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Abstract. We consider the following node-capacitated network design problem. The input is
an undirected graph, a set of demands, uniform node capacity, and arbitrary node costs. The goal
is to find a minimum node-cost subgraph that supports all demands concurrently subject to the
node capacities. We consider both single- and multicommodity demands and provide the first poly-
logarithmic approximation guarantees. For single-commodity demands (i.e., all request pairs have
the same sink node), we obtain an O(log2 n) approximation to the cost with an O(log3 n) factor
violation in node capacities. For multicommodity demands, we obtain an O(log4 n) approximation
to the cost with an O(log10 n) factor violation in node capacities. We use a variety of techniques,
including single-sink confluent flows, low-load set cover, random sampling, and cut-sparsification.
We also develop new techniques for clustering multicommodity demands into (nearly) node-disjoint
clusters, which may be of independent interest. Moreover, this network design problem has appli-
cations to energy-efficient virtual circuit routing. In this setting, there is a network of routers that
are speed scalable and that may be shut down when idle. We assume the standard model for power:
the power consumed by a router with load (speed) s is \sigma + s\alpha , where \sigma is the static power and
the exponent \alpha > 1. We obtain the first polylogarithmic approximation algorithms for this problem
when speed-scaling occurs on nodes of a network.
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1. Introduction. Network design problems involve finding a minimum-cost sub-
graph of a given graph while satisfying certain demand requirements. Classic examples
include Steiner tree, Steiner forest, survivable network design, and buy-at-bulk net-
work design. Good approximation algorithms are known for all these basic network
design problems [13, 1, 27, 33, 29, 18]. However, these problems become significantly
harder in the presence of capacities, and much less is known for capacitated network
design problems. In this paper, we study a natural node-capacitated network design
problem and provide the first polylogarithmic approximation algorithms for it.
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NODE CAPACITATED NETWORK DESIGN 589

In the multicommodity node-capacitated network design problem (MCNC), there
is an undirected graph G= (V,E), where each node v \in V has cost cv \geq 0 and uniform
capacity q. There are also k request-pairs of the form (si, ti, di), where si \in V is the
source, ti \in V is the sink, and 1\leq di \leq q is the demand. A feasible solution is a subset
of nodes U\subseteq V such that the graph G[U ] induced on nodes U (where each node has
capacity q) can concurrently support di units of unsplittable flow between si and ti for
each request-pair i\in [k]. The objective is to minimize the total cost c(U) :=

\sum 
v\in U cv

of the solution. Instead of requiring unsplittable flows, one could alternatively ask for
a splittable (i.e., fractional) flow for the demands. However, this does not change the
problem significantly. In fact, our approximation guarantees also hold relative to an
optimal solution for splittable flows.

Our algorithms will find bicriteria approximations, where the solution is allowed
to violate the capacity constraints by some factor. A (\beta ,\gamma ) bicriteria approximation
algorithm for MCNC finds a solution U such that (i) the cost c(U) is at most \beta 
times the optimum and (ii) all request-pairs can be routed concurrently in G[U ] using
capacity at most \gamma \cdot q at each node.

Other than being a natural theoretical model, MCNC has applications in energy-
efficient routing. Indeed, this was our primary motivation to study MCNC. Improving
the energy efficiency of telecommunication (telecom) networks is an important prac-
tical issue. In their 2020 report [39] ``The Case for Committing to Greener Telecom
Networks"" McKinsey reported that telecom operators account for 2 to 3 percent of
total global energy demand, often making them some of the most energy-intensive
companies in their geographic markets. But the report noted that all operators have
considerable scope to cut energy costs and consumption, with many operators having
the potential to reduce energy consumption by at least 15 to 20 percent. Further
improved optimization policies was listed as one of the four key energy reduction op-
portunities. In this paper, we consider virtual circuit routing, which is used by several
network protocols to achieve reliable communication [38].

Formally, we consider virtual circuit routing protocols (where each connection is
assigned a fixed route in the network) with an objective of minimizing energy, in a
network of routers that (i) are speed scalable, and (ii) may be shut down when idle.
We use the standard model for a router's power-rate curve, which is the same as in
[4, 3, 10, 7]. In this model, the energy cost incurred by a router operating at speed x
(which is assumed to be the total traffic passing through the router) is given by

f(x) =

\biggl\{ 
0 if x= 0,
\sigma + x\alpha if x> 0.

(1.1)

Above, parameter \sigma is the static power (that is always used when the router is turned
on) and parameter \alpha > 1 specifies the energy inefficiency of the router. The value
of \alpha is in the range [1.1,3] for essentially all technologies [12, 48]. We assume that
all network components are homogeneous: so \sigma and \alpha are uniform across all routers.
This is also the setting in several prior works [3, 10, 7].

In this paper, we obtain the first polylogarithmic approximation algorithms for
virtual circuit routing with speed-scalable components at nodes of the network. All
previous papers considered the simpler setting where speed-scaling occurred at edges.
Although speed-scalable edges (corresponding to network links) are plausible, it is
more realistic that speed-scaling occurs at nodes (corresponding to routers).

Formally, in the node-cost energy efficient routing problem (NEERP), we are given
an undirected graph G= (V,E), with nonnegative multipliers on nodes \{ cv\} v\in V and
a uniform energy cost function (1.1). We are also given a collection of k request-pairs

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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590 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

of the form (si, ti, di), where, for each i \in [k], si \in V is the source node, ti \in V is
the sink node, and di \geq 1 is the demand. The goal in NEERP is to find a path Pi

connecting si and ti for each i\in [k] so as to minimize the overall energy cost:

\sum 
v\in V

cv \cdot f

\Biggl( \sum 
i:v\in Pi

di

\Biggr) 
.

It turns out that NEERP reduces to the capacitated network design problem
MCNC, as stated in the following result. This reduction is implicit in [3], where it was
applied to the edge-version, and we provide a proof in Appendix A for completeness.

Theorem 1.1 ([3]). If there is a (\beta ,\gamma ) bicriteria approximation algorithm for
MCNC, then there is an O(\beta \cdot \gamma \alpha )-approximation algorithm for NEERP.

Preliminary simplifications. We refer to the set \{ si\} ki=1 \cup \{ ti\} ki=1 of all sources
and sinks in MCNC as terminals. We assume (without loss of generality) that (i)
all terminals are distinct, i.e., each node in V is the source or sink of at most one
request and (ii) each terminal is a leaf node, i.e., has degree one. This can be ensured
by adding 2k new terminals of cost zero, where each new terminal node (si or ti) is
connected only to the original terminal. So the number of nodes n \geq 2k. In some
applications, we may also have n\gg k (which is common in network design problems).
So, we state our approximation ratios in terms of both n and k.

We also note that, without loss of generality, zero-cost nodes in MCNC may have
capacity that is any integral multiple of q. To see this, consider any zero-cost node
v \in V (i.e., with cv = 0) having capacity z \cdot q, where z \geq 1 is an integer. Then, we
simply introduce z copies v1, . . . , vz of node v, each having uniform capacity q and
zero cost. As all the copies have zero cost, it is clear that the two MCNC instances
are equivalent. We note that this reduction increases the number of nodes, but we
always have z \leq k as the total demand in any instance is at most kq; so the number
of nodes in the new instance is at most nk.

Single-sink node-capacitated network design (SSNC). We also consider separately
the single-sink special case of MCNC, where there is a common node t\in V with ti = t
for all i \in [k]. The sink node t is assumed to have zero cost; this is without loss of
generality as t must be included in any feasible solution. Moreover, the capacity of t
is kq so that all demands can be routed into it. We also assume that each source is a
distinct leaf node. The single-sink problem serves as a simpler setting to explain our
techniques and is also used in the multicommodity algorithm.

1.1. Our results and techniques. Our first main result is the following
theorem.

Theorem 1.2. There is an (O(log2 n),O(log3 n)) bicriteria approximation algo-
rithm for single-sink node-capacitated network design.

In order to motivate our approach, we illustrate two corner cases, which are
interesting in their own right. If the total demand is smaller than the capacity, i.e.,\sum 

i di < q, then the problem reduces to computing a minimum-cost node-weighted
Steiner tree, for which there are O(logk)-approximation algorithms [36, 28]. At the
other end of the spectrum, if each demand di is large, i.e., mini di = \Omega (q), then
each of these requests essentially has to route its demand on a disjoint path, and this
problem can be solved by using techniques from low-congestion routing [46]. (See also
Appendix B.1.) Prior results for the edge-capacitated problem [10, 3, 7] were based
on a combination of these ideas and can be summarized as follows: (i) choose an
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NODE CAPACITATED NETWORK DESIGN 591

approximately min-cost Steiner tree T connecting all the sources and the sink, (ii)
partition T into edge-disjoint subtrees (which we call clusters) having total demand
\approx q in each, (iii) choose one ``leader"" in each cluster and aggregate all demand in the
cluster at the leader, and (iv) route q units of flow from each leader to the sink t
using disjoint paths. The overall edge-congestion is bounded because the clusters are
edge-disjoint and the (disjoint) path chosen by each leader suffices to route the entire
demand in that cluster (which is at most q). A crucial ingredient in this approach is
that any tree can be partitioned into edge-disjoint subtrees/clusters containing \approx q
demand each.

However, in the node-capacitated setting, there may not exist a node-disjoint
clustering of the minimum Steiner tree into subtrees of \approx q demand each! For example,
the tree T could just be a star with all the sources and sink as leaves, which means
that the center node will appear in every cluster. So, instead of partitioning a min-cost
Steiner tree into clusters (which may not be possible), we directly aim to find low-cost
node-disjoint clusters. However, it is not a priori clear that such a clustering must
always exist. Our first step in Theorem 1.2 is to prove the existence of node-disjoint
clusters of cost at most the optimal SSNC value where each cluster has O(logn) \cdot q
demand. This proof relies on the existence of single-sink confluent flows [20]. In
fact, we show that each such cluster can be rooted at a neighbor of the sink so that
routing from each cluster to the sink is trivial. Our second step in Theorem 1.2
is to efficiently find such a clustering. We achieve this by formulating the single-
sink clustering problem as an instance of low load set cover [9]. Here, each subtree
with O(logn) \cdot q demand is a ``set"" and we need to pick a min-cost collection of
sets such that the number of sets containing any node is bounded (which will ensure
approximate node-disjointness). The approximation algorithm for low load set cover
from [9] requires a subroutine for the related ``minimum ratio"" problem, for which we
obtain an O(logn)-approximation algorithm using the partial node weighted Steiner
tree problem [37, 43]. These details are presented in section 2.

Our second main result is as follows.

Theorem 1.3. There is an (O(log2 n log2 k),O(log6 n log4 k)) bicriteria approxi-
mation algorithm for multicommodity node-capacitated network design.

We note that an \Omega ( log logn
log log logn ) factor violation in the node-capacity is necessary

for any nontrivial approximation on the cost, due to the hardness of the undirected
congestion minimization problem [5].

Our high-level approach is similar to that for the single-sink case. First, we find
a clustering of all source and sink nodes into nearly node-disjoint subtrees of small
cost such that each cluster has at most q \cdot polylog(n) demand inside. Next, we find
a routing of demands across different clusters (from sources to sinks) while incurring
low node-congestion. However, both these steps are significantly more complicated
than the single-sink case, as outlined next.

For multicommodity clustering, as in the single-sink case, we need to prove both
the existence and computation of (nearly) node-disjoint clusters. However, there is no
multicommodity notion of confluent flow, which was used crucially in the single-sink
existence proof. Moreover, the low-load set-cover approach is not applicable either
because the ``minimum ratio"" problem in the multicommodity case is at least as hard
to approximate as the dense-k-subgraph problem, which is believed to not admit any
polylogarithmic approximation [25, 11, 42]. We also need to modify the notion of an
allowed cluster in the multicommodity case. Ideally, we would like each cluster to be
``heavy,"" i.e., having demand at least q (and at most q \cdot polylog(n)), which is useful

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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592 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

in the subsequent routing step. However, this may not always be possible, so we also
allow ``internal"" clusters where a constant fraction of the demand in the cluster comes
from requests with both source and sink in that cluster. Then, we obtain a low cost
clustering where each cluster is either heavy or internal. We also ensure that the
clusters have low node congestion, i.e., each node appears in at most polylog(n) many
clusters. Our algorithm constructs these clusters in an iterative manner, where we
use the single-sink algorithm (Theorem 1.2) in each iteration. We start off with each
terminal being a singleton cluster and continue merging clusters until each cluster is
either heavy or internal. Crucially, we prove that the SSNC instances solved in each
iteration have low cost by producing a ``witness solution"" using the optimal MCNC
solution. We then use the SSNC solutions to merge clusters so that the number
of clusters reduces by a constant factor in each iteration: this implies that O(logk)
iterations suffice. The actual algorithm is more subtle, and we only end up clustering
a constant fraction of the total demand. See section 3.1 for a more detailed overview
of the clustering algorithm.

For multicommodity routing, we consider two cases depending on whether there
are more demands in internal or heavy clusters. If a constant fraction of the demand
is contained in internal clusters, then we do not have to route across clusters: we
just route all ``internal"" demands using the respective subtrees. The harder case is
when a constant fraction of the demand is in heavy clusters. Here, we find a low-cost
routing across heavy clusters using a sampling/hallucination based approach from
the edge-capacitated problem [7]. However, unlike the edge version [7], in the node
version we need to drop some demands in the routing step. This is required to ensure
that the min-cut in the demand graph is large, which in turn is needed for the cut-
sparisification result [34] that we use. See section 3.2 for a more detailed overview of
the routing algorithm.

Finally, after combining the clustering and routing steps, we obtain a solution
that can support a constant fraction of the total demands. So, we need to apply these
steps recursively on the remaining demands to complete the proof of Theorem 1.3.

We also note that the approximation ratios in Theorems 1.2 and 1.3 can be
strengthened to be relative to an optimal splittable routing: see Appendix A.2.

Using Theorems 1.2 and 1.3 along with the reduction in Theorem 1.1, we obtain
the following corollaries.

Corollary 1.4. There is an O(log3\alpha +2 n)-approximation algorithm for the
single-sink node-cost energy-efficient routing problem.

Corollary 1.5. There is an O(log10\alpha +4 n)-approximation algorithm for the
multicommodity node-cost energy-efficient routing problem.

1.2. Related work. Approximation algorithms for the edge-capacitated version
of MCNC have been studied previously in [4, 3, 10, 7]. The node-capacitated problem
that we study is more general, and we obtain the first approximation algorithms. A
key challenge that needs to be addressed in these results is that the problem has
similarities to both convex and concave cost flows. When the capacity q is small, the
MCNC problem is similar to convex-cost flow, where it is preferable to spread flow over
disjoint paths. On the other hand, when the capacity q is large, MCNC is similar to
concave-cost flow, where one prefers to aggregate flow. In [3], the authors showed that
these competing forces (to spread out or aggregate flow) can be ``poly-log-balanced"" by
giving a bicriteria polylogarithmic approximation algorithm for the multicommodity
edge version of the problem. Moreover, [4] showed an \Omega (log1/4 n) inapproximability

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NODE CAPACITATED NETWORK DESIGN 593

result for the edge version, under standard complexity theoretic assumptions. Later,
[7] obtained an improved (O(logn),O(logn)) bicriteria approximation algorithm for
edge-capacitated MCNC. In fact, [7] also studied the online version (where requests
arrive over time) and obtained an (O(logn),O(log2 n)) bicriteria competitive ratio. A
key technique in [7] was a random-sampling idea, where each request i ``hallucinates""
that it wants to route q units with probability \approx di

q . We also make use of this idea in
our paper.

The NEERP problem has also been studied in the special case that speed scaling
occurs on the edges instead of the nodes. As noted earlier, it is more realistic to
have speed-scalable nodes rather than edges. Presumably, the assumption in these
previous papers that speed scaling occurs on the edges was motivated by reasons
of mathematical tractability, as network design problems with edge costs are usu-
ally easier to solve than the corresponding problems with node costs. The paper [3]
obtained a logO(\alpha ) n-approximation algorithm for the edge-cost NEERP. The paper
[10] considered the single-sink special case (with edge costs) and obtained an O(1)-
approximation algorithm and O(log2\alpha +1 n)-competitive randomized online algorithm.
Later, [7] obtained a simple O(log\alpha n)-approximation algorithm for the multicommod-
ity edge version, which was also extended to an \~O(log3\alpha +1 n)-competitive randomized
online algorithm.

We note that the MCNC problem is a special case of a very general model, called
fixed-charge network design, that has been studied extensively in the operations re-
search literature; see, e.g., [35, 22, 32]. The focus in these papers has been on solving
the problem exactly, which is different from our goal of polynomial-time approxima-
tion algorithms.

An O(logk)-approximation algorithm for the basic node-weighted Steiner tree
problem was obtained in [36], which is also the best possible approximation ratio
(as set cover is a special case). This contrasts with the usual (edge-weighted) Steiner
tree, for which constant-factor approximations are known [13]. Our algorithm also
makes use of the partial node-weighted Steiner tree (PNWST) problem, where we only
want to connect a certain number of terminals. An O(logn) approximation algorithm
for PNWST was obtained in [37, 43].

Buy-at-bulk network design is also somewhat related to our model. Here, the cost
on a network element (edge or node) is a concave function of the load through it. Poly-
logarithmic approximation algorithms are known for both edge-weighted [8, 29, 18]
and node-weighted cases [19, 6]. The paper [2] also showed polylogarithmic hardness
of approximation for buy-at-bulk network design. From a technical standpoint, the
hallucination idea used in [7] and also in our algorithm is similar to the sample-
augment framework in [30] for solving buy-at-bulk problems. However, our algorithm
analysis is quite different from those for buy-at-bulk and is more similar in spirit to
the analysis of cut-sparsification algorithms [34, 47, 26].

The survivable network design problem (SNDP) is a different (but well-studied)
multicommodity network design problem. Here, the goal is to select a minimum-cost
subgraph that can route a set of demands individually; i.e., each demand should be
routable in the subgraph (just by itself). A 2-approximation algorithm is known for
SNDP with edge-connectivity requirements [33]. The node-connectivity SNDP has
also been studied extensively, with the best approximation ratio being O(k3 logn) for
edge costs [21] and O(k4 log2 n) for node costs [45]; here k is the largest demand.
Vertex-connectivity SNDP is also \Omega (k\epsilon )-hard to approximate [17]. There has also
been some work on capacitated SNDP [14, 15, 16, 31]. We note that capacitated

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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594 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

SNDP differs significantly from MCNC because the goal in SNDP is to route each
request-pair in isolation, whereas our goal is to route all requests concurrently.

Very recently (after the conference version of this paper), [24, 44] considered the
NEERP problem with nonuniform cost functions, where the \sigma and \alpha parameters
in (1.1) are different across nodes. In fact, their results apply to a larger class of
``generalized network design"" problems, which includes multicommodity routing on
directed graphs. The paper [24] gave an O(maxv\in V \sigma 

1/\alpha v
v )-approximation algorithm

for nonuniform NEERP, where \sigma v and \alpha v are the cost parameters for each node
(and \alpha v's are constant). Moreover, [44] obtained an online algorithm for nonuniform
NEERP with the same competitive ratio. We note that these results are incomparable
to Corollary 1.5: we obtain approximation ratios that are polylogarithmic in the input
size (n and k), whereas these results in [24, 44] have a polynomial dependence (albeit
on the cost parameters).

2. Single-sink node-capacitated network design. The input to the SSNC
problem consists of an undirected graph G = (V,E), with | V | = n, and a collection
of k sources \scrD = \{ si | i \in [k]\} with respective demands \{ 1 \leq di \leq q | i \in [k]\} . Recall
that each source node has degree one. There is a specified sink t \in V to which each
source si wants to send di units of flow unsplittably. Each node v \in V \setminus \{ t\} has a cost
cv and uniform capacity q; the sink t has zero cost and capacity kq (so all demands
can be routed into it). Recall that zero-cost nodes in MCNC (and SSNC) are allowed
to have larger capacity than q. The output is a subset of nodes V \prime \subseteq V such that the
graph G[V \prime ] induced by the nodes V \prime can concurrently support an unsplittable flow
of di units from each source si to the sink t. The objective is to minimize the total
cost c(V \prime ) =

\sum 
v\in V \prime c(v). We will also refer to the nodes \{ si | i \in [k]\} as terminals. In

our analysis, we use \sansO \sansp \sanst to denote the cost of the optimal SSNC solution.
A simple but important notion is that of a single-sink cluster, defined below.

Definition 2.1 (SSNC cluster). A cluster is any subtree of graph G containing
the sink t. The demand of the cluster is the total demand of all sources in it.

The key step in our single-sink algorithm is to find a collection of nearly node-
disjoint clusters, each assigned roughly q demand. An important step is to even show
the existence of such clusters, which we do in section 2.1. The existence argument is
based on single-sink confluent flows [20]. We then give an algorithm for finding such
clusters in section 2.2. This algorithm relies (in a black-box fashion) on two other
results: an O(logn)-approximation algorithm for partial node-weighted Steiner tree
[37, 43], and a logarithmic bicriteria approximation for low load set cover [9]. At a
high level, we model a set cover instance on the graph, where any cluster is a set, and
the goal is to find a minimum cost set cover of all terminals such that no node is in
too many sets. The algorithm of [9] requires a min-ratio oracle, for which we use the
partial node-weighted Steiner tree algorithm. Finally, we just select all the nodes in
the clusters as our solution. The node congestion can be bounded using the fact that
each cluster has roughly q demand and that the clusters are nearly disjoint.

Confluent flow. Consider any n-node directed graph with sink node t, sources
\{ si\} ki=1 with demands \{ di\} ki=1, and uniform node capacity q at all nodes except the
sink (which has infinite capacity). Again, we assume that each demand is at most
q. A flow is said to be confluent if for every node u there is at most one edge (u, v)
out of u that carries positive flow. Note that the edges carrying positive flow in any
confluent flow correspond to an arborescence directed toward the sink t.
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NODE CAPACITATED NETWORK DESIGN 595

Theorem 2.2 (Theorem 20 in [20]). Consider any directed graph as above with
a splittable routing \scrF \ast that sends di units from each source si (for i \in [k]) to sink
t, while respecting node capacities. Then, there is a confluent flow \scrF that routes all
demands where the total flow through any node (other than t) is at most (1 + lnn)q.

The multiple sinks referred to in [20] correspond to the in-neighbors of our single
sink t (which are at most n in number).

2.1. Existence of good clustering. We first show that there exists a ``good""
clustering of the source nodes into node-disjoint clusters.

Lemma 2.3. Given any instance of SSNC with optimal cost \sansO \sansp \sanst , there exists a
collection \{ Ti\} gi=1 of clusters such that the following hold:

(i) The demand of each cluster Ti is at most (1 + lnn) \cdot q.
(ii) Every source lies in some cluster.
(iii) The clusters are node-disjoint except at t.
(iv) The total cost is

\sum g
i=1

\sum 
v\in Ti

cv \leq \sansO \sansp \sanst .

Proof. Let V \ast \subseteq V denote the set of nodes in an optimal solution and \scrF \ast denote
an optimal flow for the sources \scrD . Note that \scrF \ast sends at most q flow through
each node (except t). We now apply Theorem 2.2 on the graph induced on V \ast to
obtain a confluent flow \scrF where the flow through each node (other than t) is at most
q(1+ lnn). Recall that \scrF corresponds to an arborescence \scrT directed toward the sink
t. Let \{ ri\} gi=1 denote all neighbors of t contained in arborescence \scrT . For each i\in [g],
let Ti denote the subtree of \scrT rooted at ri, along with the edge (t, ri). Note that
\{ Ti\} gi=1 are node-disjoint except at t. Moreover, the total demand in each subtree
Ti is at most q(1 + lnn) because all of these demands pass through node ri. Finally,
\scrT =\cup gi=1Ti contains all the sources as the confluent flow \scrF routes every demand.

We claim that the clusters \{ Ti\} gi=1 satisfy all the conditions in the lemma. Condi-
tions (i)--(iii) follow directly from the above construction. Condition (iv) follows from
(iii) and the fact that all nodes of Ti are contained in V \ast .

2.2. Finding a good clustering. The previous subsection only establishes the
existence of a good clustering; in this subsection we explain how to efficiently find
such a clustering.

Lemma 2.4. There is an efficient algorithm that, for any instance of SSNC with
optimal cost \sansO \sansp \sanst , finds a collection of clusters \{ Ti\} gi=1 such that the following hold:

(i) The demand of each cluster Ti is at most (1 + lnn) \cdot q.
(ii) Every source lies in some cluster.
(iii) Every node in V \setminus \{ t\} appears in at most O(log2 n) clusters.
(iv) The total cost is

\sum g
i=1

\sum 
v\in Ti

cv \leq O(log2 n) \cdot \sansO \sansp \sanst .
Given this clustering, our final solution to the SSNC instance is just \cup gi=1Ti. As

each cluster contains the sink t, there is no need for a separate routing step (from
clusters to t). By Lemma 2.4 property (iv), the cost is O(log2 n) \cdot \sansO \sansp \sanst . Moreover,
by properties (i), (ii), and (iii), all demands can be routed unsplittably with a total
flow of O(log3 n) \cdot q through any node (other than t). This completes the proof of
Theorem 1.2. It remains to prove Lemma 2.4, which we will do now. Our algorithm
will use an approximation algorithm for low load set cover (LLSC) [9], defined next.

Low load set cover (LLSC). In this problem, we are given a set system (U,\scrC )
with elements U and sets \scrC \subseteq 2U , costs \{ cv : v \in U\} , and bound p\geq 1. The cost of any
set S \in \scrC is c(S) :=

\sum 
v\in S cv, the sum of its element costs. We note that the collection
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596 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

\scrC may be exponentially large and specified implicitly. The cost of any collection \scrC \prime \subseteq \scrC 
is c(\scrC \prime ) :=

\sum 
S\in \scrC \prime c(S) =

\sum 
S\in \scrC \prime 

\sum 
v\in S cv, the sum of its set costs. We are also given

two special subsets of elements: required elements W\subseteq U that need to be covered, and
capacitated elements L\subseteq U .1 The goal is to find a minimum cost set cover \scrC \prime \subseteq \scrC for
the required elements W (i.e., \cup S\in \scrC \prime S \supseteq W ) such that each capacitated element e\in L
appears in at most p sets of \scrC \prime . An approximation algorithm for LLSC is given in
[9], which relies on the following subproblem. The min-ratio oracle for LLSC takes,
as input, nonnegative element-costs \{ \eta v : v \in U\} and a subset X \subseteq W (of already

covered required elements) and outputs a set S \in \scrC that minimizes
\sum 

v\in S \eta v

| S\cap (W\setminus X)| . We
use the following result on LLSC.

Theorem 2.5 ([9]). Assuming a \rho -approximate min-ratio oracle, there is an
algorithm for the LLSC problem that finds a solution of cost O(\rho log | U | ) times the
optimum and which covers each capacitated element O(\rho log | U | )p times.

In other words, this is a bicriteria approximation algorithm that violates both the
cost and capacities by an O(\rho log | U | ) factor.

The SSNC problem as LLSC. We now prove Lemma 2.4 by casting the desired
clustering problem as an instance of LLSC. The elements are the nodes V of the
original SSNC problem. The costs \{ cv : v \in V \} are the node-costs in SSNC. The
required elements are all the sources W = \{ si\} ki=1. For any v \in W its demand
dv := di where v= si is the corresponding source node. The capacitated elements are
L := V \setminus \{ t\} and the bound p = 1. Let Q := (1 + lnn) \cdot q. The collection \scrC of sets is
defined as follows. There is a set corresponding to each cluster (Definition 2.1), having
demand at most Q. To reduce notation, we use T to denote the subtree representing
the cluster as well as the nodes in this cluster. By Lemma 2.3, the optimal value of
this LLSC instance is at most \sansO \sansp \sanst .

Next, we provide an approximation algorithm for the min-ratio oracle for such
LLSC instances. Our min-ratio algorithm relies on another known problem.

Partial node-weighted Steiner tree (PNWST). The input is an undirected
graph G = (V,E) with node-weights \{ \eta v : v \in V \} , sink t \in V , rewards \{ \pi v : v \in V \} ,
and target \tau . Both the node-weights and rewards are nonnegative. The objective is
to find a minimum node cost Steiner tree containing t having total reward at least \tau .
We will use the following known result.

Theorem 2.6 ([37, 43]). There is an O(log | V | )-approximation algorithm for the
partial node-weighted Steiner tree problem.

Lemma 2.7. There is an O(logn)-approximate min-ratio oracle for the SSNC
clustering problem.

Proof. In the min-ratio oracle of the SSNC clustering problem, we are given
nonnegative node weights \{ \eta v : v \in V \} and subset X \subseteq W . The goal is to find:

min
T\in \scrC 

\sum 
v\in T \eta v

| T \cap (W \setminus X)| 
.

We will refer to the nodes W \setminus X as new nodes. Our min-ratio oracle involves
solving several PNWST instances, as defined below.

1Our LLSC definition is slightly different from that in [9] due to the presence of element costs
and having to cover only a subset of elements. However, the algorithm and analysis from [9] extend
to our formulation in a straightforward way.
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NODE CAPACITATED NETWORK DESIGN 597

For each \ell = 1,2, . . . | W \setminus X| , we define an instance \scrI \ell of PNWST as follows.
\bullet The node-weights are \{ \eta v : v \in V \} .
\bullet The rewards are

\pi v =

\biggl\{ 
1
\ell  - 

dv

2Q if v \in W \setminus X,

0 otherwise
\forall v \in V.

Note that some node-rewards may be negative. Let V \prime := \{ v \in V : \pi v \geq 0\} 
denote the nodes with nonnegative reward. Note that all nodes in V \setminus V \prime are
leaf nodes (by our assumption that all sources are leaf nodes).

\bullet The input graph G\prime is the subgraph of G induced on nodes V \prime .
\bullet The target reward is \tau = 1

2 .
Let T\ell denote the tree obtained from the \rho = O(logn) approximation algorithm

for the PNWST instance \scrI \ell . (If instance \scrI \ell is infeasible, then T\ell = \sansN \sansI \sansL and we skip
the following steps.) Let N\subseteq W \setminus X denote the new nodes covered by tree T\ell and let

F =
\sum 

v\in N dv be their total demand. So the reward of tree T\ell is | N | 
\ell  - 

F
2Q \geq 

1
2 . In

other words,

| N | \geq Q+ F

2Q
\cdot \ell .(2.1)

Note that subtree T\ell may not be in the set-collection \scrC as its demand F may be
more than Q. To fix this issue, we will select a subset N \prime \subseteq N of nodes in T\ell with
demand at most Q and construct a subtree T \prime 

\ell \in \scrC that contains N \prime .
If F \leq Q, then N \prime =N and T \prime 

\ell = T\ell . Note that T
\prime 
\ell is in \scrC as its demand is at most

Q. Moreover, | N \prime | = | N | \geq \ell 
2 by (2.1). So, the cost-to-coverage ratio of T \prime 

\ell is at most
2c(T\ell )/\ell .

If F > Q, we do the following. Starting with a partition of N into singletons
(so each part has demand at most Q), we repeatedly merge any two parts into one
if the resulting part has total demand at most Q. At the end of this process, we
will have h \leq 2F

Q parts each with demand at most Q. We set N \prime to be the largest

cardinality part in the final partition. So | N \prime | \geq | N | 
h \geq 

Q
2F | N | \geq 

\ell 
4 by (2.1). Further,

let T \prime 
\ell be the subtree obtained from T\ell by removing nodes N \setminus N \prime . Note that T \prime 

\ell is
indeed a tree because the deleted nodes N \setminus N \prime \subseteq W are all leaves (by our assumption
that all sources are leaf nodes). Crucially, T \prime 

\ell is in \scrC because its demand is at most
Q. Moreover, it covers | N \prime | \geq \ell 

4 new nodes. So, the cost-to-coverage ratio of T \prime 
\ell is at

most 4c(T\ell )/\ell .
Finally, the min-ratio oracle returns the subtree having the minimum ratio among

\{ T \prime 
\ell : 1\leq \ell \leq | W \setminus X| \} . We now show that this is a 4\rho -approximation algorithm.
Let T \ast \in \scrC denote the min-ratio cluster and \ell \ast = | T \ast \cap (W \setminus X)| be the number

of new nodes in T \ast . Then, by definition of the rewards \{ \pi v\} in PNWST instance \scrI \ell \ast ,
we have \pi (T \ast ) \geq 1

2 as the total demand in T \ast is at most Q. However, T \ast may not
itself be feasible to \scrI \ell \ast as it may not be a subtree of graph G\prime (which is restricted
to the nodes V \prime ). Let T \prime be the subtree of T \ast obtained by restricting to the nodes
V \prime of graph G\prime ; note that T \prime is indeed a tree because all nodes V \setminus V \prime are leaves.
Moreover, the reward of T \prime is at least that of T \ast as nodes in V \setminus V \prime have negative
reward. So, T \prime is a feasible solution to instance \scrI \ell \ast , and the optimal value of \scrI \ell \ast is at
most c(T \prime )\leq c(T \ast ). Hence, c(T\ell \ast )\leq \rho \cdot c(T \ast ) as T\ell \ast is a \rho -approximate solution to \scrI \ell \ast .
So, the ratio of our algorithm's solution T \prime 

\ell \ast is at most 4\rho 
\ell \ast c(T

\ast ). Using \rho = O(logn)
from Theorem 2.6, we obtain the lemma.

Finally, the proof of Lemma 2.4 follows from Theorem 2.5 along with Lemma 2.7.
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598 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

2.3. Good clustering from SSNC solution. In our multicommodity algo-
rithm, we will utilize approximate solutions to SSNC instances to come up with a
good clustering. The desired properties of this clustering are stated in Theorem 2.9
below. Informally, this result says that given any solution to an SSNC instance with
some set of sources X and sink t, we can peel out node-disjoint subtrees such that (a)
the total demand in any cluster is bounded and (b) each cluster either has at least
two sources or contains a neighbor of the sink t. Our clustering algorithm makes use
of the following known result on single-sink unsplittable flow.

Theorem 2.8 (Theorem 3.5 in [23]). Consider any directed graph with single
sink t, sources X having demands \{ ds : s\in X\} , and a splittable flow \scrF \prime that sends ds
units from each source s \in X to sink t, while respecting node capacities. Then, there
is an unsplittable flow \scrF that routes all demands where the total flow in \scrF through
any node exceeds its original flow (in \scrF \prime ) by at most maxs\in X ds.

Theorem 2.9. Consider any SSNC instance with source-nodes X, maximum
demand dmax, and sink t. Let N\subseteq V denote the neighbors of t. Suppose V \prime \subseteq V is a
solution of cost B such that it supports the demand flow from X to t with maximum
node capacity of C. Then, we can find in polynomial time, a node-disjoint collection
of rooted subtrees \{ (rj , Tj)\} gj=1 such that the following hold:

1. Every source node appears in some subtree.
2. Each subtree Tj\subseteq V \prime \setminus \{ t\} ; so the total cost of these subtrees is at most B.
3. The total demand in any subtree is at most C + dmax.
4. Every subtree Tj with root rj \not \in N contains at least two sources.
5. For every subtree Tj with root rj \not \in N we have Tj \cap N = \emptyset .

Proof. Consider the network induced on the nodes V \prime (from the SSNC solution)
where each node has capacity C. By feasibility of this SSNC solution, there is a
splittable flow \scrF \prime that sends ds units of flow from each source s\in X to sink t. As this
is a single-sink flow, we can ensure that there are no directed cycles in \scrF \prime . Moreover,
we can assume (without loss of generality) that every neighbor of t (i.e., node in
N) sends flow only to t: this is because we only have capacities at nodes. Applying
Theorem 2.8 to \scrF \prime , we obtain a flow \scrF that sends ds units unsplittably from each
source s \in X, where the flow through each node (other than t) is at most C + dmax.
Moreover, \scrF does not have any directed cycles because \scrF \prime doesn't. We may also
assume (without loss of generality) that in \scrF , each node in N (neighbors of t) only
carries nonzero flow to t. Let E\prime \subseteq E denote the arcs used in flow \scrF ; note that (V \prime ,E\prime )
is a directed acyclic graph. We index the nodes V \prime in topological sort order with
the sink t having the smallest index 1. Let \scrF (s) be the s  - t path used to route
demand from source s \in X. We construct the desired collection of trees as described
in Algorithm 2.1. Let g denote the number of trees produced. We now show that the
rooted subtrees \{ (Tj , rj)\} gj=1 satisfy the claimed properties.

We first prove that the subtrees Tj are node-disjoint. Note that step 7 in the
while-loop only occurs when the sink t is the only node containing flow from more
than one source of Y . So, this can only happen in the last iteration. Consider any
subtree Tj produced in step 3. By the choice of root rj , for each s\in Zj the portion of
path \scrF (s) from s to rj is disjoint from the paths of the remaining sources Y \setminus Zj . That
is, subtree Tj is (node) disjoint from all subtrees Tj+1, . . . , Tg found in later iterations.
As noted above, step 7 only occurs in the last iteration, at which point every node in
V \prime \setminus \{ t\} carries flow from at most one source of Y . So the subtrees produced in this
step are also node-disjoint.
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NODE CAPACITATED NETWORK DESIGN 599

Algorithm 2.1. Computing SSNC Clusters.

1: initialize sources Y \leftarrow X and j\leftarrow 1.
2: while Y \not = \emptyset do
3: let root rj \in V \prime \setminus \{ t\} denote the maximum index node that carries flow from

at least two sources in Y .
4: let Zj\subseteq Y denote all remaining sources s whose paths \scrF (s) contain rj .
5: subtree Tj consists of root node rj , and for each source s\in Zj , the s - rj

prefix of path \scrF (s).
6: update Y \leftarrow Y \setminus Zj and j\leftarrow j + 1.
7: if there is no root node (from V \prime \setminus \{ t\} ) satisfying the condition in step 3 then
8: for each u\in N (neighbor of t) do
9: set rj = u and Zj\subseteq Y is the singleton set containing the source whose

path contains u.  \triangleleft If there is no such source node then Zj = \emptyset 
10: subtree Tj consists of root node rj , and the s - rj prefix of path \scrF (s)

for the source s\in Zj .
11: update Y \leftarrow Y \setminus Zj and j\leftarrow j + 1.
12: end for
13: end if
14: end while

It is clear that each source appears in some subtree, as the while-loop continues
until Y = \emptyset : this proves property 1. It is also clear than each subtree Tj\subseteq V \prime \setminus \{ t\} :
combined with node-disjointness of the subtrees, we obtain property 2.

We now bound the total demand in each subtree Tj . For any tree Tj produced in
step 3, we have rj \in \scrF (s) for all s\in Zj . So the flow through node rj in the unsplittable
flow \scrF is at least

\sum 
s\in Zj

d(s), the total demand in Tj . Using the fact that \scrF sends
at most C + dmax flow through any node (other than t), the total demand in Tj is at
most C+dmax. As noted above, step 7 only occurs when every node in V \prime \setminus \{ t\} carries
flow from at most one source of Y . So each subtree produced in step 7 contains at
most one source, which has demand at most dmax. This proves property 3.

Each subtree produced in step 3 contains at least two sources: this follows from
the choice of node rj . All remaining subtrees (produced in step 7) have as their root
some node of N (neighbors of t). This proves property 4.

For property 5, consider any subtree Tj with root rj \not \in N . Clearly, Tj must be
produced in step 3. Moreover, Tj consists of the prefixes of certain paths until node
rj . As nodes of N only send flow to sink t and the root rj \not \in N , subtree Tj does not
contain any node of N .

3. Multicommodity node-capacitated network design. We now discuss
the general multicommodity case of the problem. Recall that the input is an undi-
rected graph G = (V,E) with k request-pairs \{ (si, ti, di) | i \in [k]\} , where the ith
request has source si, sink ti, and demand 1 \leq di \leq q. All nodes have capacity q.
The output is a subset of nodes V \prime \subseteq V such that the graph G[V \prime ] induced by V \prime can
simultaneously support di units of flow (unsplittably) between nodes si and ti, for
each i \in [k]. The objective is to minimize the total cost c(V \prime ) =

\sum 
v\in V \prime cv. As men-

tioned earlier, we assume (without loss of generality) that all terminals are distinct
and each terminal is a leaf node. For any terminal s, we define its mate to be the
unique terminal t such that (s, t) is a request-pair. We also use d(s) to denote the
demand associated with any terminal s; so we have d(si) = d(ti) = di for all i\in [k].
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600 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Roadmap. Our algorithm first clusters the terminals into nearly node-disjoint
subtrees of low total cost. We need a new notion of ``allowed clusters"" in the multi-
commodity case, and the clustering algorithm is based on iteratively solving several
instances of the single-sink problem (SSNC). The details appear in section 3.1. Next,
the algorithm routes demands across different clusters while respecting node capac-
ities. The routing algorithm relies on random-sampling and cut-sparsification; see
section 3.2 for details. After combining the intercluster routing with the clusters
themselves, we are able to route a constant fraction of the demands with small node
congestion. Finally, we need to apply the above clustering and routing algorithms
recursively on all unsatisfied demands, so we repeat the main algorithm a logarithmic
number of times.

3.1. Clustering. Here, we describe the multicommodity clustering algorithm
that finds a collection of nearly disjoint clusters, where each cluster has either a large
fraction of ``induced"" demands (internal clusters) or a large number of ``crossing""
demands (heavy clusters). During our clustering algorithm, we will drop some request-
pairs and maintain a current set of requests K. At any point in the algorithm, the
terminals are the sources/sinks of only the current request-pairs. We will ensure that
requests remaining at the end of the clustering algorithm have a constant fraction of
the total demand D :=

\sum k
i=1 di.

Definition 3.1 (MCNC cluster). Let K\subseteq [k] denote a subset of requests. The
following definitions are relative to K, where the nodes \{ si, ti\} i\in K are called terminals.
A cluster is any subtree T in graph G.

\bullet The set of terminals contained in cluster T is denoted \sanst \sanse \sansr \sansm \sanss (T ).
\bullet The demand of cluster T is \sansl \sanso \sansa \sansd (T ) =

\sum 
s\in \sanst \sanse \sansr \sansm \sanss (T ) d(s), the sum of demands

over all its terminals.
\bullet A terminal s \in \sanst \sanse \sansr \sansm \sanss (T ) is called internal if its mate is also in \sanst \sanse \sansr \sansm \sanss (T ); the
terminal s is called external otherwise.
\bullet The internal (resp., external) demand of cluster T is the total demand of its
internal (resp., external) terminals.

Note that ``internal requests"" (with both source and sink in T ) contribute twice
to \sansl \sanso \sansa \sansd (T ), whereas ``external requests"" (with exactly one terminal in T ) contribute
just once to \sansl \sanso \sansa \sansd (T ).

Definition 3.2 (cluster categories). Let K\subseteq [k] be a subset of requests and T be
any cluster. Then, T is said to be

\bullet heavy if its demand \sansl \sanso \sansa \sansd (T ) is at least q;
\bullet internal if its internal demand is more than \sansl \sanso \sansa \sansd (T )/2;
\bullet active if it is neither internal nor heavy.

We note that some clusters may be both internal and heavy. In our algorithm, we
explicitly maintain collections of different cluster types, and any ties will be broken
according to the algorithm.

We will maintain and grow active clusters until all clusters are heavy or internal.
We further classify active clusters into two types depending on how much of their
external demand goes to other active clusters. This distinction is important because
the algorithm needs to deal with these clusters differently.

Definition 3.3 (active cluster types). Let K\subseteq [k] be a subset of requests and T
an active cluster. T is a type 1 active cluster if the total demand of terminals in T
with their mates in other active clusters is less than \sansl \sanso \sansa \sansd (T )/4. Otherwise, T is a
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NODE CAPACITATED NETWORK DESIGN 601

type 2 active cluster. Moreover, a type 1 active cluster is called dangerous if it has
nonzero demand going to other active clusters.

We will refer to type 1 and type 2 active clusters as t1-active and t2-active,
respectively. Note that the total external demand of any active cluster T is at least
\sansl \sanso \sansa \sansd (T )/2; otherwise, T would be an internal cluster (not active). So, any t1-active
cluster has at least \sansl \sanso \sansa \sansd (T )/4 demand crossing to internal/heavy clusters. Moreover,
any t1-active cluster that is not dangerous has all its external demands going to
internal/heavy clusters.

We can now state the main multicommodity clustering result.

Theorem 3.4. Suppose that there is a (\beta ,\gamma )-bicriteria approximation algorithm
for the single-sink problem (SSNC). Then, for any MCNC instance with optimal cost
\sansO \sansp \sanst , there is a polynomial-time algorithm that finds a subset K\subseteq [k] of request-pairs
and a collection \widehat \scrT of clusters (relative to K) such that the following hold:

(i) Each cluster in \widehat \scrT is internal or heavy.
(ii) Each terminal (i.e., node in \{ si, ti\} i\in K) lies in exactly one cluster.
(iii) The total demand of request-pairs K is

\sum 
i\in K di \geq D/4.

(iv) Each node appears in at most O(logk) different clusters.
(v) The demand of each cluster is at most O(\gamma 2 logk) \cdot q.
(vi) The total cost of all the clusters\sum 

T\in \widehat \scrT 
\sum 
v\in T

cv \leq O(\beta \cdot logk) \cdot \sansO \sansp \sanst .

Overview of algorithm/analysis. We start with each terminal being its own
cluster. The clustering algorithm aims to find clusters with \approx q terminals in each;
these aggregated demands can then be handled in the routing step of our algorithm.
This motivates the definition of heavy clusters, which contain at least q demand (see
Definition 3.2). In order to obtain such heavy clusters, the algorithm iteratively
merges the nonheavy clusters. Moreover, to ensure that there is a low-cost solu-
tion to this ``merging"" step, we need each cluster to have a constant fraction of its
demand going to other clusters: otherwise, the cost to merge may be much more than
the optimal MCNC cost (denoted by \sansO \sansp \sanst ). This motivates the definition of internal
clusters, where a constant fraction of the demand is induced inside the cluster (see
Definition 3.2). While internal clusters cannot participate in merging anymore, we
can use the subtree inside such clusters to route all its internal demand (which is
a constant fraction of its total demand). So, both heavy and internal clusters are
``good"" in the sense that we will be able to satisfy a constant fraction of their demand
in the subsequent routing step. Therefore, the revised aim of the clustering algorithm
is to find a collection of heavy or internal clusters. All other clusters are called active,
which the algorithm continues to merge.

The clustering algorithm proceeds in iterations. Each iteration attempts to merge
active clusters and ensures that the number of active clusters reduces by a constant
factor. So, the number of iterations will be at most O(logk). The merging step in
each iteration is based on solving suitable instances of the single-sink problem SSNC.
We will ensure that the optimal value of each SSNC instance is at most \sansO \sansp \sanst , so
the final cost of our clusters will be O(logk) \cdot \sansO \sansp \sanst . When multiple active clusters
merge together in any iteration, the resulting cluster may be internal, heavy, or active
(we make progress in all cases). However, the new cluster may have demand much
more than q, as we cannot control how many active clusters get merged into one. In
order to handle this issue, we ensure that the SSNC instances have node-capacity
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602 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

\approx q; the SSNC approximation guarantee then implies that the demand in any new
cluster is at most \approx \gamma \cdot q. (In some cases we will have slightly larger node capacities
in SSNC, as explained later.)

Another issue to handle is that we may be unable to merge active clusters just
with each other. In particular, it is possible that a large fraction of an active cluster's
demand goes to heavy/internal clusters. Then, we cannot expect to merge such a
cluster with other active clusters. This motivates the classification of active clusters
into types 1 and 2, corresponding to an active cluster having a low/high fraction of
its demand go to other active clusters (see Definition 3.3). The two types of active
clusters are dealt with separately. Initially, each singleton cluster is t2-active. Assume
for now that there are no requests between active clusters of different types. We will
explicitly ensure this property by dropping some requests and preserving only a subset
K\subseteq [k] of requests.

\bullet Merging t2-active clusters. Intuitively, these active clusters can be merged
with each other (at low cost) because most of their demands go to other
active clusters. We would like to construct an SSNC instance \scrI 2, where
each t2-active cluster is a source. However, the original MCNC requests are
multicommodity; so, even requests associated with one cluster do not have
a common sink. We get around this issue by restricting our attention to a
``bipartite demand graph"" containing at least half the total demand between
t2-active clusters. This corresponds to finding an appropriate bi-partition
(\scrA +,\scrA  - ) of t2-active clusters, which can be done using a simple local search.
Now, we treat all clusters in part \scrA + as sources and connect all clusters in
\scrA  - to a new sink node t. All nodes have capacity \approx q. See Algorithm 3.3
for the formal description. In the analysis, we need to show that the optimal
cost of this SSNC instance is at most \sansO \sansp \sanst . This is done by demonstrating a
(fractional) routing based on the optimal MCNC solution and using the fact
that at least half the total demand in t2-active clusters is ``crossing"" between
\scrA + and \scrA  - . Finally, we obtain a collection of subtrees (using the approx-
imate SSNC solution and Theorem 2.9) that are used to merge t2-active
clusters.

\bullet Merging t1-active clusters. These clusters have a constant fraction of their
demands going to heavy/internal clusters. If any requests from a t1-active
cluster go to an internal cluster, then we simply drop these requests and
``charge"" them to the requests in internal clusters which will definitely be
preserved. Note that demand induced in any internal cluster is at least a
constant fraction of its total demand. Moreover, the clustering algorithm only
aims to preserve a subset K of requests (which should be a constant fraction
of the total demand). So, we are left with the case that a large fraction of
demand from any t1-active cluster goes to heavy clusters. Intuitively, these
clusters can be merged with heavy clusters at low cost. We now construct
an SSNC instance \scrI 1 to merge t1-active clusters with heavy clusters (or each
other). We treat each t1-active cluster as a source and connect all heavy
clusters to a new sink t. All nodes have capacity \approx q except the nodes
corresponding to heavy clusters, which have capacity O(\gamma \cdot q). The reason
that we have a larger capacity for heavy clusters is that the demand in a
heavy cluster can be as large as O(\gamma \cdot q) and the MCNC routing (which is
used to demonstrate a low-cost SSNC routing) induces a corresponding load
on these clusters. See Algorithm 3.2 for the formal description. Again, we
merge clusters using the approximate SSNC solution and Theorem 2.9.
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NODE CAPACITATED NETWORK DESIGN 603

The demand of any new cluster formed when active clusters merge with each
other is bounded by O(\gamma \cdot q) as all nodes in these clusters have capacity O(q) and \gamma 
is the capacity violation in our SSNC algorithm. However, when t1-active clusters
merge with an existing heavy cluster H, the demand of H may increase by as much as
O(\gamma 2 \cdot q); this is because nodes corresponding to heavy clusters have capacity O(\gamma \cdot q).
Unfortunately, this increased demand in H may multiply over iterations. Specifically,
if most of the new requests in H are going to other active clusters, then the SSNC
instance \scrI 1 in the next iteration must increase the capacity of H from \gamma \cdot q to \gamma 2 \cdot q;
this is needed to demonstrate a low cost solution to \scrI 1. So, the capacity (and hence
the demand) of cluster H will keep increasing by a multiplicative factor \gamma in each
iteration! In order to fix this issue, we will ensure that all t1-active clusters in SSNC
instance \scrI 1 have zero demand going to other active clusters (again, this property will
be ensured by dropping certain requests). This motivates the definition of dangerous
clusters, which are t1-active clusters having any request going to other active clusters
(Definition 3.3). We will ensure that instance \scrI 1 has no dangerous clusters. Now,
when t1-active clusters merge with a heavy cluster H, the demand between H and
active clusters does not increase. So, the capacity of H in instance \scrI 1 of the next
iteration can remain O(\gamma \cdot q). We note that the total demand in H still increases
additively by O(\gamma 2 \cdot q) in each iteration. As there are only O(logk) iterations, the
final demand of any heavy cluster can be bounded by O(logk \cdot \gamma 2 \cdot q).

Dropping requests. In the above description, we assumed that there are no re-
quests between (i) active clusters of different types, (ii) internal clusters and active
clusters, and (iii) t1-active clusters and t1- or t2-active clusters. As mentioned earlier,
to ensure these properties, our algorithm drops certain requests and preserves only a
subset K\subseteq [k]. Specifically, in each iteration we perform a ``pruning step"" after merg-
ing active clusters. This involves repeatedly choosing a (new) cluster T that is either
internal or dangerous, and dropping all requests between T and other active clusters.
In the analysis we will show that the dropped requests can be ``charged"" to preserved
requests in K, so that the final set K is a constant fraction of the total demand in
MCNC. No request incident to a heavy cluster is ever dropped, so heavy clusters do
not change in this pruning step. We note that dropping requests incident to cluster T
may cause another active cluster T \prime to become internal or dangerous; then, cluster T \prime 

will also be processed later in this pruning step. Therefore, at the end of each itera-
tion, we ensure the three properties (i)--(iii). We emphasize that the cluster definitions
are all relative to the current set K of requests.

Algorithm 3.1 describes the overall clustering algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr . We maintain
separate collections of clusters: \scrT i (internal), \scrT h (heavy), \scrA 1 (t1-active), and \scrA 2 (t2-
active). Algorithm 3.2 (\sansM \sanse \sansr \sansg \sanse \sansT \sansone ) and Algorithm 3.3 (\sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ) describe the separate
procedures to merge t1-active and t2-active clusters. Figures 1 and 2 illustrate the
graphs G1 and G2 used in the two SSNC instances \scrI 1 (solved in \sansM \sanse \sansr \sansg \sanse \sansT \sansone ) and \scrI 2
(solved in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ).

Analysis. Our first lemma shows that all clusters are classified correctly (relative
to the current requests K) at the end of each iteration of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr . During the
iteration, new or modified clusters may be in the wrong collection, but these will get
fixed at the end (as shown in the next lemma).

Lemma 3.5. At the end of each iteration of Algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , the clusters in
the current set of clusters are correctly classified into \scrT i (internal), \scrT h (heavy), \scrA 1

(t1-active), and \scrA 2 (t2-active).
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604 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Algorithm 3.1. MCNC Clustering Algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr .

1: initialize K = [k] to be all request-pairs and the clusters are all singletons.
2: all clusters are t2-active, i.e., \scrA 2\leftarrow \{ \{ si\} ,\{ ti\} \} i\in K , \scrT i\leftarrow \emptyset , \scrT h\leftarrow \emptyset , \scrA 1\leftarrow \emptyset .
3: while some cluster is active (\scrA 1 \cup \scrA 2 \not = \emptyset ) do  \triangleleft Iteration begins
4: run algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sansone (\scrT h,\scrA 1) which modifies t1-active and heavy clusters.
5: run algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo (\scrA 2) which modifies t2-active clusters.
6: for all clusters T in \scrA 1\cup \scrA 2 do  \triangleleft Identify heavy clusters
7: if T is heavy then move it from \scrA 1 or \scrA 2 to \scrT h.
8: end for
9: while some cluster T in \scrA 1 \cup \scrA 2 is dangerous or internal do

 \triangleleft Identify internal clusters and ensure no dangerous clusters
10: remove from K all requests between T and other active clusters.
11: if T is internal (resp., t1-active), then move it to \scrT i (resp., \scrA 1).
12: end while
13: if any cluster T \in \scrA 2 is t1-active, then move it to \scrA 1.
14: end while

original graph G

sink t

node vF

heavy
cluster F

t1-active T

source sT

Fig. 1. Graph G1 for t1-active clusters.

Proof. At the beginning of the algorithm, each cluster is a singleton terminal.
Clearly, these are t2-active clusters, so the initial classification is correct.

Algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr first runs \sansM \sanse \sansr \sansg \sanse \sansT \sansone and \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo to merge t1-active and
t2-active clusters separately. \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo creates new clusters by merging t2-active clus-
ters, and places all new clusters in \scrA 2. \sansM \sanse \sansr \sansg \sanse \sansT \sansone modifies existing heavy clusters
(which remain in \scrT h) and creates new clusters by merging t1-active clusters, which
are placed in \scrA 1. Then, in Step 7 of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , we first identify any new heavy clus-
ters (in \scrA 1\cup \scrA 2) and move them to \scrT h. At this point, all heavy clusters are classified
correctly. Moreover, \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr never removes requests incident to a heavy cluster
(see Steps 9--12). So, once a cluster is heavy, it will remain heavy throughout the
algorithm.

Next, in Steps 9--12 of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , we repeatedly identify dangerous/internal clus-
ters and drop some requests (which in turn can modify other clusters). We now argue
that the clusters are classified correctly after this step:

\bullet Suppose an internal cluster T \in \scrA 1\cup \scrA 2 is processed in Step 9. We remove all
requests from T to other active clusters. This keeps T as an internal cluster,
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NODE CAPACITATED NETWORK DESIGN 605

Algorithm 3.2. Merging algorithm for t1-active clusters \sansM \sanse \sansr \sansg \sanse \sansT \sansone (\scrT h,\scrA 1).
1: let graph G1 consist of graph G and the following new nodes/edges:

\bullet For each cluster T \in \scrA 1, there is a source node sT (of zero cost) with
demand d(sT ) = \sansl \sanso \sansa \sansd (T ); node sT is connected to each terminal in T .

\bullet For each heavy cluster F \in \scrT h, there is a new node vF (of zero cost), which
is connected to every terminal in F .

\bullet There is a new sink node t, connected to the nodes \{ vF : F \in \scrT h\} .
2: The node capacities are \~q := 5q. For the zero-cost nodes vF corresponding to

heavy clusters F \in \scrT h, we set their capacities to 9\gamma \cdot \~q, where \gamma is the
approximation ratio for node-congestion from our single-sink algorithm.

3: let \scrI 1 be the SSNC instance on graph G1, with sources \{ sT \} T\in \scrA 1
and sink t.

4: solve instance \scrI 1 using the SSNC approximation algorithm (Theorem 1.2) to
obtain solution V1\subseteq V .

5: using Theorem 2.9 on solution V1, obtain a collection of rooted subtrees \scrN 1.
6: for each subtree X (with root r) in \scrN 1 do  \triangleleft Merge clusters using \scrN 1

7: let \scrX = \{ T \in \scrA 1 : sT \in X\} be the t1-active clusters whose source-nodes are
contained in subtree X

8: update \scrA 1\leftarrow \scrA 1 \setminus \scrX 
9: if root r corresponds to a heavy cluster F \in \scrT h (i.e., r= vF ) then

10: add clusters \scrX and subtree X to heavy cluster F , i.e., F \leftarrow F \cup X \cup \scrX 
11: else
12: merge clusters \scrX using subtree X to get new cluster S =X \cup \scrX 
13: update \scrA 1\leftarrow \scrA 1 \cup \{ S\} 

 \triangleleft S may not be t1-active: its type will be updated in \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr 
14: end if
15: end for

original graph G

sink t

node vW

cluster W ∈ A−

source sT

cluster T ∈ A+

Fig. 2. Graph G2 for t2-active clusters.

and it is classified correctly. Moreover, we never remove any internal requests,
and we never modify an internal cluster after it is assigned to \scrT i.

\bullet Suppose a dangerous cluster T \in \scrA 1 \cup \scrA 2 is processed in Step 9. We remove
all requests from T to other active clusters. As a result, T will become either
internal (if its internal demand is more than \sansl \sanso \sansa \sansd (T )/2) or nondangerous
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606 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Algorithm 3.3. Merging algorithm for t2-active clusters \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo (\scrA 2).
1: partition clusters \scrA 2 into \scrA + and \scrA  - such that every cluster in \scrA + (resp., \scrA  - )

has more demand going to clusters in \scrA  - (resp., \scrA +) than \scrA + (resp., \scrA  - )
 \triangleleft This can be done by a simple local search

2: relabel the parts so that | \scrA +| \geq | \scrA  - | .
3: let graph G2 consist of graph G and the following new nodes/edges:

\bullet For each cluster T \in \scrA +, there is a source node sT (of zero cost) with
demand d(sT ) = \sansl \sanso \sansa \sansd (T ); node sT is connected to each terminal of T .

\bullet For each cluster W \in \scrA  - , there is a new node vW (of zero cost), connected
to every terminal of W .

\bullet There is a new sink node t, connected to the nodes \{ vW :W \in \scrA  - \} .
4: The node capacities are q\prime = 9q.
5: let \scrI 2 be the SSNC instance on graph G2, with sources \{ sT \} T\in \scrA + and sink t.
6: solve instance \scrI 2 using the SSNC approximation algorithm (Theorem 1.2) to

obtain solution V2\subseteq V .
7: using Theorem 2.9 on solution V2, obtain a collection of rooted subtrees \scrN 2.
8: for each subtree Y in \scrN 2 do  \triangleleft Merge clusters using \scrN 2

9: let \scrY = \{ T \in \scrA + : sT \in Y \} 
\bigcup 
\{ W \in \scrA  - : vW \in Y \} be the t2-active clusters

whose s-nodes or v-nodes are contained in subtree Y
10: update \scrA 2\leftarrow \scrA 2 \setminus \scrY .
11: merge clusters \scrY with each other to get new cluster S = Y \cup \scrY 
12: update \scrA 2\leftarrow \scrA 2 \cup \{ S\}  \triangleleft S's type will be updated in \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr 
13: end for

t1-active (if its internal demand is at most \sansl \sanso \sansa \sansd (T )/2); note that T cannot
become heavy or t2-active. In either case, T is classified correctly, and it will
not be modified later in this iteration.

\bullet Consider now any cluster T \prime \in \scrA 1 that is not processed in Step 9. Then,
T \prime is not heavy or internal (or even dangerous). So it must be active. Also,
it must have formed in algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sansone as a result of merging some t1-
active clusters, and such a cluster cannot be t2-active; its demand going to
other active clusters will be less than \sansl \sanso \sansa \sansd (T \prime )/4. Further, when requests
are dropped, a t1-active cluster cannot become t2-active because the only
requests dropped from T \prime are those going to other active clusters. So T \prime 

remains t1-active at the end of this iteration.
\bullet Consider now any cluster T \prime \in \scrA 2 that is not processed in Step 9. Again, T \prime 

must be active and nondangerous. It could be either t1-active or t2-active
and is classified correctly in Step 13.

We now observe how cluster types change during algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr . The clas-
sification of a cluster (its assignment to \scrT h, \scrT i, \scrA 1, or \scrA 2) changes due to merging
the cluster with other clusters (which occurs in algorithms \sansM \sanse \sansr \sansg \sanse \sansT \sansone and \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ),
or removal of requests from K (which occurs in algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr ). We note that
these changes satisfy following:

\bullet Any cluster in \scrT i will remain in \scrT i.
\bullet Any cluster in \scrT h will be (part of) some cluster of \scrT h.
\bullet Any cluster in \scrA 1 will be (part of) some cluster of \scrA 1 \cup \scrT i \cup \scrT h.
\bullet Any cluster in \scrA 2 will be (part of) some cluster of \scrA 2 \cup \scrA 1 \cup \scrT i \cup \scrT h.
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internal

heavy

t1-active t2-active

clusters

clusters

clusters clusters

Fig. 3. Different types of clusters at the end of an \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr iteration. The edges represent
request-pairs (in K) across clusters.

Next, we show that requests (in the current set K) between different kinds of
clusters satisfy some useful properties. These properties are crucial in setting up the
SSNC instances correctly and ensuring that the demand of heavy clusters does not
grow too much. Figure 3 illustrates the possible requests across clusters.

Lemma 3.6. At the start/end of any iteration of algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , there are
no requests (in K) between

\bullet internal clusters \scrT i and active clusters \scrA 1 \cup \scrA 2;
\bullet any t1-active cluster T \in \scrA 1 and other active clusters \scrA 1 \cup \scrA 2 \setminus \{ T\} .

Moreover, the demand from any heavy cluster to active clusters is at most 10\gamma \cdot q.
Proof. We will prove this inductively over the iterations. The lemma is clearly

true at the beginning of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr (all clusters are t2-active). Now consider any
iteration of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr : assuming the lemma at the start of the iteration, we prove
that it also holds at the end.

For the first property, observe that\sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr does not modify any existing internal
cluster, so any cluster that was internal at the start of the iteration continues to satisfy
this property. Let I be a (new) cluster that is found to be internal in this iteration.
This must happen in Steps 9--12, and we explicitly remove all requests from I to other
active clusters at this point.

For the second property, let T \in \scrA 1 be any t1-active cluster at the end of the
iteration. By the loop condition in Steps 9--12 of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , T cannot be dangerous.
So, the demand from T to other active clusters is zero, as desired.

For the third property, we consider two cases for any heavy cluster H \in \scrT h:
\bullet H is a new heavy cluster. Then, H must have formed due to merging t1-

active (resp., t2-active) clusters in algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sansone (resp., \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ). See
Step 12 in \sansM \sanse \sansr \sansg \sanse \sansT \sansone and Step 11 in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo . If H was formed in \sansM \sanse \sansr \sansg \sanse \sansT \sansone ,
then it was based on SSNC instance \scrI 1, where node capacities are \~q = 5q.
Using Theorems 1.2 and 2.9, it follows that the demand of cluster H must
be at most \gamma \cdot \~q + \~q \leq 10\gamma \cdot q. If H was formed in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo , the analysis is
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608 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

similar---this time, using SSNC instance \scrI 2, which has node capacity q\prime =
9q. Using Theorems 1.2 and 2.9 again, the demand of cluster H is at most
\gamma \cdot q\prime +q\prime = (9\gamma +9)\cdot q\leq 10\gamma \cdot q. Here, we used \gamma \geq 9 because \gamma is polylogarithmic.
In either case, the total demand in cluster H is at most 10\gamma \cdot q, which also
bounds the demand from H to active clusters.

\bullet H is an existing heavy cluster. Then, H will be modified in algorithm
\sansM \sanse \sansr \sansg \sanse \sansT \sansone based on SSNC instance \scrI 1. Here, only t1-active clusters get added
to cluster H; see Step 10 in \sansM \sanse \sansr \sansg \sanse \sansT \sansone . Crucially, there is zero demand from
any t1-active cluster to other active clusters (by the second property in this
lemma). So the demand from cluster H to active clusters does not increase,
and it remains at most 10\gamma \cdot q.

We are now ready to bound the optimal values of the SSNC instances \scrI 1 and
\scrI 1. We do this by using the optimal MCNC solution and properties of the different
cluster types (shown above).

Lemma 3.7. The optimal cost of SSNC instance \scrI 1 (in algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sansone ) is
at most the optimal cost \sansO \sansp \sanst of the original MCNC instance.

Proof. We first exhibit a feasible fractional flow using the optimal solution of the
multicommodity MCNC instance. Let V \ast \subseteq V be the nodes used in \sansO \sansp \sanst . For each
request i \in [k], let P \ast 

i denote the path from si to ti in \sansO \sansp \sanst . Note that P \ast 
i \subseteq V \ast for all

i\in [k], and
\sum 

i\in [k]:P\ast 
i \ni v di \leq q for all nodes v \in V \ast .

We will use V \ast \cup \{ sT : T \in \scrA 1\} \cup \{ vF : F \in \scrT h\} \cup \{ t\} as the nodes in our SSNC
solution. The cost of this solution is \sansO \sansp \sanst as the new nodes have zero cost. We now
show how to route all the demands fractionally using these nodes.

Consider any t1-active cluster T \in \scrA 1. We first claim that the total demand
of terminals in T having mates in heavy clusters is at least \sansl \sanso \sansa \sansd (T )/4. Indeed, by
definition of t1-active clusters, the total demand from T to internal/heavy clusters is
at least \sansl \sanso \sansa \sansd (T )/4. Moreover, by Lemma 3.6, there is zero demand from T to internal
clusters, so the demand from T to heavy clusters \scrT h is at least \sansl \sanso \sansa \sansd (T )/4. We now
route demand from sT to t as follows. For each external terminal si \in T (with its
mate ti \in F for some heavy cluster F ), send 4 units of flow from sT to si, then from
si to ti along path P \ast 

i , then from ti to vF , and finally from vF to sink t. Note that
these are valid paths in graph G1 of instance \scrI 1. Also, the total demand routed from
sT to t is at least \sansl \sanso \sansa \sansd (T ) = d(sT ), as desired.

Routing as above for each cluster T \in \scrA 1, we get a fractional routing that satisfies
all the demand in the SSNC instance \scrI 1. We now argue that the load on any node
is at most its capacity. Clearly, the flow through each node v \in V \ast is at most
4 \cdot 
\sum 

i\in [k]:P\ast 
i \ni v di \leq 4q. Moreover, the flow through each node vF (for F \in \scrT h) is

at most 4 times the total demand between F and all active clusters, which is at most
40\gamma q by Lemma 3.6.

Let dmax = maxT\in \scrA 1
\sansl \sanso \sansa \sansd (T ) denote the maximum demand in \scrI 1; note that

dmax \leq q. Now, we convert the above fractional flow into an unsplittable flow as
required in SSNC. To this end, we use Theorem 2.8 on our fractional routing for \scrI 1.
We then obtain an unsplittable flow for \scrI 1, where (i) the flow through each node of
V \ast is at most 4q + dmax \leq 5q = \~q, and (ii) the flow through each node vF is at most
40\gamma q+ dmax \leq 9\gamma \~q. The lemma now follows.

Lemma 3.8. The optimal cost of SSNC instance \scrI 2 (in algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ) is
at most the optimal cost \sansO \sansp \sanst of the original MCNC instance.
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NODE CAPACITATED NETWORK DESIGN 609

Proof. The high-level proof is similar to that of Lemma 3.7. We first show a
feasible fractional routing using the MCNC optimal solution and then convert it into
an unsplittable flow. Let V \ast \subseteq V be the nodes used in \sansO \sansp \sanst . For each request i \in [k],
let P \ast 

i denote the path from si to ti in \sansO \sansp \sanst . Again, P \ast 
i \subseteq V \ast for all i \in [k], and\sum 

i\in [k]:P\ast 
i \ni v di \leq q for all nodes v \in V \ast .

We refer to the clusters in \scrA + as source clusters as they correspond to source
nodes in the SSNC instance \scrI 2. We also refer to the clusters in \scrA  - as sink clus-
ters as they are directly connected to the sink t. Note that all these clusters are
t2-active.

Consider any source cluster T \in \scrA +. We first show that the total demand from
T to sink clusters \scrA  - is at least \sansl \sanso \sansa \sansd (T )/8. By definition of t2-active clusters, the
total demand from T to other active clusters is at least \sansl \sanso \sansa \sansd (T )/4. Moreover, by
Lemma 3.6, there are no requests between T and t1-active clusters. So, the total
demand from T to other t2-active clusters is at least \sansl \sanso \sansa \sansd (T )/4. Further, by choice
of the partition (\scrA +,\scrA  - ) in Step 1 of \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo , the total demand from any source
cluster T to all sink clusters is at least half the total demand from T to t2-active
clusters. So, there is demand at least \sansl \sanso \sansa \sansd (T )/8 from T to \scrA  - .

Now, for any source cluster T , let CT denote the set of all requests between T
and sink clusters. We route demand from sT to t as follows. For each i \in CT , send
8 units from sT to si, then from si to ti along path P \ast 

i , then from ti to vW (where
ti lies in sink cluster W \in \scrA  - ), and finally from vW to t. Note that these are valid
paths in graph G2 of instance \scrI 2. Moreover, the net flow out of each source sT is at
least \sansl \sanso \sansa \sansd (T ) as desired.

Performing the above routing for all source clusters T \in \scrA +, we obtain a fractional
flow that satisfies all demands in \scrI 2. We now argue that the node capacity constraints
are satisfied. Clearly, the flow through each node v \in V \ast is at most 8 \cdot 

\sum 
i\in [k]:P\ast 

i \ni v di \leq 
8q. Moreover, the flow through each node vW is at most 8 times the total external
demand in cluster W , which is at most 8 \cdot q because W is an active cluster. Now,
applying Theorem 2.8, we obtain an unsplittable flow for \scrI 2, where the flow through
each node is at most 8q+maxT\in \scrA + \sansl \sanso \sansa \sansd (T )\leq 9q= q\prime . This completes the proof.

We now summarize some key properties of the (partial) solution built in each
iteration of algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr .

Lemma 3.9. In any iteration of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , we have the following:
1. The subtrees added to clusters are \scrN 1 \cup \scrN 2, where \scrN 1 and \scrN 2 are found in

\sansM \sanse \sansr \sansg \sanse \sansT \sansone and \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo . Each node appears in at most two of these subtrees.
2. The cost of the new nodes added to clusters is at most 2\beta \cdot \sansO \sansp \sanst .
3. The demand of any new internal/heavy cluster is at most 10\gamma \cdot q.
4. The demand of any existing heavy cluster increases by at most 54\gamma 2 \cdot q.
5. The number of active clusters at the end of the iteration is at most 3

4 times
the number at the start of the iteration.

Proof. We prove the claimed properties one by one.
Property 1. In any iteration, subtrees are added to clusters in both \sansM \sanse \sansr \sansg \sanse \sansT \sansone 

and \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo . The subtrees added in \sansM \sanse \sansr \sansg \sanse \sansT \sansone are exactly those in \scrN 1, which is the
collection obtained by applying Theorem 2.9 to the SSNC solution V1. Similarly, the
subtrees added in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo are exactly those in \scrN 2. By Theorem 2.9, all subtrees in
\scrN 1 (resp., \scrN 2) are node-disjoint. Hence, each node appears at most twice in \scrN 1\cup \scrN 2.

Property 2. By Theorem 2.9 (property 2), the total cost of subtrees in \scrN 1 is
at most c(V1). Moreover, by our SSNC approximation guarantee, c(V1) is at most
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610 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

\beta times the optimal value of instance \scrI 1. Using Lemma 3.7, it now follows that
c(\scrN 1)\leq c(V1)\leq \beta \cdot \sansO \sansp \sanst . Similarly, we obtain c(\scrN 2)\leq c(V2)\leq \beta \cdot \sansO \sansp \sanst using Lemma 3.8
(for SSNC instance \scrI 2). Hence, the total cost of the new nodes added to clusters is
at most 2\beta \cdot \sansO \sansp \sanst .

Property 3. In any iteration, new clusters may be formed in either \sansM \sanse \sansr \sansg \sanse \sansT \sansone or
\sansM \sanse \sansr \sansg \sanse \sansT \sanstwo . Consider any new cluster formed in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ; see Step 11. Note that this
cluster corresponds to some subtree Y \in \scrN 2. So, by property 3 in Theorem 2.9,
its total demand is at most C \prime + dmax(\scrI 2), where C \prime is the maximum flow through
any node in our SSNC solution for \scrI 2. By our SSNC approximation guarantee and
the fact that all node capacities are q\prime = 9q (in \scrI 2), we have C \prime \leq \gamma \cdot q\prime . Also, the
maximum demand dmax(\scrI 2)\leq q as each source node corresponds to an active cluster.
So, the total demand of the new cluster is at most (9\gamma + 1)q. Now, consider a new
cluster S formed in \sansM \sanse \sansr \sansg \sanse \sansT \sansone ; see Step 12. This cluster corresponds to some subtree
X \in \scrN 1 with root r \not \in N = \{ vF : F \in \scrT h\} ; note that N is the set of neighbors of sink
t in instance \scrI 1. Again, by property 3 in Theorem 2.9, the demand of S is at most
C \prime \prime +dmax(\scrI 1), where C \prime \prime is the maximum flow through any node in our SSNC solution
for \scrI 1. By our SSNC approximation guarantee and the fact that node capacities in
\scrI 1 are \~q = 5q, we have C \prime \prime \leq \gamma \cdot \~q. (By property 5 of Theorem 2.9, cluster S does not
contain any node of N , so it is not affected by the larger capacity on the v-nodes.)
Again, the maximum demand dmax(\scrI 1)\leq q. So, the total demand of the new cluster
is at most (5\gamma + 1)q.

Property 4. Consider any existing heavy cluster F \in \scrT h. The clusters that get
added to F correspond to subtrees X \in \scrN 1 with root r= vF ; see Step 10 in \sansM \sanse \sansr \sansg \sanse \sansT \sansone .
Moreover, node vF has capacity 9\gamma (which is equivalent to having 9\gamma copies of vF ).
So, there may be up to 9\gamma subtrees X \in \scrN 1 with root vF . Each such subtree has
demand at most (5\gamma +1)q, as shown above. Hence, the increase in demand of F is at
most 9\gamma (5\gamma + 1)q\leq 54\gamma 2q.

Property 5. Let m1 (resp., m2) be the number of t1-active (resp., t2-active)
clusters at the start of the iteration. Let \scrA \prime 

1 (resp., \scrA \prime 
2) be the t1-active (resp., t2-

active) clusters at the end of algorithm \sansM \sanse \sansr \sansg \sanse \sansT \sansone (resp., \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ). Any cluster that
is active at the end of the iteration must be in \scrA \prime 

1 \cup \scrA \prime 
2. (Note that some clusters in

\scrA \prime 
1 \cup \scrA \prime 

2 may become internal/heavy during the pruning step in \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr .) We now
bound | \scrA \prime 

1| and | \scrA \prime 
2| separately.

\bullet The clusters in \scrA \prime 
1 are based on the SSNC instance \scrI 1 (in \sansM \sanse \sansr \sansg \sanse \sansT \sansone ), which

has a source for every cluster in \scrA 1. In particular, each cluster in \scrA \prime 
1 cor-

responds to some subtree X \in \scrN 1 with root r \not \in N = \{ vF : F \in \scrT h\} . See
Step 12 in \sansM \sanse \sansr \sansg \sanse \sansT \sansone . As r is not a neighbor of sink t, property 4 in Theo-
rem 2.9 implies that subtree X contains at least two sources. It follows that
| \scrA \prime 

1| \leq 1
2 | \scrA 1| .

\bullet The clusters in \scrA \prime 
2 are based on the SSNC instance \scrI 2 (in \sansM \sanse \sansr \sansg \sanse \sansT \sanstwo ). Recall

that we use a bi-partition (\scrA +,\scrA  - ) of \scrA 2. Instance \scrI 2 has a source for each
cluster in \scrA +, and the neighbors M of the sink correspond to clusters in \scrA  - .
Let B\subseteq M denote the neighbors of the sink that appear in some subtree of
\scrN 2; let \scrB \subseteq \scrA  - denote the corresponding clusters. The collection \scrA \prime 

2 consists
of (i) clusters from \scrA  - \setminus \scrB , and (ii) clusters corresponding to subtrees in
\scrN 2. By property 4 in Theorem 2.9, every subtree in \scrN 2 has at least two
clusters from \scrA +\cup \scrB . So, the number of clusters in case (ii) above is at most
1
2 \cdot (| \scrA 

+| + | \scrB | ). Clearly, the number of clusters in case (i) is | \scrA  - |  - | \scrB | . So,
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NODE CAPACITATED NETWORK DESIGN 611

| \scrA \prime 
2| \leq 

| \scrA +| + | \scrB | 
2

+ | \scrA  - |  - | \scrB | = | \scrA 2| 
2

+
| \scrA  - |  - | \scrB | 

2
\leq 3

4
\cdot | \scrA 2| ,

where we used that | \scrA  - | \leq | \scrA 2| /2 as | \scrA  - | \leq | \scrA +| .
Thus, | \scrA \prime 

1| + | \scrA \prime 
2| \leq 1

2 \cdot | \scrA 1| + 3
4 \cdot | \scrA 2| \leq 3

4 \cdot (m1 +m2).

Finally, we show that the demand preserved in set K at the end of algorithm
\sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr is a constant fraction of the total demand in MCNC.

Lemma 3.10. The total demand at the end of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr is
\sum 

i\in K di \geq D/4.

Proof. Note that requests are only removed in Step 10 of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr . We will
account for the deleted requests by explicitly ``charging"" them to requests that will
be preserved in K (at the end of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr ).

Consider any cluster T that is processed in Step 10 at any iteration of \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr .
Note that T must be in the active set, i.e., T \in \scrA 1\cup \scrA 2. Let ti be the total demand of
T 's internal terminals; note that the demand of T 's internal requests is ti/2 as each
such request has two terminals in T . Let th (resp., ta) be the total demand of T 's
external terminals with mates in \scrT h (resp., \scrA 1 \cup \scrA 2). By Lemma 3.6, there are no
requests (in the current set K) from T to any cluster of \scrT i. So, \sansl \sanso \sansa \sansd (T ) = ti+ th+ ta.
In this step, we remove (from K) all requests from T to other active clusters. So,
the deleted demand is exactly ta. Furthermore, we claim that the following requests
incident to T will be preserved (in K) until the end.

\bullet Internal requests in T . This is because we never remove any internal re-
quest. Also, clusters only merge with each other during the algorithm, so
any internal request in T will remain internal to some cluster.

\bullet External requests from T to \scrT h. This is because we never remove any request
incident to a heavy cluster. Also, any cluster that is currently heavy will
remain heavy for the rest of the algorithm.

The total demand in these ``preserved"" requests is ti
2 + th. We now show that the

removed demand ta \leq 3 \cdot ( ti2 + th). Consider the two cases when requests are removed:
\bullet T is an internal cluster. Then, we have ti \geq \sansl \sanso \sansa \sansd (T )

2 = ti+th+ta
2 ; so ta \leq ti.

\bullet T is a dangerous cluster. Here, T is t1-active, which means it has at least
\sansl \sanso \sansa \sansd (T )

4 demand going to heavy clusters (recall that T has no requests to
internal clusters). Then, we have th \geq ti+th+ta

4 , which implies ta \leq 3th.
Thus, the total removed demand incident to T is at most 3 times the total preserved
demand incident to T .

Finally, we show that the preserved requests incident to different clusters T that
are processed in Step 10 (\sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr ) are disjoint. To this end, we will show that
once a cluster T is processed in Step 10, it will not be part of any cluster T \prime that is
processed in Step 10 (and removes requests) at a later iteration. Indeed, after cluster
T is processed in Step 10, there are no requests from T to other active clusters. If
cluster T becomes internal, then it remains unchanged in later iterations. If cluster
T becomes t1-active, then it may merge with other clusters, but these can only be
heavy clusters (in which case T also becomes part of that heavy cluster) or t1-active
clusters (which by Lemma 3.6 also have no external requests to active clusters). In
either case, cluster T will never be part of another cluster that gets processed in Step
10 again. It now follows that the total removed demand (over all iterations) is at
most 3 times the total preserved demand, which completes the proof.

Completing proof of Theorem 3.4. We are now ready to prove the multicom-
modity clustering theorem. Let \widehat \scrT denote the final collection of clusters and K\subseteq [k]
the final set of requests, at the end of algorithm \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr .
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612 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Property (i). Each cluster in \widehat \scrT is internal or heavy. By the termination condition,
there is no active cluster remaining at the end, i.e., \scrA 1 \cup \scrA 2 = \emptyset . So, \widehat \scrT = \scrT h \cup \scrT i,
which means all clusters are internal/heavy (see Lemma 3.5).

Property (ii). Each terminal (i.e., node in \{ si, ti\} i\in K) lies in exactly one cluster.
Initially, each terminal is in its own cluster, so this property is true. In algorithm
\sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr , we only merge clusters together by adding some subtrees (based on SSNC
instances). Note that these subtrees do not contain any terminal because each termi-
nal is a leaf-node, and the sources/sink in our SSNC instances are new nodes (different
from the original terminals). So, each terminal lies in exactly one cluster throughout
the algorithm.

Property (iii). The total demand of request-pairs K is
\sum 

i\in K di \geq D/4. This
follows directly from Lemma 3.10.

Property (iv). Each node appears in at most O(logk) different clusters. We first
claim that the number of iterations in \sansM \sansC \sansc \sansl \sansu \sanss \sanst \sanse \sansr is O(logk). Indeed, by Lemma 3.9(5),
the number of active clusters drops by a factor of 4/3 in each iteration. As there are
2k active clusters initially, we will have no active clusters left after O(logk) iterations.
By Lemma 3.9(1), in each iteration, each node gets added to at most two clusters.
Combined with the number of iterations, property (iv) follows.

Property (v). The demand of each cluster is at most O(\gamma 2 logk) \cdot q. The demand
of any internal/heavy cluster when it is formed is O(\gamma ) \cdot q by Lemma 3.9(3). Note
that internal clusters do not change after they are formed (and added to \scrT i). For any
heavy cluster, by Lemma 3.9(4), the increase in demand is O(\gamma 2) \cdot q in each iteration.
As the number of iterations is O(logk), the final demand of any heavy cluster is
O(\gamma 2 logk) \cdot q.

Property (vi). The total cost
\sum 

T\in \widehat \scrT \sum v\in T cv \leq O(\beta \cdot logk) \cdot \sansO \sansp \sanst . The cost of nodes
added in any iteration is O(\beta ) \cdot \sansO \sansp \sanst by Lemma 3.9(2). Combined with the O(logk)
number of iterations, we obtain property (vi).

This completes the proof of Theorem 3.4.

3.2. Routing across clusters. From Theorem 3.4, we have a collection \widehat \scrT of
low-cost, nearly node-disjoint clusters containing requests K\subseteq [k]. Here, we show how
to route a constant fraction of the requests in K. Routing within a cluster can be
done easily using the corresponding subtree. So we focus on routing each request
across clusters, from their ``source cluster"" to their ``sink cluster."" In order to achieve
this, we will add some nodes/edges to our solution.

Algorithm overview. Recall that \widehat \scrT contains two types of clusters: internal and
heavy. Let \scrT i denote all internal clusters in \widehat \scrT , and \scrT h = \widehat \scrT \setminus \scrT i denote the heavy
clusters. If a cluster is both internal and heavy, then it is treated as an internal cluster.
If \scrT i contains a constant fraction of the demand in K, then we don't need to route
across clusters; we simply use the subtrees in \scrT i to route all these internal requests.
The hard case is when most of the demand in K is contained in \scrT h. In this case,
we use an idea from [7] for the edge-capacitated routing problem. Specifically, each
request i ``hallucinates"" that its demand equals q with probability \approx log(k)di

q (and zero
otherwise), and we find a subgraph \scrH that supports all the hallucinated demands.
We can find a good approximation to this ``hallucinated instance"" by rounding a
natural linear program (see section 3.2.2). We then use the union of \scrH and \widehat \scrT as our
solution. However (unlike the edge-capacitated case), this solution may not suffice to
route all the remaining demands. Nevertheless, we show that a constant fraction of
the remaining demand can still be routed in \scrH \cup \widehat \scrT . To this end, we partition the
heavy clusters into \scrT 1,\scrT 2, . . . ,\scrT p such that the minimum (edge) cut of the demand
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NODE CAPACITATED NETWORK DESIGN 613

Algorithm 3.4. MCNC Routing Algorithm.

1: if the internal requests of clusters in \scrT i have demand at least 1
6

\sum 
i\in K di, return

\scrE = \scrT i as the solution and all internal requests in \scrT i as the routable pairs K \prime .
2: apply Theorem 3.13 to the heavy clusters \scrT h and obtain partition \scrT 1,\scrT 2, . . . ,\scrT p.
3: let K \prime \subseteq K denote the union of requests induced in \scrT j (for j = 1,2, . . . , p).

4: let r= \alpha 1 logk
q , where \alpha 1 > 1 is some constant.

5: let\scrM denote the random instance with each request i\in K having demand Bi \cdot q,
where Bi \sim \sansB \sansi \sansn \sanso \sansm \sansi \sansa \sansl (di, r) independently.

6: apply Theorem 3.15 to obtain solution \scrH \subseteq V for the hallucinated instance\scrM .
7: return \scrE =\scrH \cup \scrT h as the solution and K \prime as the routable pairs.

graph induced on each \scrT j is at least \Omega (q). This partitioning algorithm is based on
iteratively removing minimal min-cuts (see section 3.2.1). We also delete all requests
in K crossing from one part to another and prove that the remaining demand is still
a constant fraction of that in K. Then, we show that when min-cuts are large, the
hallucinated request-pairs behave like a cut-sparsifier [34] of the demand graph (after
contracting the clusters). So the hallucinated solution \scrH has enough capacity to
support an edge-capacitated routing across clusters. Finally, we ``un-contract"" these
clusters by using the trees in \scrT h to route within each cluster (see section 3.2.3). We
bound the node congestion of the routing using the fact that each cluster has load
O(\gamma 2 logk) \cdot q. The formal algorithm is given as Algorithm 3.4: it takes as input the
clusters \widehat \scrT (and requests K) from Theorem 3.4 and outputs a subgraph \scrE of G along
with a subset K \prime \subseteq K of requests that can be routed in \scrE at low node congestion.

The rest of this subsection proves the following main result.

Theorem 3.11. Given any MCNC instance with optimal cost \sansO \sansp \sanst , after running
Algorithms 3.1 and 3.4, we have the following with probability at least 1 - O( 1

k2 ):
\bullet The cost of solution \scrE is O(\beta logk) \cdot \sansO \sansp \sanst .
\bullet Solution \scrE supports an unsplittable routing for all requests in K \prime with node
congestion O(\gamma 2 log3 k).
\bullet The total demand of requests in K \prime is at least D/24.

Throughout, we assume that r = \alpha 1 logk
q < 1, so r is a valid probability value

in step 5. If r \geq 1, then we have q = O(logk), in which case there is an easy
(O(logn logk),O(logn logk)) bicriteria approximation algorithm; see Appendix B.1.

3.2.1. Identifying routable request-pairs in heavy clusters. We now show
how to identify a subset K \prime \subseteq K of request-pairs by partitioning the demand graph
into components of high min-cut values. Having a high min-cut in the demand graph
is necessary for the cut-sparsification argument that is used (in section 3.2.3) to route
requests K \prime with low congestion.

We first define a cluster multigraph as follows.

Definition 3.12 (cluster multigraph \scrC (\scrT )). Given a collection \scrT of clusters, the
multigraph \scrC (\scrT ) has a node for every cluster T \in \scrT , and for each request-pair i\in K,
an edge of weight di between clusters Ta, Tb \in \scrT , where si \in Ta and ti \in Tb.

We now show how to partition \scrC (\scrT ) into several parts so that the minimum (edge)
cut of each part is \Omega (q) and the demand of ``crossing"" requests is small. For any graph
J and subset X of nodes, we use the notation \partial J(X) to denote the set of edges in J
with exactly one endpoint in X.
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614 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Theorem 3.13. There is a polynomial-time algorithm that, given any collection
\scrT of clusters, computes a partition \scrT 1,\scrT 2, . . . ,\scrT p of \scrT such that the following hold:

i. For each j \in [p], the induced cluster graph \scrC (\scrT j) has min-cut at least q/8.
ii. The total weight of edges in K \prime =

\bigcup p
j=1 \scrC (\scrT j) is at least W  - Nq

4 .
Here, N = | \scrT | and W is the total weight of edges in \scrC (\scrT ).

Proof. Consider the following procedure to obtain the partition. Initially, \scrT \prime = \scrT 
and K \prime consists of all edges in \scrC (\scrT ). For j = 1,2, . . . do the following:

1. If the min-cut value in \scrC (\scrT \prime ) is at least q
4 , then \scrT j\leftarrow \scrT 

\prime and stop.
2. Let S\subseteq \scrT \prime denote a minimal min-cut in graph \scrC (\scrT \prime ).
3. Set \scrT j\leftarrow S, \scrT \prime \leftarrow \scrT \prime \setminus S, and K \prime \leftarrow K \prime \setminus \partial \scrC (\scrT \prime )(S).

Note that this procedure creates one part in each iteration. At any point, \scrT \prime denotes
the remaining set of clusters/nodes (that are still unassigned to parts), and K \prime denotes
the current set of noncrossing edges. (An edge is said to be crossing if its endpoints
lie in different parts.) Let G\prime = \scrC (\scrT \prime ) denote the current graph. Let p denote the
number of iterations, which is also the number of parts in the partition of \scrT . At
the end of this procedure, K \prime equals the set of edges in

\bigcup p
j=1 \scrC (\scrT j), which are all the

noncrossing edges.
We first prove condition (ii). Clearly, the number of iterations is at most N , the

number of nodes in \scrC . As S is a min-cut, the total weight of the edges \partial G\prime (S) removed
in any iteration is at most q/4. So the total weight of all edges removed is at most
(Nq)/4. So, the total weight of K \prime (at the end) is at least W  - (Nq)/4.

We now prove condition (i). Note that each part \scrT j is either (i) the set S in some
iteration above, or (ii) the final set \scrT \prime . Clearly, in the latter case, graph \scrC (\scrT j) has
min-cut at least q/4 \geq q

8 . In the former case, consider the graph G\prime = \scrC (\scrT \prime ) and set
S\subseteq \scrT \prime in the iteration when \scrT j = S was created. If | S| = 1, then there is nothing
to prove as part \scrT j = S would have infinite min-cut value. Let A \subset S be any strict
subset. By minimality of S, the weights of \partial G\prime (A) and \partial G\prime (S \setminus A) are both at least
q
4 . Let a (resp., b) denote the total weight of edges having one endpoint in A (resp.,
S \setminus A) and the other endpoint in \scrT \prime \setminus S. Also, let x denote the total weight of edges
having one endpoint in A and the other in S \setminus A. Note that the weight of \partial G\prime (A) is
x+ a, the weight of \partial G\prime (S \setminus A) is x+ b, and the weight of \partial G\prime (S) is a+ b. Combined
with the observation above (by minimality of cut S),

x+ a\geq q

4
, x+ b\geq q

4
, a+ b <

q

4
.

It follows that x\geq q
8 , i.e., the weight of edges between A and S \setminus A, is at least q

8 . As
this holds for all strict subsets A\subset S, the min-cut of G\prime [S] = \scrC (\scrT j) is at least q

8 .

In our algorithm, we apply this result to the collection of heavy clusters \scrT h. Next,
we show how to add some nodes \scrH to the heavy clusters (see section 3.2.2) so that
all requests in K \prime can be routed in the resulting solution \scrE = \scrT h \cup \scrH with low node
congestion (see section 3.2.3).

3.2.2. Hallucinating to connect heavy clusters. Here, we show how to find
a low-cost solution \scrH for the ``hallucinated instance""\scrM . Recall that instance\scrM has
demand Bi \cdot q for each request-pair i \in K, where Bi \sim \sansB \sansi \sansn \sanso \sansm \sansi \sansa \sansl (di, r) independently.
Note that the expected demand of request i is E[Bi] \cdot q= rdiq=O(logk) \cdot di. We treat
the Bi \cdot q demand of each request i as Bi many copies (each with demand q); so these
demands can be sent along Bi different si  - ti paths (each carrying q units). Note
that all nodes in graph G have capacity q. By scaling down all capacities/demands
by q, we obtain an equivalent instance with unit node-capacities and Bi many (unit
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NODE CAPACITATED NETWORK DESIGN 615

demand) requests between si and ti, for all i \in K. For simplicity, we work with
this scaled instance as \scrM . We first show that (with high probability) there exists
a solution to \scrM of low cost and bounded node congestion, and then we provide an
algorithm to find such a solution.

Lemma 3.14. With probability at least 1 - O( 1
n2 ), there is an unsplittable routing

\{ P \ast 
i \} i\in \scrM of the hallucinated requests where

\sum 
i\in \scrM 

\sum 
v\in P\ast 

i
cv \leq (\alpha 2 logn) \cdot \sansO \sansp \sanst and the

node-congestion is at most \alpha 2 \cdot logn, where \alpha 2 =O(1).

Proof. Consider the optimal solution for the original MCNC instance. Let P \ast 
i

denote the path used for sending di units of flow between si and ti, for each request
i \in [k]. We now consider the solution X that sends Bi units of flow on the optimal
path P \ast 

i for each request i \in K. (Equivalently, each of the Bi copies of request i
uses the same path P \ast 

i to route its unit flow.) We now show that this solution has
O(logn) congestion with high probability. To see this, consider any node v \in V . By
feasibility of the solution \{ P \ast 

i : i\in [k]\} , we have
\sum 

i\in [k]:v\in P\ast 
i
di \leq q. The load on node

v in solution X is Lv :=
\sum 

i\in K:v\in P\ast 
i
Bi. As each Bi is a binomial random variable, Lv

is the sum of independent [0,1] random variables. The mean

E[Lv] =
\sum 

i\in K:v\in P\ast 
i

E[Bi] =
\alpha 1 logk

q

\sum 
i\in K:v\in P\ast 

i

di \leq \alpha 1 logk\leq \alpha 1 logn.

By a Chernoff bound, there is a constant \alpha 2 such that Pr[Lv >\alpha 2 \cdot logn]\leq 1
n3 . Taking

a union bound over all n nodes, we have Pr [\exists v : Lv >\alpha 2 \cdot logn]\leq 1
n2 . We condition

on the event that Lv \leq \alpha 2 \cdot logn for all v \in V . Then, the node-congestion of solution
X is as claimed. We now bound the cost:\sum 

i\in \scrM 

\sum 
v\in P\ast 

i

cv =
\sum 
v\in V

cv \cdot Lv =
\sum 

v\in \sansO \sansp \sanst 

cv \cdot Lv \leq (\alpha 2 logn) \cdot \sansO \sansp \sanst .

Hence solution X satisfies both properties in the lemma.

Theorem 3.15. There is a polynomial algorithm that finds a solution \scrH for the
hallucinated instance \scrM satisfying the following with probability at least 1 - O( 1

n2 ):
\bullet The total cost of nodes in \scrH is O(logn) \cdot \sansO \sansp \sanst .
\bullet The node congestion of \scrH is O(logn).

Proof. We use the following linear program relaxation:

min
\sum 
i\in \scrM 

\sum 
p\in \scrP i

\Biggl( \sum 
v\in p

cv

\Biggr) 
\cdot f(p)(LPh)

s.t.
\sum 
p\in \scrP i

f(p) = 1 \forall i\in \scrM ,(3.1) \sum 
p| v\in p

f(p)\leq \alpha 2 \cdot logn \forall v \in V,(3.2)

f(p)\geq 0 \forall i\in \scrM , \forall p\in \scrP i.(3.3)

Here, \scrP i is the set of all si-ti flow paths in G. Constraint (3.1) requires that exactly
one path be selected for each request i \in \scrM (recall that \scrM contains Bi copies of
each request i \in K). Constraint (3.2) bounds the node-congestion by O(logn). Note
that the LP objective corresponds to the sum of costs over all paths in the solution
(so each node gets counted multiple times). By Lemma 3.14, the optimal value of
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616 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

(LPh) is at most (\alpha 2 logn) \cdot \sansO \sansp \sanst with probability at least 1  - O( 1
n2 ). Although this

LP has an exponential number of variables, it can be reformulated using a polynomial
number of (flow-based) variables. Hence, we can solve this LP exactly in polynomial
time.

We now perform simple randomized rounding of the LP solution. For each request
i\in \scrM , select a random path Ui \in \scrP i with probability \{ f(p)\} p\in \scrP i

independently. The
solution \scrH = \cup i\in \scrM Ui. We now prove that \scrH satisfies the claimed properties with
probability at least 1

2 .
For any path p, let c(p) =

\sum 
v\in p cv denote its total node cost. The cost of \scrH is at

most C(\scrH ) :=
\sum 

i\in \scrM c(Ui); note that E[C(\scrH )] equals the LP optimal value, which is
at most (\alpha 2 logn) \cdot \sansO \sansp \sanst . So, by Markov's inequality, with probability at least 2

3 , the
cost of \scrH is at most (3\alpha 2 logn) \cdot \sansO \sansp \sanst .

We now bound the node congestion. For any node v \in V , let Lv denote the
number of paths in \{ Ui\} i\in \scrM containing v. Note that Lv is the sum of independent
0/1 random variables, with mean E[Lv] \leq \alpha 2 logn by (3.2). By a Chernoff bound,
there is a constant \alpha 3 such that Pr[Lv >\alpha 3 \cdot logn]\leq 1

n3 . Taking a union bound over
all nodes v, we have Pr [\exists v : Lv >\alpha 3 \cdot logn]\leq 1

n2 .
Hence, with probability at least 1

2 , we obtain both the claimed properties of\scrH . We
can boost the success probability by repeating this algorithm independently O(logn)
times and returning the best solution found as \scrH . This proves that \scrH satisfies the
claimed properties with probability at least 1 - O( 1

n2 ).

3.2.3. Routing flow in hallucinated graph. Here, we show that all requests
in K \prime can be routed in our solution \scrE = \scrT h \cup \scrH with low congestion. Recall that
K \prime is the set of ``routable requests"" identified in section 3.2.1 and \scrH is the halluci-
nated solution found in section 3.2.2. Also, recall the partition \scrT 1, . . . ,\scrT p of heavy
clusters obtained by applying Theorem 3.13. For each part \scrT j , define a random edge-
capacitated graph HC(j) as follows. Nodes of HC(j) correspond to clusters of \scrT j . For
each request i with both si and ti in clusters of \scrT j , there are Bi edges of capacity q
in HC(j) between the clusters containing si and ti; these edges correspond to the Bi

many si  - ti paths found in the hallucinated instance\scrM (see Theorem 3.15).
Henceforth, we shall slightly abuse notation and refer to the cluster graph \scrC (\scrT j)

as just \scrC (j). Recall that each edge in \scrC (j) corresponds to some request i \in K with
both si and ti in \scrT j and has weight di (the demand of request i).

We will make use of the following cut-sparsification result.

Theorem 3.16 (Theorem 2.1 [34]). Let G be an N -node multigraph with min-cut
\kappa , and r \in [0,1]. Let H be a multigraph containing each edge of G independently with

probability r. If r \cdot \kappa \geq 3(d+2) lnN
\epsilon 2 for some d, \epsilon , then with probability 1  - O(1/Nd),

every cut in H has value within r(1\pm \epsilon ) of the cut value in G.

Lemma 3.17. For any j \in [p], with probability at least 1 - O( 1
k3 ), all request-pairs

in \scrC (j) can be routed fractionally in HC(j) without exceeding edge capacities.

Proof. By Theorem 3.13(i), the minimum cut in \scrC (j) has value \kappa \geq q
8 . Let \widetilde \scrC (j)

be an unweighted multigraph obtained from \scrC (j) by replacing each edge i in \scrC (j) with
di parallel edges (di is the demand of request i). Note that for any subset S\subseteq \scrT j , its
cut values in \scrC (j) and \widetilde \scrC (j) are the same. So the min-cut in \widetilde \scrC (j) is also \kappa \geq q

8 . Note

that HC(j) can be viewed equivalently as a random subgraph of \widetilde \scrC (j) obtained by
selecting each edge independently with probability r = \alpha 1 lnk

q and assigning capacity
q to each selected edge.

We now apply Theorem 3.16 on graph \widetilde \scrC (j) with r and \kappa as above. Note that r\cdot \kappa \geq 
\alpha 1

8 lnk \geq 60 lnk, assuming that \alpha 1 \geq 480. So, we can set d = 3 and \epsilon = 1
2 in this
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NODE CAPACITATED NETWORK DESIGN 617

theorem, which implies that with probability at least 1  - O( 1
k3 ), for every subset

S\subseteq \scrT j , its cut value in HC(j) is at least
\alpha 1 lnk

2 times its cut value in \scrC (j).
Note that each edge in HC(j) has capacity q, so the cut value of S in HC(j) is

cutH(S) := q \cdot | \partial HC(j)(S)| . Let cutG(S) :=
\sum 

i\in \partial \scrC (j)(S) di denote the cut value of S

in \scrC (j). In other words, the nonuniform sparsest cut of the multicommodity routing
instance with demand-graph \scrC (j) and capacity-graph HC(j) is

min
S\subseteq \scrT j

capacity across S

demand across S
= min

S\subseteq \scrT j

cutH(S)

cutG(S)
\geq \alpha 1 lnk

2
.

Choosing \alpha 1 to be a large enough constant, we can ensure that the above sparsest
cut value is at least the multicommodity flow-cut gap \Theta (log k) [40]. This proves the
existence of a fractional routing for request-pairs in \scrC (j).

This lemma enables us to find an edge-capacitated multicommodity flow for the
request pairs K \prime in

\bigcup p
j=1 \scrC (j). For each request i in \scrC (j), let fi denote the fractional

flow sending di units from the source to sink cluster in graph HC(j). Note that the
flows \{ fi\} i\in K\prime can be routed concurrently, while respecting all edge capacities, so the
total flow through each edge of

\bigcup p
j=1HC(j) is at most q. Further, the next lemma

shows that the total flow through any node is also bounded.

Lemma 3.18. The total capacity of edges in
\bigcup p

j=1HC(j) incident to any node is

O(\gamma 2 log2 k) \cdot q, with probability at least 1 - O( 1
k3 ).

Proof. Consider any node (cluster) T \in HC(j) for any j \in [p]. From Theo-
rem 3.4(iv), we know that the total demand of requests RT incident to T (i.e., having
a terminal in T ) is O(\gamma 2 logk)q. Every edge in HC(j) incident to T corresponds to
some request i \in RT , and the edge has capacity Bi \cdot q, where Bi \sim \sansB \sanse \sansr \sansn \sanso \sansu \sansl \sansl \sansi (di, r).
So the total capacity incident to node T is X :=

\sum 
i\in RT

Bi \cdot q. Note that E[X] =

qr
\sum 

i\in RT
di = \alpha 1 logk

\sum 
i\in RT

di = O(\gamma 2 log2 k) \cdot q. As X is the sum of independent

\{ 0, q\} random variables, we obtain by a Chernoff bound that X =O(\gamma 2 log2 k) \cdot q with
probability at least 1 - 1

k4 . Finally, a union bound over all nodes/clusters completes
the proof.

Obtaining node-capacitated routing in \bfitG . Now, we show that the edge
capacitated routing \scrF = \{ fi : i \in K \prime \} in the hallucinated graph HC :=

\bigcup p
j=1HC(j)

can also be implemented as a node-capacitated routing in the real graph G. This
involves un-contracting nodes of HC into clusters \scrT h and the edges of HC into flow-
paths of the hallucinated solution \scrH . See Figure 4 for an example.

Lemma 3.19. With probability at least 1 - O( 1
k2 ), solution \scrE =\scrH \cup \scrT h in step 7

of Algorithm 3.4 supports an unsplittable routing of requests K \prime with node-congestion
O(\gamma 2 log3 k) \cdot q.

Proof. We start with the fractional routing \scrF in the hallucinated graph HC ,
which corresponds to routing flow across clusters. By Lemma 3.17, the total flow on
each edge of HC is at most q, with probability at least 1 - O( 1

k3 ). We replace the flow
in \scrF on each edge i of HC with the flow-path Ui used for request i in the hallucinated
solution \scrH (recall that i corresponds to some request in\scrM ). By Theorem 3.15, each
node in graph G appears in O(logn) many flow-paths \{ Ui\} . So, this results in a flow
of O(logn) \cdot q through each node of graph G. However, we do not yet have a valid
routing as we still need to route flow within each cluster (i.e., node of HC).

In order to route flow in \scrF through any node/cluster T \in HC , we do the following.
Consider any pair of consecutive edges i1, i2 (both incident to cluster T ) used in the
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Ui1

Ui2

T

The wiggly paths denote the paths Ui in the hallucinated solution H
The dotted trees denote the heavy clusters Th

Hallucinated graph HC

T

i1

i2

Fig. 4. Un-contracting hallucinated graph HC using clusters \scrT h and flow \scrH .

routing \scrF . Although the endpoints of paths Ui1 and Ui2 may be different, they
must both be terminals in cluster T , so we can use the subtree corresponding to
T to route the flow through this cluster. See Figure 4. By Lemma 3.18, the total
flow in \scrF through any node of HC is O(log2 k)\gamma 2 \cdot q, with probability at least 1  - 
O( 1

k3 ). Moreover, by Theorem 3.4(iii), each node in graph G appears in O(logk)
many clusters. Hence, the flow within clusters can be implemented so that the flow
through each node is O(log3 k)\gamma 2 \cdot q.

Combining the flow routing across clusters and within each cluster, we obtain a
valid fractional flow in graph G with node congestion O(logn) \cdot q +O(log3 k)\gamma 2 \cdot q =
O(log3 k)\gamma 2 \cdot q; here we used the fact that \gamma \geq logn.

Finally, we perform simple randomized rounding to obtain an unsplittable rout-
ing. Using the fact that each demand is at most q and a Chernoff bound, the node
congestion in G remains O(\gamma 2 log3 k)q with probability at least 1 - 1

n3 .

3.2.4. Completing proof of multicommodity routing. We now combine
the results from sections 3.2.1, 3.2.2, and 3.2.3 to complete the proof of the routing
algorithm (Theorem 3.11). Let D\prime =

\sum 
i\in K di denote the total demand of the requests

in K that are obtained after Algorithm 3.1. By Theorem 3.4(i), we have D\prime \geq D/4,
where D is the total demand of all requests in the MCNC instance. Let K1\subseteq K denote
all requests i \in K that have both si and ti in the same internal cluster T \in \scrT i. Let
K2\subseteq K denote all requests i \in K with both si and ti in some heavy cluster (the
source/sink can be in different clusters of \scrT h). Let K0 = K \setminus K1 \setminus K2 be all other
requests. We use D1, D2, and D0 to denote the total demand of the respective sets.
Let N = | \scrT h| be the number of heavy clusters. Then, we make the following claim.

Claim 3.20. If D1 <
D\prime 

6 , then (D2  - Nq
4 )\geq D\prime 

6 .

Proof. For every request i \in K0, either si or ti appears as an external terminal
in some cluster T \in \scrT i. This implies that D0 is at most the total demand of external
terminals of \scrT i. By definition of internal clusters (Definition 3.1), the external demand
of any T \in \scrT i is less than \sansl \sanso \sansa \sansd (T )/2 and the internal demand of T is at least \sansl \sanso \sansa \sansd (T )/2.
Adding over all internal clusters T \in \scrT i, we obtain D0 \leq 1

2

\sum 
T\in \scrT i

\sansl \sanso \sansa \sansd (T ) and D1 \geq 
1
2

\sum 
T\in \scrT i

\sansl \sanso \sansa \sansd (T )
2 (the factor 2 reduction is because each internal request contributes

twice to the cluster's load). Hence, D0 \leq 2D1.
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NODE CAPACITATED NETWORK DESIGN 619

By definition of heavy clusters, the total demand in each T \in \scrT h is at least q.
Adding over all T \in \scrT h, we get D0 + 2D2 \geq qN , where we used that the sum of
demands over \scrT h is at most 2D2 +D0.

Now, using D\prime =D0 +D1 +D2 and D0 \leq 2D1, we obtain D2 \geq D\prime  - 3D1 >
1
2D

\prime 

as D1 <
D\prime 

6 . Also, D0 \leq 2D1 <
1
3D

\prime < 2
3D2. Now we have Nq\leq D0 + 2D2 <

8
3D2. So,

D2  - Nq
4 >D2  - 2

3D2 >
D\prime 

6 , which proves the claim.

Large internal demand. We first consider the easier case that D1 \geq D\prime /6. So,
step 1 applies in Algorithm 3.4. Here, our solution \scrE = \scrT i and requests K \prime =K1. Note
that each cluster T \in \scrT i can support all its internal demands on the tree corresponding
to T with node-congestion \sansl \sanso \sansa \sansd (T ). The cost of \scrE is O(\beta logk)\cdot \sansO \sansp \sanst by Theorem 3.4(v).
Moreover, each node of G appears in O(logk) many clusters (Theorem 3.4(iii)) and
\sansl \sanso \sansa \sansd (T ) = O(\gamma 2 logk)q for each cluster T (Theorem 3.4(iv)). So the node-congestion
of this routing is O(\gamma 2 log2 k)q.

Large external demand. We now consider the case that D1 <D\prime /6. Here, our
solution \scrE = \scrH \cup \scrT h, where \scrH is the solution to the hallucinated instance in step 6.
The requests K \prime are those obtained in Theorem 3.13, which implies K \prime \subseteq K2 and its
total demand is at least D2  - Nq

4 \geq D\prime /6 (the last inequality is by Claim 3.20). By
Theorem 3.15, the cost of \scrH is O(logn) \cdot \sansO \sansp \sanst with probability 1 - 1

n2 . And, the cost
of \scrT h is O(\beta logk) \cdot \sansO \sansp \sanst by Theorem 3.4(v). So the total cost of \scrE is O(\beta logk) \cdot \sansO \sansp \sanst ,
where we use \beta \geq logn. By Lemma 3.19, with probability 1 - 1

k2 , requests K
\prime can be

routed with node-congestion O(\gamma 2 log3 k)q.
Thus, in either case, we have with probability at least 1 - 1

k that
\bullet the cost of solution \scrE is O(\beta logk) \cdot \sansO \sansp \sanst ;
\bullet requests K \prime can be routed in \scrE with node-congestion O(\gamma 2 log3 k)q;
\bullet the total demand in K \prime is at least D\prime /6\geq D/24.

3.3. Wrapping up. Our algorithm for MCNC invokes Algorithms 3.1 and 3.4
iteratively O(logk) many times. By Theorem 3.11, each iteration results in cost
O(\beta logk) \cdot \sansO \sansp \sanst and node-congestion O(\gamma 2 log3 k)q and routes a constant fraction of
the total remaining demand. Hence, after O(logD) iterations, we would have routed
all the demands. As described in Appendix B.2, we can ensure that D is polynomial
in k \leq n. So, the number of iterations is O(logk). The final cost is O(\beta log2 k) \cdot \sansO \sansp \sanst ,
and node-congestion is O(\gamma 2 log4 k)q. By Theorem 1.2, we have \beta = O(log2 n) and
\gamma =O(log3 n), which implies that our cost is O(log2 n log2 k) \cdot \sansO \sansp \sanst and node-congestion
is O(log6 n log4 k) \cdot q. This completes the proof of Theorem 1.3.

4. Conclusions. In this paper, we obtained the first polylogarithmic bicriteria
approximation algorithm for the uniform node-capacitated network design problem.
There is still a large gap between our approximation bounds and the \Omega (log k) hardness
of approximation that follows from node-weighted Steiner tree. Closing this gap is an
interesting open question. Another question concerns non-uniform capacities, which is
also open in the edge-capacitated case. A key challenge in dealing with nonuniform
capacities is that there is no clear notion of how much demand should be aggregated
in one cluster.

Appendix A. Simple reductions for MCNC and NEERP.

A.1. Reducing NEERP to MCNC. Here, we show that the energy-efficient
routing problem can be reduced to the capacitated network design problem. This
essentially follows from [3], but we provide the details for completeness.
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620 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Consider any instance of NEERP with energy function (1.1), graph G = (V,E)
having node-costs \{ cv\} v\in V , and requests \{ (si, ti, di)\} ki=1. Let q := \sigma 1/\alpha . Let D1 =
\{ i \in [k] : di \leq q\} denote all requests with demand at most q, and let D2 = [k] \setminus D1

denote the ``large"" demands. We will handle these two demand types separately. Let
\sansO \sansp \sanst denote the optimal value.

For small demands (D1) we define an MCNC instance on graph (V \prime ,E\prime ) where
V \prime contains k copies of each node in V . For each (u, v) \in E, there is an edge in E\prime 

between every copy of u and every copy of v. For any node v \in V and i\in [k], the ith
copy of v in V \prime has cost cv\sigma (i

\alpha  - (i - 1)\alpha ). The requests remain the same (we can use
any copy of the source/sink nodes). We claim that the optimal value of the MCNC
instance is at most 2\alpha \cdot \sansO \sansp \sanst . To see this, consider the same routing as for the optimal
NEERP solution. If the flow through any node v is x, then we include the first \lceil x/q\rceil 
copies of v into the MCNC solution. Note that the cost of these copies of node v is

cv\sigma \lceil x/q\rceil \alpha \leq cv\sigma (1 + x/q)
\alpha 
= cv(q+ x)\alpha \leq cv2

\alpha (q\alpha + x\alpha ) = 2\alpha \cdot cv \cdot f(x),

which is 2\alpha times the cost of node v in the NEERP solution. Adding over all nodes,
the total cost of this MCNC solution is at most 2\alpha \cdot \sansO \sansp \sanst .

Let U\subseteq V \prime denote a (\beta ,\gamma ) bicriteria approximate solution for MCNC. Then, there
is a feasible multicommodity flow that uses capacity at most \gamma \cdot q on each node of
U . By solving the natural LP and random rounding, we can also find (in polynomial
time) a flow with load at most L :=O(\gamma +logn) \cdot q on each node of U . We now bound
the NEERP cost of this flow. Consider any node v \in V that has i copies selected in
U , so the total cost of these nodes is cv\sigma i

\alpha . The energy cost on v is at most

cv(\sigma + (iL)\alpha ) =O(\gamma \alpha + log\alpha n)\sigma i\alpha \cdot cv.

Adding over all v \in V , the total energy cost is O(\gamma \alpha + log\alpha n) times the MCNC cost,
which is O(\gamma \alpha \cdot \beta ) \cdot \sansO \sansp \sanst . Here, we assumed that \gamma \geq logn.

For large demands (D2) we just find an unsplittable routing that minimizes the
\alpha th power of loads. Let \scrI \prime denote this problem instance. Note that this problem differs
from NEERP only in the definition of the energy function, which is now f \prime (x) = x\alpha 

instead of f(x) = \sigma + x\alpha . There is an \alpha \alpha -approximation algorithm for this problem
[41]. Clearly, the optimal value of \scrI \prime is at most \sansO \sansp \sanst . Let \tau denote an approximate
solution to \scrI \prime and U\subseteq V denote the nodes carrying positive flow. As every request
in D2 has demand at least q (and we have unsplittable flows), every node in U has
flow at least q. Using the fact that f(x)\leq 2f \prime (x) for all x\geq q, it now follows that the
NEERP cost of \tau is at most twice the f \prime -cost of \tau , i.e., at most 2\alpha \alpha \cdot \sansO \sansp \sanst .

Combining the routing for D1 and D2 completes the proof of Theorem 1.1.

A.2. Approximation ratio relative to splittable routing. In our node-
capacitated network design problem (MCNC and SSNC), our goal is to find an un-
splittable routing of each demand. We now observe that our approximation guarantees
in Theorems 1.2 and 1.3 are stronger, and hold relative to an optimal solution that
only supports a splittable (i.e., fractional) flow of the demands.

For SSNC, we only use the optimal solution \sansO \sansp \sanst in Lemma 2.3. Observe that
this relies on applying the confluent flow result (Theorem 2.2) to the optimal solution,
which only requires a splittable flow.

For MCNC, we use the optimal solution \sansO \sansp \sanst in the following steps:
\bullet Bounding the optimal cost of the SSNC instances \scrI 1 and \scrI 2 (Lemmas 3.7

and 3.8). Here, we only use \sansO \sansp \sanst to demonstrate a feasible fractional routing
for \scrI 1 and \scrI 2, so we can also use a splittable-routing solution.
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\bullet Bounding the optimal cost of the hallucinated instance (Lemma 3.14). Here,
we used the optimal paths P \ast 

i to route a random quantity Bi between si and
ti, for each request i\in [k]. Then, we used a Chernoff bound to prove that the
node congestion is O(logn) with high probability. Instead of an integral path
P \ast 
i , we can use a fractional flow as a distribution \scrF i over si  - ti paths for

each i \in [k]. Then, we can first sample a random path Pi from \scrF i and route
the Bi units on this path Pi. Again, a Chernoff bound can be used to prove
that the node congestion is O(logn) with high probability. So, this step can
also be carried out relative to an optimal splittable routing.

A.3. Reducing edge-costs to node-costs. Here, we observe that the node
version NEERP is more general than the edge-version studied previously [3, 10, 7].
Consider an instance of energy-efficient routing with edge energy costs (1.1), graph
G = (V,E) having edge-costs \{ ce\} e\in E , and requests \{ (si, ti, di)\} ki=1. We define an
NEERP instance on the graph G\prime obtained by subdividing each edge e \in E with a
node ve. The node costs are zero for all nodes of V and ce for each node ve (for e\in E).
This NEERP instance is clearly equivalent to the original edge version.

A similar reduction shows that edge-capacitated MCNC is a special case of the
node-capacitated problem studied in this paper.

Appendix B. Missing details from section 3.

B.1. Approximation algorithm for small \bfitq . Here, we provide a bicriteria
approximation algorithm for MCNC when q is small. The idea is essentially the same
as that used in Theorem 3.15. Given an MCNC instance \scrI , consider a new instance
\scrI \prime where every demand equals 1 and the goal is to select si  - ti paths Pi with node-
congestion at most q that minimizes the sum of all path costs, i.e.,

\sum k
i=1

\sum 
v\in Pi

cv.
Note that each node may be counted multiple times in this objective. Using an opti-
mal solution to \scrI as a feasible solution to \scrI \prime , we have \sansO \sansp \sanst (\scrI \prime )\leq q \cdot \sansO \sansp \sanst (\scrI ). We now
write an LP relaxation for \scrI \prime that is just (LPh) used in Theorem 3.15, where\scrM = [k]
and the right-hand side in constraint (3.2) is q. It is clear that this is a valid relax-
ation. The rounding algorithm is the same as that described in Theorem 3.15. The
same analysis implies that we obtain a solution to \scrI \prime of cost O(logn) \cdot \sansO \sansp \sanst (\scrI \prime ) \leq 
O(q logn) \cdot \sansO \sansp \sanst (\scrI ) and node-congestion O(q logn). Using this as a solution to \scrI ,
the cost remains O(q logn) \cdot \sansO \sansp \sanst (\scrI ) and the node-congestion increases by at most
a factor q. So we obtain an (O(q logn),O(q logn)) bicriteria approximation algorithm
for MCNC.

We remark that the case when every demand is large, i.e., mini di = \Omega (q), can
also be solved by this approach. We just uniformly scale all demands and capacity by
mini di so that the new capacity q\prime = O(1). Then, we obtain an (O(logn),O(logn))
bicriteria approximation algorithm for MCNC with large demands.

B.2. Ensuring polynomially bounded demands. Here, we show that the
total demand D=

\sum k
i=1 di can be ensured to be polynomial in the number of requests

k. Let D1\subseteq [k] denote all requests with demand at least q/k, and D2 = [k] \setminus D1. We
will handle the requests in D1 and D2 separately. We round up the demand di of
each i\in D1 to an integer multiple of q/k, which increases each demand by at most a
factor two. Then, scaling all demands down by q/k, we obtain an equivalent MCNC
instance with capacity q\prime = O(k), which implies that total demand in this instance
is D\prime = O(k2). For requests in D2, we just use the minimum node-weighted Steiner
forest, which admits an O(logk)-approximation algorithm [36].
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