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Fermi surface transformation at the pseudogap critical point of a cuprate superconductor
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The dance of electrons on Cu atoms in YBCO
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PHYSICS Science 381,790 (2023)
T Universal theory of strange metals from spatially

random interactions

N | Aavishkar A. Patel"?, Haoyu Guo**>, llya Esterlis*°, Subir Sachdev*’*

we consider two-dimensional metals of fermions coupled to quantum
critical scalars, the latter representing order parameters or fractionalized particles. We show that at low
temperatures (T), such metals generically exhibit strange metal behavior with a T-linear resistivity
arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero
spatial average.

i ¢
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See also Aldape, Cookmeyer, Patel, and Altman, Phys. Rev. B 105,235111 (2023)



Spatially random

interactions!

Puddle formation, persistent gaps, and
non-mean-field breakdown of

superconductivity in overdoped
(Pb,Bi)>Sr2CuO¢+s

Willem O. Tromp, Tjerk Benschop, Jian-Feng Ge,
Irene Battisti, Koen M. Bastiaans, Damianos Chatzopoulos,
Amber Vervloet, Steef Smit, Erik van Heumen,

Mark S. Golden, Yinkai Huang, Takeshi Kondo, Y1 Yin,
Jennifer E. Hoftfman, Miguel Antonio Sulangi, Jan Zaanen,

Milan P. Allan

Our scanning tunneling spectroscopy measurements in the
overdoped regime of the (Pb,B1),Sry;CuOg.s high-
temperature superconductor show the emergence of
puddled superconductivity, featuring nanoscale
superconducting 1slands in a metallic matrix

Nat. Mater. 22, 703 (2023)

Disorder in ¢;; induces disorder in J;; =

Counts (%)

407

20
0

40}

20

' UD25K

'OPT35K

| E |

OD23K

" OD12K

OD23K




Transport properties of a strange metal:

1. Resistivity p(T') =po+ AT + ... as T — 0
and p(T) < h/e* (in d = 2).
Metals with p(T') > h/e* are bad metals.

2. Optical conductivity

K 1 D hw
. ~ | -
1 - mjckrans (w) | Ttrans (w) kB T

T
an Heumen et al., Phys. Rev. B 106, 054515 (2022
Ttrans (W) m v . ys- REV ( )

Michon et al., Nat. Commun. 14,3033 (2023)

o(lw) =

Electronic properties of a marginal Fermi liquid:

1. Photoemission: nearly marginal Fermi liquid electron spectral density:

hw 1 hwo
ImY(w) ~ [w[**® ith a =~ 1/2 ; ~ |w|®
mX(w) ~ |w > (kBT> with a / , — w|Py (kBT>

Reber et al., Nat. Comm. 10,5737 (2019)

2. Specific heat ~ T In(1/T") as T" — 0.
Hartnoll and MacKenzie, Rev. Mod. Phys. 94,041002 (2022)
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Hole pockets
and spin liquid

d-wave superconductivity.
Charge order.




The onset of conventional order is a confinement
' transition for the gauge theory describing the
' fractionalized excitations of the FL* spin liquid

; Strange
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Hole pockets
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d-wave superconductivity.
Charge order.




e Which spin liquid?

Hole pockets
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d-wave superconductivity.
Charge order.




e Which spin liquid?

.

‘s o Mean-field theory for FL* in a single-band model?
|

x
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d-wave superconductivity.
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Insulating $=1/2 antiferromagnet H=Y1,5"5,
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Schwinger bosons

1
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a="1,4

Mean-field spin liquid
with gapped bosonic spinons.

(ba) # O: (ba) = 0:

Néel order Spin liquid

Arovas and Auerbach, Phys. Rev. B 38,316 (1988)
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Schwinger bosons
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with gapped bosonic spinons.
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Higgs phase, (z,) # 0: | Confining phase, (z,) = 0: Low energy CP* U(1) gauge theory
Néel order VBS order

2 bAoz =+ 5(15[735
S

L = |(au — mu)za‘z + S‘Zoz‘Q + U|Zoz‘4 + Lmonopole

Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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SU(2) gauge theory of Ny = 2 - ~
fundamental, massless, Dirac fermions.

SO(5) non-linear o-model

of Néel/VBS orders
Obtained from a saddle-point of . B
fermionic spinons moving in w-flux. (_)( with £ =1 WZW term
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SO(5) non-linear o-model
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Many numerical works show that deconfined critical theory applies over a
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Nahum, Serna, Chalker, Ortuiio, and Somoza, Phys. Rev. Lett. 115, 267203 (2015)
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High Temperature Superconductivity in a Lightly Doped Quantum Spin Liquid

Hong-Chen Jiang '™ and Steven A. Kivelson®”
Phys. Rev. Lett. 127, 097002 (2021)

Superconducting valence bond fluid in
lightly doped 8-leg t-| cylinders
Jiang, Kivelson, and Lee, Phys. Rev. B 108,
054505 (2023)

Upon increasing the cylinder width from
4 to 8, we observed a significant
strengthening of the quasi-long-range
superconducting correlations, and a
dramatic suppression of any “competing”
charge-density-wave order. Extrapolating
from the observed behavior of the width 8
cylinders, we speculate that the system
has a nodeless d-wave superconducting
ground-state 1n the 2D limit.
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Ancilla theory of FL*
in a single-band model

Ya-Hui Zhang



Paramagnon theory of the Hubbard model

H = — th’jczacja T UZ (niT ;) (nii ;) _ Mzcjacia

We use the operator equation (valid on each site 7):

1 1 2U o, U
U(TLT 2) (TQ 2)— SS |4

Then we decouple the interaction via

K ~ 3 S
exp (?UZ/dTSZQ) — /D(I)Z'(T) exp (Z/dT @@ZQ —<I>z--c,1-ta7-2 Cio’ )

This yields the ‘Scalapino-Pines-Chubukov-Schmalian...” theory for a ‘paramagnon
quantum rotor’ ®; coupled to otherwise free fermions c;,.

®; is the creation/annhilation operator for charge 0, spin S = 1 particle.
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Near-degenerate instabilities
to dSC with 4 nodal points
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Keimer, Kivelson, Norman, Uchida, and Zaanen, Nature 518, 179 (2015)
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