hÜ
from randomly selected k-mers from NkÖqÜ. Let Pq be a dis-
tribution that chooses each k-mer in the set NkÖqÜ with equal 
probability (i.e., with probability PqÖaÜ à jNkÖqÜj−1 for 
a 2 NkÖqÜ). For a batch of k-mers B à fa1; . . . ; aBg of size B, 
drawn i.i.d. according to Pq, one can build an estimator 

~JÖq; h;BÜ à
jNkÖqÜj

B
P

a2BminÖcqÖaÜ; cShÖaÜÜ

Öjqj−ká1Üá
P

s2Sh
Öjsj−ká1Ü
jShj

: (3) 

This is an unbiased estimator because 

Eâ~JÖq; h;BÜä à

jNkÖqÜj
B

XB

tà1
EâminÖcqÖatÜ; cShÖatÜÜä

Öjqj−ká1Üá
P

s2Sh
Öjsj−ká1Ü
jShj

à

jNkÖqÜj
B

XB

tà1

X
a2NkÖqÜ

PqÖaÜminÖcqÖaÜ; cShÖaÜÜ

Öjqj−ká1Üá
P

s2Sh
Öjsj−ká1Ü
jShj

à
P

a2NkÖqÜminÖcqÖaÜ; cShÖaÜÜ

Öjqj−ká1Üá
P

s2Sh
Öjsj−ká1Ü
jShj

à JÖq; hÜ:

(4) 

Figure 3. Scatterplot of our proposed J-score when k à 9 versus the bit- 
score (the score which UPP attempts to maximize). Each point 
corresponds to the scores for sequences 68 and 283 from the AMINO 
test dataset (included with UPP; Nguyen et al. 2015) and one of the 
HMMs created with a backbone of size 100. Observe the correlation 
between bitscore and J-score.

Table 1. Statistics showing how well the J-score correlates with bitscore 
on 16S.3, 16S.T, and adh datasets.a

Dataset k d0 d10 Spearman P-value

16S.3 10 0.502 0.779 0.547 .002
15 0.587 0.835 0.563 .004
20 0.619 0.837 0.618 .001

16S.T 10 0.445 0.718 0.500 .007
15 0.490 0.724 0.545 .005
20 0.475 0.656 0.570 .116

adh 5 0.616 0.885 0.472 .001
10 0.527 0.746 0.246 .271
15 0.409 0.572 0.153 .511
20 0.341 0.490 0.120 .607

a The backbone sizes used are 1000 for all datasets. The Spearman 
coefficients and corresponding P-values are averaged across all query 
sequences in a dataset. The Spearman coefficient and corresponding P-value 
is not defined for a query sequence when the J-scores for that query 
sequence are equal to some constant for all HMMs. Therefore, if a query 
sequence does not share any k-mers with any backbone sequences, the 
J-score is 0 for all HMMs, and the corresponding Spearman Coefficient is 
not defined. If the Spearman Coefficient is not defined, we set the Spearman 
Coefficient to 0, and set the P-value to 1 to be as adversarial as possible 
when computing the averages in the table.
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Notice that, unlike for the J-score, the standard approach for 
estimating the Jaccard similarity jA\Bj

jA[Bj between sets A and B is 
the use of min-hashes (Broder 1997, Broder et al. 2000, 
Berlin et al. 2015). What makes JÖq;hÜ somewhat different 
from the Jaccard similarity is the fact that the denominator of 
JÖq; hÜ does not require a set union calculation, it is just a 
function of sequence length. Thus, we only need to estimate 
the numerator of JÖq; hÜ from samples.

2.2 Adaptive search via multi-armed bandits
Because we have an unbiased estimator for JÖq;hÜ based on 
samples from NkÖqÜ, we can search for h⇤ à arg maxhJÖq; hÜ
adaptively by iteratively sampling more k-mers from NkÖqÜ in 
order to refine the estimate of JÖq; hÜ for more promising 
HMM candidates h. Our goal is then to minimize the number 
of times we need to evaluate ~JÖq; h; fagÜ for a k-mer a in 
NkÖqÜ. We refer to the evaluation of ~JÖq; h; fagÜ as a “k-mer 
evaluation” on h.

The problem of finding h⇤ à arg maxhJÖq; hÜ while mini-
mizing the total number of k-mer evaluations fits well within 
the MAB literature. In the MAB setting, there are several ran-
dom variables (referred to as “arms”), and at each time step, 
we can sample one of the random variables (or “pull an 
arm”). In the best-arm identification problem (Jamieson and 
Nowak 2014), the goal is to identify the arm with the largest 
mean reward (with high probability) using as few arm pulls 
as possible. In our problem, each arm corresponds to an 
HMM, and pulling arm h corresponds to sampling a k-mer a 
from NkÖqÜ uniformly at random, and evaluating ~JÖq; h; fagÜ. 
This is a best-arm identification problem because we want to 
find h⇤ à arg maxhJÖq; hÜ by performing as few k-mer evalua-
tions as possible.

Two well-known algorithms for accomplishing this are 
Upper-Confidence Bound (UCB) (Lai and Robbins 1985) and 
Sequential Halving (Karnin et al. 2013). The UCB algorithm 
is widely used in the literature and is amenable to a clean the-
oretical analysis of the number of arm pulls needed to iden-
tify the best arm with high probability (Lattimore and 
Szepesv◆ari 2020). Sequential Halving (Karnin et al. 2013) is 
simpler to implement and achieves great results in many prac-
tical settings (Baharav and Tse 2019), although its theoretical 
analysis is less straightforward.

For this reason, we first state a theoretical result character-
izing the number of k-mer evaluations needed to identify the 
best HMM h⇤ à arg maxhJÖq; hÜ when the UCB algorithm is 
applied to our problem, but use Sequential Halving in our 
software implementation due to its good performance in 
practice (Cazenave 2015, Pepels et al. 2016, Baharav and Tse 
2019). We present the UCB-based algorithm as Algorithm 2 
and its theoretical analysis in detail in Section 5. Under some 
regularity conditions (see Section 5), this analysis implies that 
the query-to-HMM assignment problem using J-scores can 
be solved very efficiently:

Corollary 1 The optimal HMM h⇤ in the search 
problem h⇤ à arg maxhJÖq; hÜ can correctly identified 
in time OÖmn log mÜ with probability 1−oÖ1Ü.   

While the UCB algorithm provides us with a time complex-
ity that is independent of ‘, for our practical implementation 
we utilize a simpler adaptive algorithm that still has a linear 
dependence on ‘. The algorithm we implemented in the soft-
ware is a modified Sequential Halving algorithm, and it is 

presented as Algorithm 1.Observe that Algorithm 1 takes 
OÖmRBáT‘Ü k-mer evaluations and OÖmRBáT‘Ü amortized 
time since we can pre-compute a hash-table mapping each k- 
mer a 2 NkÖSiÜ to cSiÖaÜ for each i, along with the analogous 
map for q. Applying this algorithm to all n query sequences 
requires OÖnmRBáTn‘Ü amortized time. For R, B, T con-
stant, the time complexity is OÖnmán‘Ü, which gives a better 
dependence on ‘ than UPP and UPP2. It also gives an im-
proved run-time compared to a naive version of our algo-
rithm that simply computes JÖq; hÜ for all q and h, which 
requires OÖnm‘Ü time. In practice, we pick R, B, T depending 
on how confident we want to be in the selected h⇤. Note that 
if a query sequence does not share a k-mer with any sequence 
in any of the HMMs, it is assigned to the HMM correspond-
ing to all sequences in the backbone. We also point out that 
we parallelized the algorithm to make use of a user-specified 
number of cores. All of our code is written in Python, and is 
available at: https://github.com/ilanshom/adaptiveMSA. The 
additional scripts used to generate the results in this paper are 
also available at this link.

3 Results
3.1 Datasets and performance metrics
The first three nucleotide datasets we use are from the 
Comparitive Ribosomal Website (Cannone et al. 2002). They 
are named 16S.3, 16S.T and 16S.B.ALL. These three biologi-
cal datasets were used in the UPP and UPP2 papers. The next 
three nucleotide datasets we test on were generated by 
Indelible (Fletcher and Yang 2009), and were introduced in 
(Mirarab et al. 2014). They are named 10000M2, 10000M3, 
and 10000M4 and were used in the UPP paper. The final 
three nucleotide datasets we test are called RNASim10000, 
RNASim50000, RNASim100000, and RNASim200000 and 
were introduced in Mirarab et al. (2014). These simulated 
datasets were tested in the UPP paper. The first three amino 
acid datasets we tested were generated using ROSE (Stoye 
et al. 1998) and introduced in Liu et al. (2009). The datasets 
are called ROSE1000S, ROSE1000M, and ROSE1000L. 
These datasets were used in both the UPP and UPP2 papers. 
Finally, we test 19 large HomFam amino acid datasets 

Algorithm 1 Adaptive search to find h⇤ à arg maxhJÖq;hÜ

Input: q, âSh : h 2 â1 : mää, B, R, T
Output: h⇤

1: Sactive  f1; . . . ;mg
2: For all h 2 â1 : mä, set Ĵ h  0
3: for r à 1; . . . ;R do

4:  Draw a batch of k-mers B ⇢ NkÖqÜ of size B with 
replacement
5:  for h 2 Sactive do

6:   Ĵ h  1
r

⇣
Ör−1ÜĴ há ~JÖq; h;BÜ

⌘

7:  end for

8:  t  maxÖjSactivej=2; TÜ
9:  Sactive  ft elements of Sactive with highest values of Ĵ hg
10: end for

11: Compute JÖq; hÜ exactly for the T elements in Sactive with 
highest values of Ĵ h

12: return h⇤ à argminh2Sactive JÖq; hÜ
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(Sievers et al. 2011). The 19 datasets in HomFam used are as 
follows: aat, Acetyltransf, adh, aldosered, biotin_lipoyl, 
blmb, ghf13, gluts, hla, hom, myb_DNA-binding, p450, 
PDZ, Rhodanese, rrm, rvp, sdr, tRNA-synt_2b, zf-CCHH. 
Each of these biological datasets has a reference alignment 
for a very small subset of the sequences (5–20 sequences, me-
dian 7). This is in contrast to all other datasets, which have 
full reference alignments. Information on the number of 
sequences and average sequence length for each dataset is 
present in Table 2. Note that both 16S and homfam include 
datasets with high levels of sequence length heterogeneity, 
which UPP is known to handle well (Nguyen et al. 2015). All 
datasets were obtained from this website: https://sites.google. 
com/eng.ucsd.edu/datasets/alignment/pastaupp.

We report SP-error, SP-score, modeler-score, TC-score. In 
an MSA A, consider sequences q1 and q2. The ith symbol in 
q1 is said to be homologous to the jth symbol in q2 if they ap-
pear in the same column in A. In this case, q1âiä and q2âjä are 
said to form a homologous pair. For a reference alignment A
and an estimated alignment A0; the SPFN rate is the fraction 
of homologous pairs in A that are not present in A0: The SP- 
score is defined as 1 - SPFN, and is a measure of recall. The 

SPFP rate is the fraction of homologous pairs in A0 that are 
not present in A. The Modeler score is defined as 1 − SPFP 
and is a measure of precision. The SP error is equal to the av-
erage of the SPFN rate and the SPFP rate (Nguyen et al. 
2015). We define the Total Column score (TC-score) as the 
number of columns in A0 that are present in A, divided by the 
total number of columns in A. We use FastSP (Mirarab and 
Warnow 2011) to calculate all metrics.

3.2 Experiments
We test our algorithm, UPP, and UPP2 on all datasets men-
tioned above. UPP and UPP2 are already compared exten-
sively with existing MSA packages, so we focus on 
comparing our algorithm with UPP and UPP2. Throughout 
this section, we refer to our modified version of UPP that 
makes use of Algorithm 1 to estimate the best HMM for each 
query sequence as J-bandit. We refer to the modified version 
of UPP that assigns each query sequence to the HMM with 
the highest J-score as J-exact. We run all algorithms by gener-
ating an alignment of the backbone sequences using PASTA 
(Mirarab et al. 2014, 2015). Using PASTA for this task is the 
only option included in UPP and UPP2. The backbone is 

Table 2. Results for all datasets.a

Dataset Alg. Time (s) SP error TC score SP score Modeler score

16S.B.ALL UPP 20371 0.052 0.019 0.947 0.949
(27 643) UPP2 9139 0.043 0.001 0.955 0.959
(1372) J-bandit 1897 0.053 0.019 0.944 0.95
16S.T UPP 7422 0.177 0.011 0.831 0.814
(7350) UPP2 5179 0.197 0.005 0.792 0.815
(1492) J-bandit 2759 0.198 0.009 0.789 0.816
16S.3 UPP 6710 0.122 0.006 0.924 0.832
(6323) UPP2 4531 0.127 0.004 0.914 0.832
(1557) J-bandit 2605 0.122 0.008 0.923 0.832
Indelible 10000M2 UPP 4718 0.075 0.02 0.908 0.941
(10 000) UPP2 2988 0.06 0.016 0.927 0.952
(1000) J-bandit 2477 0.062 0.007 0.924 0.952
Indelible 10000M3 UPP 3484 0.009 0.113 0.988 0.995
(10 000) UPP2 1502 0.008 0.077 0.988 0.996
(1000) J-bandit 3208 0.01 0.062 0.985 0.995
Indelible 10000M4 UPP 3853 0.003 0.395 0.996 0.998
(10 000) UPP2 1470 0.004 0.411 0.995 0.998
(1000) J-bandit 3342 0.007 0.115 0.99 0.996
RNASim 10000 UPP 11 015 0.096 0.003 0.903 0.906
(10 000) UPP2 6681 0.097 0.004 0.902 0.905
(1555) J-bandit 3213 0.106 0.003 0.887 0.901
RNASim 50000 UPP 48 182 0.099 0.002 0.9 0.903
(50 000) UPP2 23 445 0.104 0.002 0.894 0.897
(1555) J-bandit 3986 0.112 0.001 0.883 0.894
RNASim 100000 UPP 101 853 0.089 0.002 0.909 0.912
(100 000) UPP2 43 334 0.09 0.003 0.908 0.911
(1554) J-bandit 7168 0.109 0.002 0.884 0.899
ROSE 1000S1 UPP 1289 0.127 0.012 0.871 0.876
(1000) UPP2 1022 0.191 0.001 0.807 0.812
(1025) J-bandit 1061 0.171 0.0 0.825 0.833
ROSE 1000M1 UPP 1497 0.19 0.037 0.807 0.814
(1000) UPP2 1383 0.455 0.01 0.539 0.552
(1058) J-bandit 1405 0.211 0.009 0.784 0.793
ROSE 1000L1 UPP 1354 0.163 0.074 0.832 0.842
(1000) UPP2 1681 0.323 0.027 0.669 0.685
(1079) J-bandit 1145 0.188 0.024 0.809 0.816
homfam (19) UPP 356 0.241 0.46 0.873 0.78
(27 091) UPP2 197 0.246 0.47 0.923 0.768
(144) J-bandit 272 0.254 0.438 0.876 0.781

a For all datasets, c à 0:2;R à 3;T à 10 for the J-bandit runs. The number of sequences is in parentheses below dataset name, followed by average 
sequence length in parentheses [for homfam (19), these statistics are averaged over the 19 datasets]. The times reported for homfam (19) do not include 
backbone generation.
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selected randomly from the set of input sequences whose 
length is within 25% of the length of the median sequence 
length as is standard in UPP. For all algorithms in all experi-
ments, we specified that 24 processors can be used. We ran 
all simulations on a machine with 80 physical cores, 160 
threads, and 512 GB of memory. We report SP error, SP 
score, modeler score, TC score, and time taken by the algo-
rithm from start to finish (including backbone generation). 
We also report peak memory usage for a subset of 
the datasets.

We began by running J-exact for k values of 5, 10, 15, 20, 
and 25 on 16S.B.ALL, Indelible 10000M2, Indelible 
10000M3, Indelible 10000M4, RNASim10000, ROSE 
1000S1, ROSE 1000M1, and ROSE 1000L1. These datasets 
were chosen to include a mix of nucleotide and amino acid 
datasets. We did not include any homfam datasets in this ex-
periment because they only have reference alignments for 
very small subsets of the sequences, and because the sequen-
ces are very short in comparison to the other datasets (the av-
erage of the average sequence lengths of the homfam datasets 
was 144, while the average sequence length of all other data-
sets was at least 1000). We made sure to include 16S.B.ALL 
in the experiment because it is a biological dataset as opposed 
to simulated, and because it displays substantial sequence 
length heterogeneity, which UPP is known to handle well 
(Nguyen et al. 2015). For the 16S, Indelible, and RNASim 
datasets, we used a backbone of 1000, while for ROSE data-
sets, we used a backbone of 100. We observed that for all 
performance metrics, setting k to 20 gave comparable perfor-
mance to UPP, as shown in Fig. 4. We therefore set k to 20 in 
proceeding experiments, with the exception of the homfam 
datasets which have sequences of much shorter length than 
the other datasets.

Next, we ran J-bandit on 16S.B.ALL for a range of param-
eters in Algorithm 1 to observe their effect on performance 
and runtime. We chose 16S.B.ALL because it is one of the 
largest datasets we had in terms of the number of sequences 
and the sequence lengths, it has substantial sequence length 
heterogeneity, and because it is biological (as opposed to sim-
ulated). For the sequence q, the batch size B is chosen to be 
c � jqj where jqj is the length of q and c is a constant. We 
tested c values of 0.1, 0.2, and 0.3, and tested R values of 2, 
3, and 4. We kept k fixed at 20, and T fixed at 10 for these 
experiments. The performance on 16S.B.ALL does not 
change much for the various values of c and R that we tested 
and remains close to the performance of UPP and J-Exact. 
The runtime does not seem to change significantly either 
across the parameter settings but is significantly lower than 
UPP and J-Exact. Based on these observations, we choose c to 
be 0.2, R to be 3, and T to be 10 for J-bandit in all of the pro-
ceeding runs of J-bandit.

Finally, we ran J-bandit on a wide range of datasets and 
compared its performance to UPP and UPP2. All datasets in 
Section 3.1 other than RNASim 200000 were tested and the 
SP error and all performance metrics along with time taken 
were calculated and are shown in Table 2. We did not com-
pare the algorithms on RNASim 200000 because due to the 
fact that such a comparison would use excessive computing 
time: UPP used over 28 h to run on RNASim 100000 and the 
runtime of all three algorithms scales roughly linearly with 
the number of query sequences. For all datasets, J-bandit 
used parameters c à 0:2, R à 3, and T à 10. For all datasets 
besides those in homfam (19), we set K to 20. For the 19 

large homfam datasets, we set K to 10 because these sequen-
ces have a much shorter average length of 144, with many 
sequences shorter than 20 (the average sequence length of all 
other datasets was at least 1000). Note, however, that setting 
K to 20 for the 19 homfam datasets did not change the over-
all average performance by much. We used a backbone size 
of 1,000 for all datasets except for the three ROSE datasets 
since these datasets only have 1000 sequences. For these three 
ROSE datasets, we used a backbone size of 500 sequences.

To summarize the results in Table 2, J-bandit runs faster 
than UPP, creating alignments with similar, though often 
slightly degraded accuracy. Compared to UPP2, J-bandit 
sometimes gives improved accuracy and sometimes gives de-
graded accuracy depending on the dataset. Similarly, J-bandit 
is faster than UPP2 in most, but not all cases.

Figure 4. Performance metrics for various datasets when the J-score is 
computed exactly for a range of k. The “á” symbols correspond to the 
performance metric for UPP for the dataset corresponding to the 
symbol’s color.
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For datasets with large sequence lengths and many sequen-
ces, e.g. 16S datasets and RNASim datasets, J-bandit is signif-
icantly faster than both UPP and UPP2 as highlighted in  
Fig. 5. For example, for the RNASim-100000 dataset, J-ban-
dit completes in 16.5% of the time used by UPP2, and only 
7% of the time used by UPP. This is expected from a theoreti-
cal standpoint since both UPP and UPP2 calculate bitscore, 
which requires quadratic time in the sequence length ‘, 
whereas even exact computation of the J-score requires only 
linear amortized time in ‘. For datasets with shorter sequence 
lengths such as the three Indelible datasets, the three ROSE 
datasets, and the 19 homfam datasets, we observe the in-
crease in speed of J-bandit is not as pronounced compared to 
UPP and UPP2. In some cases, J-bandit is even slower than 
UPP2 (e.g. Indelible 10000M3, 10000M4). This is not sur-
prising, since UPP2 is designed to be faster than UPP, though 
unlike J-bandit, it is not designed to reduce the effect of se-
quence length on runtime. It should be noted that our algo-
rithms are written in Python, while HMMer (Finn et al. 
2011), which is used for making the assignment in UPP and 
UPP2, is written in C. Hence, it may be possible to accelerate 
our J-score-based approach even further by writing it in a 
low-level programming language like C.

We also performed a smaller experiment to assess peak 
memory usage on four large datasets. In Table 3, we show 
the peak memory usage of UPP, UPP2, and J-bandit on 
16S.3, Indelible 10000M2, RNASim 10000, and ROSE 
1000M1. We chose these four large datasets because we are 
most interested in memory usage when a lot of data need to 
be stored, in both the nucleotide and amino acid cases. We 
obtained these results using the “memory-profiler” Python 

package. The paramater settings used in these runs are identi-
cal to those used in the runs presented in Table 2. We observe 
that J-bandit has a higher peak memory usage than UPP for 
all datasets. In comparison to UPP2, J-bandit has a higher 
memory usage on some datasets and a lower memory usage 
on other datasets. UPP uses less memory than J-bandit due to 
the fact that J-bandit creates hash tables that store all k-mers 
in the query sequences and backbone sequences in order to 
efficiently estimate the J-score. In contrast, these hash tables 
are not created for UPP and UPP2. In addition, the memory- 
intensive computation of estimating and computing the J- 
score is implemented in Python in J-bandit, whereas bitscore 
computation in UPP and UPP2 is performed by HMMer 
which is written in C, a language that generally uses less 
memory than Python.

4 Conclusion
In this work, we proposed a method to speed up the query- 
to-HMM assignment step in the UPP pipeline. This strategy 
is based on two key ingredients: the introduction of the 
J-score and an adaptive search algorithm inspired by Multi- 
Armed Bandit algorithms. This allows us to achieve theoreti-
cal and practical reductions in run-time when replacing the 
query-to-HMM module in UPP with our proposed approach.

While the techniques introduced were developed for the 
specific setting of the UPP pipeline, we believe that they may 
be of broader interest in bioinformatics since bitscores are 
used to choose the best HMM in many applications including 
orthology detection, and metagenomic pipelines. The J-score 
can be thought of as a kind of Jaccard similarity between a se-
quence and a set of sequences and can be easily generalized to 
measure similarity between two sets with different numbers 
of sequences. As we verified empirically, this score can be 
used as a proxy for the bit-score between a sequence and an 
HMM, in situations where exact calculation of the bit-score 
may not be needed. Finally, we point out that techniques 
from MAB may be applicable to other MSA pipelines.

5 Theoretical guarantees via the batched 
UCB algorithm
In this section, we describe how a version of the UCB algo-
rithm (Lai and Robbins 1985) can be used to show that each 
query q can be assigned to the best HMM based on J-score in 
time OÖm log mÜ. In particular, we will use a batched version 
of the UCB algorithm (see, e.g. Tiwari et al. 2020), which 
is appropriate for the J-score refinement based on k- 
mer batches.

The batched UCB algorithm adapted to our problem is 
given by Algorithm 2. Similar to the standard UCB algorithm 
(Lai and Robbins 1985), the algorithm assumes that for each 
HMM h and a random k-mer a, the random variable 
~JÖq; h; fagÜ is σ-sub-Gaussian, and that the parameter σ (or 
an upper bound) is known. Recall that a random variable 
X is σ-sub-Gaussian if PrÖX> tÜ≤ 2 expÖ−t2=σ2Ü. Observe 
that ~JÖq; h;BÜ is trivially sub-Gaussian because it takes values 
in a finite set. In this case, an upper bound on the random 
variable ~JÖq; h;BÜ has a subgaussianity parameter 
1
2 Ömaxa2NkÖqÜ

~JÖq; h; fagÜ−mina2NkÖqÜ
~JÖq; h; fagÜÜ. An upper 

bound on this quantity that can be used in place of it in the 
algorithm is 12 maxa2NkÖSiÜcSiÖaÜ and can be found in a prepro-
cessing step on the sets.Algorithm 2 works by maintaining a 

Figure 5. Time (in seconds) taken for several datasets with long 
sequence lengths.

Table 3. Peak memory usage results in megabytes (MB) for 
four datasets.a

Dataset Alg. Peak memory (MB)

16S.3 UPP 5103
(6323) UPP2 24 098
(1557) J-bandit 9892
Indelible 10000M2 UPP 4265
(10 000) UPP2 13 851
(1000) J-bandit 28 102
RNASim UPP 7076
(10 000) UPP2 24 445
(1555) J-bandit 26 594
ROSE 1000M1 UPP 2077
(1000) UPP2 2020
(1058) J-bandit 8611

a For all datasets, c à 0:2;R à 3;T à 10 for the J-bandit runs. The 
number of sequences is in parentheses below dataset name, followed by 
average sequence length in parentheses.
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set Sactive of active arms (HMMs), initialized as f1; . . . ;mg. 
For each HMM h 2 Sactive, an estimate Ĵh of JÖq; hÜ is main-
tained. At each iteration, a random k-mer batch of size B is 
drawn (with replacement) from NkÖqÜ and the estimates Ĵh is 
updated for all h 2 Sactive. At the end of each iteration, we 
eliminate all h whose confidence interval does not intersect 
with the confidence interval of the current best candi-
date maxyĴh.

Once one HMM is left in Sactive (or tused≥m), we output it. 
Notice that this algorithm is similar to Algorithm 1, except 
that a more careful elimination criterion is used at the end of 
each round, based on confidence intervals. This allows us to 
obtain a theoretical guarantee for Algorithm 2. For 
h 2 â1 : mä, let Δh à JÖq;h⇤Ü−JÖq; hÜ. Then we have

Theorem 1 For δ à m−3, with probability at least 1− 2
δ, the 

algorithm returns the best HMM h⇤ à arg maxhJÖq; hÜ
using a total of M k-mer evaluations, where 

M ≤
Xm

hà1

min
24σ2

Δ2
h

log máB;má ‘
 !

: (5) 

Notice that if σ=Δh is ΘÖ1Ü, then the algorithm finds 
h⇤ with OÖm log mÜ k-mer evaluations. Since we can 
precompute a hash-table mapping each k-mer 
a 2 NkÖSiÜ to cSiÖaÜ along with an analogous map for 
q, we can find h⇤ with high probability in OÖm log mÜ
amortized time. Finding h⇤ for all query sequences q 
results in an amortized run-time of OÖnm log mÜ, as 
we state in Corollary 1 in Section 2. This removes the 
dependence on ‘ completely (while UPP and UPP2 
have a quadratic dependence on ‘) and also improves 
upon the naive exhaustive search algorithm that 
computes each JÖq;hÜ exactly in time OÖnm‘Ü.  

Proof. Notice that tused keeps track of how many 
k-mers have been used in the estimates ̂Jh, for 

h 2 Sactive. Since ~JÖq; h; fagÜ is σ-sub-Gaussian, 
Hoeffding’s inequality implies that, at any iteration of 
the algorithm and for any h, 

PrÖjJÖq; hÜ− Ĵhj>CÜ≤ 2 exp − tusedC2

2σ2

✓ ◆
à 2δ; (6) 

where the equality follows since C à σ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 logÖ1=δÜ

tused

q
. Due 

to the constraint tused<m in the while loop, at most 
m=B iterations occur, and at most mÖm=BÜ≤m2 

estimates ̂Jh are computed throughout the whole 
algorithm. Hence, from the union bound we have that 
(6) holds for all estimates with probability at most 
m2Ö2δÜ. By setting δ à 1=m3, we have that 
JÖq; hÜ 2 â̂Jh−C; ĴháCä for all h 2 Sactive in all 
iterations of the algorithm, with probability at least 
1−m2Ö2δÜ à 1− 2

m. The fact that 
JÖq; hÜ 2 â̂Jh−C; ĴháCä for all h 2 Sactive implies that 
h⇤ can never be eliminated and must be in Sactive at the 
end of the algorithm. 
Now consider some h 6à h⇤. Suppose 
tused>

6
Δ2

h
Ö2σÜ2 log m à 2

Δ2
h
Ö2σÜ2 logÖm3Ü. Then 

Δh>Ö2σÜ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 logÖm3Ü=tused

q
à 2σ

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 logÖ1=δÜ=tused

q
à 2C: (7) 

Since Δh à JÖq; h⇤Ü−JÖq; hÜ, this implies that 

JÖq; h⇤Ü− C> JÖq; hÜáC; (8) 

which guarantees that h is eliminated from Sactive 

if tused>
6

Δ2
h
Ö2σÜ2 log m. 

If after m=B iterations, h is not eliminated, we must 
have jSactivej>1, and we will use an additional ‘ k- 
mer evaluations to compute JÖq; hÜ exactly (on top of 
the B � Öm=MÜ à m performed so far). Therefore, the 
number of k-mer evaluations Mh required to remove h 
from Sactive satisfies 

Mh ≤ minâ 6
Δ2

h
Ö2σÜ2 logÖmÜáB;má‘ä (9) 

for all h with probability 1−2=m. This yields the total 
number of k-mer evaluations in Theorem 1. w   
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Algorithm 2 Batched UCB algorithm to find 
h⇤ à arg maxhJÖq;hÜ

Input: q, âSi : i 2 â1 : mää, σ
Output: h⇤

1: Sactive  f1; . . . ;mg,  tused  0,  C  1
2: For all h 2 â1 : mä, set Ĵ h  0
3: while tused<m and jSactivej>1 do

4:  Draw a batch of k-mers B ⇢ NkÖqÜ of size B with 
replacement
5:  for h 2 Sactive do

6:   Ĵ h  ÖtusedĴ há~JÖq; h;BÜÜ=ÖtusedáBÜ

7:   C  σ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 logÖ1=δÜ
tusedáB

q

8:  end for

9:  Sactive  fh : Ĵ háC ≥ maxy Ĵ y−Cg
10:  tused  tusedáB
11: end while

12: if jSactivej à 1 then

13:  return h⇤ 2 Sactive

14: end if

15: Compute JÖq; hÜ exactly for all h 2 Sactive

16: return h⇤ à argminh2Sactive JÖq; hÜ
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