Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. COMPUT. © 2024 Society for Industrial and Applied Mathematics
Vol. 53, No. 3, pp. 588-623

CLUSTER BEFORE YOU HALLUCINATE: NODE-CAPACITATED
NETWORK DESIGN AND ENERGY EFFICIENT ROUTING*

RAVISHANKAR KRISHNASWAMY', VISWANATH NAGARAJAN?, KIRK PRUHSE,
AND CLIFFORD STEINY

Abstract. We consider the following node-capacitated network design problem. The input is
an undirected graph, a set of demands, uniform node capacity, and arbitrary node costs. The goal
is to find a minimum node-cost subgraph that supports all demands concurrently subject to the
node capacities. We consider both single- and multicommodity demands and provide the first poly-
logarithmic approximation guarantees. For single-commodity demands (i.e., all request pairs have
the same sink node), we obtain an O(log?n) approximation to the cost with an O(log®n) factor
violation in node capacities. For multicommodity demands, we obtain an O(log4 n) approximation
to the cost with an O(log10 n) factor violation in node capacities. We use a variety of techniques,
including single-sink confluent flows, low-load set cover, random sampling, and cut-sparsification.
We also develop new techniques for clustering multicommodity demands into (nearly) node-disjoint
clusters, which may be of independent interest. Moreover, this network design problem has appli-
cations to energy-efficient virtual circuit routing. In this setting, there is a network of routers that
are speed scalable and that may be shut down when idle. We assume the standard model for power:
the power consumed by a router with load (speed) s is o + s, where o is the static power and
the exponent o > 1. We obtain the first polylogarithmic approximation algorithms for this problem
when speed-scaling occurs on nodes of a network.

Key words. network design, approximation algorithms, routing
MSC codes. 68W25, 68W20

DOI. 10.1137/20M 1360645

1. Introduction. Network design problems involve finding a minimum-cost sub-
graph of a given graph while satisfying certain demand requirements. Classic examples
include Steiner tree, Steiner forest, survivable network design, and buy-at-bulk net-
work design. Good approximation algorithms are known for all these basic network
design problems [13, 1, 27, 33, 29, 18]. However, these problems become significantly
harder in the presence of capacities, and much less is known for capacitated network
design problems. In this paper, we study a natural node-capacitated network design
problem and provide the first polylogarithmic approximation algorithms for it.

*Received by the editors August 18, 2020; accepted for publication (in revised form) February
20, 2024; published electronically May 20, 2024. A preliminary version of this paper appeared in the
Proceedings of the ACM Symposium on Theory of Computing (STOC) 2014.

https://doi.org/10.1137/20M1360645

Funding: The second author was supported in part by NSF grants CCF-2006778 and CMMI-
1940766. The third author was supported in part by NSF grants CCF-1907673, CCF-2036077,
and CCF-2209654 and an IBM Faculty Award. The fourth author was supported in part by NSF
grant CCF-2218677 and ONR grant ONR-13533312 and by the Wai T. Chang Chair in Industrial
Engineering and Operations Research at Columbia University.

TMicrosoft Research Vigyan Building, 9, Lavelle Road, Bangalore 560018 India (ravishankar.k@
gmail.com).

fDepartment of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI
48109 USA (viswa@umich.edu).

$Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260 USA
(krp2@pitt.edu).

I Department of Industrial Engineering and Operations Research, Columbia University, New York,
NY 10027 USA (cliff@ieor.columbia.edu).

588

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1360645
mailto:ravishankar.k@gmail.com
mailto:ravishankar.k@gmail.com
mailto:viswa@umich.edu
mailto:krp2@pitt.edu
mailto:cliff@ieor.columbia.edu

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 589

In the multicommodity node-capacitated network design problem (MCNC), there
is an undirected graph G = (V, E), where each node v € V' has cost ¢, > 0 and uniform
capacity ¢q. There are also k request-pairs of the form (s;,t;,d;), where s; € V' is the
source, t; € V is the sink, and 1 < d; < ¢ is the demand. A feasible solution is a subset
of nodes UCV such that the graph G[U] induced on nodes U (where each node has
capacity ¢) can concurrently support d; units of unsplittable flow between s; and ¢; for
each request-pair i € [k]. The objective is to minimize the total cost ¢(U):=3_ .y cv
of the solution. Instead of requiring unsplittable flows, one could alternatively ask for
a splittable (i.e., fractional) flow for the demands. However, this does not change the
problem significantly. In fact, our approximation guarantees also hold relative to an
optimal solution for splittable flows.

Our algorithms will find bicriteria approximations, where the solution is allowed
to violate the capacity constraints by some factor. A (3,7) bicriteria approximation
algorithm for MCNC finds a solution U such that (i) the cost ¢(U) is at most
times the optimum and (ii) all request-pairs can be routed concurrently in G[U] using
capacity at most v - ¢ at each node.

Other than being a natural theoretical model, MCNC has applications in energy-
efficient routing. Indeed, this was our primary motivation to study MCNC. Improving
the energy efficiency of telecommunication (telecom) networks is an important prac-
tical issue. In their 2020 report [39] “The Case for Committing to Greener Telecom
Networks” McKinsey reported that telecom operators account for 2 to 3 percent of
total global energy demand, often making them some of the most energy-intensive
companies in their geographic markets. But the report noted that all operators have
considerable scope to cut energy costs and consumption, with many operators having
the potential to reduce energy consumption by at least 15 to 20 percent. Further
improved optimization policies was listed as one of the four key energy reduction op-
portunities. In this paper, we consider virtual circuit routing, which is used by several
network protocols to achieve reliable communication [38].

Formally, we consider virtual circuit routing protocols (where each connection is
assigned a fixed route in the network) with an objective of minimizing energy, in a
network of routers that (i) are speed scalable, and (ii) may be shut down when idle.
We use the standard model for a router’s power-rate curve, which is the same as in
[4, 3, 10, 7]. In this model, the energy cost incurred by a router operating at speed z
(which is assumed to be the total traffic passing through the router) is given by

0 if 2 =0,
(11) f(w){a—&—xa if z>0.

Above, parameter o is the static power (that is always used when the router is turned
on) and parameter o > 1 specifies the energy inefficiency of the router. The value
of « is in the range [1.1,3] for essentially all technologies [12, 48]. We assume that
all network components are homogeneous: so ¢ and « are uniform across all routers.
This is also the setting in several prior works [3, 10, 7].

In this paper, we obtain the first polylogarithmic approximation algorithms for
virtual circuit routing with speed-scalable components at nodes of the network. All
previous papers considered the simpler setting where speed-scaling occurred at edges.
Although speed-scalable edges (corresponding to network links) are plausible, it is
more realistic that speed-scaling occurs at nodes (corresponding to routers).

Formally, in the node-cost energy efficient routing problem (NEERP), we are given
an undirected graph G = (V, E), with nonnegative multipliers on nodes {¢,},eyv and
a uniform energy cost function (1.1). We are also given a collection of k request-pairs

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

590 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

of the form (s;,t;,d;), where, for each i € [k], s; € V is the source node, t; € V is
the sink node, and d; > 1 is the demand. The goal in NEERP is to find a path P;
connecting s; and t; for each i € [k] so as to minimize the overall energy cost:

ch-f<z di>.

veV weP;

It turns out that NEERP reduces to the capacitated network design problem
MCNC, as stated in the following result. This reduction is implicit in [3], where it was
applied to the edge-version, and we provide a proof in Appendix A for completeness.

THEOREM 1.1 ([3]). If there is a (B,7) bicriteria approximation algorithm for
MCNC, then there is an O(8 - v*)-approximation algorithm for NEERP.

Preliminary simplifications. We refer to the set {s;}¥_; U {t;}%_; of all sources
and sinks in MCNC as terminals. We assume (without loss of generality) that (i)
all terminals are distinct, i.e., each node in V is the source or sink of at most one
request and (ii) each terminal is a leaf node, i.e., has degree one. This can be ensured
by adding 2k new terminals of cost zero, where each new terminal node (s; or t;) is
connected only to the original terminal. So the number of nodes n > 2k. In some
applications, we may also have n > k (which is common in network design problems).
So, we state our approximation ratios in terms of both n and k.

We also note that, without loss of generality, zero-cost nodes in MCNC may have
capacity that is any integral multiple of ¢q. To see this, consider any zero-cost node
v €V (ie., with ¢, = 0) having capacity z - ¢, where z > 1 is an integer. Then, we
simply introduce z copies v1,...,v, of node v, each having uniform capacity ¢ and
zero cost. As all the copies have zero cost, it is clear that the two MCNC instances
are equivalent. We note that this reduction increases the number of nodes, but we
always have z < k as the total demand in any instance is at most kq; so the number
of nodes in the new instance is at most nk.

Single-sink node-capacitated network design (SSNC). We also consider separately
the single-sink special case of MCNC, where there is a common node t € V' with ¢; =¢
for all ¢ € [k]. The sink node ¢ is assumed to have zero cost; this is without loss of
generality as ¢t must be included in any feasible solution. Moreover, the capacity of ¢
is kq so that all demands can be routed into it. We also assume that each source is a
distinct leaf node. The single-sink problem serves as a simpler setting to explain our
techniques and is also used in the multicommodity algorithm.

1.1. Our results and techniques. Our first main result is the following
theorem.

THEOREM 1.2. There is an (O(log®n),0(log®n)) bicriteria approzimation algo-
rithm for single-sink node-capacitated network design.

In order to motivate our approach, we illustrate two corner cases, which are
interesting in their own right. If the total demand is smaller than the capacity, i.e.,
>;di < g, then the problem reduces to computing a minimum-cost node-weighted
Steiner tree, for which there are O(logk)-approximation algorithms [36, 28]. At the
other end of the spectrum, if each demand d; is large, i.e., min;d; = Q(q), then
each of these requests essentially has to route its demand on a disjoint path, and this
problem can be solved by using techniques from low-congestion routing [46]. (See also
Appendix B.1.) Prior results for the edge-capacitated problem [10, 3, 7] were based
on a combination of these ideas and can be summarized as follows: (i) choose an

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 591

approximately min-cost Steiner tree T connecting all the sources and the sink, (ii)
partition T into edge-disjoint subtrees (which we call clusters) having total demand
~2 ¢ in each, (iii) choose one “leader” in each cluster and aggregate all demand in the
cluster at the leader, and (iv) route ¢ units of flow from each leader to the sink ¢
using disjoint paths. The overall edge-congestion is bounded because the clusters are
edge-disjoint and the (disjoint) path chosen by each leader suffices to route the entire
demand in that cluster (which is at most ¢). A crucial ingredient in this approach is
that any tree can be partitioned into edge-disjoint subtrees/clusters containing =z ¢
demand each.

However, in the node-capacitated setting, there may not exist a node-disjoint
clustering of the minimum Steiner tree into subtrees of &~ ¢ demand each! For example,
the tree T' could just be a star with all the sources and sink as leaves, which means
that the center node will appear in every cluster. So, instead of partitioning a min-cost
Steiner tree into clusters (which may not be possible), we directly aim to find low-cost
node-disjoint clusters. However, it is not a priori clear that such a clustering must
always exist. Our first step in Theorem 1.2 is to prove the existence of node-disjoint
clusters of cost at most the optimal SSNC value where each cluster has O(logn) - ¢
demand. This proof relies on the existence of single-sink confluent flows [20]. In
fact, we show that each such cluster can be rooted at a neighbor of the sink so that
routing from each cluster to the sink is trivial. Our second step in Theorem 1.2
is to efficiently find such a clustering. We achieve this by formulating the single-
sink clustering problem as an instance of low load set cover [9]. Here, each subtree
with O(logn) - ¢ demand is a “set” and we need to pick a min-cost collection of
sets such that the number of sets containing any node is bounded (which will ensure
approximate node-disjointness). The approximation algorithm for low load set cover
from [9] requires a subroutine for the related “minimum ratio” problem, for which we
obtain an O(logn)-approximation algorithm using the partial node weighted Steiner
tree problem [37, 43]. These details are presented in section 2.

Our second main result is as follows.

THEOREM 1.3. There is an (O(log® nlog® k),0(10g6n10g4 k)) bicriteria approzi-
mation algorithm for multicommodity node-capacitated network design.

We note that an Q(lolg"lgol%) factor violation in the node-capacity is necessary
for any nontrivial approximation on the cost, due to the hardness of the undirected
congestion minimization problem [5].

Our high-level approach is similar to that for the single-sink case. First, we find
a clustering of all source and sink nodes into nearly node-disjoint subtrees of small
cost such that each cluster has at most ¢ - polylog(n) demand inside. Next, we find
a routing of demands across different clusters (from sources to sinks) while incurring
low node-congestion. However, both these steps are significantly more complicated
than the single-sink case, as outlined next.

For multicommodity clustering, as in the single-sink case, we need to prove both
the existence and computation of (nearly) node-disjoint clusters. However, there is no
multicommodity notion of confluent flow, which was used crucially in the single-sink
existence proof. Moreover, the low-load set-cover approach is not applicable either
because the “minimum ratio” problem in the multicommodity case is at least as hard
to approximate as the dense-k-subgraph problem, which is believed to not admit any
polylogarithmic approximation [25, 11, 42]. We also need to modify the notion of an
allowed cluster in the multicommodity case. Ideally, we would like each cluster to be
“heavy,” i.e., having demand at least ¢ (and at most ¢ - polylog(n)), which is useful

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

592 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

in the subsequent routing step. However, this may not always be possible, so we also
allow “internal” clusters where a constant fraction of the demand in the cluster comes
from requests with both source and sink in that cluster. Then, we obtain a low cost
clustering where each cluster is either heavy or internal. We also ensure that the
clusters have low node congestion, i.e., each node appears in at most polylog(n) many
clusters. Our algorithm constructs these clusters in an iterative manner, where we
use the single-sink algorithm (Theorem 1.2) in each iteration. We start off with each
terminal being a singleton cluster and continue merging clusters until each cluster is
either heavy or internal. Crucially, we prove that the SSNC instances solved in each
iteration have low cost by producing a “witness solution” using the optimal MCNC
solution. We then use the SSNC solutions to merge clusters so that the number
of clusters reduces by a constant factor in each iteration: this implies that O(logk)
iterations suffice. The actual algorithm is more subtle, and we only end up clustering
a constant fraction of the total demand. See section 3.1 for a more detailed overview
of the clustering algorithm.

For multicommodity routing, we consider two cases depending on whether there
are more demands in internal or heavy clusters. If a constant fraction of the demand
is contained in internal clusters, then we do not have to route across clusters: we
just route all “internal” demands using the respective subtrees. The harder case is
when a constant fraction of the demand is in heavy clusters. Here, we find a low-cost
routing across heavy clusters using a sampling/hallucination based approach from
the edge-capacitated problem [7]. However, unlike the edge version [7], in the node
version we need to drop some demands in the routing step. This is required to ensure
that the min-cut in the demand graph is large, which in turn is needed for the cut-
sparisification result [34] that we use. See section 3.2 for a more detailed overview of
the routing algorithm.

Finally, after combining the clustering and routing steps, we obtain a solution
that can support a constant fraction of the total demands. So, we need to apply these
steps recursively on the remaining demands to complete the proof of Theorem 1.3.

We also note that the approximation ratios in Theorems 1.2 and 1.3 can be
strengthened to be relative to an optimal splittable routing: see Appendix A.2.

Using Theorems 1.2 and 1.3 along with the reduction in Theorem 1.1, we obtain
the following corollaries.

COROLLARY 1.4. There is an O(log***2n)-approzimation algorithm for the
single-sink node-cost energy-efficient routing problem.

COROLLARY 1.5. There is an O(log'** ™ n)-approzimation algorithm for the

multicommodity node-cost energy-efficient routing problem.

1.2. Related work. Approximation algorithms for the edge-capacitated version
of MCNC have been studied previously in [4, 3, 10, 7]. The node-capacitated problem
that we study is more general, and we obtain the first approximation algorithms. A
key challenge that needs to be addressed in these results is that the problem has
similarities to both convex and concave cost flows. When the capacity ¢ is small, the
MCNC problem is similar to convex-cost flow, where it is preferable to spread flow over
disjoint paths. On the other hand, when the capacity ¢ is large, MCNC is similar to
concave-cost flow, where one prefers to aggregate flow. In [3], the authors showed that
these competing forces (to spread out or aggregate flow) can be “poly-log-balanced” by
giving a bicriteria polylogarithmic approximation algorithm for the multicommodity
edge version of the problem. Moreover, [4] showed an Q(logl/ “n) inapproximability

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 593

result for the edge version, under standard complexity theoretic assumptions. Later,
[7] obtained an improved (O(logn),O(logn)) bicriteria approximation algorithm for
edge-capacitated MCNC. In fact, [7] also studied the online version (where requests
arrive over time) and obtained an (O(logn),O(log® n)) bicriteria competitive ratio. A
key technique in [7] was a random-sampling idea, where each request ¢ “hallucinates”
that it wants to route ¢ units with probability ~ %. We also make use of this idea in
our paper.

The NEERP problem has also been studied in the special case that speed scaling
occurs on the edges instead of the nodes. As noted earlier, it is more realistic to
have speed-scalable nodes rather than edges. Presumably, the assumption in these
previous papers that speed scaling occurs on the edges was motivated by reasons
of mathematical tractability, as network design problems with edge costs are usu-
ally easier to solve than the corresponding problems with node costs. The paper [3]
obtained a logo(“) n-approximation algorithm for the edge-cost NEERP. The paper
[10] considered the single-sink special case (with edge costs) and obtained an O(1)-
approximation algorithm and O(log%‘“ n)-competitive randomized online algorithm.
Later, [7] obtained a simple O(log® n)-approximation algorithm for the multicommod-
ity edge version, which was also extended to an O(log®* ™ n)-competitive randomized
online algorithm.

We note that the MCNC problem is a special case of a very general model, called
fized-charge network design, that has been studied extensively in the operations re-
search literature; see, e.g., [35, 22, 32]. The focus in these papers has been on solving
the problem exactly, which is different from our goal of polynomial-time approxima-
tion algorithms.

An O(logk)-approximation algorithm for the basic node-weighted Steiner tree
problem was obtained in [36], which is also the best possible approximation ratio
(as set cover is a special case). This contrasts with the usual (edge-weighted) Steiner
tree, for which constant-factor approximations are known [13]. Our algorithm also
makes use of the partial node-weighted Steiner tree (PNWST) problem, where we only
want to connect a certain number of terminals. An O(logn) approximation algorithm
for PNWST was obtained in [37, 43].

Buy-at-bulk network design is also somewhat related to our model. Here, the cost
on a network element (edge or node) is a concave function of the load through it. Poly-
logarithmic approximation algorithms are known for both edge-weighted [8, 29, 18]
and node-weighted cases [19, 6]. The paper [2] also showed polylogarithmic hardness
of approximation for buy-at-bulk network design. From a technical standpoint, the
hallucination idea used in [7] and also in our algorithm is similar to the sample-
augment framework in [30] for solving buy-at-bulk problems. However, our algorithm
analysis is quite different from those for buy-at-bulk and is more similar in spirit to
the analysis of cut-sparsification algorithms [34, 47, 26].

The survivable network design problem (SNDP) is a different (but well-studied)
multicommodity network design problem. Here, the goal is to select a minimum-cost
subgraph that can route a set of demands individually; i.e., each demand should be
routable in the subgraph (just by itself). A 2-approximation algorithm is known for
SNDP with edge-connectivity requirements [33]. The node-connectivity SNDP has
also been studied extensively, with the best approximation ratio being O(k®logn) for
edge costs [21] and O(k*log®n) for node costs [45]; here k is the largest demand.
Vertex-connectivity SNDP is also Q(k€)-hard to approximate [17]. There has also
been some work on capacitated SNDP [14, 15, 16, 31]. We note that capacitated

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

594 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

SNDP differs significantly from MCNC because the goal in SNDP is to route each
request-pair in isolation, whereas our goal is to route all requests concurrently.

Very recently (after the conference version of this paper), [24, 44] considered the
NEERP problem with nonuniform cost functions, where the o and « parameters
in (1.1) are different across nodes. In fact, their results apply to a larger class of
“generalized network design” problems, which includes multicommodity routing on
directed graphs. The paper [24] gave an O(max,cy o/ “v)-approximation algorithm
for nonuniform NEERP, where o, and «, are the cost parameters for each node
(and «,’s are constant). Moreover, [44] obtained an online algorithm for nonuniform
NEERP with the same competitive ratio. We note that these results are incomparable
to Corollary 1.5: we obtain approximation ratios that are polylogarithmic in the input
size (n and k), whereas these results in [24, 44] have a polynomial dependence (albeit
on the cost parameters).

2. Single-sink node-capacitated network design. The input to the SSNC
problem consists of an undirected graph G = (V, E), with |V| =n, and a collection
of k sources D = {s; |i € [k]} with respective demands {1 < d; < ¢ |i € [k]}. Recall
that each source node has degree one. There is a specified sink ¢ € V to which each
source s; wants to send d; units of flow unsplittably. Each node v € V'\ {¢} has a cost
¢, and uniform capacity ¢; the sink ¢ has zero cost and capacity kq (so all demands
can be routed into it). Recall that zero-cost nodes in MCNC (and SSNC) are allowed
to have larger capacity than q. The output is a subset of nodes V'CV such that the
graph G[V'] induced by the nodes V' can concurrently support an unsplittable flow
of d; units from each source s; to the sink . The objective is to minimize the total
cost c(V') =3, cy c(v). We will also refer to the nodes {s; |i € [k]} as terminals. In
our analysis, we use Opt to denote the cost of the optimal SSNC solution.

A simple but important notion is that of a single-sink cluster, defined below.

DEFINITION 2.1 (SSNC cluster). A cluster is any subtree of graph G containing
the sink t. The demand of the cluster is the total demand of all sources in it.

The key step in our single-sink algorithm is to find a collection of nearly node-
disjoint clusters, each assigned roughly ¢ demand. An important step is to even show
the existence of such clusters, which we do in section 2.1. The existence argument is
based on single-sink confluent flows [20]. We then give an algorithm for finding such
clusters in section 2.2. This algorithm relies (in a black-box fashion) on two other
results: an O(logn)-approximation algorithm for partial node-weighted Steiner tree
[37, 43], and a logarithmic bicriteria approximation for low load set cover [9]. At a
high level, we model a set cover instance on the graph, where any cluster is a set, and
the goal is to find a minimum cost set cover of all terminals such that no node is in
too many sets. The algorithm of [9] requires a min-ratio oracle, for which we use the
partial node-weighted Steiner tree algorithm. Finally, we just select all the nodes in
the clusters as our solution. The node congestion can be bounded using the fact that
each cluster has roughly ¢ demand and that the clusters are nearly disjoint.

Confluent flow. Consider any n-node directed graph with sink node ¢, sources
{s;}k_| with demands {d;}%_,, and uniform node capacity g at all nodes except the
sink (which has infinite capacity). Again, we assume that each demand is at most
q. A flow is said to be confluent if for every node u there is at most one edge (u,v)
out of u that carries positive flow. Note that the edges carrying positive flow in any
confluent flow correspond to an arborescence directed toward the sink .

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 595

THEOREM 2.2 (Theorem 20 in [20]). Consider any directed graph as above with
a splittable routing F* that sends d; units from each source s; (for i € [k]) to sink
t, while respecting node capacities. Then, there is a confluent flow F that routes all
demands where the total flow through any node (other than t) is at most (1 + 1lnn)q.

The multiple sinks referred to in [20] correspond to the in-neighbors of our single
sink ¢ (which are at most n in number).

2.1. Existence of good clustering. We first show that there exists a “good”
clustering of the source nodes into node-disjoint clusters.

LEMMA 2.3. Given any instance of SSNC with optimal cost Opt, there exists a
collection {T;}7_, of clusters such that the following hold:
(i) The demand of each cluster T; is at most (1+1nn)-q.
(ii) Fvery source lies in some cluster.
(iii) The clusters are node-disjoint except at t.
(iv) The total cost is Y 7_; >, cp ¢y < Opt.

Proof. Let V*CV denote the set of nodes in an optimal solution and F* denote
an optimal flow for the sources D. Note that F* sends at most ¢ flow through
each node (except t). We now apply Theorem 2.2 on the graph induced on V* to
obtain a confluent flow F where the flow through each node (other than ¢) is at most
q(1+1nn). Recall that F corresponds to an arborescence T directed toward the sink
t. Let {r;}7_; denote all neighbors of ¢ contained in arborescence 7. For each i € [g],
let T; denote the subtree of T rooted at r;, along with the edge (¢,r;). Note that
{T;}J_, are node-disjoint except at ¢t. Moreover, the total demand in each subtree
T; is at most ¢(1 4 Inn) because all of these demands pass through node r;. Finally,
T =U?_,T; contains all the sources as the confluent flow F routes every demand.

We claim that the clusters {T;}Y_; satisfy all the conditions in the lemma. Condi-
tions (i)—(iii) follow directly from the above construction. Condition (iv) follows from
(iii) and the fact that all nodes of T; are contained in V*. ad

veT;

2.2. Finding a good clustering. The previous subsection only establishes the
existence of a good clustering; in this subsection we explain how to efficiently find
such a clustering.

LEMMA 2.4. There is an efficient algorithm that, for any instance of SSNC with
optimal cost Opt, finds a collection of clusters {T;}_, such that the following hold:
(i) The demand of each cluster T; is at most (1+1nn)-q.
(ii) Fvery source lies in some cluster.
(iit) Bvery node in V \ {t} appears in at most O(log>n) clusters.
(iv) The total cost is 3 9_ S . ¢, <O(log®n) - Opt.

Given this clustering, our final solution to the SSNC instance is just U{_,T;. As
each cluster contains the sink ¢, there is no need for a separate routing step (from
clusters to t). By Lemma 2.4 property (iv), the cost is O(log®n) - Opt. Moreover,
by properties (i), (ii), and (iii), all demands can be routed unsplittably with a total
flow of O(log®n) - ¢ through any node (other than t). This completes the proof of
Theorem 1.2. It remains to prove Lemma 2.4, which we will do now. Our algorithm
will use an approximation algorithm for low load set cover (LLSC) [9], defined next.

veT;

Low load set cover (LLSC). In this problem, we are given a set system (U, C)
with elements U and sets CC2Y, costs {c, :v € U}, and bound p > 1. The cost of any

set S €Cis c(S):=)_,cgCv, the sum of its element costs. We note that the collection

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

596 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

C may be exponentially large and specified implicitly. The cost of any collection C' C C
is ¢(C") == gee €(S) = D geer Doves Cu, the sum of its set costs. We are also given
two special subsets of elements: required elements W CU that need to be covered, and
capacitated elements LCU." The goal is to find a minimum cost set cover C’' C C for
the required elements W (i.e., UgecrS 2 W) such that each capacitated element e € L
appears in at most p sets of C’. An approximation algorithm for LLSC is given in
[9], which relies on the following subproblem. The min-ratio oracle for LLSC takes,
as input, nonnegative element-costs {n, : v € U} and a subset X C W (of already
covered required elements) and outputs a set S € C that minimizes wzmﬁv% We
use the following result on LLSC.

THEOREM 2.5 ([9]). Assuming a p-approzimate min-ratio oracle, there is an
algorithm for the LLSC problem that finds a solution of cost O(plog|U|) times the
optimum and which covers each capacitated element O(plog|U|)p times.

In other words, this is a bicriteria approximation algorithm that violates both the
cost and capacities by an O(plog|U|) factor.

The SSNC problem as LLSC. We now prove Lemma 2.4 by casting the desired
clustering problem as an instance of LLSC. The elements are the nodes V' of the
original SSNC problem. The costs {¢, : v € V} are the node-costs in SSNC. The
required elements are all the sources W = {s;}¥_,. For any v € W its demand
dy :=d; where v =s; is the corresponding source node. The capacitated elements are
L:=V\{t} and the bound p=1. Let @Q:=(1+1nn)-gq. The collection C of sets is
defined as follows. There is a set corresponding to each cluster (Definition 2.1), having
demand at most). To reduce notation, we use T to denote the subtree representing
the cluster as well as the nodes in this cluster. By Lemma 2.3, the optimal value of
this LLSC instance is at most Opt.

Next, we provide an approximation algorithm for the min-ratio oracle for such
LLSC instances. Our min-ratio algorithm relies on another known problem.

Partial node-weighted Steiner tree (PN'WST). The input is an undirected
graph G = (V, E) with node-weights {n, : v € V}}, sink t € V, rewards {m, : v € V'},
and target 7. Both the node-weights and rewards are nonnegative. The objective is
to find a minimum node cost Steiner tree containing ¢ having total reward at least 7.
We will use the following known result.

THEOREM 2.6 ([37, 43]). There is an O(log |V'|)-approzimation algorithm for the
partial node-weighted Steiner tree problem.

LEMMA 2.7. There is an O(logn)-approximate min-ratio oracle for the SSNC
clustering problem.

Proof. In the min-ratio oracle of the SSNC clustering problem, we are given
nonnegative node weights {7, : v € V} and subset X CW. The goal is to find:

. E’UET M
min —— = ———.
Tec |[TN(W\ X))
We will refer to the nodes W\ X as new nodes. Our min-ratio oracle involves

solving several PNWST instances, as defined below.

LOur LLSC definition is slightly different from that in [9] due to the presence of element costs
and having to cover only a subset of elements. However, the algorithm and analysis from [9] extend
to our formulation in a straightforward way.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 597

For each £=1,2,...|W \ X|, we define an instance Z, of PNWST as follows.
e The node-weights are {n, :v € V}.
e The rewards are

1 dy
Ty = Z_E lfUEW\X’ V’UGV
0 otherwise

Note that some node-rewards may be negative. Let V' :={v eV :m, > 0}
denote the nodes with nonnegative reward. Note that all nodes in V'\ V' are
leaf nodes (by our assumption that all sources are leaf nodes).

e The input graph G’ is the subgraph of G induced on nodes V".

e The target reward is 7= %

Let Ty denote the tree obtained from the p = O(logn) approximation algorithm
for the PNWST instance Z,. (If instance Z, is infeasible, then Ty, = NIL and we skip
the following steps.) Let NCW \ X denote the new nodes covered by tree Ty and let
F= ZvENd’U be their total demand. So the reward of tree T; is % — L >1 1

20 = 2°
other words,

Q+F
2Q

Note that subtree T; may not be in the set-collection C as its demand F' may be
more than). To fix this issue, we will select a subset N'CN of nodes in T, with
demand at most @ and construct a subtree T; € C that contains N’.

If F <@, then N'=N and T, =T,. Note that T} is in C as its demand is at most
Q. Moreover, [N'| = |N|> £ by (2.1). So, the cost-to-coverage ratio of T} is at most
2¢(Ty)/¢.

If F > @, we do the following. Starting with a partition of N into singletons
(so each part has demand at most @), we repeatedly merge any two parts into one
if the resulting part has total demand at most (). At the end of this process, we

will have h < % parts each with demand at most Q. We set N’ to be the largest

cardinality part in the final partition. So |[N'| > % > %\N| > £ by (2.1). Further,
let T} be the subtree obtained from 7T, by removing nodes N \ N’. Note that T} is
indeed a tree because the deleted nodes N\ N'CW are all leaves (by our assumption
that all sources are leaf nodes). Crucially, T is in C because its demand is at most
Q. Moreover, it covers |N'| > ﬁ new nodes. So, the cost-to-coverage ratio of T} is at
most 4¢(Ty)/X.

Finally, the min-ratio oracle returns the subtree having the minimum ratio among
{T}:1<¢<|W\ X|}. We now show that this is a 4p-approximation algorithm.

Let T* € C denote the min-ratio cluster and ¢* =|T* N (W \ X)| be the number
of new nodes in T*. Then, by definition of the rewards {m,} in PNWST instance Z«,
we have 7(T™*) > § as the total demand in T* is at most Q. However, T* may not
itself be feasible to Zy+ as it may not be a subtree of graph G’ (which is restricted
to the nodes V’). Let T’ be the subtree of T* obtained by restricting to the nodes
V' of graph G’; note that T’ is indeed a tree because all nodes V \ V' are leaves.
Moreover, the reward of T” is at least that of T* as nodes in V' \ V'’ have negative
reward. So, 1" is a feasible solution to instance Zy«, and the optimal value of Z;« is at
most ¢(T") < ¢(T*). Hence, c(Ty«) < p-c(T*) as Ty« is a p-approximate solution to Zy-.
So, the ratio of our algorithm’s solution 7}. is at most %C(T*). Using p = O(logn)
from Theorem 2.6, we obtain the lemma.]

(2.1) IN| > w3

Finally, the proof of Lemma 2.4 follows from Theorem 2.5 along with Lemma 2.7.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

598 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

2.3. Good clustering from SSNC solution. In our multicommodity algo-
rithm, we will utilize approximate solutions to SSNC instances to come up with a
good clustering. The desired properties of this clustering are stated in Theorem 2.9
below. Informally, this result says that given any solution to an SSNC instance with
some set of sources X and sink ¢, we can peel out node-disjoint subtrees such that (a)
the total demand in any cluster is bounded and (b) each cluster either has at least
two sources or contains a neighbor of the sink ¢. Our clustering algorithm makes use
of the following known result on single-sink unsplittable flow.

THEOREM 2.8 (Theorem 3.5 in [23]). Consider any directed graph with single
sink t, sources X having demands {ds: s € X}, and a splittable flow F' that sends ds
units from each source s € X to sink t, while respecting node capacities. Then, there
is an unsplittable flow F that routes all demands where the total flow in F through
any node exceeds its original flow (in F') by at most maxsex ds.

THEOREM 2.9. Consider any SSNC instance with source-nodes X, maximum
demand dqr, and sink t. Let NCV denote the neighbors of t. Suppose V'CV is a
solution of cost B such that it supports the demand flow from X to t with maximum
node capacity of C. Then, we can find in polynomial time, a node-disjoint collection
of rooted subtrees {(r;,T;)}]_; such that the following hold:

1. Every source node appears in some subtree.

2. Each subtree T;CV'\ {t}; so the total cost of these subtrees is at most B.
3. The total demand in any subtree is at most C + dmay -

4. Bvery subtree T; with root r; ¢ N contains at least two sources.

5. For every subtree T; with root rj ¢ N we have T; NN =).

Proof. Consider the network induced on the nodes V' (from the SSNC solution)
where each node has capacity C. By feasibility of this SSNC solution, there is a
splittable flow F’ that sends dg units of flow from each source s € X to sink ¢. As this
is a single-sink flow, we can ensure that there are no directed cycles in F'. Moreover,
we can assume (without loss of generality) that every neighbor of ¢ (i.e., node in
N) sends flow only to ¢: this is because we only have capacities at nodes. Applying
Theorem 2.8 to F’, we obtain a flow F that sends dy units unsplittably from each
source s € X, where the flow through each node (other than t) is at most C + dynaz-
Moreover, F does not have any directed cycles because F' doesn’t. We may also
assume (without loss of generality) that in F, each node in N (neighbors of ¢) only
carries nonzero flow to ¢. Let E'CE denote the arcs used in flow F; note that (V’/, E")
is a directed acyclic graph. We index the nodes V' in topological sort order with
the sink ¢ having the smallest index 1. Let F(s) be the s — ¢ path used to route
demand from source s € X. We construct the desired collection of trees as described
in Algorithm 2.1. Let g denote the number of trees produced. We now show that the
rooted subtrees {(ijj)}?:l satisfy the claimed properties.

We first prove that the subtrees T are node-disjoint. Note that step 7 in the
while-loop only occurs when the sink ¢ is the only node containing flow from more
than one source of Y. So, this can only happen in the last iteration. Consider any
subtree T; produced in step 3. By the choice of root r;, for each s € Z; the portion of
path F(s) from s to r; is disjoint from the paths of the remaining sources Y\ Z;. That
is, subtree T} is (node) disjoint from all subtrees Tj41,...,T, found in later iterations.
As noted above, step 7 only occurs in the last iteration, at which point every node in
V' \ {t} carries flow from at most one source of Y. So the subtrees produced in this
step are also node-disjoint.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 599

Algorithm 2.1. Computing SSNC Clusters.
1: initialize sources Y <— X and j < 1.

2: while Y # () do
3: let root r; € V' \ {t} denote the maximum index node that carries flow from
at least two sources in Y.
4: let Z;CY denote all remaining sources s whose paths F(s) contain r;.
5: subtree T} consists of root node rj;, and for each source s € Z;, the s —r;
prefix of path F(s).
6: update Y <Y\ Z; and j < j+1.
7: if there is no root node (from V'\ {t}) satisfying the condition in step 3 then
8: for each u € N (neighbor of t) do
9: set 7; =u and Z;CY is the singleton set containing the source whose
path contains w. > If there is no such source node then Z; =0
10: subtree T} consists of root node r;, and the s —r; prefix of path F(s)
for the source s € Z;.
11: update Y+~ Y \ Z; and j < j+ 1.
12: end for
13: end if

14: end while

It is clear that each source appears in some subtree, as the while-loop continues
until Y = (): this proves property 1. It is also clear than each subtree T;CV"\ {t}:
combined with node-disjointness of the subtrees, we obtain property 2.

We now bound the total demand in each subtree Tj. For any tree T} produced in
step 3, we have r; € F(s) for all s € Z;. So the flow through node r; in the unsplittable
flow F is at least Zsezj d(s), the total demand in Tj. Using the fact that F sends
at most C + dynq, flow through any node (other than t), the total demand in T} is at
most C'+dpq,- As noted above, step 7 only occurs when every node in V/\ {t} carries
flow from at most one source of Y. So each subtree produced in step 7 contains at
most one source, which has demand at most d,,4,. This proves property 3.

Each subtree produced in step 3 contains at least two sources: this follows from
the choice of node r;. All remaining subtrees (produced in step 7) have as their root
some node of N (neighbors of t). This proves property 4.

For property 5, consider any subtree 7} with root r; € N. Clearly, T; must be
produced in step 3. Moreover, T} consists of the prefixes of certain paths until node
rj. As nodes of N only send flow to sink ¢ and the root r; ¢ N, subtree T; does not
contain any node of N.]

3. Multicommodity node-capacitated network design. We now discuss
the general multicommodity case of the problem. Recall that the input is an undi-
rected graph G = (V,E) with k request-pairs {(s;,¢;,d;) | ¢ € [k]}, where the ith
request has source s;, sink ¢;, and demand 1 < d; < g. All nodes have capacity gq.
The output is a subset of nodes V/CV such that the graph G[V'] induced by V' can
simultaneously support d; units of flow (unsplittably) between nodes s; and ¢;, for
each i € [k]. The objective is to minimize the total cost c¢(V') =3 .y c,. As men-
tioned earlier, we assume (without loss of generality) that all terminals are distinct
and each terminal is a leaf node. For any terminal s, we define its mate to be the
unique terminal ¢ such that (s,t) is a request-pair. We also use d(s) to denote the
demand associated with any terminal s; so we have d(s;) =d(t;) =d; for all i € [k].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

600 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Roadmap. Our algorithm first clusters the terminals into nearly node-disjoint
subtrees of low total cost. We need a new notion of “allowed clusters” in the multi-
commodity case, and the clustering algorithm is based on iteratively solving several
instances of the single-sink problem (SSNC). The details appear in section 3.1. Next,
the algorithm routes demands across different clusters while respecting node capac-
ities. The routing algorithm relies on random-sampling and cut-sparsification; see
section 3.2 for details. After combining the intercluster routing with the clusters
themselves, we are able to route a constant fraction of the demands with small node
congestion. Finally, we need to apply the above clustering and routing algorithms
recursively on all unsatisfied demands, so we repeat the main algorithm a logarithmic
number of times.

3.1. Clustering. Here, we describe the multicommodity clustering algorithm
that finds a collection of nearly disjoint clusters, where each cluster has either a large
fraction of “induced” demands (internal clusters) or a large number of “crossing”
demands (heavy clusters). During our clustering algorithm, we will drop some request-
pairs and maintain a current set of requests K. At any point in the algorithm, the
terminals are the sources/sinks of only the current request-pairs. We will ensure that
requests remaining at the end of the clustering algorithm have a constant fraction of
the total demand D := Zle d;.

DEFINITION 3.1 (MCNC cluster). Let KC[k] denote a subset of requests. The
following definitions are relative to K, where the nodes {s;,t; }icx are called terminals.
A cluster is any subtree T in graph G.

e The set of terminals contained in cluster T is denoted terms(T).

e The demand of cluster T is load(T) = d(s), the sum of demands
over all its terminals.

o A terminal s € terms(T) is called internal if its mate is also in terms(T); the
terminal s is called external otherwise.

e The internal (resp., external) demand of cluster T is the total demand of its
internal (resp., external) terminals.

seterms(T')

Note that “internal requests” (with both source and sink in T) contribute twice
to load(T'), whereas “external requests” (with exactly one terminal in T') contribute
just once to load(T).

DEFINITION 3.2 (cluster categories). Let K C[k] be a subset of requests and T be
any cluster. Then, T is said to be
e heavy if its demand load(T) is at least g;
e internal if its internal demand is more than load(T)/2;
e active if it is neither internal nor heavy.

We note that some clusters may be both internal and heavy. In our algorithm, we
explicitly maintain collections of different cluster types, and any ties will be broken
according to the algorithm.

We will maintain and grow active clusters until all clusters are heavy or internal.
We further classify active clusters into two types depending on how much of their
external demand goes to other active clusters. This distinction is important because
the algorithm needs to deal with these clusters differently.

DEFINITION 3.3 (active cluster types). Let KC[k] be a subset of requests and T
an active cluster. T is a type 1 active cluster if the total demand of terminals in T
with their mates in other active clusters is less than load(T)/4. Otherwise, T is a

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 601

type 2 active cluster. Moreover, a type 1 active cluster is called dangerous if it has
nonzero demand going to other active clusters.

We will refer to type 1 and type 2 active clusters as tl-active and t2-active,
respectively. Note that the total external demand of any active cluster T is at least
load(T")/2; otherwise, T would be an internal cluster (not active). So, any tl-active
cluster has at least load(T")/4 demand crossing to internal /heavy clusters. Moreover,
any tl-active cluster that is not dangerous has all its external demands going to
internal /heavy clusters.

We can now state the main multicommodity clustering result.

THEOREM 3.4. Suppose that there is a (8,7)-bicriteria approzimation algorithm
for the single-sink problem (SSNC). Then, for any MCNC instance with optimal cost
Opt, there is a polynomial-time algorithm that finds a subset KClk] of request-pairs
and a collection T of clusters (relative to K) such that the following hold:

(i) Each cluster in T is internal or heavy.

(ii) Each terminal (i.e., node in {s;,t; }icx) lies in exactly one cluster.
(iii) The total demand of request-pairs K is) ;4 di > D /4.

(iv) Each node appears in at most O(logk) different clusters.

(v) The demand of each cluster is at most O(y*logk) - q.

(vi) The total cost of all the clusters

> ew<O(B-logk) - Opt.

TeT veT

Overview of algorithm/analysis. We start with each terminal being its own
cluster. The clustering algorithm aims to find clusters with = ¢ terminals in each;
these aggregated demands can then be handled in the routing step of our algorithm.
This motivates the definition of heavy clusters, which contain at least ¢ demand (see
Definition 3.2). In order to obtain such heavy clusters, the algorithm iteratively
merges the nonheavy clusters. Moreover, to ensure that there is a low-cost solu-
tion to this “merging” step, we need each cluster to have a constant fraction of its
demand going to other clusters: otherwise, the cost to merge may be much more than
the optimal MCNC cost (denoted by Opt). This motivates the definition of internal
clusters, where a constant fraction of the demand is induced inside the cluster (see
Definition 3.2). While internal clusters cannot participate in merging anymore, we
can use the subtree inside such clusters to route all its internal demand (which is
a constant fraction of its total demand). So, both heavy and internal clusters are
“good” in the sense that we will be able to satisfy a constant fraction of their demand
in the subsequent routing step. Therefore, the revised aim of the clustering algorithm
is to find a collection of heavy or internal clusters. All other clusters are called active,
which the algorithm continues to merge.

The clustering algorithm proceeds in iterations. Each iteration attempts to merge
active clusters and ensures that the number of active clusters reduces by a constant
factor. So, the number of iterations will be at most O(logk). The merging step in
each iteration is based on solving suitable instances of the single-sink problem SSNC.
We will ensure that the optimal value of each SSNC instance is at most Opt, so
the final cost of our clusters will be O(logk) - Opt. When multiple active clusters
merge together in any iteration, the resulting cluster may be internal, heavy, or active
(we make progress in all cases). However, the new cluster may have demand much
more than ¢, as we cannot control how many active clusters get merged into one. In
order to handle this issue, we ensure that the SSNC instances have node-capacity

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

602 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

~ ¢; the SSNC approximation guarantee then implies that the demand in any new
cluster is at most ~ v -¢. (In some cases we will have slightly larger node capacities
in SSNC, as explained later.)

Another issue to handle is that we may be unable to merge active clusters just
with each other. In particular, it is possible that a large fraction of an active cluster’s
demand goes to heavy/internal clusters. Then, we cannot expect to merge such a
cluster with other active clusters. This motivates the classification of active clusters
into types 1 and 2, corresponding to an active cluster having a low/high fraction of
its demand go to other active clusters (see Definition 3.3). The two types of active
clusters are dealt with separately. Initially, each singleton cluster is t2-active. Assume
for now that there are no requests between active clusters of different types. We will
explicitly ensure this property by dropping some requests and preserving only a subset
K CJk] of requests.

e Merging t2-active clusters. Intuitively, these active clusters can be merged
with each other (at low cost) because most of their demands go to other
active clusters. We would like to construct an SSNC instance Zp, where
each t2-active cluster is a source. However, the original MCNC requests are
multicommodity; so, even requests associated with one cluster do not have
a common sink. We get around this issue by restricting our attention to a
“bipartite demand graph” containing at least half the total demand between
t2-active clusters. This corresponds to finding an appropriate bi-partition
(AT, A7) of t2-active clusters, which can be done using a simple local search.
Now, we treat all clusters in part A as sources and connect all clusters in
A~ to a new sink node ¢. All nodes have capacity ~ q. See Algorithm 3.3
for the formal description. In the analysis, we need to show that the optimal
cost of this SSNC instance is at most Opt. This is done by demonstrating a
(fractional) routing based on the optimal MCNC solution and using the fact
that at least half the total demand in t2-active clusters is “crossing” between
AT and A~. Finally, we obtain a collection of subtrees (using the approx-
imate SSNC solution and Theorem 2.9) that are used to merge t2-active
clusters.

e Merging tl-active clusters. These clusters have a constant fraction of their
demands going to heavy/internal clusters. If any requests from a tl-active
cluster go to an internal cluster, then we simply drop these requests and
“charge” them to the requests in internal clusters which will definitely be
preserved. Note that demand induced in any internal cluster is at least a
constant fraction of its total demand. Moreover, the clustering algorithm only
aims to preserve a subset K of requests (which should be a constant fraction
of the total demand). So, we are left with the case that a large fraction of
demand from any tl-active cluster goes to heavy clusters. Intuitively, these
clusters can be merged with heavy clusters at low cost. We now construct
an SSNC instance Z; to merge tl-active clusters with heavy clusters (or each
other). We treat each tl-active cluster as a source and connect all heavy
clusters to a new sink t. All nodes have capacity ~ ¢ except the nodes
corresponding to heavy clusters, which have capacity O(~ - ¢). The reason
that we have a larger capacity for heavy clusters is that the demand in a
heavy cluster can be as large as O(v - ¢) and the MCNC routing (which is
used to demonstrate a low-cost SSNC routing) induces a corresponding load
on these clusters. See Algorithm 3.2 for the formal description. Again, we
merge clusters using the approximate SSNC solution and Theorem 2.9.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 603

The demand of any new cluster formed when active clusters merge with each
other is bounded by O(v - ¢) as all nodes in these clusters have capacity O(q) and ~
is the capacity violation in our SSNC algorithm. However, when tl-active clusters
merge with an existing heavy cluster H, the demand of H may increase by as much as
O(~? - q); this is because nodes corresponding to heavy clusters have capacity O(v-q).
Unfortunately, this increased demand in H may multiply over iterations. Specifically,
if most of the new requests in H are going to other active clusters, then the SSNC
instance 7, in the next iteration must increase the capacity of H from 7 - ¢ to 2 - ¢;
this is needed to demonstrate a low cost solution to Z;. So, the capacity (and hence
the demand) of cluster H will keep increasing by a multiplicative factor ~ in each
iteration! In order to fix this issue, we will ensure that all t1-active clusters in SSNC
instance Z; have zero demand going to other active clusters (again, this property will
be ensured by dropping certain requests). This motivates the definition of dangerous
clusters, which are t1l-active clusters having any request going to other active clusters
(Definition 3.3). We will ensure that instance Z; has no dangerous clusters. Now,
when tl-active clusters merge with a heavy cluster H, the demand between H and
active clusters does mot increase. So, the capacity of H in instance Z; of the next
iteration can remain O(7y - ¢). We note that the total demand in H still increases
additively by O(~? - q) in each iteration. As there are only O(logk) iterations, the
final demand of any heavy cluster can be bounded by O(logk - v2 - q).

Dropping requests. In the above description, we assumed that there are no re-
quests between (i) active clusters of different types, (ii) internal clusters and active
clusters, and (iii) t1-active clusters and t1- or t2-active clusters. As mentioned earlier,
to ensure these properties, our algorithm drops certain requests and preserves only a
subset K C[k]. Specifically, in each iteration we perform a “pruning step” after merg-
ing active clusters. This involves repeatedly choosing a (new) cluster 7" that is either
internal or dangerous, and dropping all requests between T and other active clusters.
In the analysis we will show that the dropped requests can be “charged” to preserved
requests in K, so that the final set K is a constant fraction of the total demand in
MCNC. No request incident to a heavy cluster is ever dropped, so heavy clusters do
not change in this pruning step. We note that dropping requests incident to cluster T’
may cause another active cluster 7" to become internal or dangerous; then, cluster 7"
will also be processed later in this pruning step. Therefore, at the end of each itera-
tion, we ensure the three properties (i)—(iii). We emphasize that the cluster definitions
are all relative to the current set K of requests.

Algorithm 3.1 describes the overall clustering algorithm MCcluster. We maintain
separate collections of clusters: 7; (internal), 7, (heavy), A; (tl-active), and Ay (t2-
active). Algorithm 3.2 (MergeT1) and Algorithm 3.3 (MergeT2) describe the separate
procedures to merge tl-active and t2-active clusters. Figures 1 and 2 illustrate the
graphs G; and G2 used in the two SSNC instances Z; (solved in MergeT1) and Z
(solved in MergeT?2).

Analysis. Our first lemma shows that all clusters are classified correctly (relative
to the current requests K) at the end of each iteration of MCcluster. During the
iteration, new or modified clusters may be in the wrong collection, but these will get
fixed at the end (as shown in the next lemma).

LEMMA 3.5. At the end of each iteration of Algorithm MCcluster, the clusters in
the current set of clusters are correctly classified into T; (internal), Ty, (heavy), A;
(tl-active), and Ay (t2-active).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

604 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Algorithm 3.1. MCNC Clustering Algorithm MCcluster.

1: initialize K = [k] to be all request-pairs and the clusters are all singletons.
2: all clusters are t2-active, i.e., Ay < {{s;},{ti} }iex, Ti < 0, Tn <0, Ay < 0.
3: while some cluster is active (A; UAs #0) do > ITteration begins
run algorithm MergeT1(7,.41) which modifies t1-active and heavy clusters.
run algorithm MergeT2(Az) which modifies t2-active clusters.
for all clusters T in A; UAs do > Identify heavy clusters
if T is heavy then move it from A; or As to Tp,.
end for
while some cluster T" in A; U A5 is dangerous or internal do
> Identify internal clusters and ensure no dangerous clusters
10: remove from K all requests between T' and other active clusters.
11: if T is internal (resp., tl-active), then move it to 7; (resp., A1).
12: end while
13: if any cluster T € As is t1-active, then move it to Aj;.
14: end while

source St

Fic. 1. Graph G for tl-active clusters.

Proof. At the beginning of the algorithm, each cluster is a singleton terminal.
Clearly, these are t2-active clusters, so the initial classification is correct.

Algorithm MCcluster first runs MergeT1 and MergeT2 to merge tl-active and
t2-active clusters separately. MergeT2 creates new clusters by merging t2-active clus-
ters, and places all new clusters in A;. MergeT1 modifies existing heavy clusters
(which remain in 7;) and creates new clusters by merging tl-active clusters, which
are placed in A;. Then, in Step 7 of MCcluster, we first identify any new heavy clus-
ters (in .4; U.A2) and move them to 7p. At this point, all heavy clusters are classified
correctly. Moreover, MCcluster never removes requests incident to a heavy cluster
(see Steps 9-12). So, once a cluster is heavy, it will remain heavy throughout the
algorithm.

Next, in Steps 9-12 of MCcluster, we repeatedly identify dangerous/internal clus-
ters and drop some requests (which in turn can modify other clusters). We now argue
that the clusters are classified correctly after this step:

e Suppose an internal cluster T' € A; UAs is processed in Step 9. We remove all
requests from T to other active clusters. This keeps T as an internal cluster,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 605

Algorithm 3.2. Merging algorithm for tl-active clusters MergeT1(7p,.A1).

1

10:
11:
12:
13:

14:

15

: let graph G consist of graph G and the following new nodes/edges:

e For each cluster T € Ay, there is a source node st (of zero cost) with
demand d(sr) =load(T'); node sr is connected to each terminal in 7.

e For each heavy cluster F' € Ty, there is a new node vp (of zero cost), which
is connected to every terminal in F.

e There is a new sink node ¢, connected to the nodes {vp: F € Tp}.

: The node capacities are ¢ := 5q. For the zero-cost nodes vp corresponding to
heavy clusters F' € T, we set their capacities to 97 - ¢, where + is the
approximation ratio for node-congestion from our single-sink algorithm.

: let Z; be the SSNC instance on graph G1, with sources {s7}re.4, and sink ¢.

: solve instance Z; using the SSNC approximation algorithm (Theorem 1.2) to
obtain solution V;CV.

: using Theorem 2.9 on solution Vj, obtain a collection of rooted subtrees N.

: for each subtree X (with root r) in N; do > Merge clusters using N
let X ={T € A;:sp € X} be the tl-active clusters whose source-nodes are

contained in subtree X
update A; + A \ X
if root r corresponds to a heavy cluster F' € T, (i.e., r =vp) then

add clusters & and subtree X to heavy cluster F, ie., F<~ FUXUX
else
merge clusters X' using subtree X to get new cluster S=X UX

update A; A, U{S}
> S may not be tl-active: its type will be updated in MCcluster
end if
: end for

source St

F1c. 2. Graph G2 for t2-active clusters.

and it is classified correctly. Moreover, we never remove any internal requests,
and we never modify an internal cluster after it is assigned to 7;.

e Suppose a dangerous cluster T' € A; U A5 is processed in Step 9. We remove
all requests from T to other active clusters. As a result, T" will become either
internal (if its internal demand is more than load(T")/2) or nondangerous

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

606 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Algorithm 3.3. Merging algorithm for t2-active clusters MergeT2(.As).

1: partition clusters Ay into AT and A~ such that every cluster in AT (resp., A™)

ot

Qo

10:
11:
12:
13:

has more demand going to clusters in A~ (resp., AT) than AT (resp., A7)
> This can be done by a simple local search
: relabel the parts so that [A1| >[A7].
: let graph G consist of graph G and the following new nodes/edges:
e For each cluster T € AT, there is a source node st (of zero cost) with
demand d(s7) =load(T'); node st is connected to each terminal of T'.
e For each cluster W € A, there is a new node vy (of zero cost), connected
to every terminal of W.
e There is a new sink node ¢, connected to the nodes {vy : W € A~ }.
: The node capacities are ¢’ = 9q.
: let Zo be the SSNC instance on graph Gz, with sources {sr}rec 4+ and sink ¢.
: solve instance 7 using the SSNC approximation algorithm (Theorem 1.2) to
obtain solution VoCV.
: using Theorem 2.9 on solution V5, obtain a collection of rooted subtrees N.
: for each subtree Y in N3 do > Merge clusters using N
let Y={T € At :sp e Y} J{W € A~ : vy €Y} be the t2-active clusters
whose s-nodes or v-nodes are contained in subtree Y

update Az + Az \ V.

merge clusters) with each other to get new cluster S=Y U)Y
update A + A U{S} > S’s type will be updated in MCcluster
end for

tl-active (if its internal demand is at most load(7")/2); note that T' cannot
become heavy or t2-active. In either case, T is classified correctly, and it will
not be modified later in this iteration.

e Consider now any cluster 77 € A; that is mot processed in Step 9. Then,
T’ is not heavy or internal (or even dangerous). So it must be active. Also,
it must have formed in algorithm MergeT1 as a result of merging some t1-
active clusters, and such a cluster cannot be t2-active; its demand going to
other active clusters will be less than load(7”)/4. Further, when requests
are dropped, a tl-active cluster cannot become t2-active because the only
requests dropped from 7" are those going to other active clusters. So T’
remains tl-active at the end of this iteration.

e Consider now any cluster 77 € A, that is not processed in Step 9. Again, T”
must be active and nondangerous. It could be either tl-active or t2-active
and is classified correctly in Step 13. 0

We now observe how cluster types change during algorithm MCcluster. The clas-

sification of a cluster (its assignment to 7y, 7;, A1, or As) changes due to merging
the cluster with other clusters (which occurs in algorithms MergeT1 and MergeT?2),

or

removal of requests from K (which occurs in algorithm MCcluster). We note that

these changes satisfy following:

e Any cluster in 7; will remain in 7;.

Any cluster in 7, will be (part of) some cluster of 7y,.

Any cluster in A; will be (part of) some cluster of A; UT; UT},.

Any cluster in Ay will be (part of) some cluster of Ay U.A; UT; UTy.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 607

internal :
clusters:

heavy :
clusters:

t2-active

' t1-active
clusters

© clusters

Fic. 3. Different types of clusters at the end of an MCcluster iteration. The edges represent
request-pairs (in K) across clusters.

Next, we show that requests (in the current set K) between different kinds of
clusters satisfy some useful properties. These properties are crucial in setting up the
SSNC instances correctly and ensuring that the demand of heavy clusters does not
grow too much. Figure 3 illustrates the possible requests across clusters.

LEMMA 3.6. At the start/end of any iteration of algorithm MCcluster, there are
no requests (in K) between
e internal clusters T; and active clusters Ay U As;
e any tl-active cluster T € Ay and other active clusters Ay U A\ {T'}.
Moreover, the demand from any heavy cluster to active clusters is at most 10y - q.

Proof. We will prove this inductively over the iterations. The lemma is clearly
true at the beginning of MCcluster (all clusters are t2-active). Now consider any
iteration of MCcluster: assuming the lemma at the start of the iteration, we prove
that it also holds at the end.

For the first property, observe that MCcluster does not modify any existing internal
cluster, so any cluster that was internal at the start of the iteration continues to satisfy
this property. Let I be a (new) cluster that is found to be internal in this iteration.
This must happen in Steps 9-12, and we explicitly remove all requests from I to other
active clusters at this point.

For the second property, let T' € A; be any tl-active cluster at the end of the
iteration. By the loop condition in Steps 9-12 of MCcluster, T' cannot be dangerous.
So, the demand from T to other active clusters is zero, as desired.

For the third property, we consider two cases for any heavy cluster H € Tj:

e H is a new heavy cluster. Then, H must have formed due to merging t1-
active (resp., t2-active) clusters in algorithm MergeT1 (resp., MergeT2). See
Step 12 in MergeT1 and Step 11 in MergeT2. If H was formed in MergeT1,
then it was based on SSNC instance Z;, where node capacities are § = 5q.
Using Theorems 1.2 and 2.9, it follows that the demand of cluster H must
be at most v-¢+ ¢ < 10v-q. If H was formed in MergeT2, the analysis is

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

608 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

similar—this time, using SSNC instance Z,, which has node capacity ¢’ =
9¢q. Using Theorems 1.2 and 2.9 again, the demand of cluster H is at most
v-q¢'+q¢' = (97+9)-q < 107-q. Here, we used v > 9 because + is polylogarithmic.
In either case, the total demand in cluster H is at most 107y - ¢, which also
bounds the demand from H to active clusters.

e H is an existing heavy cluster. Then, H will be modified in algorithm
MergeT1 based on SSNC instance Z;. Here, only t1-active clusters get added
to cluster H; see Step 10 in MergeT1. Crucially, there is zero demand from
any tl-active cluster to other active clusters (by the second property in this
lemma). So the demand from cluster H to active clusters does not increase,
and it remains at most 10 - q. 0

We are now ready to bound the optimal values of the SSNC instances Z; and
Z:. We do this by using the optimal MCNC solution and properties of the different
cluster types (shown above).

LEMMA 3.7. The optimal cost of SSNC instance I, (in algorithm MergeT1) is
at most the optimal cost Opt of the original MCNGC instance.

Proof. We first exhibit a feasible fractional flow using the optimal solution of the
multicommodity MCNC instance. Let V*CV be the nodes used in Opt. For each
request i € [k], let P denote the path from s; to ¢; in Opt. Note that P*CV™* for all
i € [k], and 34y, prs, di < g for all nodes ve V™.

We will use V*U {sp: T € A1} U{vp: F € Tp} U{t} as the nodes in our SSNC
solution. The cost of this solution is Opt as the new nodes have zero cost. We now
show how to route all the demands fractionally using these nodes.

Consider any tl-active cluster T' € A;. We first claim that the total demand
of terminals in 7" having mates in heavy clusters is at least load(T)/4. Indeed, by
definition of t1-active clusters, the total demand from T to internal/heavy clusters is
at least load(7") /4. Moreover, by Lemma 3.6, there is zero demand from 7' to internal
clusters, so the demand from T to heavy clusters Ty, is at least load(T")/4. We now
route demand from sy to ¢ as follows. For each external terminal s; € T (with its
mate t; € F for some heavy cluster F'), send 4 units of flow from st to s;, then from
s; to t; along path P, then from ¢; to vr, and finally from vy to sink t. Note that
these are valid paths in graph G of instance Z;. Also, the total demand routed from
st to t is at least load(T") =d(sr), as desired.

Routing as above for each cluster T € A;, we get a fractional routing that satisfies
all the demand in the SSNC instance Z;. We now argue that the load on any node
is at most its capacity. Clearly, the flow through each node v € V* is at most
4 icpprsvdi < 4q. Moreover, the flow through each node vp (for F' € Ty) is
at most 4 times the total demand between F' and all active clusters, which is at most
40vq by Lemma 3.6.

Let diar = maxreq, load(T) denote the maximum demand in Zj; note that
dmaz < q. Now, we convert the above fractional flow into an unsplittable flow as
required in SSNC. To this end, we use Theorem 2.8 on our fractional routing for Z;.
We then obtain an unsplittable flow for Z;, where (i) the flow through each node of
V* is at most 4¢ + dpmax < 5g =g, and (ii) the flow through each node vp is at most
40vq + dimar < 97vG. The lemma now follows.]

LEMMA 3.8. The optimal cost of SSNC instance Iy (in algorithm MergeT2) is
at most the optimal cost Opt of the original MCNG instance.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 609

Proof. The high-level proof is similar to that of Lemma 3.7. We first show a
feasible fractional routing using the MCNC optimal solution and then convert it into
an unsplittable flow. Let V*CV be the nodes used in Opt. For each request i € [k],
let P* denote the path from s; to t; in Opt. Again, PFCV* for all i € [k], and
Zie[k]:ngav d; < ¢ for all nodes v e V*.

We refer to the clusters in AT as source clusters as they correspond to source
nodes in the SSNC instance Zo. We also refer to the clusters in A~ as sink clus-
ters as they are directly connected to the sink t. Note that all these clusters are
t2-active.

Consider any source cluster 7' € AT. We first show that the total demand from
T to sink clusters A~ is at least load(T")/8. By definition of t2-active clusters, the
total demand from T to other active clusters is at least load(T)/4. Moreover, by
Lemma 3.6, there are no requests between T and tl-active clusters. So, the total
demand from T to other t2-active clusters is at least load(T")/4. Further, by choice
of the partition (AT, A7) in Step 1 of MergeT2, the total demand from any source
cluster T" to all sink clusters is at least half the total demand from T to t2-active
clusters. So, there is demand at least load(T")/8 from T to A~.

Now, for any source cluster T, let C' denote the set of all requests between T
and sink clusters. We route demand from st to t as follows. For each i € Cr, send
8 units from sy to s;, then from s; to t; along path P, then from ¢; to vy (where
t; lies in sink cluster W € A7), and finally from vy to ¢t. Note that these are valid
paths in graph G of instance Z,. Moreover, the net flow out of each source sp is at
least load(T") as desired.

Performing the above routing for all source clusters T' € A", we obtain a fractional
flow that satisfies all demands in Z5. We now argue that the node capacity constraints
are satisfied. Clearly, the flow through each node v € V* is at most 8- Zie[k]:P;av d; <
8q. Moreover, the flow through each node vy is at most 8 times the total external
demand in cluster W, which is at most 8 - ¢ because W is an active cluster. Now,
applying Theorem 2.8, we obtain an unsplittable flow for Z5, where the flow through
each node is at most 8¢ + maxpc 4+ load(T") < 9¢ =¢’. This completes the proof. 0O

We now summarize some key properties of the (partial) solution built in each
iteration of algorithm MCcluster.

LEMMA 3.9. In any iteration of MCcluster, we have the following:

1. The subtrees added to clusters are N1 U Ns, where N1 and Ny are found in
MergeT1 and MergeT2. Each node appears in at most two of these subtrees.
The cost of the new nodes added to clusters is at most 23 - Opt.

The demand of any new internal/heavy cluster is at most 10 - q.

The demand of any existing heavy cluster increases by at most 542 - q.

The number of active clusters at the end of the iteration is at most % times
the number at the start of the iteration.

G o

Proof. We prove the claimed properties one by one.

Property 1. In any iteration, subtrees are added to clusters in both MergeT1
and MergeT2. The subtrees added in MergeT1 are exactly those in N7, which is the
collection obtained by applying Theorem 2.9 to the SSNC solution V;. Similarly, the
subtrees added in MergeT?2 are exactly those in N3. By Theorem 2.9, all subtrees in
N1 (resp., N2) are node-disjoint. Hence, each node appears at most twice in N7 UN;.

Property 2. By Theorem 2.9 (property 2), the total cost of subtrees in Nj is
at most ¢(V7). Moreover, by our SSNC approximation guarantee, ¢(V7) is at most

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

610 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

S8 times the optimal value of instance Z;. Using Lemma 3.7, it now follows that
c(N1) < (V1) < B-Opt. Similarly, we obtain c(N3) < ¢(V2) < 3-Opt using Lemma 3.8
(for SSNC instance 7). Hence, the total cost of the new nodes added to clusters is
at most 25 - Opt.

Property 3. In any iteration, new clusters may be formed in either MergeT1 or
MergeT2. Consider any new cluster formed in MergeT2; see Step 11. Note that this
cluster corresponds to some subtree Y € N5. So, by property 3 in Theorem 2.9,
its total demand is at most C' + dyq4(Z2), where C’ is the maximum flow through
any node in our SSNC solution for Z;. By our SSNC approximation guarantee and
the fact that all node capacities are ¢’ = 9¢q (in Z;), we have C’ <~ -¢'. Also, the
maximum demand d,q.(Z2) < g as each source node corresponds to an active cluster.
So, the total demand of the new cluster is at most (9 + 1)g. Now, consider a new
cluster S formed in MergeT1; see Step 12. This cluster corresponds to some subtree
X € N7 with root r ¢ N = {vp : F € T, }; note that N is the set of neighbors of sink
t in instance Z;. Again, by property 3 in Theorem 2.9, the demand of S is at most
C"+dmaz(Z1), where C” is the maximum flow through any node in our SSNC solution
for Z;. By our SSNC approximation guarantee and the fact that node capacities in
T, are ¢ =5q, we have C”" <~ -q. (By property 5 of Theorem 2.9, cluster S does not
contain any node of N, so it is not affected by the larger capacity on the v-nodes.)
Again, the maximum demand d,,q,(Z1) < ¢. So, the total demand of the new cluster
is at most (5y + 1)g.

Property 4. Consider any existing heavy cluster F' € Tj,. The clusters that get
added to F' correspond to subtrees X €] with root r =vp; see Step 10 in MergeT1.
Moreover, node vg has capacity 9y (which is equivalent to having 9y copies of vg).
So, there may be up to 9y subtrees X € Nj with root vp. Each such subtree has
demand at most (5y+ 1)g, as shown above. Hence, the increase in demand of F is at
most 9y(5y + 1)g < 5442q.

Property 5. Let my (resp., mz) be the number of tl-active (resp., t2-active)
clusters at the start of the iteration. Let Aj (resp., A}) be the tl-active (resp., t2-
active) clusters at the end of algorithm MergeT1 (resp., MergeT2). Any cluster that
is active at the end of the iteration must be in .47 U A,. (Note that some clusters in
A’ U AL may become internal/heavy during the pruning step in MCcluster.) We now
bound |A}| and |A}| separately.

e The clusters in A} are based on the SSNC instance Z; (in MergeT1), which
has a source for every cluster in A;. In particular, each cluster in A} cor-
responds to some subtree X € Nj with root r € N = {vp : F € Tp}. See
Step 12 in MergeT1. As r is not a neighbor of sink ¢, property 4 in Theo-
rem 2.9 implies that subtree X contains at least two sources. It follows that
A< 1Ay,

e The clusters in Aj are based on the SSNC instance Z (in MergeT?2). Recall
that we use a bi-partition (A", A7) of Ay. Instance Z has a source for each
cluster in A", and the neighbors M of the sink correspond to clusters in A™.
Let BCM denote the neighbors of the sink that appear in some subtree of
Na; let BCA™ denote the corresponding clusters. The collection A consists
of (i) clusters from A~ \ B, and (ii) clusters corresponding to subtrees in
N3. By property 4 in Theorem 2.9, every subtree in N3 has at least two
clusters from A" UB. So, the number of clusters in case (ii) above is at most
1+ (JAT|+|B|). Clearly, the number of clusters in case (i) is [A~| —|B|. So,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 611

A+ 1Bl - |As| AT 1B] _3

: <‘7 —|B|= <Z.

gl < LIy gy = el LB 3y
where we used that |A~| <|A3|/2 as | A7 <|AT|.

Thus, | AL+ |4 < 2+ A1+ 3[4 < 3 - (my + ma). 0

Finally, we show that the demand preserved in set K at the end of algorithm
MCcluster is a constant fraction of the total demand in MCNC.

LEMMA 3.10. The total demand at the end of MCcluster is), ,-d; > D /4.

Proof. Note that requests are only removed in Step 10 of MCcluster. We will
account for the deleted requests by explicitly “charging” them to requests that will
be preserved in K (at the end of MCcluster).

Consider any cluster T that is processed in Step 10 at any iteration of MCcluster.
Note that T' must be in the active set, i.e., T € A; UA5. Let ¢; be the total demand of
T’s internal terminals; note that the demand of 7”s internal requests is t;/2 as each
such request has two terminals in T. Let t, (resp., t,) be the total demand of T’s
external terminals with mates in 7, (resp., A; U.As). By Lemma 3.6, there are no
requests (in the current set K) from T to any cluster of T;. So, load(T) =t; + t5 + tq.
In this step, we remove (from K) all requests from T to other active clusters. So,
the deleted demand is exactly t,. Furthermore, we claim that the following requests
incident to T will be preserved (in K) until the end.

e [Internal requests in T. This is because we never remove any internal re-
quest. Also, clusters only merge with each other during the algorithm, so
any internal request in 7' will remain internal to some cluster.

e FEuxternal requests from T to Tp. This is because we never remove any request
incident to a heavy cluster. Also, any cluster that is currently heavy will
remain heavy for the rest of the algorithm.

The total demand in these “preserved” requests is % + t;,. We now show that the
removed demand ¢, < 3- (4 +t5,). Consider the two cases when requests are removed:

o T is an internal cluster. Then, we have t; > IoadQ(T) = Litthtle g0 ¢, <t;.

o T is a dangerous cluster. Here, T is tl-active, which means it has at least
% demand going to heavy clusters (recall that 7" has no requests to
internal clusters). Then, we have t; > %, which implies t, < 3ty,.

Thus, the total removed demand incident to T is at most 3 times the total preserved
demand incident to 7'

Finally, we show that the preserved requests incident to different clusters 7' that
are processed in Step 10 (MCcluster) are disjoint. To this end, we will show that
once a cluster T is processed in Step 10, it will not be part of any cluster T” that is
processed in Step 10 (and removes requests) at a later iteration. Indeed, after cluster
T is processed in Step 10, there are no requests from T to other active clusters. If
cluster T' becomes internal, then it remains unchanged in later iterations. If cluster
T becomes tl-active, then it may merge with other clusters, but these can only be
heavy clusters (in which case T also becomes part of that heavy cluster) or tl-active
clusters (which by Lemma 3.6 also have no external requests to active clusters). In
either case, cluster T' will never be part of another cluster that gets processed in Step
10 again. It now follows that the total removed demand (over all iterations) is at
most 3 times the total preserved demand, which completes the proof. 0

Completing proof of Theorem 3.4. We are now ready to prove the multicom-
modity clustering theorem. Let T denote the final collection of clusters and K C[k]
the final set of requests, at the end of algorithm MCcluster.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

612 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Property (1). FEach cluster in T is internal or heavy. By the termination condition,
there is no active cluster remaining at the end, i.e., A1 UAy =0. So, T = Tp UT;,
which means all clusters are internal/heavy (see Lemma 3.5).

Property (ii). Each terminal (i.e., node in {s;,t; }icx) lies in exactly one cluster.
Initially, each terminal is in its own cluster, so this property is true. In algorithm
MCcluster, we only merge clusters together by adding some subtrees (based on SSNC
instances). Note that these subtrees do not contain any terminal because each termi-
nal is a leaf-node, and the sources/sink in our SSNC instances are new nodes (different
from the original terminals). So, each terminal lies in exactly one cluster throughout
the algorithm.

Property (iii). The total demand of request-pairs K is) ;. d; > D/4. This
follows directly from Lemma 3.10.

Property (iv). Each node appears in at most O(logk) different clusters. We first
claim that the number of iterations in MCcluster is O(log k). Indeed, by Lemma 3.9(5),
the number of active clusters drops by a factor of 4/3 in each iteration. As there are
2k active clusters initially, we will have no active clusters left after O(log k) iterations.
By Lemma 3.9(1), in each iteration, each node gets added to at most two clusters.
Combined with the number of iterations, property (iv) follows.

Property (v). The demand of each cluster is at most O(y*logk) - q. The demand
of any internal/heavy cluster when it is formed is O(7) - ¢ by Lemma 3.9(3). Note
that internal clusters do not change after they are formed (and added to 7;). For any
heavy cluster, by Lemma 3.9(4), the increase in demand is O(y?) - ¢ in each iteration.
As the number of iterations is O(logk), the final demand of any heavy cluster is
O(y*logk) - q

Property (vi). The total cost) .2 >, crco < O(B-logk)-Opt. The cost of nodes
added in any iteration is O(8) - Opt by Lemma 3.9(2). Combined with the O(logk)
number of iterations, we obtain property (vi).

This completes the proof of Theorem 3.4.

2. Routing across clusters. From Theorem 3.4, we have a collection T of
low-cost, nearly node-disjoint clusters containing requests K C[k]. Here, we show how
to route a constant fraction of the requests in K. Routing within a cluster can be
done easily using the corresponding subtree. So we focus on routing each request
across clusters, from their “source cluster” to their “sink cluster.” In order to achieve
this, we will add some nodes/edges to our solution.

Algorithm overview. Recall that T contains two types of clusters: internal and
heavy. Let 7; denote all internal clusters in T and T, = T\ T; denote the heavy
clusters. If a cluster is both internal and heavy, then it is treated as an internal cluster.
If 7; contains a constant fraction of the demand in K, then we don’t need to route
across clusters; we simply use the subtrees in 7; to route all these internal requests.
The hard case is when most of the demand in K is contained in 7,. In this case,
we use an idea from [7] for the edge-capacitated routing problem. Speciﬁcally, each
request ¢ “hallucinates” that its demand equals ¢ with probability ~ log(k) . (and zero
otherwise), and we find a subgraph H that supports all the hallucinated demands.
We can find a good approximation to this “hallucinated instance” by rounding a
natural linear program (see section 3.2.2). We then use the union of H and T as our
solution. However (unlike the edge-capacitated case), this solution may not suffice to
route all the remaining demands. Nevertheless, we show that a constant fraction of
the remaining demand can still be routed in ‘H U 7. To this end, we partition the
heavy clusters into 7Ty, 7z,...,7, such that the minimum (edge) cut of the demand

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 613

Algorithm 3.4. MCNC Routing Algorithm.

1: if the internal requests of clusters in 7; have demand at least %Zie x di, return
& =T; as the solution and all internal requests in 7; as the routable pairs K’.

2: apply Theorem 3.13 to the heavy clusters 7;, and obtain partition 71, 72,..., 7.

3: let K'CK denote the union of requests induced in 7 (for j=1,2,...,p).

4: let r= Logk’ where a1 > 1 is some constant.

5: let M denote the random instance with each request i € K having demand B; - q,
where B; ~ Binomial(d;,r) independently.

6: apply Theorem 3.15 to obtain solution HCV for the hallucinated instance M.

7: return £ =H U T}, as the solution and K’ as the routable pairs.

graph induced on each 7 is at least Q(g). This partitioning algorithm is based on
iteratively removing minimal min-cuts (see section 3.2.1). We also delete all requests
in K crossing from one part to another and prove that the remaining demand is still
a constant fraction of that in K. Then, we show that when min-cuts are large, the
hallucinated request-pairs behave like a cut-sparsifier [34] of the demand graph (after
contracting the clusters). So the hallucinated solution #H has enough capacity to
support an edge-capacitated routing across clusters. Finally, we “un-contract” these
clusters by using the trees in 7}, to route within each cluster (see section 3.2.3). We
bound the node congestion of the routing using the fact that each cluster has load
O(y?log k) - g. The formal algorithm is given as Algorithm 3.4: it takes as input the
clusters 7 (and requests K) from Theorem 3.4 and outputs a subgraph £ of G along
with a subset K'CK of requests that can be routed in £ at low node congestion.

The rest of this subsection proves the following main result.

THEOREM 3.11. Given any MCNC instance with optimal cost Opt, after running
Algorithms 3.1 and 3.4, we have the following with probability at least 1 — O(k—lg)
e The cost of solution & is O(Blogk) - Opt.
e Solution & supports an unsplittable routing for all requests in K' with node
congestion O(y?log® k).
e The total demand of requests in K' is at least D/24.

Throughout, we assume that r = “1°%8% <1 g0 is a valid probability value

in step 5. If r > 1, then we have ¢ = O(logk), in which case there is an easy
(O(lognlogk),O(lognlogk)) bicriteria approximation algorithm; see Appendix B.1.

3.2.1. Identifying routable request-pairs in heavy clusters. We now show
how to identify a subset K'CK of request-pairs by partitioning the demand graph
into components of high min-cut values. Having a high min-cut in the demand graph
is necessary for the cut-sparsification argument that is used (in section 3.2.3) to route
requests K’ with low congestion.

We first define a cluster multigraph as follows.

DEFINITION 3.12 (cluster multigraph C(7)). Given a collection T of clusters, the
multigraph C(T) has a node for every cluster T € T, and for each request-pair i € K,
an edge of weight d; between clusters T,, T, € T, where s; €T, and t; € T,.

We now show how to partition C(7) into several parts so that the minimum (edge)
cut of each part is Q(g) and the demand of “crossing” requests is small. For any graph
J and subset X of nodes, we use the notation 9;(X) to denote the set of edges in J
with exactly one endpoint in X.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

614 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

THEOREM 3.13. There is a polynomial-time algorithm that, given any collection
T of clusters, computes a partition T1,T2,...,Tp of T such that the following hold:
i. For each j € [p], the induced cluster graph C(T;) has min-cut at least q/8.
ii. The total weight of edges in K' = U§:1C(Tj) is at least W — %.
Here, N =|T| and W is the total weight of edges in C(T).

Proof. Consider the following procedure to obtain the partition. Initially, 7/ =T

and K’ consists of all edges in C(T). For j=1,2,... do the following:

1. If the min-cut value in C(7”) is at least %, then 7; < 7" and stop.

2. Let SCT' denote a minimal min-cut in graph C(7").

3. Set T« S, T« T'\ S, and K' +~ K’ \ O¢(17)(S).
Note that this procedure creates one part in each iteration. At any point, 7’ denotes
the remaining set of clusters/nodes (that are still unassigned to parts), and K’ denotes
the current set of noncrossing edges. (An edge is said to be crossing if its endpoints
lie in different parts.) Let G’ = C(T') denote the current graph. Let p denote the
number of iterations, which is also the number of parts in the partition of 7. At
the end of this procedure, K’ equals the set of edges in U?:l C(7;), which are all the
noncrossing edges.

We first prove condition (ii). Clearly, the number of iterations is at most N, the
number of nodes in C. As S is a min-cut, the total weight of the edges dg/(S) removed
in any iteration is at most ¢/4. So the total weight of all edges removed is at most
(Nq)/4. So, the total weight of K’ (at the end) is at least W — (Nq)/4.

We now prove condition (i). Note that each part 7; is either (i) the set .S in some
iteration above, or (ii) the final set 7. Clearly, in the latter case, graph C(7;) has
min-cut at least ¢/4 > . In the former case, consider the graph G’ =C(7") and set
SCT’ in the iteration when 7; = S was created. If |S| = 1, then there is nothing
to prove as part 7; =S would have infinite min-cut value. Let A C S be any strict
subset. By minimality of S, the weights of dg/(A) and d¢/ (S \ A) are both at least
4. Let a (resp., b) denote the total weight of edges having one endpoint in A (resp.,
S\ A) and the other endpoint in 7'\ S. Also, let « denote the total weight of edges
having one endpoint in A and the other in S\ A. Note that the weight of dg/(A) is
x + a, the weight of 0/ (S'\ A) is « + b, and the weight of dg/(S) is a +b. Combined
with the observation above (by minimality of cut S),

q q q

>4 >2 2

x+a74, x+bf4, a—i—b<4

It follows that = > {, i.e., the weight of edges between A and S\ A, is at least £. As
this holds for all strict subsets A C S, the min-cut of G'[S]=C(Tj) is at least . O

In our algorithm, we apply this result to the collection of heavy clusters 7. Next,
we show how to add some nodes H to the heavy clusters (see section 3.2.2) so that
all requests in K’ can be routed in the resulting solution £ = 7, UH with low node
congestion (see section 3.2.3).

3.2.2. Hallucinating to connect heavy clusters. Here, we show how to find
a low-cost solution H for the “hallucinated instance” M. Recall that instance M has
demand B; - g for each request-pair i € K, where B; ~ Binomial(d;,r) independently.
Note that the expected demand of request i is E[B;]-q=rd;q= O(logk)-d;. We treat
the B;-q demand of each request i as B; many copies (each with demand ¢); so these
demands can be sent along B; different s; — t; paths (each carrying ¢ units). Note
that all nodes in graph G have capacity ¢q. By scaling down all capacities/demands
by ¢, we obtain an equivalent instance with unit node-capacities and B; many (unit

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 615

demand) requests between s; and t;, for all ¢ € K. For simplicity, we work with
this scaled instance as M. We first show that (with high probability) there exists
a solution to M of low cost and bounded node congestion, and then we provide an
algorithm to find such a solution.

LEMMA 3.14. With probability at least 1 — O(#), there is an unsplittable routing
{P} }icam of the hallucinated requests where ;. \ 4>, c pr Co < (a2logn)-Opt and the
node-congestion is at most a -logn, where ag = O(1).

Proof. Consider the optimal solution for the original MCNC instance. Let P}
denote the path used for sending d; units of flow between s; and t;, for each request
i € [k]. We now consider the solution X that sends B; units of flow on the optimal
path P for each request ¢ € K. (Equivalently, each of the B; copies of request 4
uses the same path P’ to route its unit flow.) We now show that this solution has
O(logn) congestion with high probability. To see this, consider any node v € V. By
feasibility of the solution {P} :i € [k]}, we have Zie[k]:vePg d; <gq. The load on node
v in solution X is L, := ZieK:veP,* B;. As each B; is a binomial random variable, L,
is the sum of independent [0, 1] random variables. The mean

EL,]= Y BB, = 2118k

E d; <aplogk < ajlogn.
. q
i€eKweP;

1EKweP]

By a Chernoff bound, there is a constant «s such that Pr[L, > ay-logn] < % Taking
a union bound over all n nodes, we have Pr[Jv : L, > as -logn| < % We condition
on the event that L, < as -logn for all v € V. Then, the node-congestion of solution
X is as claimed. We now bound the cost:

Z Z CUZZCU'LUZ Z ¢y Ly < (azlogn) - Opt.

icMveP} veV veOpt

Hence solution X satisfies both properties in the lemma. 0

THEOREM 3.15. There is a polynomial algorithm that finds a solution H for the
hallucinated instance M satisfying the following with probability at least 1 — O(#)
e The total cost of nodes in H is O(logn) - Opt.
e The node congestion of H is O(logn).

Proof. We use the following linear program relaxation:

(LPy) min Y Y <Z> - f(p)

1EMPpEP; \vED
(3.1) st. Y flp)=1 Vie M,
pEP;
(3.2) Z f(p) <ag-logn YveV,
plvep
(3.3) f(p)>0 Vie M, VpeP;.

Here, P; is the set of all s;-t; flow paths in G. Constraint (3.1) requires that exactly
one path be selected for each request i € M (recall that M contains B; copies of
each request ¢ € K). Constraint (3.2) bounds the node-congestion by O(logn). Note
that the LP objective corresponds to the sum of costs over all paths in the solution
(so each node gets counted multiple times). By Lemma 3.14, the optimal value of

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

616 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

(LP) is at most (azlogn) - Opt with probability at least 1 — O(;). Although this
LP has an exponential number of variables, it can be reformulated using a polynomial
number of (flow-based) variables. Hence, we can solve this LP exactly in polynomial
time.

We now perform simple randomized rounding of the LP solution. For each request
i € M, select a random path U; € P; with probability {f(p)}pep, independently. The
solution ‘H = U;epmU;. We now prove that H satisfies the claimed properties with
probability at least %

For any path p, let ¢(p) = ZvEp ¢, denote its total node cost. The cost of H is at
most C'(H) := >, 4 ¢(Us); note that E[C(H)] equals the LP optimal value, which is
at most (aglogn) - Opt. So, by Markov’s inequality, with probability at least %, the
cost of H is at most (3aglogn) - Opt.

We now bound the node congestion. For any node v € V, let L, denote the
number of paths in {U;};cam containing v. Note that L, is the sum of independent
0/1 random variables, with mean E[L,] < aslogn by (3.2). By a Chernoff bound,
there is a constant a3 such that Pr[L, > a3 -logn] < % Taking a union bound over
all nodes v, we have Pr{3v : L, > as -logn] < 7712

Hence, with probability at least %, we obtain both the claimed properties of H. We
can boost the success probability by repeating this algorithm independently O(logn)
times and returning the best solution found as . This proves that H satisfies the
claimed properties with probability at least 1 — O(=;). d

n2

3.2.3. Routing flow in hallucinated graph. Here, we show that all requests
in K’ can be routed in our solution £ = T, UH with low congestion. Recall that
K’ is the set of “routable requests” identified in section 3.2.1 and H is the halluci-
nated solution found in section 3.2.2. Also, recall the partition 7i,...,7, of heavy
clusters obtained by applying Theorem 3.13. For each part 7T;, define a random edge-
capacitated graph He(j) as follows. Nodes of Ho(j) correspond to clusters of 7;. For
each request ¢ with both s; and ¢; in clusters of T;, there are B; edges of capacity q
in He(j) between the clusters containing s; and t¢;; these edges correspond to the B;
many s; — t; paths found in the hallucinated instance M (see Theorem 3.15).

Henceforth, we shall slightly abuse notation and refer to the cluster graph C(7;)
as just C(j). Recall that each edge in C(j) corresponds to some request i € K with
both s; and ¢; in 7; and has weight d; (the demand of request 7).

We will make use of the following cut-sparsification result.

THEOREM 3.16 (Theorem 2.1 [34]). Let G be an N-node multigraph with min-cut
k, and r € [0,1]. Let H be a multigraph containing each edge of G independently with
probability . If r- Kk > 3(‘“'62# for some d,e, then with probability 1 — O(1/N?),
every cut in H has value within r(1 £ ¢€) of the cut value in G.

LEMMA 3.17. For any j € [p], with probability at least 1 — O(7), all request-pairs
in C(j) can be routed fractionally in Heo(j) without exceeding edge capacities.

Proof. By Theorem 3.13(i), the minimum cut in C(j) has value x > £. Let C(j)
be an unweighted multigraph obtained from C(j) by replacing each edge i in C(j) with
d; parallel edges (d; is the demand of request 7). Note that for any subset SCTj, its

cut values in C(j) and C(j) are the same. So the min-cut in C(j) is also x > £. Note
that He(j) can be viewed equivalently as a random subgraph of 5(j) obtained by
selecting each edge independently with probability r = ‘“Tln’“ and assigning capacity
q to each selected edge. _

We now apply Theorem 3.16 on graph C(j) with r and k as above. Note that -k >

%lnk > 601lnk, assuming that a; > 480. So, we can set d = 3 and € = % in this

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 617

theorem, which implies that with probability at least 1 — O(k%)7 for every subset
SCT;, its cut value in He(j) is at least 2125 times its cut value in C(j).

Note that each edge in H¢(j) has capacity ¢, so the cut value of S in He(j) is
cutp (S) == q - |0m.(j(9)]. Let cutg(S) := Zieacm(S) d; denote the cut value of S
in C(j). In other words, the nonuniform sparsest cut of the multicommodity routing
instance with demand-graph C(j) and capacity-graph Hc () is

capacity across S . ocutg(S) _ oqlnk
min = mi
5C7; demand across S SCT; cutg(S) — 2

Choosing a; to be a large enough constant, we can ensure that the above sparsest
cut value is at least the multicommodity flow-cut gap ©(logk) [40]. This proves the
existence of a fractional routing for request-pairs in C(j). a0

This lemma enables us to find an edge-capacitated multicommodity flow for the
request pairs K’ in U§=1 C(j). For each request i in C(j), let f; denote the fractional
flow sending d; units from the source to sink cluster in graph He(j). Note that the
flows {f;}icx can be routed concurrently, while respecting all edge capacities, so the
total flow through each edge of U§:1 Hc(j) is at most ¢. Further, the next lemma
shows that the total flow through any node is also bounded.

LEMMA 3.18. The total capacity of edges in U§:1 Hc(j) incident to any node is
O(y?log? k) - q, with probability at least 1 — O(75)-

Proof. Consider any node (cluster) T € He(j) for any j € [p]. From Theo-
rem 3.4(iv), we know that the total demand of requests R incident to T (i.e., having
a terminal in T) is O(y?logk)q. Every edge in Hc(j) incident to T corresponds to
some request ¢ € Ry, and the edge has capacity B; - ¢, where B; ~ Bernoulli(d;,).
So the total capacity incident to node T'is X =} ;. p B;-q. Note that E[X] =
qr) icp, di = arlogk) p di = O(y?log’k) - q. As X is the sum of independent
{0, ¢} random variables, we obtain by a Chernoff bound that X = O(y%log® k) - ¢ with
probability at least 1 — k% Finally, a union bound over all nodes/clusters completes
the proof. 0

Obtaining node-capacitated routing in G. Now, we show that the edge
capacitated routing F = {f; : i € K’} in the hallucinated graph H¢ := U§:1 Ho(5)
can also be implemented as a node-capacitated routing in the real graph G. This
involves un-contracting nodes of H¢ into clusters 7, and the edges of H¢ into flow-
paths of the hallucinated solution #. See Figure 4 for an example.

LEMMA 3.19. With probability at least 1 — O(k—lz), solution € =H U Ty in step 7
of Algorithm 3.4 supports an unsplittable routing of requests K' with node-congestion
O(v*1og’ k) - q.

Proof. We start with the fractional routing F in the hallucinated graph H¢,
which corresponds to routing flow across clusters. By Lemma 3.17, the total flow on
each edge of H¢ is at most ¢, with probability at least 1 — O(k—lg) We replace the flow
in F on each edge i of He with the flow-path U; used for request ¢ in the hallucinated
solution H (recall that i corresponds to some request in M). By Theorem 3.15, each
node in graph G appears in O(logn) many flow-paths {U;}. So, this results in a flow
of O(logn) - ¢ through each node of graph G. However, we do not yet have a valid
routing as we still need to route flow within each cluster (i.e., node of H¢).

In order to route flow in F through any node/cluster T' € H¢, we do the following.
Consider any pair of consecutive edges 41,42 (both incident to cluster T') used in the

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

618 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Hallucinated graph He

The wiggly paths denote the paths U; in the hallucinated solution H
The dotted trees denote the heavy clusters 7y,

Fic. 4. Un-contracting hallucinated graph Ho using clusters T and flow H.

routing F. Although the endpoints of paths U;,; and U;, may be different, they
must both be terminals in cluster T, so we can use the subtree corresponding to
T to route the flow through this cluster. See Figure 4. By Lemma 3.18, the total
flow in F through any node of H¢ is O(log2 k)v? - q, with probability at least 1 —
O(k—ld) Moreover, by Theorem 3.4(iii), each node in graph G appears in O(logk)
many clusters. Hence, the flow within clusters can be implemented so that the flow
through each node is O(log® k)v? - ¢.

Combining the flow routing across clusters and within each cluster, we obtain a
valid fractional flow in graph G with node congestion O(logn) - ¢ + O(log® k)y? - ¢ =
O(log® k)v? - ¢; here we used the fact that v > logn.

Finally, we perform simple randomized rounding to obtain an unsplittable rout-
ing. Using the fact that each demand is at most ¢ and a Chernoff bound, the node
congestion in G remains O(vy? log® k)q with probability at least 1 — % 0

3.2.4. Completing proof of multicommodity routing. We now combine
the results from sections 3.2.1, 3.2.2, and 3.2.3 to complete the proof of the routing
algorithm (Theorem 3.11). Let D’ =}, d; denote the total demand of the requests
in K that are obtained after Algorithm 3.1. By Theorem 3.4(i), we have D' > D /4,
where D is the total demand of all requests in the MCNC instance. Let K;CK denote
all requests ¢ € K that have both s; and t; in the same internal cluster T' € 7;. Let
K>CK denote all requests i € K with both s; and ¢; in some heavy cluster (the
source/sink can be in different clusters of 7). Let Ko = K \ K; \ K3 be all other
requests. We use D1, Dy, and Dy to denote the total demand of the respective sets.
Let N =|Tp| be the number of heavy clusters. Then, we make the following claim.

Cram 3.20. If Dy < B, then (Do — %) > 7.

Proof. For every request i € Ky, either s; or t; appears as an external terminal
in some cluster T' € 7;. This implies that Dy is at most the total demand of external
terminals of 7;. By definition of internal clusters (Definition 3.1), the external demand
of any T € T; is less than load(7") /2 and the internal demand of T is at least load(T") /2.
Adding over all internal clusters T € T;, we obtain Dy < %ZTeTi load(T") and D; >

%ZTeTi Ioadz(T) (the factor 2 reduction is because each internal request contributes

twice to the cluster’s load). Hence, Dy <2D;.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 619

By definition of heavy clusters, the total demand in each T € T}, is at least q.
Adding over all T € Ty, we get Do + 2Ds > gN, where we used that the sum of
demands over T}, is at most 2Dy + Dy.

Now, using D’ = Dy + D1 + D5 and Dy < 2D;, we obtain Dy > D' — 3D > %D/
as Dy < 2. Also, Dy < 2D < 1D’ < 2D,. Now we have Ng < Dy + 2D, < $Ds. So,
Dy — % > Dy — %Dg > %', which proves the claim. 0

Large internal demand. We first consider the easier case that Dy > D’/6. So,
step 1 applies in Algorithm 3.4. Here, our solution £ = 7; and requests K’ = K;. Note
that each cluster T € T; can support all its internal demands on the tree corresponding
to T' with node-congestion load(T"). The cost of £ is O(Slog k)-Opt by Theorem 3.4(v).
Moreover, each node of G appears in O(logk) many clusters (Theorem 3.4(iii)) and
load(T") = O(y2logk)q for each cluster T' (Theorem 3.4(iv)). So the node-congestion
of this routing is O(y2log®k)q.

Large external demand. We now consider the case that D; < D’/6. Here, our
solution & = H U T}, where H is the solution to the hallucinated instance in step 6.
The requests K’ are those obtained in Theorem 3.13, which implies K'CK> and its
total demand is at least Dy — % > D’/6 (the last inequality is by Claim 3.20). By
Theorem 3.15, the cost of # is O(logn) - Opt with probability 1 — 2. And, the cost
of Tp, is O(Blogk) - Opt by Theorem 3.4(v). So the total cost of £ is O(Blogk) - Opt,
where we use 8 > logn. By Lemma 3.19, with probability 1 — %, requests K’ can be
routed with node-congestion O(y?log® k)q.

Thus, in either case, we have with probability at least 1 — % that

e the cost of solution £ is O(Blogk) - Opt;
e requests K’ can be routed in & with node-congestion O(y2log® k)g;
e the total demand in K’ is at least D'/6 > D/24.

3.3. Wrapping up. Our algorithm for MCNC invokes Algorithms 3.1 and 3.4
iteratively O(logk) many times. By Theorem 3.11, each iteration results in cost
O(Blogk) - Opt and node-congestion O(y2log® k)q and routes a constant fraction of
the total remaining demand. Hence, after O(log D) iterations, we would have routed
all the demands. As described in Appendix B.2, we can ensure that D is polynomial
in k <n. So, the number of iterations is O(logk). The final cost is O(Blog® k) - Opt,
and node-congestion is O(y%log*k)q. By Theorem 1.2, we have 8 = O(log®n) and
v = O(log®n), which implies that our cost is O(log? nlog? k) - Opt and node-congestion
is O(log6n10g4 k) - q. This completes the proof of Theorem 1.3.

4. Conclusions. In this paper, we obtained the first polylogarithmic bicriteria
approximation algorithm for the uniform node-capacitated network design problem.
There is still a large gap between our approximation bounds and the (log k) hardness
of approximation that follows from node-weighted Steiner tree. Closing this gap is an
interesting open question. Another question concerns non-uniform capacities, which is
also open in the edge-capacitated case. A key challenge in dealing with nonuniform
capacities is that there is no clear notion of how much demand should be aggregated
in one cluster.

Appendix A. Simple reductions for MCNC and NEERP.

A.1. Reducing NEERP to MCNC. Here, we show that the energy-efficient
routing problem can be reduced to the capacitated network design problem. This
essentially follows from [3], but we provide the details for completeness.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

620 KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN

Consider any instance of NEERP with energy function (1.1), graph G = (V, E)
having node-costs {c,}yev, and requests {(s;, t;,d;)}¥_,. Let q := o'/, Let D, =
{i € [k] : d; < ¢} denote all requests with demand at most ¢, and let Dy = [k] \ Dy
denote the “large” demands. We will handle these two demand types separately. Let
Opt denote the optimal value.

For small demands (D7) we define an MCNC instance on graph (V' E’) where
V' contains k copies of each node in V. For each (u,v) € F, there is an edge in E’
between every copy of u and every copy of v. For any node v € V and i € [k], the ith
copy of v in V"’ has cost ¢,0(i* — (i —1)®). The requests remain the same (we can use
any copy of the source/sink nodes). We claim that the optimal value of the MCNC
instance is at most 2 - Opt. To see this, consider the same routing as for the optimal
NEERP solution. If the flow through any node v is z, then we include the first [z/q]
copies of v into the MCNC solution. Note that the cost of these copies of node v is

coolz/q]® <cvo (1+2/9)% =co(q+2)" <2%(¢" +2%) =2 ¢ - f(a),

which is 2% times the cost of node v in the NEERP solution. Adding over all nodes,
the total cost of this MCNC solution is at most 2¢ - Opt.

Let UCV' denote a (3,7) bicriteria approximate solution for MCNC. Then, there
is a feasible multicommodity flow that uses capacity at most « - ¢ on each node of
U. By solving the natural LP and random rounding, we can also find (in polynomial
time) a flow with load at most L := O(y+logn)-q on each node of U. We now bound
the NEERP cost of this flow. Consider any node v € V' that has i copies selected in
U, so the total cost of these nodes is ¢,0i®. The energy cost on v is at most

co(o+ (L)) =0(H* +1og® n)oi® - ¢,.

Adding over all v € V, the total energy cost is O(y® + log® n) times the MCNC cost,
which is O(y® - 8) - Opt. Here, we assumed that v > logn.

For large demands (Ds) we just find an unsplittable routing that minimizes the
ath power of loads. Let Z’ denote this problem instance. Note that this problem differs
from NEERP only in the definition of the energy function, which is now f’(x) = z“
instead of f(z) = o + x®. There is an a®*-approximation algorithm for this problem
[41]. Clearly, the optimal value of Z’ is at most Opt. Let 7 denote an approximate
solution to Z’' and UCV denote the nodes carrying positive flow. As every request
in Dy has demand at least ¢ (and we have unsplittable flows), every node in U has
flow at least q. Using the fact that f(x) <2f'(z) for all x > ¢, it now follows that the
NEERP cost of 7 is at most twice the f’-cost of 7, i.e., at most 2a® - Opt.

Combining the routing for D; and D5 completes the proof of Theorem 1.1.

A.2. Approximation ratio relative to splittable routing. In our node-
capacitated network design problem (MCNC and SSNC), our goal is to find an un-
splittable routing of each demand. We now observe that our approximation guarantees
in Theorems 1.2 and 1.3 are stronger, and hold relative to an optimal solution that
only supports a splittable (i.e., fractional) flow of the demands.

For SSNC, we only use the optimal solution Opt in Lemma 2.3. Observe that
this relies on applying the confluent flow result (Theorem 2.2) to the optimal solution,
which only requires a splittable flow.

For MCNC, we use the optimal solution Opt in the following steps:

e Bounding the optimal cost of the SSNC instances Z; and Z, (Lemmas 3.7
and 3.8). Here, we only use Opt to demonstrate a feasible fractional routing
for Z; and Z5, so we can also use a splittable-routing solution.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NODE CAPACITATED NETWORK DESIGN 621

e Bounding the optimal cost of the hallucinated instance (Lemma 3.14). Here,
we used the optimal paths P to route a random quantity B; between s; and
t;, for each request i € [k]. Then, we used a Chernoff bound to prove that the
node congestion is O(logn) with high probability. Instead of an integral path
P}, we can use a fractional flow as a distribution F; over s; — t; paths for
each i € [k]. Then, we can first sample a random path P; from F; and route
the B; units on this path P;. Again, a Chernoff bound can be used to prove
that the node congestion is O(logn) with high probability. So, this step can
also be carried out relative to an optimal splittable routing.

A.3. Reducing edge-costs to node-costs. Here, we observe that the node
version NEERP is more general than the edge-version studied previously [3, 10, 7].
Consider an instance of energy-efficient routing with edge energy costs (1.1), graph
G = (V,E) having edge-costs {c.}eer, and requests {(s;,t;,d;)}¥_,. We define an
NEERP instance on the graph G’ obtained by subdividing each edge e € E with a
node v.. The node costs are zero for all nodes of V and ¢, for each node v, (for e € E).
This NEERP instance is clearly equivalent to the original edge version.

A similar reduction shows that edge-capacitated MCNC is a special case of the
node-capacitated problem studied in this paper.

Appendix B. Missing details from section 3.

B.1. Approximation algorithm for small q. Here, we provide a bicriteria
approximation algorithm for MCNC when ¢ is small. The idea is essentially the same
as that used in Theorem 3.15. Given an MCNC instance Z, consider a new instance
7' where every demand equals 1 and the goal is to select s; — t; paths P; with node-
congestion at most ¢ that minimizes the sum of all path costs, i.c., &, > vep, Co
Note that each node may be counted multiple times in this objective. Using an opti-
mal solution to Z as a feasible solution to Z’, we have Opt(Z') < g - Opt(Z). We now
write an LP relaxation for Z’ that is just (LP,) used in Theorem 3.15, where M = [k]
and the right-hand side in constraint (3.2) is ¢. It is clear that this is a valid relax-
ation. The rounding algorithm is the same as that described in Theorem 3.15. The
same analysis implies that we obtain a solution to Z’ of cost O(logn) - Opt(Z') <
O(qlogn) - Opt(Z) and node-congestion O(glogn). Using this as a solution to Z,
the cost remains O(glogn) - Opt(Z) and the node-congestion increases by at most
a factor ¢. So we obtain an (O(glogn),O(qlogn)) bicriteria approximation algorithm
for MCNC.

We remark that the case when every demand is large, i.e., min; d; = 2(g), can
also be solved by this approach. We just uniformly scale all demands and capacity by
min; d; so that the new capacity ¢’ = O(1). Then, we obtain an (O(logn),O(logn))
bicriteria approximation algorithm for MCNC with large demands.

B.2. Ensuring polynomially bounded demands. Here, we show that the
total demand D =37 , d; can be ensured to be polynomial in the number of requests
k. Let D1Clk] denote all requests with demand at least g/k, and Dy = [k]\ D;. We
will handle the requests in D; and Ds separately. We round up the demand d; of
each i € D; to an integer multiple of ¢/k, which increases each demand by at most a
factor two. Then, scaling all demands down by ¢/k, we obtain an equivalent MCNC
instance with capacity ¢’ = O(k), which implies that total demand in this instance
is D' = O(k?). For requests in Dy, we just use the minimum node-weighted Steiner
forest, which admits an O(log k)-approximation algorithm [36].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

622

(4]

5

[6]

7]

(13]
14]
(15]
[16]
(17]
(18]

19]

20]

21]
(22]
23]
(24]
(25]
[26]

27]

KRISHNASWAMY, NAGARAJAN, PRUHS, AND STEIN
REFERENCES

A. AGrawAL, P. N. KLEIN, AND R. Ravi, When trees collide: An approzimation algorithm for
the generalized Steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440-456,
https://doi.org/10.1137/S0097539792236237.

M. ANDREWS, Hardness of buy-at-bulk network design, in FOCS, 2004, pp. 115-124.

M. ANDREWS, S. ANTONAKOPOULOS, AND L. ZHANG, Minimum-cost network design with
(dis)economies of scale, SIAM J. Comput., 45 (2016), pp. 49-66, https://doi.org/10.1137/
110825959.

M. ANDREWS, A. FERNANDEZ, L. ZHANG, AND W. ZHAO, Routing for energy minimization in
the speed scaling model, in INFOCOM, 2010, pp. 2435—2443.

M. ANDREWS AND L. ZHANG, Hardness of the undirected congestion minimization problem,
SIAM J. Comput., 37 (2007), pp. 112-131, https://doi.org/10.1137/050636899.

S. ANTONAKOPOULOS, C. CHEKURI, F. B. SHEPHERD, AND L. ZHANG, Buy-at-bulk network
design with protection, Math. Oper. Res., 36 (2011), pp. 71-87.

A. ANTONIADIS, S. IM, R. KRISHNASWAMY, B. MOSELEY, V. NAGARAJAN, K. PRUHS, AND C.
STEIN, Hallucination helps: Energy efficient virtual circuit routing, SIAM J. Comput., 49
(2020), pp. 37-66.

B. AWERBUCH AND Y. AZAR, Buy-at-bulk network design, in FOCS, 1997, pp. 542-547.

M. A. BABENKO, A. V. GOLDBERG, A. GUPTA, AND V. NAGARAJAN, Algorithms for hub label
optimization, ACM Trans. Algorithms, 13 (2016), 16.

N. BansaL, A. GupTa, R. KrRiISHNASWAMY, V. NAGARAJAN, K. PRUHS, AND C. STEIN, Multicast
routing for energy minimization using speed scaling, in MedAlg, 2012, pp. 37-51.

A. BHASKARA, M. CHARIKAR, E. CHLAMTAC, U. FEIGE, AND A. VIJAYARAGHAVAN, Detecting
high log-densities: An O(n1/4) approximation for densest k-subgraph, in STOC, 2010,
pp. 201-210.

D. BROOKS, P. BOSE, S. SCHUSTER, H. M. JAcoBSON, P. Kubva, A. BUYUKTOSUNOGLU, J.-D.
WELLMAN, V. V. ZyUuBAN, M. GupTA, AND P. W. COOK, Power-aware microarchitec-
ture: Design and modeling challenges for next-generation microprocessors, IEEE Micro,
20 (2000), pp. 26—44.

J. BYRKA, F. GRANDONI, T. ROTHVOSS, AND L. SANITA, Steiner tree approximation via iterative
randomized rounding, J. ACM, 60 (2013), 6.

R. D. CARR, L. FLEISCHER, V. J. LEUNG, AND C. A. PHILLIPS, Strengthening integrality gaps
for capacitated network design and covering problems, in SODA, 2000, pp. 106-115.

D. CHAKRABARTY, C. CHEKURI, S. KHANNA, AND N. KORULA, Approzimability of capacitated
network design, Algorithmica, 72 (2015), pp. 493-514.

D. CHAKRABARTY, R. KRISHNASWAMY, S. L1, AND S. NARAYANAN, Capacitated network design
on undirected graphs, in APPROX, 2013.

T. CHAKRABORTY, J. CHUZHOY, AND S. KHANNA, Network design for vertex connectivity, in
STOC, 2008, pp. 167-176.

C. CHEKURI, M. T. HAJIAGHAYI, G. KORTSARZ, AND M. R. SALAVATIPOUR, Approximation
algorithms for non-uniform buy-at-bulk network design, in FOCS, 2006, pp. 677-686.

C. CHEKURI, M. T. HAJIAGHAYI, G. KORTSARZ, AND M. R. SALAVATIPOUR, Approz-
imation algorithms for mnode-weighted buy-at-bulk network design, in SODA, 2007,
pp. 1265-1274.

J. CHEN, R. D. KLEINBERG, L. LovAsz, R. RAJARAMAN, R. SUNDARAM, AND A. VETTA, (Al-
most) tight bounds and existence theorems for single-commodity confluent flows, J. ACM,
54 (2007), 16.

J. CHuzHOY AND S. KHANNA, An o(k3logn)-approzimation algorithm for vertez-connectivity
survivable network design, Theory Comput., 8 (2012), pp. 401-413.

A. M. CosTA, A survey on benders decomposition applied to fized-charge network design prob-
lems, Comput. Oper. Res., 32 (2005), pp. 1429-1450.

Y. DiNitz, N. GARG, AND M. X. GOEMANS, On the single-source unsplittable flow problem,
Combinatorica, 19 (1999), pp. 17-41.

Y. EMEK, S. KUTTEN, R. LAvi, AND Y. SHI, Approximating generalized network design under
(dis)economies of scale with applications to energy efficiency, J. ACM, 67 (2020), 7.

U. FEIGE, G. KORTSARZ, AND D. PELEG, The dense k-subgraph problem, Algorithmica, 29
(2001), pp. 410-421.

W. S. FUuNG, R. HARIHARAN, N. J. HARVEY, AND D. PANIGRAHI, A general framework for graph
sparsification, in STOC, ACM, 2011, pp. 71-80.

M. X. GOEMANS AND D. P. WILLIAMSON, A general approzimation technique for constrained
forest problems, SIAM J. Comput., 24 (1995), pp. 296-317, https://doi.org/10.1137/
S0097539793242618.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1137/110825959
https://doi.org/10.1137/110825959
https://doi.org/10.1137/050636899
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618

Downloaded 07/07/24 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

28]

29]

(30]
(31]

(32]

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]
[41]

42]

[43]

[44]
[45]
[46]
[47]

(48]

S.

S.

NODE CAPACITATED NETWORK DESIGN 623

GUHA AND S. KHULLER, Improved methods for approximating node weighted Steiner trees
and connected dominating sets, Inform. and Comput., 150 (1999), pp. 57-74.

GUHA, A. MEYERSON, AND K. MUNAGALA, A constant factor approzimation for the single
sink edge installation problem, SIAM J. Comput., 38 (2009), pp. 2426-2442, https://
doi.org/10.1137/050643635.

A. Gurta, A. KUMAR, M. PAL, AND T. ROUGHGARDEN, Approzimation via cost sharing:

Simpler and better approzimation algorithms for network design, J. ACM, 54 (2007), 11.

M. HAJIAGHAYI, R. KHANDEKAR, G. KORTSARZ, AND Z. NUTOV, On fized cost k-flow problems,

Theory Comput. Syst., 58 (2016), pp. 4-18.

M. HEwITT, G. L. NEMHAUSER, AND M. W. P. SAVELSBERGH, Branch-and-price guided search

for integer programs with an application to the multicommodity fized-charge network flow
problem, INFORMS J. Comput., 25 (2013), pp. 302-316.

. JAIN, A factor 2 approximation algorithm for the generalized Steiner network problem,
Combinatorica, 21 (2001), pp. 39-60.

Res., 24 (1999), pp. 383-413.

K
D. R. KARGER, Random sampling in cut, flow, and network design problems, Math. Oper.
D

. KiMm AND P. M. PARDALOS, A solution approach to the fixed charge network flow problem
using a dynamic slope scaling procedure, Oper. Res. Lett., 24 (1999), pp. 195-203.

KLEIN AND R. RaAvi, A nearly best-possible approximation algorithm for node-weighted
Steiner trees, J. Algorithms, 19 (1995), pp. 104-115.

. KONEMANN, S. S. SADEGHABAD, AND L. SANITA, An LMP O(logn)-approzimation algorithm

for node weighted prize collecting Steiner tree, in FOCS, 2013.

. F. Kurose AND K. W. Ross, Computer Networking: A Top-Down Approach, Addison-

Wesley, Boston, 2009.

LEE, D. PINNER, K. SOMERS, AND S. TUNUGUNTLA, The Case for Committing to Greener
Telecom Networks, McKinsey Report, McKinsey & Company, 2020.

LINIAL, E. LONDON, AND Y. RABINOVICH, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215-245.

MAKARYCHEV AND M. SVIRIDENKO, Solving optimization problems with diseconomies of
scale via decoupling, J. ACM, 65 (2018), 42.

. MANURANGSI, Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph,

in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2017, Montreal, QC, Canada, 2017, pp. 954-961.

Moss AND Y. RABANI, Approzimation algorithms for constrained node weighted Steiner

tree problems, SIAM J. Comput., 37 (2007), pp. 460-481, https://doi.org/10.1137/

S0097539702420474.

. NAGARAJAN AND L. WANG, Online generalized network design under (dis)economies of
scale, Math. Oper. Res., 49 (2024), pp. 107-124.

. Nutov, Approzimating minimum-cost connectivity problems wvia uncrossable bifamilies,

ACM Trans. Algorithms, 9 (2012), 1.

. RaaguAavaN AND C. D. THOMPSON, Randomized rounding: A technique for provably good

algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365-374.

A. SPIELMAN AND S.-H. TENG, Spectral sparsification of graphs, SIAM J. Comput., 40

(2011), pp. 981-1025, https://doi.org/10.1137/08074489X.

. WIERMAN, L. L. H. ANDREW, AND A. TANG, Power-aware speed scaling in processor sharing
systems, in INFOCOM, 2009, pp. 2007-2015.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/050643635
https://doi.org/10.1137/050643635
https://doi.org/10.1137/S0097539702420474
https://doi.org/10.1137/S0097539702420474
https://doi.org/10.1137/08074489X

	Introduction
	Our results and techniques
	Related work

	Single-sink node-capacitated network design
	Confluent flow
	Existence of good clustering
	Finding a good clustering
	Low load set cover (LLSC)
	The <0:sans-serif >SSNC</0:sans-serif> problem as LLSC
	Partial node-weighted Steiner tree (PNWST)
	Good clustering from <0:sans-serif >SSNC</0:sans-serif> solution

	Multicommodity node-capacitated network design
	Clustering
	Overview of algorithm/analysis
	Analysis
	Completing proof of Theorem  <0:xref 0:ref-type="statement" 0:rid="the3-4" >3.4</0:xref>
	Routing across clusters
	Identifying routable request-pairs in heavy clusters
	Hallucinating to connect heavy clusters
	Routing flow in hallucinated graph

	Obtaining node-capacitated routing in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	G?></0:tex-math></0:inline-formula>
	Completing proof of multicommodity routing

	Large internal demand
	Large external demand
	Wrapping up

	Conclusions
	References
	Appendix A. Simple reductions for MCNC and NEERP
	Reducing <0:sans-serif >NEERP</0:sans-serif> to <0:sans-serif >MCNC</0:sans-serif>
	Approximation ratio relative to splittable routing
	Reducing edge-costs to node-costs

	Appendix B. Missing details from section 3
	Approximation algorithm for small <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	q?></0:tex-math></0:inline-formula>
	Ensuring polynomially bounded demands

