2402.09502v3 [cond-mat.str-el] 3 Apr 2024

arxiv

arXiv:2402.09502

Deconfined quantum criticality of
nodal d-wave superconductivity, Néel order, and charge order

on the square lattice at half-filling

Maine Christos, Henry Shackleton, Subir Sachdev, and Zhu-Xi Luo
Department of Physics, Harvard University, Cambridge MA 02138, USA

Abstract

We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and
a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are
chosen so that they match with those of the spinons of the m-flux spin liquid. Global symmetries of all gauge-
invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at
half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background
m-flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-
coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays
several confining/Higgs phases: a nodal d-wave superconductor, and states with Néel, valence-bond solid, charge, or
staggered current orders. There are also a number of quantum phase transitions between these phases which are very
likely described by 2+1 dimensional deconfined conformal gauge theories, and we present large flavor expansions for
such theories. These include the phenomenologically attractive case of a transition between a conventional insulator
with a charge gap and Néel order, and a conventional d-wave superconductor with gapless Bogoliubov quasiparticles
at 4 nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a

bicritical point at the junction of Néel, valence bond solid (kekule), and Dirac semi-metal phases.
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I. INTRODUCTION

The cuprate high temperature superconductors display a complex phase diagram involving low tem-
perature (7') phases with d-wave superconductivity, Néel antiferromagnetic order, and charge order, and
the higher T pseudogap and strange metals [1]. The remarkable pseudogap metal phase is of central
importance, and many of its properties can be described by a model of hole pocket Fermi surfaces [2-19].
Such Fermi surfaces enclose an area distinct from the Luttinger volume, and this requires the presence
of a background spin liquid, realizing a state that has been called a ‘fractionalized Fermi liquid’ (FL*)
[20, 21|. Recent works [18, 22| have proposed that the low 7' cuprate phase diagram can be understood
from a theory of the confining instabilities of a FL* state with a ‘r-flux’ critical spin liquid on the square
lattice. The critical spin liquid emerges from a background into a central role in such confining transitions,
and a detailed understanding of its role then becomes a central ingredient in unraveling the mysteries of
the cuprate phase diagram.

An important feature of the FL* theory is that its fractionalized excitations have the same basic
structure as that in a Mott insulator at half-filling, even though the pseudogap state is at non-zero doping.
The doping is accounted for by the hole pocket Fermi surfaces, which are coupled to the spin liquid. Given
this relatively innocuous influence of non-zero doping, the present paper will investigate a simpler model
which remains at half-filling, but has the same set of conventional symmetry-breaking phases without
fractionalization at low temperatures, as at non-zero doping: a d-wave superconductor with 4 nodal points
for Bogoliubov quasiparticles, and conventional states with Néel, valence-bond solid, charge, or staggered
current orders. There are quantum phase transitions between these states which are very likely described
by deconfined critical points, allowing a systematic study of associated critical spin liquids. Our simpler
model should be amenable to numerical simulations by the well-developed methods of lattice gauge theory
of relativistic systems [23], and shed light on the role of spin liquids in the phase diagram of the cuprates.

We begin by noting a few recent developments which relate to the FL*-confinement proposal of Ref. 18:



e Angle-dependent magnetoresistance measurements on the underdoped cuprates [24] are consistent

with hole pocket Fermi surfaces [2-19].

e A long-standing issue with the hole pocket model of the pseudogap metal is that the pairing of
quasiparticles around the hole pocket leads to a d-wave superconductors with eight nodal points
[25]. This problem can be resolved by not viewing the onset of superconductivity from the pseudogap
normal state as a BCS-like pairing of electronic quasiparticles on Fermi surface. Instead, the spin
liquid of the pseudogap already features a singlet pairing of electrons [26], and we should consider the
onset of superconductivity as a confining transition of the m-flux spin liquid by the condensation of
a fundamental Higgs scalar. (In both viewpoints, the non-zero temperature transition of the onset
of superconductivity remains in the Kosterlitz-Thouless universality class.) Then the fermionic
spinon nodal points of the spin liquid annihilate four of the nodal points descending from the hole
pockets, and we obtain a d-wave superconductor with four nodal points |22, 27|, as is expected in a
conventional BCS state. Moreover, the large velocity anisotropy of the nodal quasiparticles is easily

obtained in this approach.

e Photoemission observations in the electron-doped cuprates [28] show a gap maximum at an inter-
mediate wavevector away from the edge of the Brillouin zone, and not on the Fermi surface. This
feature is also obtained as a consequence of the background spin liquid [22]. Indeed, even when
the pseudogap metal has no Fermi surfaces intersecting the zone diagonals, the resulting d-wave
superconductor still has 4 nodal points along the zone diagonals, and these are directly descended

from the nodal spinons of the underlying spin liquid [22].

e Numerical fuzzy sphere and other studies have found evidence for m-flux spin liquid criticality, which
ultimately gives way either to ‘pseudo-criticality’ [29] or nearby multi-criticality [30-32|. In contrast,
the commonly used ‘staggered flux’ spin liquid [33] is expected to be strongly unstable to a trivial

monopole [34, 35].

e Numerical studies [36-40] of S = 1/2 square lattice antiferromagnets with first- and second-neighbor
exchange interactions (the Ji-J, antiferromagnet) display a transition from the Néel state to valence
bond solid order [41, 42], across an intermediate spin-liquid regime which is likely described by the
m-flux spin liquid [43]|. A gapless Zs spin liquid has also been proposed for this intermediate regime,
and this can be obtained naturally by condensing Higgs fields on the m-flux spin liquid [44-47] (the

model studied in the present paper can be easily extended to include these Higgs fields, but we will



not present the extension here [48|). Doping this square lattice spin liquid has recently been shown
[49, 50] to lead to robust d-wave superconductivity, and this establishes a close connection between

the m-flux phase and d-wave superconductivity [51, 52].

e Nuclear magnetic resonance experiments on YBayCuzO, [53] show the appearance of a secondary
spin gap which is possibly connected to the appearance of charge order. This can be associated with
the gapping out of the spinon excitations upon a confining transition to charge order, as we study

in a simplified model in this paper.

e Magnetotransport studies in HgBagCayCusOg 5 [54] indicate a direct transitions between magnetic
and charge ordered states. Such direct transitions are possible across deconfined critical points

considered here.

The ‘m-flux’ critical spin liquid is described by a theory of fermionic spinons with Ny = 2 massless Dirac
points in their dispersion coupled to a SU(2) gauge field [55]. This state also has a dual description [43]
in terms of the critical CP' theory of the bosonic spinons [41]. These dual descriptions are important in
understanding the low temperature states of the cuprate phase diagram as confinement/Higgs transitions

of this spin liquid:

(i) The onset of Néel order is described by the Higgs condensate of the bosonic spinons in the CP!
theory [56], or equivalently, by the confinement of the SU(2) gauge field of the fermionic spinon
theory.

(ii) The onset of d-wave superconductivity with nodal Bogoliubov quasiparticles [27], along with the
onset of charge order, is described by the Higgs condensation of a charge e, SU(2) fundamental

boson B (introduced in Refs. 3 and 33) of the fermionic spinon theory.

As noted above, this paper will study a simpler limit of the theory of Ref. 18. We will move from
the system at non-zero doping, and instead consider only the half-filled square lattice with a particle-hole
symmetric Hamiltonian. Rather than introducing superconductivity and charge-order by doping, we will
explore the onset of such phases at half-filling as may be induced by reducing the Hubbard U [57], or by
introducing additional short-range interactions including pair-hopping terms [58, 59].

At half-filling, there are no hole pocket Fermi surfaces, and this simplifies the treatment of charge
fluctuations. The particle-hole symmetry leads to a Lorentz-invariant form for the dispersion of the
excitations at low energies. We will study zero temperature quantum phase transitions between (A) the

insulating Néel state, (B) a d-wave superconductor with 4 gapless nodal quasiparticles, and (C) a state
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FIG. 1: We are interested in a SU(2) gauge theory with N; fundamental Dirac fermions, and N, = 2 fundamental
complex scalars. We show phase diagrams of two distinct large Ny and N, limits, with N¢/N, fixed. First order
phase transitions are denoted with a solid line while second order phase transitions are denoted with a dashed
line. (a) Phase diagram of the theory £, + Lp in (3.1) and (3.7). There is a USp(2N;)xUSp(Ny)xU(1) global
symmetry for v # 0. (b) Phase diagram in an alternative large N, limit discussed in Appendix A of the theory
Ly+Lpin (3.1) and (A4), with a USp(2N¢)xSU(N)xU(1) global symmetry for v # 0. The theories in (a) and
(b) co-incide along the line v = 0, when they both have USp(2N;)xUSp(2N) global symmetry. The two theories
are also identical for the physically interesting case with Ny = N = 2 for all v.

with charge order; see Fig. 1 for the phase diagrams of the continuum field theories to be introduced
in Section III and Appendix A. This field theory is a SU(2) gauge theory N, = 2 relativistic scalars in

addition to the Ny = 2 massless Dirac fermions of the 7-flux state.

We note an earlier work [60] which considered a continuous Néel/d-wave superconductor quantum
transition, but without gapless nodal quasiparticles in the d-wave superconductors, and only easy-plane
Néel order. Also, SU(2) gauge theories of the cuprates have been studied extensively earlier, as reviewed
in Ref. 33, but in reference to a staggered-flux spin liquid which breaks the gauge symmetry to U(1)—we

will not consider this spin liquid because it is expected to be unstable to a trivial monopole [34, 35].

In Section VII, we will consider the consequences of adding charge fluctuations to the Néel-VBS tran-
sition on the honeycomb lattice [61, 62] (VBS order is also known as ‘kekule’ order on the honeycomb
lattice). Following the same procedure as for the square lattice, we find only a Dirac semi-metal phase with
no broken symmetry, in contrast to the superconducting and charge-ordered phases on the square lattice.
As shown in Fig. 2, the Néel, VBS, and Dirac semi-metal phases of the honeycomb lattice are proposed to
meet at a multicritical point, as in the numerical study of the Hubbard model on the honeycomb lattice in
Ref. 63. In our theory, the multicritical point is bicritical [64], and is described by the Ny = 2, N, =1 case

of the SU(2) gauge field theory considered in the body of the paper. The same field theory was considered
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FIG. 2: Schematic phase diagram for the SU(2) gauge theory of an extended Hubbard model on the honeycomb
lattice. The bicritical point B [64] is described by the Ny = 2, N, = 1 SU(2) gauge field theory. The thick line
indicates a first-order transition. The thin lines indicate second-order transitions out of the Dirac semi-metal phase
which are presumed to be described by Gross-Neveu-Yukawa field theories [66] without gauge fields.

earlier by Hermele [65] for a different proposed transition on the honeycomb lattice.

Our main results here are obtained by two different large flavor expansions of our SU(2) gauge theory.
The resulting phase diagrams in Fig. 1 contains first-order boundaries, a multi-critical point M where all
three phases meet, and second-order transitions between Néel/VBS order, charge order, and nodal d-wave
superconductivity. The multi-critical point M and the second-order transition are described by deconfined
critical SU(2) gauge theories. We will determine the scaling dimensions of gauge-invariant Néel, valence

bond solid (VBS), d-wave superconductor, and charge order parameters in these critical theories.

Of particular interest is the scaling dimension of the gauge-invariant electron operator, which we also
determine. This controls the manner in which gapless nodal quasiparticles emerge in the d-wave supercon-
ductor across the transition from an insulator with a non-zero gap to charged excitations. We summarize
the results on scaling dimensions in Table III. Ref. 22 considered a mean-field theory of the corresponding
transition in the electron-doped cuprates: in this case, the transition is to a pseudogap-metal, but the
nodal region of the Brillouin zone can be gapped in the electron-doped pseudogap metal. Thus our theory
has a remarkable feature not present in BCS theory: gapless nodal quasiparticles appear in a supercon-

ductor at a momentum which is gapped in the normal state. As we noted above, Ref. 22 pointed out



connections of this feature to recent photoemission experiments in the electron-doped cuprates [28].

Section II introduces the square lattice SU(2) gauge theory of interest in this paper. This theory is
defined in terms of fermionic spinons f;, a =7,] and charge e bosons B; on the sites ¢ of the square
lattice. Both the fermionic and bosonic matter fields transform as SU(2) gauge fundamentals, and there
is also a dynamical SU(2) gauge field on the links of the lattice. We then consider the most general lattice
gauge theory for these matter and gauge fields consistent with the projective symmetry transformations
of the m-flux spin liquid, and with gauge-invariant observables having the same symmetry signatures as
the Hubbard model with particle-hole symmetry. In the limit of strong gauge couplings, we can perform
a strong-coupling expansion of our lattice gauge theory by integrating out the lattice gauge fields [23],
and this will lead to the extended Hubbard model corresponding to our SU(2) lattice gauge theory. See
Chapter 14 of Ref. 67 for a simpler example of a conventional theory of gauge-invariant degrees of freedom
obtained from a lattice gauge theory of partons.

Note that our method is the converse of that usually followed in the condensed matter literature. We
do not start from a lattice model of correlated electrons, and then obtain a gauge theory by fractionalizing
the electrons. Instead, we start from a lattice gauge theory and match it to the electronic problem of
interest by general arguments based on gauge invariance and global symmetry. This is a powerful method
of incorporating non-perturbative knowledge of a fractionalized state (in our case, the m-flux spin liquid)
in a very general setting.

Section III describes the continuum limit of the square lattice gauge theory of Section II along the lines
of Ref. 18. This leads to a quantum field theory of Ny = 2 Dirac fermions and N, = 2 complex scalars,
both transforming as SU(2) gauge fundamentals. We also discuss the generalizations of this theory to
general Ny, and the operators corresponding to the gauge-invariant observables of the Hubbard model.

Section IV examines the nature of fermion-boson couplings in the continuum field theory without any
spatial and temporal gradients. We find that there are no allowed terms which are relevant in the large
Ny expansion of critical theories. However, we do need to consider the higher-order formally irrelevant
terms because they are important in determining the fate of the spin gap in the Higgs phases where the
bosons are condensed.

Section V describes the N, = oo saddle points of the continuum theories which lead to the phase
diagrams in Fig. 1.

Section VI computes the 1/Ny corrections to the scaling dimensions of the d-wave superconducting,
Néel, and charge order parameters, and the electron operator at momenta (4 /2,4+m/2). This is carried

out by the SU(2) gauge theory analog of the computations in Ref. 68 for U(1) gauge theories.



Section VII describes the extension of our results to the honeycomb lattice.

II. SU(2) SQUARE LATTICE GAUGE THEORY

We begin by recalling the SU(2) square lattice gauge theory of Ref. 18 in the simpler setting of a half-
filled square lattice, with no Fermi surfaces in any of the states studied. We also assume a particle-hole
symmetry. This lattice gauge theory is likely free of a sign problem in quantum Monte Carlo.

We write the electron spin operators as

CiT
C; = , (2.1)

|
Gy

on sites ¢ of a square lattice. We fractionalize the electrons into fermionic spinons f;,, @ =7, | and charge

e bosons B; via [3]

Cs = Bl (2:2)
where
fit
Vi = ? , (2.3)
fu
and
By; By; —B3.
Bi = ! N Bz = ! 2 . (24)
By; By; B,

This fractionalization introduces a SU(2) gauge symmetry, where
Vi = Uiy, Bi = U;By, (2.5)

under a SU(2) gauge transformation U;.

Remarkably, essentially all of the physics of the m-flux spin liquid phase, and its descendants, studied
here are consequences of the SU(2) gauge symmetry, the spin rotation symmetry, and the action of other
symmetries on the spinons as summarized in Table. I. The action of the latter symmetries on the B
chargons follows from the decomposition (2.2), and these are also shown in Table I. A key property of

Table I is the relation

T, T, = —T,T; (2.6)



Symmetry Ca fa B,
T, Ca (=1)¥f, (-1)¥B,
T, Ca fa B,
P, Ca (=1)*fa (=1)*B,
P’y Ca (_l)yfoc (_1)yBa
Py Ca (=1)*¥ f, (-1)*¥B,
T gapcs  |[(=1)"eapfp|(=1)"1V B,
C  |(=1)™eapch|  eapfi |(=1)""VB;

TABLE I: Projective transformations of the f;, spinons and B; chargons on lattice sites 4 = (z,y) under the
symmetries T, : (z,y) = (z+ L,y); T, : (z,y) = (x,y+1); Py : (z,y) = (—=z,¥); Py : (z,y) = (z,—y);
P,y : (z,y) — (y,x); time-reversal 7, and particle-hole symmetry C. The indices a, 5 refer to global SU(2) spin,
while the index a = 1,2 refers to gauge SU(2). Also shown are the (non-projective) transformations of the gauge-
invariant electron c,,.

which ensures 7-flux on both spinons and chargons, and at least two degenerate minima in the dispersion
the chargons.

The degrees of freedom of our square lattice gauge theory are one SU(2) fundamental fermion v; on
each lattice site, one SU(2) fundamental boson B; on each lattice site, and a SU(2) link field U;; on each
nearest-neighbor link of the square lattice. We now describe the various terms in the Hamiltonian coupling
these degrees of freedom.

The simplest fermion spinon imaginary time (7) Lagrangian compatible with Table T is

L) =3 wiDy —is Y [zpjeijUijwj viegl, (2.7)
i (i)

where D is a co-variant time derivative, ¢,7 are nearest-neighbors, J is a real coupling constant of order

the antiferromagnetic exchange,

€ji = —€4j (2.8)

is a fixed element of the Zs center of the gauge SU(2) which ensures 7 flux per plaquette; we choose

Ciite =1, €iirg=(—1)", (2.9)

where © = (z,y), £ = (1,0), y = (0,1). The link field Us;; = U]J.ri is the fluctuating SU(2) lattice gauge
field, and the mean-field saddle point of the 7-flux phase is obtained by setting U;; = 1. The hopping
term in £(1¢)) has been chosen pure imaginary as that ensures a simple coupling to the SU(2) gauge field,
along with SU(2) spin rotation invariance. The spin operator on each site S; = (1/2)fgaaa@fw (o are the

Pauli matrices) can be expressed in terms of the 1; in the following SU(2) gauge-invariant combinations:
25 =i, =1 , Spi—iSyi = —eaptaitvi (2.10)

10



where a,b = 1,2 are SU(2) gauge indices, and &4 is unit antisymmetric tensor. The nearest-neighbor

bond energy operator can be identified with each individual term in £(v))

bond energy: (S;-S;) ~ Qfij = Qrji = 1/11 UiV T ¢ j} . (2.11)

In the cuprates, modulations of Qy;; would show up as modulations in the charge density on the sites
(and similarly for modulations in @ ;; below).

Turning to the bosonic partons, and following Ref. 18, we can also write down the most general
effective Lagrangian for the B;, keeping only terms quadratic and quartic in the B;, and with only on-site

or nearest-neighbor couplings:
— S IDBif* 4+ BB, —iwy Z [BjemU B, i g] +V(B). (2.12)

A linear time derivative term is allowed only in the absence of particle hole symmetry, and so has been
omitted. The couplings r, w; are real Landau parameters, and the quartic terms are in V(B). These
quartic terms are more conveniently expressed in terms of quadratic gauge invariant observables. By
examining the transformations in Table I, we can deduce the following correspondences between bilinears

of the B with those of the bilinears of the gauge-neutral electrons:

site charge density: <cJr c; > ~p; = BgBi

[T T
(the correspondence between p; and site charge density holds
only in the absence of particle-hole symmetry; see Section IV),

bond density: <cT +ck e > Qpij = Qpji =1 (BTe U, B >

(%o’ _7a Joa o Y]
bond current: z<c]L c. —ch e > ~ Jij = —Jji = Re <BT6 U..B. )

T ja Jja it PRt Y % il |

pairing: <5aﬁciacjﬁ> ~ A,,;j = Aji = EabBaieijUiijj . (2.13)

Note that the bond density observable @)y ;; of bosons above has the same symmetry signature as the
bond energy Q¢ 4; of fermions in (2.11), and both are identical to the hopping terms in £(B) and L(v)
respectively. Now we can write an expression for V(B) by keeping all quartic terms which involve nearest-

neighbor sites:

= %pr + VY pi (piva + pivg) + 9 181
i i (@)
+IDY Qi+ KLY T (2.14)
(i3) (i3)

11



We also have the usual flux energy term of lattice gauge theory for the gauge field U;;

LU) = 1 > T [UiUsUniUt + c.c., (2.15)
9 s jklen
along with a gauge field kinetic energy [69].

Finally, we can consider quartic terms which couple the spinons and chargons directly. From the
composite operators defined above we can write down the following terms involving only nearest-neighbor
sites

£(B) =3 [N elyejo + M chocio + 20 Quig Qrig)| - (2.16)
(i5)

Our aim is to determine the phase diagram of the above square lattice gauge theory as a function of the
boson ‘mass’ tuning parameter r, and the various quartic boson couplings in (2.14). The general physics
is that of a transition between Higgs and confining phases of the SU(2) gauge theory, with deconfined
conformal gauge theories describing continuous transitions between the phases. When r is large and
positive, B excitations are gapped, and we can work with the fermion-only theory in (2.7)—this theory is
expected to confine into an insulator with either Néel or VBS order [29, 43, 70]. On the other hand, when
r is negative, B condenses in Higgs phases, and fully quenches the SU(2) gauge field. The Higgs phases

break one or more of the global symmetries, based upon the correspondence in (2.13).
III. QUANTUM FIELD THEORY AND ORDER PARAMETERS

Now we take the continuum limit of the square lattice gauge theory action in Section II, and obtain
the quantum field theory studied in the present paper. We will take the simplest case in which the
boson hopping terms are only nearest-neighbor, as in (2.12), so there are only two valleys in the boson
dispersion. This will lead to a SU(2) gauge theory with Ny = 2 flavors of SU(2) fundamental Dirac
fermions v, and N, = 2 flavors of SU(2) fundamental bosons B. As for the lattice gauge theory in
Section II, almost everything follows from the symmetry transformations of the fields: the continuum
limits of the transformations in Table I are presented in Table II.

For the continuum limit action of the fermionic spinons, we follow the notation of Ref. [47]|, which

follows that of earlier related works [43, 46, 71|, in obtaining from (2.7) the fermionic Lagrangian
Ly = ipy" (9, — iAS0®) 1h, (3.1)

where 0 are the Pauli matrices, o = x,y, z, v* are 2 x 2 Dirac matrices which act on the sublattice space,

A7} is the SU(2) gauge field, and the ¥ have an additional Ny = 2 valley (‘flavor’) index which is not shown.

12



From the % bilinears, we can make a gauge-invariant 5-component real vector, which represents the 3 + 2
components of the Néel and VBS order parameters [43-45]; the Néel order is a staggered modulation of
the spin in (2.10), while the VBS order is a modulation of the bond energy in (2.11). The properties of
Ly are invariant under global SO(5) ; rotations of this vector, and all our analysis below will preserve this
SO(5) s symmetry (the f subscript merely denotes that the symmetry acts on the fermions).

It is a simple matter to generalize (3.1) to arbitrary integer Ny: we allow the valley index to run
over 1...Ny. After transforming to Majorana fermions, the free fermion Lagrangian has a SO(4Ny)
symmetry, and modding out the gauge symmetry as in Ref. 43, we conclude that the Lagrangian £, has
a USp(2Ny)/Zo global symmetry.

In the bosonic matter sector, we express the lattice B; bosons in terms of complex bosons B, with
a = 1,2 the SU(2) gauge index, and s = 1... N, = 2 the valley (‘flavor’) index [18]:

¢

—Bgpeim@ty)/2 4 B (V2 + 1)€iﬂ(%y)/27
I even
Ba(r) = (3:2)
Bal(\/i + 1)€Z7T((Ii+y)/2 — Ba2€i7r($_y)/2’
z odd

Under particle-hole symmetry C, the transformations in Table I now imply that B,s — Bj,. Then (2.13)

leads to the following gauge-invariant order parameters in the continuum limit [18§]

d-wave superconductor : £4,Bq1 By
x-CDW : B}B,, — Bi,B,, = B'/*B
y-CDW : B! B,, + BB, = BB

d-density wave : i <321Ba2 - BZ2Ba1) = _-B'uYB (3.3)

where p acts on valley indices. In terms of the lattice order parameters in (2.13), the d-wave supercon-
ductor has A; ;15 = —A; 4y, but is independent of 4. The charge density waves (CDWs) have period 2
modulations of @ ;; and p; (the modulations of p; are absent when there is particle-hole symmetry, see
Section 1V), and are site-centered unlike the bond-centered modulations of Qy;; in the VBS state. The
d-density wave order is odd under time-reversal, and has a staggered pattern of electrical currents J;;.
Note that the CDW and d-density wave orders can be written as a SO(3) vector Biu'B | i = z,y,2. In
combination with the complex superconducting order, the order parameters in (3.3) form a SO(5); vector,
for reasons very similar to the fermions (again the b subscript denotes that this SO(5) acts on the bosons).

Computing the magnitude of this SO(5), vector, we obtain an important identity which is easily verified

13



by explicit evaluation
2 o) 2 2
(B'B)? = (B'W'B)" +4|easBar Bual” (3.4)
The continuum limit of the Lagrangian (2.12) for the bosonic sector is

Ly =|(8, —iA%®) B|* + r|B]? +ulB|*
2 2
+ oy (BWB) + o (BWB)

2
+ vy (BTuyB> + 03 |€ap Ba1 Bral” - (3.5)

The first three terms in L5 have the SO(5), global symmetry, for reasons essentially identical to those
for L. All the order parameters in (3.3) are degenerate in this limit. This degeneracy and the SO(5),
symmetry are broken by the vy 23 terms in (3.5), which are simply squares of the order parameters in
(3.3). The identity in (3.3) was overlooked in Ref. [18], and has the consequence that the 5 quartic terms
in (3.5) are not all independent—this has no material consequence to the mean-field results of Ref. [18§],
apart from a redundant labeling of couplings. In the Higgs phase where B is condensed, one of the order
parameters in (3.3) must be non-zero, and, in mean-field theory, the choice is determined by the relative
values of vq 23 [18].

The generalization of the first three terms in (3.5) to arbitrary integer Ny > 2, N, even is straightfor-
ward, but the vy 23 terms in require further consideration. We limit ourselves to the case v1 = v9, so that

the CDW orders and the d-density wave orders become degenerate. Then we can write (3.5) as

Lp = (0, —iA50®) B]* + B +alB|*

. 2
o (BWB) + 03 | Ba1 Buo|? - (3.6)

Next, we use the redundancy implied by (3.4) to set v1 = 0 in (3.6). Then one extension of (3.6) to general
Ny for the bosonic flavor indices is obtained by replacing €4 in the vs term by Js the USp(XV,) invariant
tensor, consisting of N;/2 copies of 4 along the diagonal. (An alternative large NV} extension in which
v3 is set to zero is discussed in Appendix A.) In this manner we obtain a Lagrangian valid for any N,
(following conventions in Ref. [72])

Ly = (0 —iA%0”) BI* + QLNb (| Basl? — Ny /g)? — %b BT 7eB|” . (3.7)

Recall that the indices a, b act on the SU(2) gauge indices, and not the flavor indices, and so do not need a

large Nj generalization. For N, = 2, the correspondence to the couplings in (3.5) is u = 2Npu, g = —u/r,
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v = —Nyv3/4. For general Ny, the order parameters in (3.3) are replaced by the SU(2) gauge-invariant

operators

d-wave superconductor :  Jst€apBas Bt

charge order : B!, T%.B (3.8)

as~— st~ at

where T? are generators of USp(N}) obeying
T =1" | TT74+JT'=0. (3.9)

We refer to the combined and degenerate CDW and d-density orders simply as ‘charge order’.

We can now use standard methods to generate a large N; expansion of (3.7) at fixed u, g, and v. The
coupling g will be used to tune across the transition, while v will determine the fate of Higgs phase where
B is condensed. The theory in (3.7) has a global USp(N,)xU(1) symmetry, and the Higgs phase with B
condensed either breaks the U(1) symmetry leading to d-wave superconductivity, or breaks the USp(Ny)
symmetry leading to degenerate CDW /d-density wave orders.

At v = 0, the global symmetry of (3.7) is enhanced to USp(2Ny)/Zs (as for the fermionic spinons [43]),
and the superconducting and charge orders all become degenerate. The enhanced symmetry is evident in

the matrix form of the bosonic fields in (2.4), which generalizes in the continuum to

Bys —B3
Bo=| " T* ], (3.10)
BQS st
obeying the reality condition
Bs =0YB;o" . (3.11)

The USp(2NVy) global symmetry U, then acts as right multiplication B — BU,, where Uy is a 2N, x 2N,
matrix acting on both the s flavor index, and the right matrix index of (3.10). The condition (3.11) leads
to the defining conditions for USp(2/N):

Ui, =1, Ulo'Uy=0". (3.12)

Note, also, that the SU(2) gauge symmetry in (2.5) acts a left multiplication By — UBs. As in the
fermion case, the USp(2/Vy) and gauge SU(2) share a common Zg center, and hence the global symmetry
is USp(2Ny)/Zs.

The full action of the microscopic symmetries on the continuum fields is listed in Table II. To retain a

concise representation of the SU(2) spin rotation symmetry, we re-express our spinon degrees of freedom
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Symmetry B, Xab
T, —ip® B, K Xap
T, —iu* By, 1w Xap
P, B, =iy Xap
Repy | —EHEB, |6 fhemimit /iy,
T B FOuy X*
C B* XaoY¥
U(1). ¢ B, Xoup
SU(2), U,B XU;r
SU(2), B U X

TABLE II: We tabulate the action of the microscopic symmetries, along with the SU(2) gauge transformations, on
the continuum fields. To concisely express the action of SU(2) spin rotation symmetry, we represent the spinon
degrees of freedom in terms of a matrix of Majorana fermions X. The v matrix «° is the labels the temporal
component.

in terms of Majorana fermions. Following Ref 43, we introduce the 4 x 2 matrix of Majorana fermions
X0 Here a,s,b are the spin, valley and gauge indices, respectively. The relation between X and the
Dirac fermions is given by 1, s = io’i”le,s’b. The SU(2) gauge symmetry acts as X, 5.5 — Xaﬁ;CUib and
SU(2) spin rotation symmetry acts as Xg s — UgeXcsp. The action of all the symmetries apart from
spin rotation symmetry lifts directly to the complex fermions, although a U(1) subgroup corresponds to
a uniform phase rotation 1 — €"1). Both representations will be utilized here - the Majorana represen-
tation for when a complete symmetry analysis is required, and the Dirac representation for perturbative

computations.

Along with the gauge-invariant fermion and boson bilinears noted above, we will also consider mixed
gauge-invariant bilinears which lead to the electron operator measured in photoemission experiments.
The quantum field theory yields the electron operator near the 4 nodal points k = (£7/2,7/2). The
particular combination of low-energy spinons and chargons that correspond to these nodal excitations is
rather complicated, as the spinor structure of the Dirac spinons must be unpacked, i.e we consider the
fields 1450 With gauge index a, valley index s, and spinor index a (which microscopically corresponds to

a sublattice index). Suppressing the valley index and taking the Pauli matrices p! to act on both chargon
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and spinon valley indices, B} 1i“aq = B} 11ty 0ata, We have
Bzwy (¢a1 + (\/§+ 1) 1%2) )
€abBa ((\/5 + 1) a1 — 7/%12)

—Bip® ((V2+1) Va1 + Ya2) (3.13)
€abBapt” (-%1 + (\/§+ 1) 1/’(12) .

Cr=(r/2,7/2) X

Cr=(—n/2,7/2) X

As we will show, generic operators of the form B} t,sa and €,,Bastpso are all renormalized in the
same way at criticality, so the details of Eq. 3.13 will not be relevant for computing the scaling dimension
of the electron operator.

We will analyze the theory L4+ Lp in (3.1) and (3.7) in the limit of large Nt and Ny, with a fixed ratio
Ny /Ny. We obtain the leading 1/Ny corrections to the scaling dimensions of the gauge-invariant fermion
and boson bilinear order parameters, and also the electron operators in (3.13). We will also obtain the

corresponding properties in an alternative large N limit in Appendix A.
IV. FERMION-BOSON INTERACTIONS AND SPIN GAPS

In Section III, we constructed a Lagrangian describing spinon and chargon fluctuations and their cou-
pling to a shared SU(2) gauge field. Importantly, there exist three independent quartic chargon interactions
which are relevant at tree-level and must be tuned in order to reach a continuous transition. In this sec-
tion, we consider symmetry-allowed interactions between the spinons and chargons. The reason for this
is twofold. First, quartic interactions involving two spinons and two chargons are marginal at tree-level,
and corrections to their scaling dimension are important for the behavior of the critical theory. Second,
condensation of the chargons can qualitatively modify the dispersion of the spinons in the charge-ordered
phase, either by producing a gap or generating a Fermi surface. Note that upon condensation of the char-
gons, the spinon becomes associated with the electron, and these dispersion modifications are reflected in
the electronic spectral function. We show that in fact no quartic chargon-spinon interactions are allowed
by the microscopic symmetries in the critical theory, provided we enforce particle-hole symmetry. Relaxing
particle-hole symmetry admits two quartic interactions. In the charge ordered phase, these terms shift the
Fermi energy of the Dirac spinons, thereby inducing a spinon Fermi surface.

In this section, we will use the Majorana representation of the fermionic spinons; the explicit action
of spin rotation symmetry is essential in our symmetry analysis. In this language, a generic quartic

interaction that respects both charge conservation and spin rotation invariance can be expressed in the
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form
S AapiTr [But By X, (4.1)
a,B,j
where X = XT70 and A is a coefficient tensor, not to be confused with the gauge field. The indices
«, 3,7 run over four variables, the three Pauli and v matrices as well as an additional identity element.
We perform a systematic search for symmetry-allowed quartic couplings by deducing the action of the
microscopic symmetries on A, g ;, which we regard as a 4% = 64-dimensional vector. Symmetry-allowed
quartic terms are given by choices of A which have eigenvalue 1 under all the symmetries, the existence
of which can be checked numerically.
With this approach, we deduce two terms that are allowed by all the microscopic symmetries, but are
odd under particle-hole symmetry which we assume to be emergent in the critical theory:
Tr [BBTYVOX} ,
(4.2)
Tr {B,uzBTY,uz*me] + Tr [BumBTYumyyX} .

One can also consider analogous quartic couplings of the form ) B, Cop;Tr [B u*B T] Tr lyyj P X } . The
tensor C' transforms identically to A; however, the two quartic couplings in this case vanish identically due
to the anticommutation relations of the Majorana fermions. These results are consistent with taking the
continuum limit of the quartic spinon-chargon interactions on the lattice given by (2.16), where we find that
the leading order terms with no derivatives vanish. Allowing for quartic interactions that break particle-
hole symmetry, such as an on-site chemical potential or a second-neighbor electron hopping, generate the
continuum interactions in (4.2). The first term acts as a chemical potential and, at each of the two gapless
points in momentum space, induces an equal and opposite shift in the Fermi energy on the two species of
spinons.

Quartic interactions do not generate a spin gap in the ordered phases. To find six-term interactions that
can open up a spin gap in the CDW phase, we take the approach of considering the CDW order parameter,
BB and B ® B for z-CDW and y-CDW respectively, and coupling them to a quartic chargon-spinon
interaction that has the same symmetry transformations. Multiple six-term interactions can be obtained
in this manner; however, only two are capable of producing a spin gap, which are

Bt #BTr [B;ﬁBW,ﬁfX} ,
(4.3)
Bl BT | B BIX x|
Note that these terms vanish unless both the z-CDW and y-CDW terms are non-zero. This is consistent

with the fact that, once we are in the CDW phase, one is allowed to add non-gauge-invariant terms to the
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spinon dispersion which break translational symmetry. The symmetry transformations of gauge singlet
and triplet spinon bilinears were tabulated in Ref. 71; from this analysis, one can conclude that the only
possible mass term in the CDW phase, Tr [aaYqu ], must be odd under translations in both the x and y
directions. This term also breaks particle-hole symmetry; however, as it is proportional to four powers of
the chargon condensate, it will generically be smaller than the previously-discussed perturbations which

generate a spinon Fermi surface.
V. LARGE N, SADDLE POINT

This section examines the bosonic theory £p in (3.7), and determines its phase diagram at N, = co.
We introduce decouplings fields A and A to obtain from (3.7)

NpA? N Ny| A2
v

o +iX(|Bas|* = Np/g) — A Tsteap BBy — A Tsteap Byt Bas.  (5.1)

'CB = |D,uBas‘2 +

The saddle point value of i\ will determine the mass of the B bosons, while (/V;,/v)A is the superconducting
order parameter in (3.8). In order to carry out the Gaussian integral over the B bosons, it is convenient to
define a Nambu basis for B. We would like the quadratic terms in B which are associated with pairing to
be completely off diagonal in our choice of basis and for the rest of the terms to be diagonal. We therefore

use the fact that Js is anti-symmetric to construct the Nambu basis:

Biom—1
B om-1
Bn=| """ (5.2)
B;,2m
_Bik,2m
Here we have used 1, 2 to label the indices corresponding to the SU(2) gauge symmetry and m = 1, ..., Ny /2.

After integrating out the bosons, the effective action is:

N . NyX®  N]AP2 N,
Sert. = = Tr [In(G )] + ——+ — 1)\?, (5.3)
where
i\ — (9, +iA%0;)? —2A
g_l _ 1 ( M 1 /'LO-]) ' (54)
—2A* i\ — (0, +i4,0;)?

is a 4 x 4 matrix. We assume Aﬂ = 0 at the saddle point (preserving gauge and Lorentz symmetry). The

saddle point equation for \ is

AN, Ny / dp
u g ) (@2n)3

2N,

. )
(1)\+p ) (ir + p2)2 — 4A]2°

(5.5)

19



0.030

0.025
0.375
0.020
] 0.0 0.015 >I
0.010

-0.375
0.005

—(),?B 0.000

04 -0.02

FIG. 3: We show the saddle point solutions for A as a function of é — % and v for u = 1.5 for the solution where

only A is condensed and B and A are both zero. Such a solution only exists when g > g. and we note the value of
A has no dependence on v when (A) = 0. The boundary after which X is nonzero is denoted with a dotted red line.

and that for A is

Ny, d3p 4Ny
_/( (5.6)

v 27)3 (X + p2)2 — 4]|A]2°
At the saddle point where A = 0, setting A = i\ we recover the result of Ref. 68.
d®p 1 A1
_- -4 - 5.7
/ 2m)3 (A +p?)  2u * 29 (5.7)

In what follows, we will always assume g > 0.
A. Solving saddle point equations

In integrating out the B bosons, we have assumed there is no condensate in B. We will first solve the
saddle point equations under the assumption that (B) = 0 and then consider alternate solutions where B
condenses. Under this assumption, the saddle point equations for A and A = i\ obtained from integrating

(5.6) and (5.5) are:

1 1 1 — —

o = i [Vl Al o
A1 1 - - 4m
2ty a2l Roa- T 9

where 1/g. = A/m?, with A the momentum space cutoff. We first note the existence of a solution where
A = 0 and ) is condensed obtained by neglecting (5.6), setting A = 0 in (5.9), and solving (5.9) for \.
Such a solution is shown in Fig. 3.

We can also find solutions of Eq. 5.8 and Eq. 5.9 where A and A are both condensed. Multiplying the

saddle point equation for A and A together yields a constraint on A which is independent of A:

Azu(l—l— ”) (5.10)

g g Ar?
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FIG. 4: We show the saddle point solutions for A (a) and A (b) for the class of solution where A and A are both

nonzero but B is assumed to not be condensed as a function of v and % — L. A real, positive solution for A and

|A| only exists for the narrow strip shown in the region where g > g. and v > 0. On the lower curve of the region
of existence of this solution we have A = 2|A|. The boundary enclosing the region where each quantity becomes
nonzero is denoted with a dotted red line.

We then only need to assume the above relation for ), substitute this expression into Eq. 5.8 or Eq. 5.9,
and solve for A. The resulting solution is shown in Fig. 4, and exists only on a narrow strip for positive
v and g—lc - é. On the lower boundary of this strip of solution, we have A\ — 2|A|.

We now investigate a third class of solution, one where we allow B to condense in addition to X and A

by allowing for a condensate in the m = 1 component of (5.2)

Bia
Bs 1
Bn) =V No [ |1 (5.11)
B3,
—Bi,

After integrating out the m > 1 components, we obtain the large NN, effective action generalizing (5.3)

-2
N NJAP2 N,
_NA L NlAFE N

N o
Seff. = 5 Tr [ln(g )] o » P

+ Ny [A(|Ba1|? + | Ba2|?) — AB:, Bjeapest — A* BasByeapest] - (5.12)
The saddle point equations for B are:

ABY; —2A"By3 =0  AB3; +2A"Bip=0  AB{y+2A"By1 =0  AB3,—2AB;;=0. (5.13)

We note that combining the above equations produces the constraint:
A =2|A]. (5.14)

Additionally, we note that the saddle point equations for B imply that if A\, A, and B all condense, the
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FIG. 5: We show the saddle point solutions for A (a), A (b), and B (c) for the class of solution where all are allowed
condensed for a the first branch of the solution corresponding to Eq. 5.18 as a function of + — 1 and v for u = 1.5.
The boundary enclosing the region where each quantity becomes nonzero is denoted with a dotted red line. We
note that a solution with a positive and real \/m only exists for v > 0 and g > g.. The upper boundary of this
solution aligns with the lower boundary of the solution in Fig. 4.

d-wave order parameter in (3.3) also must condense. The saddle point equation for A becomes:

21A 11 A
A (1B 4 1Bual) =~ 2 (5,19
U 9 Y 2m
while the saddle point equation for A when B is nonzero becomes:
1 1 1
— — ——(|Ba1* + |Ba2|?) = ——. 5.16
‘A|(| (1,1’ ‘ CL,2| ) 27T\/|Z| ( )
Combining the two equations yields:
VIA] A 11 Al 1/1 1
B.1|* +|B 2 _VIA| — = A==~ “(——=)=0 5.17
Bual o+ [Baal = =52+ 2 = Al (- ) - g (2 - o) =0 G
such that we have solutions corresponding to +/|A|:
1 1)2 1 _1y(1 _1
a %i\/(%) —Z(ﬂ—a)<gj g) _
/Al — 5.18
T 1
2(% —u)

The two branches for which /|A| is real and positive are shown in Fig. 6 and Fig. 5.
The first order phase boundary between phases A and B is determined by where the argument of the

square root in (5.18) becomes negative and lies along the curve:

v=(1/g. — 1/g) [2m) 2 + (2/u)(1/g. — 1/9)] " (5.19)

Finally, there is a final type of possible solution where only B is condensed, and (\)

(A) = 0. Such

a solution must obey |By|? + |Ba|? = -1

5t é, but unlike the solution where A and X are also condensed,

there is no constraint from the saddle point equations to determine which order parameters in (3.3) are
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FIG. 6: We show the saddle point solutions for A (a), A (b), and B (c) for the class of solution where all are
allowed condensed for a the second branch of the solution corresponding to Eq. 5.18 as a function of - — L and v
for w = 1.5. This class of solution exists only when v > 0 and unlike the solution corresponding to the first branch
of Eq. 5.18 plotted in Fig. 5, the solution corresponding to to second branch exists when 0 < g < g.. We note the
difference in scale of the magnitude of the plotted quantities as compared to Fig. 5 for the same range of v. The
boundary enclosing the region where each quantity becomes nonzero is denoted with a dotted red line.

nonzero when (B) # 0. We argue that the order parameter which condenses can be determined from the
sign of v from the original action in (3.7) by noting that when v is positive, it is energetically favorable for
the superconducting order parameter in the B’s to become nonzero while if v is negative, it is favorable

for the d-density wave or CDW to become nonzero.

We have presented four possible classes of solutions; a solution where only B is condensed, a solution
where only ) is condensed, a solution where X\ and A are condensed but (B) = 0, and a solution where X,
A, and B all condense. The phase diagram is then determined by plugging each solution into (5.12) and

choosing the one with the lowest free energy. After integration, (5.12) becomes:

<2
Seff. 1 1~ 3/2 o~ 3/2 2 < 2 3 1 3 3 22 2 A
=— — (A +2A X —2|A } AN A+ A [(A+ A% —4|AP] - =
N, r (2807 + (= 28D + Z5AR - 5580+ A (R A% - 41AP] - o
+|A|2—5+X(|B >+ |Ba2|?) — AB:,B;, — A*BysB
0 p al a2 asDPutEabEst asDbtEabEst -
(5.20)

In practice we compute the above with a cutoff A = 100, and find the low energy phases shown in Fig. 7.
We note that when B is condensed such that A = 2|A|, there is no direct dependence of the effective action

on B in the above.
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FIG. 7: We show the lowest energy saddle point solutions for X (a), |A| (b), and | By, 1|?+|Ba.2|? and (c) as a function
of gic — L and v. We denote the boundaries between each phase with a black solid line if the phase boundary is first
order and a black dotted line if the phase boundary is second order. The lowest energy solution for g > g. is the
solution plotted in Fig. 3 with only () # 0 in the region where the solution shown in Fig. 6 (the one where A, B,
and X are all condensed) does not exist; this solution corresponds to either Neel or VBS order since neither A nor
B are condensed. In the region where v > 0 where the solution shown in Fig. 6 does exist, it is always the lowest
energy solution; this solution corresponds to a d-wave superconductor. For 0 < g < g. and v < 0, the only possible
solution is the one where only B is condensed; based off our arguments in the text, since this solution is the lowest
energy only for v < 0, such a solution corresponds to charge order.

VI. COMPUTATIONS AT ORDER 1/Ny,

For convenience, we present the complete Lagrangian £ = L, + Lp in (3.1) and (5.1) for our SU(2)
gauge theory.

NpA\? N Ny|A?
(Y

o +iA(|Bas|? = Np/9) — Tstcap(AB} B}y, + A* By Bas).  (6.1)

L =it P, + |DpBasl® +
The kinetic term for boson should be understood as

|(DyuBy)al’ = (9B — 1B} 0}, A7) (04 Ba + 14,07, By). (6.2)

We will study (6.1) in a large Ny, expansion, with Ny/N, fixed. This is similar to the method followed

in Ref. 68 for a U(1) gauge theory.

A. Multicritical point at v =0

First we consider the multicritical point M in Fig. 1, where we can ignore the pairing field A in (6.1),

and work with a Lagrangian with USp(2Ny) x USp(2Ny)/Zs global symmetry:

NpA?
S +iM(Basl = No/g). (6.3)

EO = Nﬁlﬁ,ﬂﬂ + |DpBas|2 -+ ”
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Taking the Fourier transformation and integrating over the bosons and fermions, we write the free energy

as
Fo=TrinG, '+ N, »oA Tring;! (6.4)
0— b b 2 g f o .
oy . . (94 . .
where gb is a 2N, X 2N, matrix of block-diagonal form Qb = in the Nambu basis:
0 Gp!
. a3
gA*/lD =1 [Spwk® +iXE— )+ / ﬁAa(q)Aa(k: -k - q)] +o® [(k‘ + k), Al (k — k:')] . (6.5)
QJTI is the corresponding matrix for the fermionic sector

Gt = [ =Skl + A (K — k)o®]. (6.6)

Next we expand near the saddle point by defining the propagator

1 K

GB(k):]CQ—F;\? Gzﬁ:ﬁa

(6.7)

where A = i), is real and positive. We expand the matrix log to second order, see appendix B for details.

The leading correction to the free energy can be computed as

3 2
=5/ (;ij)’g{m(p)A(p)A(—p) + A(p) (aw - ppp> HA(p)AS(—p)} + Ny @u - 2) . (63)

where the kernels are

2N, P
II\(p) = — arctan —=,
(7) 4mp 2V X (6.9)
4\ + p? p VA P '
II = 2N, t - — Ni—
Ap) b ( o orean NS s + 16
The dressed propagators can also be read off,
pi =0 (5, ) p o L (6.10)
A,py 4 v p2 ) A= H/\. .

Here ¢, j are the gauge indices and p, v are the spacetime indices. For simplicity we introduce the standard

notation (Ay)aer = Y.; Al(0")aar- The propagators then become

25(1 0 a’ T 5aa’6 / v
((Ap)ab(Av)arv ) (@) = (2000 0bar — Saar by ) Dy (q) = o . <5l“’ - Cqug > ’ (6.11)
Ma(q) q

Notice that at the critical point, the kernels reduce to

My = 2, T — (2N, + Np)2. (6.12)
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FIG. 8: Correction to boson propagators at v = 0.
1. Dressed boson field

The anomalous dimension of the B field is

dim[By,] = 2—= 15 _ - 1B (6.13)

where a is the gauge index, and s is the flavor index as usual. The operator is not gauge-invariant on its
own. The corrections come from the gauge fields and A. We draw the corresponding diagrams in 13.
Since the boson propagator is the same for any flavor (a, s), we can first compute the integral and then

take care of the indices. The integral corresponding to fig. 8(a) is
d3p
Ing = | o5 Gk +p) Dy (=p)(2k + )u(2k + )] 50

4 10
- =42 ) K’logk
- (2N + Nf)TFQ < 3 * C) o8

(6.14)

where the right arrow means we are extracting the k?logk divergence. Computational details for all the
integrals can be found in appendix B. Taking care of the trace over internal gauge indices,
Z Ufm/‘fi/a// = Z (25(111” - 5a’a6a”a) =3. (6.15)
a’,a a’,a’

The integral for diagram 8(b) is

o [ d®
I =i / 7}; [Ga(k+p)Dr(—p)] |5_, — k*logk. (6.16)

2
8w 3Nb7T2

Summing everything up, we have

P 12 10
— - — ). 1
8= 3N T (2N, + Np)n? (3 * C) (6.17)

2. Charge order parameter

Next we work out the vertex corrections to get the

dim[B]

as

T5iBat] = 2 dim[B] + nvertex; (6.18)
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where T is some generator of the USp(/V,) group that satisfies (3.9). Again we will first do the integrals

and then take into account the indices. The relevant diagrams are shown in figure 14.

FIG. 9: Diagrams contributing to the vertex correction of the density wave scaling dimension at leading order.

The following integral will contribute to panel (a):

3
Iy = / g ~—3GB(k1 —p)Gp(ks — p)(2k1 — p)u(2k2 —p)VHAjV(p) <5W - ng§”> (6.19)

To extract the divergence, we can simplify the calculation by choosing k; = k2. The expression above then
gives (more details are presented in appendix B)

8

) Y . —
A2 (2N, + Nj)r?

(1—=¢)logk. (6.20)

Comparing with the tree level diagrams, there is an additional prefactor 3 coming from the trace over

gauge indices

Z Z 0?0l =38 (6.21)

Another useful integral that contributes to panel (b) is,

. [
Lo = 2 / 8T£GB(1<;1 — p)Cp(—ks + p)Dr(p) — log k. (6.22)

2
Nym?
where we again have imposed k; = ko and extracted the term proportional to logk. Combining the

contributions, we get

Tlvertex = Nb27r2 - (2Nbi?\7f)7r2 (1-2¢). (6.23)
The dimension of the quadratic boson term is thus,
dim[BJ T Bat] = (14 0B) + Nvertex = 1 + 5 (Nf - 22) : (6.24)
3(2Np + Ng)m2 \ Ny
At Ny = N, = 2, we have above equal to 1 — 28/ 372 = 0.054. Our anomalous scaling dimension is
Nz = 1+ 20 + 2Nvertex = 1 + M (ZJ\\Z — 22) (6.25)
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8. Superconducting order parameter

Next we work out the vertex corrections to get the
dim [Baseap Tst Bpt) = 2 dim[B] + tyertex- (6.26)

At v = 0, the result is guaranteed by symmetry to be the same as that of the charge order computed in
the previous section, but we still present it here for completeness. The relevant diagrams are shown in 10.

We will again first compute the integrals and then take into account the indices.

kl kl
Yt

ki —p

FIG. 10: Vertex corrections to the superconducting order parameter.

The useful integral in panel (a) is

_ dgp 1 p,upu
Tag = [ c5GB(k1 —p)Gp(—k2 +p)(2k1 — p)u(—2k2 + plo——= | 6w — (5
8 HA:NV (p) D (6 27)
. .

Notice the integral is different from that in (6.19) and the result has opposite sign. Compared with the

tree level, we just have an additional factor —3 coming from the gauge indices
Y Tuacab(0?)iy = =3 car- (6.28)
a,b

The two minus signs therefore cancel each other and we have the same result as in the charge density wave
case.

The integral relevant to panel (b) turns out to be have the same result same as that in (6.22),
-2 d3p
I)\;g =1 @GB(kl —p)GB(—kQ —f—p)D)\(p) = I,\;Q, (6.29)

with no additional prefactors compared with the tree level result. Combining all contributions, we get

2 8-3
vertex — - 1- 3 6.30
brert Ny7? (2Nb + Z\ff)ﬂ'2 ( C) ( )
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which is not surprisingly the same as that found in (6.17). The dimension of the pairing term is then

8 Ny
dim[Baseas TstBy] =1+ ———— (2 _99) . 6.31
| Bascap T Bl =1+ 555 — Ny ( ) (6:31)

Our anomalous scaling dimension is again

=142 +2 =1+ 1 Nf 22 (632)
L n Lyvertex e o~ o5 |\ V= — . .
B2 B verte 3(2Nb N ) 2

4. Correlation length exponent

We compute the correlation length exponent v of the order parameters,

o< (g—9c)" (6.33)
following the method of Ref. 68. As the correlation length is gauge-invariant, the calculation can be
performed in a fixed gauge and v = vg. We will use the relation

2—ng’

VB (6.34)

where the anomalous scaling dimension of single boson 7 has been computed in (6.17), and 7p is defined

Gy'(k=0)=(g—g.)". (6.35)

We will calculate yp below. We start by defining a convenient parameter A, to measure the deviation

from the critical point, satisfying

L1V (6.36)

_ (k= 0,X=0)
A=A = (0,0 6.37

where 3. is the boson self energy, and its second argument refers to the mass in the boson propagator. The

boson propagator can then be written as

11,(0,0)

Ggl(O) =A=3(0,\) =\, — (2(0= Ag) = IT5 (0, Ag)

(0, 0)> : (6.38)

where second argument of II also refers to the boson mass. In the following we will evaluate the A;log A\,

divergence of the self-energy diagrams appearing in (6.38). The relevant diagrams are shown in fig. 11,
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FIG. 11: Feymann diagrams that contribute to the (6.38). Gauge and flavor indices are supressed.

we list their contributions below:

@ =304,
3
2 = I,
50 = 0w [ Gt @)’ "
»©) = HA(i;,A) /ij;fx,l(P)(GB(p))g
) = Hk(i;’ X)EU’)/Z;;(GB@))Q =-—x®

where 14,1 and Iy.; have been defined in the first equalities of the equations (6.14) and (6.16), respectively.
Since (b) and (f) cancel each other, we just need to extract the divergence in (a)(c)(d)(e). The gauge field

contributions ¥(® + %(@ give:

w@) 4y »d)

12 <7Nf — 18N, ¢

A log Ay 4
(2N, + Ny)? 2Nb+Nf> 9708 g (6.40)

w2
The remaining term to be evaluated is $(¢) 4 £(€)
C e 3
LTS O o e log (6.41)
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Since the integrals are in parallel to those discussed in ref. [68], we will omit the details here. Combining

the two equations above, we have the total coefficient « in front of the \;log A\, divergence as

3 12 /TNy — 18N,
a=-—— = (1 b ¢ . (6.42)
Nyr? 2 (Nf+2Nb)2 Nf—{—QNb
Then we re-exponentiate the result and combine with equation (6.38) to get
G(0) = Ay (1—alog 2 ) ~ 2(1=a) 6.43
(0)=Xg (1 —alog 5 | =g — gl , (6.43)
such that
6 24 TNy — 18N, ¢
=2—-2a0=2— ——=+ — . 6.44
B @ Nyr? 2 <(Nf+2Nb)2 Nf—{-QNb ( )
Using the scaling relation (6.34), we get
YB ( T]B) 8 20 12 7Nf — 18N
~ OB (1418) o _ F At o/} 6.45
B T 3Nym? (2N, + N2 T 72 (2N, 1+ Np)? (6.45)
where we have kept the leading terms. At N, = N; = 2, this gives vp = —0.216.
5. Dressed fermion field
Only the gauge field contributes to the correction. The relevant integral is
I /dsq Guvo(k + Q) Dy (—g) — —— L) kogk (6.46)
o= | — — —_— | = = og k. .
A ]73 TGy Y q)Vuw(—4q (Nf +Nb)ﬂ'2 3 g
Tracing over the gauge degrees of freedom, as in the boson case we just get a factor of three:
> (200 — Sapbu) =4 — 1 =3. (6.47)

b,

So the anomalous dimension for dressed fermion propagator is

3-8 1
= @ () .

and the gauge-dependent fermion scaling dimension is

mil =14+ 3-4 1
dlm[w]—1+2—1+<2Nb+Nf)ﬂ_2 <3 (). (6.49)
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FIG. 12: Vertex corrections for the Bfy (left) and BT (right) operators.

6. Boson-fermion composite

The physical electron is a composite of bosonic chargon and fermionic spinon. We are interested in
the scaling dimension of the electron operator at the four nodal points k = (+7/2, £7/2), whose precise
representation in terms of the low-energy chargons and spinons is given in Eq. 3.13. These are linear
combinations of the operators Y., Bi tata and Y., €apBastata, Where a labels the spinor component.
As we show below, the details of this linear combination are not essential as each of these terms are
independently renormalized in the same manner.

We first consider scaling corrections to the operator ) B t)q;. There exists a one-loop vertex correc-

tion by the gauge field shown in Fig. 12, leading to

3 1 Ny
dim[BTy] = dim[B] + di =—4+——— (= -118). 6.50
ml310] = dim{ ] + ] + s = + 557 (. — 119) (6.50)
At Ny = Ny = 2, this gives % — % = 0.84. Importantly, this vertex correction in 12 is unaffected by the

presence of v matrices, so operators of the form (1+iv*) )" By e, which project to an individual spinor
component, receive the same scaling dimension correction.

Another gauge-invariant choice is ) ab Baseaptpt, which gives the same contribution as in (6.50). One
can easily check that further adding v matrices acting in the spinor space of fermions doesn’t change the
result either.

The scaling dimension of the quasiparticle residue of the electron Green’s function, Z, is given by

dim[Z] = 2(dim[BT¢y] — 1) . (6.51)
7. Fermion bilinear

The Néel and VBS correlation functions can be expressed in terms of spinon bilinear operators, and
corrections to the scaling dimension of these operators can be calculated by analyzing the renormalization

of these composite operators. In the absence of chargon fluctuations, corrections due to the SU(2) gauge
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field have previously been computed [45]. To leading order, the only consequence of charge fluctuations is

to modify the prefactor in the effective gauge propagator. The anomalous exponent is hence

16
bl VBS = — 6.52
TIN¢el, VBS WQ(Nf T 2N,) ( )
where the results of [45] are recovered by setting N;, = 0.
B. Finitev
Next we consider nonzero v in the Lagrangian (6.1). The matrix M} in (6.4) now becomes
-1 gA_l gl;l -1 / -1 * (1.
G, = N Gp = 2A(k—FK)1, Go = —2A%(K — k)1,
9o 9p (6.53)
d? ;
gz/lD =1 [6%/%2 +iXk — k') + / (2733 Ai(q)A;(k — K — q)} + o’ [(k‘ + k) A% (k — k’)]

Notice that the matrix has indices {k, s, a; k', s, a'}, where a,d’ is the gauge index and s, s’ labels boson
flavor. Trace performed over k is simply a momentum integration. Further expanding the matrix log to

second order, we obtain

_ d*p  dq d>p’ ’ /
Trlngb 1GB :Nb/WW{G(Q)(SpO/WAjM(p )Ay(_p)

- 5CG( )| = NDA) +4AGIAG) + 3 (20— )AL 020 ~ )oY ()

The fermionic sector is the same as before. Plugging in the integrals (B3), we arrive at

3
SRy —

+ 43u(0) (3~ P25 HA<p>A;<—p>} N (A -2).

(6.55)

2u g

where the kernels are the same as before in (6.9). In addition to the gauge and A field propagators in

(6.10), we now also have the A propagator
DA =—-Dy=——-. (6.56)
1. Dressed boson propagator

Now we have an additional diagram in fig. 13. The relevant integral is simply —%I A;1 Where Iy, was
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FIG. 13: Additional correction due to A field, compared with fig.8.

computed in in (6.16). The trace over indices are computed as
Z Eaa/E,‘a/a// Z jssljslsll = 6(1(1”685”7 (657)
a’ s’

which is no different from the tree level diagram. Summing everything up, we now have

1 12 10
= — — 4+ 2 . .
BT 9Nx? T (2N, + N2 ( 5 C) (6.58)

Dimension of single boson can be computed from dim[B] = (1 + ng)/2.

2. Density wave order parameter

The additional diagram compared with the v = 0 case is shown in figure 14. The relevant integral is

FIG. 14: Additional diagram contributing to the vertex correction of the density wave scaling dimension at leading
order, compared with fig. 9.

_iI)\;Q computed in (6.20). Next we take care of the indices,

(Z Ea/agaa“)
a

In the first equality we have used (3.9). Note that there is an additional sign compared with the tree level

= O ar [— Z(T“)Z,tjts@s/] = ot TSy (6.59)

st

Z \7t’tTt§jss’
s,t

result. Combining the all the contributions from vertex corrections, we get

5 24

vertex — - 1-— . 6.60
Thvert 2Nym2 (2Nb + Nf)7r2( C) ( )
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The dimension of the quadratic boson term is thus,

1 N
dim[B! TS Bgt] = (1 vertex = 1 + ————— S . 6.61
lm[ as* st t] ( =+ 773) =+ Tverte + (2Nb n Nf)7'('2 <3 N, 58) ( )

Taking Ny = N, = 2, the dimension is 1 — 55/ 672 = 0.07. Our anomalous scaling dimension is

=1+ 2 M (6.62)
B> = (2Nb —I—Nf)7'(‘2 Ny ’ ’

8. Superconducting order parameter

The additional diagram is figure 15. The relevant integral is the same as —%I A;2- Now we look at the

FIG. 15: Additional contribution to the SC vertex correction, compared with fig. 10.

indices,
(Z Ea/afabEbb/)(Z js/sx7st«7tt/) = E(1’17’«75%/7 (663)
a,b st

so again no additional prefactor is present compared with the tree level result. Combining all contributions,

we get

3 24

erex = 5303~ g WO (661
The dimension of this quadratic boson is thus
dim [Baseap Tst Byt] = (1 +1B) + tvertex = 1 + SR (Nf —~ 30) , (6.65)
(2N, + Np)m2 \ N
Taking Ny = Ny = 2, the dimension is 1 — 29/ 312 = 0.02. Anomalous scaling dimension is then
tgz =1+ (2]\71)f]\7f)712 <]]\\Z — 30) . (6.66)



FIG. 16: Feymann diagrams in addition to fig. 11 that constribute to G=1(0).

4. Correlation length exponent

In addition to the diagrams presented in figures 11, now we also have figure 16 due to the A field:
Notice that the diagrams such as replacing the dashed A line in diagram 11(d) by the dotted A line are
not allowed, because the two external boson propagators need to have the same gauge and flavor indices.

The self energies corresponding to the above two diagrams are

s@ - _Ly©  wm_ Ly, (6.67)
4 ’ 4
Both relevant integrals have been evaluated before, leading to
3
h

Combining with the v = 0 results, we now have the modified total coefficient

9 12 <7Nf — 18N, ¢ >

_ _12 6.69
CT N2 2 \(N; 12N,)? T Ny 12N, (6.69)

The correlation function exponent is then (we also need to use the modified anomalous scaling dimension
of B in (6.58)):

! 20 | 127N, — 18N,
vB 27 2N, + N2 72 (2N, + N2

(6.70)

At Ny = Ny = 2, this gives vp = —0.03.
5. Boson-fermion Composite

One gauge invariant combinationis ), Blsbas. In the expression dim[BT1] = dim[B]+dim[i)]+7 Bty =
S+ w + Nty the only change compared with (6.50) lies in dim[B]. The result is thus

3 1 N
; ol -2 2N 1 1
dim[B"y] 5 + 12N, + N < 3 58> . (6.71)

Other gauge-invariant choices such as ab Baseappt, or with v matrices inserted give the same results as
in (6.71). At Ny = N, = 2, the above expression gives dim[Bi] = 0.837.

We summarize the calculations of scaling dimensions in Table III.
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v=20 SC channel DW channel
. 8(c—22) (3¢ — 58) 16 (c + 14)
dim|[B! . T.. B, 14—t 14—t _—
m{B;. Tt Bai) T 30N, 1 N2 TN, N2 " 32N, + Nj)n?
. 8(c—22) 2 (c—30) 4 (5¢ — 38)
dim|[Bgs€ap Tst B 1+ —t 14+ ——r 1+ —Tt
lm[ EavTst bt] * 3(2Nb + Nf)ﬂ'Q + (2Nb + Nf)ﬂ'Q + 3(2Nb + Nf)7T2
. 3 (c—118) 3 (¢ — 158) 3 2(c+62)
dim{B)] 2 " 3(2N, + Ny)n2 2 T 42N, + Nj)n? 27 3(2N, + Nj)n?
3(2Np + Ny)m (2Np + Ny 3(2Np + Ny)m
, B 8 B 20 14 1 B 20 n 7 B 20
B 3Nym2 (2Nb—|—Nf)7T2 Ny (2Nb—|—Nf)ﬂ'2 3Nym2 (2Nb+Nf)7T2
L2 Ny(7c — 18) B Ny(7c — 18) B Ny(7c — 18)
2 (2Nb+Nf)2 2 <2Nb—|—Nf)2 2 <2Nb—|—Nf)2

TABLE III: Summary of scaling dimensions at the multicritical point (second column), with the Lagrangians in
(5.1) (third column) and (A1) (last column), respectively. ¢ = Ny/Nj is a constant.

VII. HONEYCOMB LATTICE

The ground state of the large-U Hubbard model on the honeycomb lattice at half-filling has long-range
Néel order, as for the square lattice. Also as for the square lattice, adding frustrating interactions leads
to a phase with VBS (i.e. kekule) order [61-63]. But in contrast to the square lattice, at smaller U the
honeycomb lattice features a semi-metal phase with no broken symmetry, and an electronic dispersion

with 2 massless Dirac fermion points in the Brillouin zone.

In this section we extend the SU(2) gauge theory analysis to the honeycomb lattice. We find just the
three phases noted above, with no additional superconducting or charge-ordered phases. This difference
from the square lattice case can be traced to the fact that the bosonic chargons, B, move in a background
zero flux on the honeycomb lattice [65]. Consequently, the B dispersion has only a single minimum in the
Brillouin zone, and the Higgs phase where B is condensed breaks no symmetries and realizes the Dirac

semi-metal. We sketched a phase diagram for the honeycomb lattice SU(2) gauge theory in Fig. 2.

The details of such a theory have previously been worked out in Ref. 65, but with the interpretation of
the deconfined phase as being stable - our interpretation is that this phase is ultimately unstable to either
Néel or VBS order. The low energy theory consists of Ny = 2 Dirac fermions with an emergent SO(5)
symmetry rotating between Néel and kekule VBS order. As there is only a single minima of the chargon
disperion at k = (0,0), the spinons are coupled to N, = 1 bosonic chargons, with the full symmetry
of the low-energy action being SO(5) x SU(2), with the SU(2) chargon symmetry corresponding to the

pseudospin. An important point which is not explicitly discussed in Ref. 65 is the possibility of symmetry-
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allowed quartic interactions between the chargons and spinons, which would be marginal at tree level.
However, this is rather simple to rule out due to the fact that the chargon minima is at k = (0,0),
and hence transforms trivially under all the lattice symmetries (an exception are transformations which
exchange the A and B sublattice, where the sublattice structure of the chargon eigenvalue causes the
chargon to acquire a minus sign - this has no effect on chargon bilinears). As a result, symmetry-allowed
chargon/spinon quartic interactions demand that the spinon bilinear component is independently allowed
by symmetry, and one can easily verify that no such term exists.

The large-Ny , N}, expansion proceeds identically to the one discussed previously in the paper, with the
exception that the chargon sector does not contain any quartic interactions aside from a B* term (in other
words, we take v = 0). The results for the various scaling dimensions in Section VI carry over to this
scenario, although some of the chargon bilinears studied can only be defined for even Nj,.

We note an interesting relation between the model of Ref. 73 and the SU(2) gauge field theory with
Ny = 2 and N, = 1. The global symmetry of the quantum field theory of Section III is SO(5); in
the fermionic sector for Ny = 2, and USp(2)/Zs in the bosonic sector for N, = 1. Ref. 73 considered a
honeycomb lattice model in which quantum spin Hall, superconducting, and Dirac semi-metal phases meet
at a multicritical point, and proposed a SO(5) Gross-Neveu-Yukawa field theory for the multicriticality.
The GNY field theory has no gauge fields, and hence there is an additional SO(3)=USp(2)/Zs global
symmetry which acts on the Dirac fermions. So the global symmetries of our SU(2) gauge field theory
at Ny = 2 and N = 1 are identical to those of the SO(5) GNY theory. It remains an interesting open

question whether these two theories are the same conformal field theory.

VIII. DISCUSSION

The discovery of high temperature superconductivity in the cuprates sparked decades of theoretical
work on quantum phases proximate to the familiar Néel ordered state of the S = 1/2 square lattice
antiferromagnet. Early work [41] argued that the proximate insulator has valence bond solid (VBS) order.
The nature of the Néel-VBS quantum transition has also been extensively studied [43, 74, 75|, and recent
fuzzy sphere investigations [29] have concluded that it is described by a ‘pseudo-critical’ theory with an
approximate conformal symmetry, and a nearly exact global SO(5) symmetry which rotates between the
3 + 2 components of the Néel and VBS orders. One formulation of the pseudo-critical theory has a SU(2)
gauge field coupled to Ny = 2 fundamental massless Dirac fermions: we have used the fuzzy sphere results
to conclude that this gauge theory confines in the infrared with either Néel or VBS order, and the Néel-

VBS transition is weakly first order. The ordering is selected by terms which are formally irrelevant in
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the continuum theory, and we assume here that Néel order is selected.

The present paper extends these investigations by allowing for charge fluctuations, while remaining at
half-filling and preserving particle-hole symmetry. Following earlier work [18], we have shown that adding
charge fluctuations to the SU(2) gauge theory leads naturally to a d-wave superconductor with nodal
quasiparticles, and states with period-2 charge order. We can then consider quantum transitions between
the Néel state and the d-wave superconductor, or between the Néel state and charge order. Such transitions
are described by a direct extension of the SU(2) gauge theory with Ny = 2 fundamental massless Dirac
fermions—there are additional fundamental N, = 2 massless complex scalars. Given the weakly broken
conformal symmetry for Ny = 2, N, = 029, 30, 70|, and the stability of conformal gauge theories at large
Nyp, it is very plausible that the Ny = 2, N, = 2 case exhibits true deconfined criticality with an exact

emergent conformal symmetry.

The Ny = 2, N, = 2 quantum field theory studied in this paper is defined by the Lagrangian L, + Lp
in (3.1) and (3.5). Here r is the tuning parameter which takes the system from the Néel state (present
when r is large and positive and B is not condensed) to the states allowed by charge fluctuations (with
d-wave superconductivity or charge order). The coefficients of the quartic couplings v; 23 in (3.5) select

among the latter states.

We studied two different large Ny generalizations of this theory, defined by the extensions (3.7) and
(A4) in the bosonic sector. The phase diagrams of these theories at N, = oo appear in Fig. 1. The 1/Ny,
expansions of the second-order quantum phase transitions are described in Section VI and Appendix A.
We computed the scaling dimensions of the gauge-invariant order parameters, which are composites of two
fermions or two bosons, and the electron operators at momenta (+7/2,4+m/2), which are the composites
of one fermion and one boson in (3.13). Our results are summarized in Table III. The results are not

expected to be accurate at Ny = Ny = 2, when the 1/Ny, corrections are quite large.

The scaling dimension of the electron operator determines a novel feature of the quantum transition
out of the d-wave superconductor. The d-wave superconductor itself is conventional, and has 4 nodal
points with gapless Bogoliubov quasiparticles. In BCS theory, such gapless quasiparticles are remnants
of the Fermi surface of the parent metal, and so the electronic quasiparticle residue remains non-zero
across the metal-superconducting transition. However, for the transition from the d-wave superconductor
to the Néel state, there is no longer a simple relationship between the Bogoliubov quasiparticles and the
Fermi surface excitations of a parent metal. Instead, the Bogliubov quasiparticles of the superconductor
are connected to the spinons of the deconfined quantum critical point. As there are no gapless electronic

excitations in the Néel state, and the electronic quasiparticle residue vanishes at the transition out of the
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d-waves superconductor with an exponent determined by the scaling dimension of the electron operator
at the deconfined quantum critical point.

A recent paper [22] has shown that a similar phenomenon can also happen in the electron doped case in
a situation where the normal state has no Fermi surface crossing the zone diagonals: nevertheless, gapless
nodal quasiparticles do appear in the proximate d-wave superconductor, in a region of the Brillouin zone
which is gapped in the normal state. Furthermore, there are connections of this remarkable phenomenon
to the recent photoemission observations of Ref. 28 on the electron doped cuprates.

Along the same lines, we believe the d-wave superconductor found in the quasi-one-dimensional nu-
merical study of Ref. 50, by doping the spin liquid of the J;-J5 antiferromagnet, will have 4 nodal points
in the two-dimensional limit.

Finally, we note the analysis of Section VII, where we applied the same line of thought to the Néel-VBS
transition on the honeycomb lattice [61, 62]. We found only a single additional phase upon including
charge fluctuations: a Dirac semi-metal with no broken symmetries. All these phases (Néel, VBS (kekule),
Dirac semi-metal) have been observed in experiments on monolayer graphene [76, 77]. It is interesting to
speculate that the absence of a superconducting phase on the honeycomb lattice in our theory, in contrast
to the square lattice, is the underlying reason for the low superconducting 7.’s observed in the graphene

family of compounds.
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Appendix A: Alternative Large N, Limit

This appendix considers an alternative large Np limit of the N, = 2 case of the action Lp in (3.7). We

use the identity (3.4) to write (3.7) at N = 2 as

v

N (BiyolBar)” . (A1)

Li = (0 —i450%) B[* + 3 (1Bul® = 1/9)° +
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(For simplicity, we have ignored a renormalization of the values of u and g arising from the Lh.s. of (3.4).)
Note that v now appears with the opposite sign in the last quartic term compared to (3.7). The form (A1)
is not suitable for a large N, generalization because it has ‘flavor’ Pauli matrices which will generalize to
the Nb2 — 1 generators of SU(Np). To over come this difficulty, we use the following N, = 2 identity to

transfer the Pauli matrices from the flavor to the gauge indices
O-,Zsslazt’B;sB;tBbt/BaSl = Uéalagb/B;sB;tBb/tBa’s . (A2)

Here the index j = 1,2, 3 labels the adjoint gauge SU(2) components; (A2) can be established by applying
the following identity to both sides:

O'és/O';t/ = _655’5tt’ + 255t’5ts’ . (A?))
Then we can write (A1) as

~ . 2 u 2 2, Y * _J 2
Ly = (0, —i430") BI* + 55 (Bul® = Nofa) + 5 (Basaga,Ba,s) , (A4)

and the flavor indices s,¢ can be extended to range over general N, values. The theory ZB in (A4) has
a SU(Np)xU(1) global symmetry, in contrast to the theory L£p in (3.7) with a USp(/N)xU(1) global
symmetry. By construction, the two theories are the same at N, = 2, but are distinct for N, > 2.

We can now proceed with a large NV, expansion of (A4). We decouple the v term in (A4) by a real
Higgs field H; which is an adjoint under gauge SU(2), but a singlet under flavor SU(N;). In this manner

we obtain, in place of (5.12), the action

= N 1 N2 NHE N, . .
Seff. = 7bTr [ln(g 1)]+ 2bu - 41)] _Z)‘?b"i_z)\(‘Bal’2+’Ba2‘2)_HjBalgfw/Ba’l_HjBQQUZa/Ba’Q <A5)
where
iX— (8, +iAl0;)% — Hjo! 0
g_l _ ( 1% (ad J) J . ‘ (AG)
0 iA— (0y — iAfpf)Q + Hjo’
is a 4 x 4 matrix. AS in the main text, we assume Aﬂ = 0 at the saddle point.
The saddle point equation for A is as before after interchanging 4|A|? for H]2
— — Ny (|B B = A , AT
U * g b (1B1f +|B2F) (2m)3 (i +p)(i)\+p2)2—H]2 (AT)

and that for H; is identical to the saddle point for A after after interchanging 4|A? for HJ2 and taking

v — —:

; ; d3p 2N,
* 7 * J —
B (Bavlaaa,Ba/J + Ba720aa,Ba,72) _ / GOyt (A8)
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In working out the saddle point equation for B, we will assume that if H; is condensed, it aligns only with
H, to simplify the saddle point equations. Under this assumption, we obtain the saddle point equation

for B:
iAB11 = H,B11 iABo1 = —H.Ba iAB12 = H.B2 iABoo = —H.B3 2 (A9)

After integration, these saddle point equations for H, and A = i\ obtained from integrating (A8) and
(A7) are:

11,
A1
+§—(|31]2+1B2 =0 [\/)\+!H|+\/)\ !HI—], (A11)

where 1/g. = A/n%, with A the momentum space cutoff. If we set B to zero then we will find all the same
saddle point solutions in the main text where B = 0 if we exchange v — —v and 2|A| — H,. If we allow
B, H,, and A to all condense, we will find that the saddle point equations will again enforce A = |H,| and

the saddle point equation for H, can be rewritten as:

A P (a12)

This is again the same as our previous saddle point equation for A if we exchange v with —v and 2|A|

with |H,| = A. We also note the types of solutions we find when B is condensed. An example solution

which solves the saddle point equation for B when H, is nonzero has:
Bl,l ?é O BLQ — 0 3271/2 - O (A13)

Such a solution will condense the CDW,, order parameter in [22]. We could also have chosen a different

example solution for B:
Bii=DB12#0 Bs12=0 (A14)

which would result in condensing the CDW,, order in [22]:

Finally we could have chosen a solution where only the d-density wave is condensed with:
Bl’l ox 1 B]_72 x 1 BQ,I/Q =0 (A15)

A general solution will have different nonzero strengths for each of the above continuum order parameters.
There is no solution allowed by the saddle point equations where the d-wave pairing continuum order

parameter is also condensed. The phase diagram for this large N, limit is shown in Fig. 1b.
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1. Large-N corrections for the alternative formulation

The leading correction to the free energy is now

1 d3p
7= [ w{ﬂ“p) AEA-9) - Hi ) (-]
) (A16)
PuPv v A j A
A; O — —5— | 11 AY(— Ny| —+———-],
+ w(p)<u e ) A(p)Aj ( p)}+ b<2u+2w g)
We now have the propagator of the H; fields
1
a. Dressed boson propagator
Now we have an additional diagram in fig. 17.
z"‘—>‘-'~ ~
. " p N .
a,s ,'. a’,s “-‘ a,s
k k—p k

FIG. 17: Additional correction due to A field, compared with fig.8.

The relevant integral is simply —Iy,; where Iy,; was computed in in (6.16). The trace over indices

simply gives an additional factor of three, such that

2 4-3 10
- 1-3 -2 (T4
B 3Nb,ﬂ_2( ) (2Nb+Nf)7r2 <3 + <">

_ 4 B 12 E-FQC
N 3N,2 (2Nb+Nf)7T2 3 )

(A18)

Dimension of single boson can be computed from dim[B] = (1 + np)/2.
b. Density wave order parameter

The additional relevant diagram is shown in figure 18. The relevant integral is —Iy.» computed in

(6.20). The indices gives a factor of three, leading to
8-3
rtex — 7 o 1-— 7S U U
Ihverte Nb71'2( ) (2Ny + Ny)7?
4 24
= - ;00
Ny <2Nb + Nf)ﬂ'

(1-¢)
(A19)
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FIG. 18: Additional diagram contributing to the vertex correction of the density wave scaling dimension at leading
order, compared with fig. 9.

The dimension of the quadratic boson term is thus,

16 N
: 1 _ -1 f
dim[B} TG Bat] = (1 +18) + fvertex = 1 30N, + V) ( N, 14) : (A20)

Taking Ny = N, = 2, the dimension is 1 —40/ 312 = —0.35 which is unfortunately negative but an artifact

of the small N’s chosen. Our anomalous scaling dimension is
32 Ny
=l—-—— 5| —=+14). A21
152 3(2N, + Nj)r2 (Nb * ) (A21)

c. Superconducting order parameter

The additional diagram is figure 19. The relevant integral is the same as —1I,». Index summation gives

k1

FIG. 19: Additional contribution to the SC vertex correction, compared with fig. 10.

minus three as in the gauge field correction, resulting in

8-3
vertex = 143) - ————(1—
fverte 2Nb7r2( +3) (2N + Nf)w2( %
(A22)
8 24 (1-0)
~ Nyw2 (2N + Ny)m2 '
The dimension of this quadratic boson is thus
dim [BascapJst Boe] = (1 +15) + 142 (5N s (A23)
im € = Lyertex = _ 7
ascab stbt B erte: 3(2Nb+Nf)7l'2 Nb
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Taking Ny = Np = 2, the dimension is 1 — 22/ 372 = 0.26. Anomalous scaling dimension is then

8 Ny

=l+ss—5 (9 —38). A24
Lp2 +3(2Nb+Nf)7r2< N, ) (A24)

d. Correlation length exponent

In addition to the diagrams presented in figures 11, now we also have figure 20 due to the H; field:

Notice that other diagrams such as replacing the dashed A line in diagram 11(d) by the dashdotted H,

FIG. 20: Feymann diagrams in addition to fig. 11 that contribute to G'5'(0).

line will cancel each other since we need to sum over boson bubbles with different gauge indices. The self

energies corresponding to the above two diagrams are
@ = _y@  nh) = _xn), (A25)

Both relevant integrals have been evaluated before, leading to

2@ 4 nt 5 Aglog A, (A26)

3
T2 N,
Combining with the v = 0 results, we now have the modified total coefficient

312 <7Nf — 18N, ¢ )

__c A27
Nym? 2 (Nf + 2Nb)2 Nf + 2N, ( )

o =

The correlation function exponent is then (we also need to use the modified anomalous scaling dimension
of B in (A18)):

7 20 12 7Ny — 18N,

— —_ . A28
3Nb7T2 (2Nb+Nf)7T2 + 2 (2Nb—|-Nf)2 ( )

vp~1+

At Ny = Ny = 2, this is vg = 0.037.
e. Boson-fermion Composite

In the expression dim[BY] = dim[B] + dim[¢)] + ngr,, = 3 + w + Npty, the only change compared
with (6.50) lies in dim[B]. The result is thus

3 2 N
dim[Bly) =2 - 2 (21 149, A29
mlBY] =5 = 36N, 5 Np)r2 (Nb + ) (429)
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Again other gauge-invariant choices such as ), , Bas€aptpe, or with « matrices inserted give the same

result. At N, = Ny = 2, we have dim[Bfy] = 3 — 7% = 0.79.
Appendix B: Useful integrals

Below we present some details of the integrals that appear in the main text.
We first present more details for the derivation of the effective action in section VI A. Expansion of the

matrix log gives, in the bosonic sector,

d3 d3 d3 /
TrinG, 'Gp :sz/ L {G(q)épo/( L Ao (0) AL (D))

(27)3 (2m)? m)?

(B1)
1
- 56(0)G(a-p) [ —APIA=p) + > (20 — p)uAL(p)(2q - p)VAZ(—p)} }
J
For the fermion sector we have
N &Bp B
1 __r p q oA vAB(_
TrinG; Gy 5 / 7(%)37(%)3%[%((1)7 Af(p)oaGy(p + q)v" Ay (—=p)og). (B2)
The integrals can be evaluated, we summarize the results here:
/ dq 1 VA d3q Ty (p+4) 1
@r)3 g2+ A dr’ ¢(p+q)? 16¢°
/ d3q 1 1 aretan P (B3)
— — —— arctan )
P (@ +2)((g—p)2+X)  dmp 2V

¢ (2¢-p)ua—p)y _ pup\ VA b\ (4N + p?
3 = <= (0w+~"5 ) — 0w — =3 arctan
(2m)% (¢ + M) ((g —p)* + ) p* ) An p 8pm 2f
The leading correction to the free energy is thus (6.8). Notice the first and second order bosonic contri-

butions to II4 combine to give a simple expression.

Next we evaluate the integrals 4, and Iy,; with ¢ = 1,2 that appear in the main text.

Lan = [ 22 Gah + D92k + P2k + D)) o

. _L d3p 4]{,‘ k‘ +2k,upll+2p,uk +p'upz, pupy
N 2Ny + Ny 873 p(k + p)?
16 d3p 1 ¢

= - — |(4Kk* + 4k - > 4p2(k -

T 2N, + Ny ) 8@ p(k + p)? [( +4k-p+p?) - 2(( p)* + 4p°%( p)+p)}

psin 6 9 ) ) ) )

= 4 4 —((4 4

2Nb+Nf/ / (k2 + p? + 2kpcos ) [( K+ Akpeost +p7) = (4R cos 0 + dkpos +p )}

16 dp 2k2 — p? k+p N k+p\°
=-—— [l lo 2 S g (P
2Nb+Nf/47r2[p+ 2% g<k: p> 20—, S o\ i, }
4 10
S 2¢ ) k2 log k,
(2Nb +Nf)ﬂ'2 < 3 + C) 8
(B4)
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where the right arrow in the last line means we are extracting the k2 log k divergence.

For (6.16), we have
o [ dPp
Da =2 [ £X1Gatk+ DDA-D) |5y
_ 8 / o p
2N, ) 8m3(k+p)?
8 dp : P’
L - 0do B5
2Nb/47r2 /sm k% + p2 4+ 2kpcos 6 (B5)

_2/dP310 k+p)®
oy ) Porp B\k—p

k% log k.

3Nb7'(‘2
As for (6.20), we have
16 d3p (2k — p),.(2k — p), 1 PuPv
Ing = —— = O — (-
A2 9N, + N, / 873 (k —p)* p \ ¥ ¢ P2

16 /d3p1 [(216—29)2_ [(276—19)-29]2}
B 2Nb+Nf 8m3p | (k—p)? p*(k —p)*

B6
B / /d951n9 4k? — 4kp cos 6 + p? ¢ (2kpcos O — p?)? (B6)
N 2Nb + Nf k2 + p? — 2kpcos 6)? p(k? 4+ p? — 2kpcos 6)?
16 8
—— (1= ({)(—2logk ——————(1—=) logk.
In the last line we have again extracted the term proportional to log k.
In (6.22),
) d3p
D2 =t° | S53GB(k1 = p)GB(=k2 +p) DA(p)
__ 8 / &p__p 1
B 2Nb 873 (k1 —p)? (k2 — p)*
3 .
_ / / p° sin 6 (B7)
- 2N, — 2kpcos 0 + p?)?
__ 8 / _
2N, (k —p )
8 1 2
— ——(—2logk) = +——logk.
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