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Abstract. In the stochastic submodular cover problem, the goal is to select a subset of sto-
chastic items of minimum expected cost to cover a submodular function. Solutions in this
setting correspond to sequential decision processes that select items one by one adaptively
(depending on prior observations). Whereas such adaptive solutions achieve the best objec-
tive, the inherently sequential nature makes them undesirable in many applications. We
show how to obtain solutions that approximate fully adaptive solutions using only a few
“rounds” of adaptivity. We study both independent and correlated settings, proving
smooth trade-offs between the number of adaptive rounds and the solution quality.
Experiments on synthetic and real data sets show qualitative improvements in the solu-
tions as we allow more rounds of adaptivity; in practice, solutions with a few rounds of
adaptivity are nearly as good as fully adaptive solutions.
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1. Introduction

Submodularity is a fundamental notion that arises in
applications such as image segmentation, data summari-
zation, hypothesis identification, information gathering,
and social networks (see, for example, Simon et al. 2007,
Lin and Bilmes 2011, Barinova et al. 2012, Sipos et al.
2012, Chen et al. 2014, Kempe et al. 2015, Radanovic et al.
2018). Given a nonnegative, monotone, and integer-
valued submodular function f : 2Y — Z,, the submodu-
lar cover optimization problem requires us to pick a
minimum-cost subset S of items to “cover” function f. In
other words, we want that fS) = Q, where Q = f(U) is
the total coverage value.

Submodular cover arises in many applications in
computer science, machine learning, and operations
research (see Wolsey 1982, Golovin and Krause 2011,
Mirzasoleiman et al. 2015, Bateni et al. 2018). For
instance, consider a sensor deployment setting, in
which we need to place a collection of sensors to mon-
itor some phenomenon, such as air quality or traffic
behavior (Gonzéalez-Banos 2001, Sun et al. 2019). Each
sensor covers a limited area depending on its sen-
sing range and also obstructions and the local geo-
graphy. The goal is to deploy the fewest sensors to
entirely cover some target region. The covered area is
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a submodular function of the sensors deployed, so
this is a special case of submodular cover. Alterna-
tively, one may want to place sensors so as to achieve
a target level of “information gain.” In many settings
(see, e.g., Krause and Guestrin 2005), the information
gain can be quantified as a submodular function, so
this is again a special case of submodular cover. See
Section 4.2 for more details.

A different application arises in medical diagnosis,
in which we know s possible conditions from which a
patient may suffer along with the priors on their occur-
rence (see, e.g., Garey and Graham 1974, Kosaraju et al.
1999). Our goal is to perform tests to identify the cor-
rect condition as quickly as possible. This can be cast as
submodular cover by viewing each test as eliminating
all inconsistent conditions (or hypotheses): the number
of eliminated hypotheses is a coverage function that is
submodular. This is an instance of submodular cover
with a coverage value of s — 1 because once the s — 1
inconsistent hypotheses are eliminated, the remaining
one must be correct. See Section 4.3 for more details.

Observe that both these applications involve uncer-
tain data: the precise area covered by a sensor may not
be known before the sensor is deployed, and the pre-
cise outcome (positive/negative) of a test is not known
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until the test is performed. This uncertainty can be
modeled using the framework of stochastic submodular
optimization, turning the desired solution into a sequen-
tial decision process. In the simplest case of such a prob-
lem, we are given an underlying set of stochastic items,
each of which is either active or inactive (with known
probabilities). Only the active items contribute to the
submodular function coverage. At each step of the
sequential decision process, an item is probed, and its
realization (i.e., active or inactive) is observed. The
goal is to probe items in way that minimizes the
expected total cost incurred until the submodular func-
tion is covered.

The process is typically adaptive so that information
from previously probed items is used to identify the
next item to probe. Such adaptive solutions are inher-
ently fully sequential, which is undesirable if probing
an item is time-consuming. For example, probing/
performing a test in medical diagnosis may involve a
long wait for test results. Or, in sensor deployment, if
probing a sensor corresponds to physically deploying
it, the action may take hours or days. Therefore, we
prefer solutions with only few rounds of adaptivity, in
which several items are probed simultaneously in
each round, and the solution can only adapt at the
end of each round.

Motivated by this, we ask, can solutions with a few
adaptive rounds approximate fully adaptive solutions
for the stochastic submodular cover problem? We con-
sider cases in which realizations of different items are
both independent and allowed to be correlated. For
both these situations we give nearly tight answers
with smooth trade-offs between the number r of adap-
tive rounds and the solution quality relative to fully
adaptive solutions.

We make the following main contributions:

e When items have independent realizations, for any
integer r > 1, we provide an algorithm with » rounds of
adaptivity that costs at most O(Q""log Q) times the
optimal fully adaptive solution (that may adapt an
unbounded number of times). Here, Q is the maximal
value of the submodular function to be covered; note
that the function is integer-valued. Our performance
guarantee nearly matches a previously known lower

bound of Q(r% QY )

e When items have correlated realizations (with a
joint distribution of support size s), for any integer
r > 1, we provide an algorithm with r rounds of adap-
tivity that costs at most O(rs'/"log (sQ)) times the opti-
mal fully adaptive solution.

e We also prove that the dependence on the support
size s is necessary for correlated distributions. We show

an Q( s ) multiplicative gap between r-round adaptive

rlogs
solutions and fully adaptive solutions (even when Q = 1).

e Finally, we demonstrate the practical efficacy of
our algorithms by testing them on both real-world and
synthetic data sets. Even on instances with more than
1,000 items, we observe that about six rounds of adap-
tivity suffice to obtain solutions that are nearly as good
as fully adaptive solutions.

Our algorithms are based on a greedy-style approach
and, hence, are very easy to implement. Moreover,
unlike prior work, they provide approximation guaran-
tees that do not depend on item costs or probability
values (that may even be exponentially worse than Q
and s).

1.1. Problem Definition

In the stochastic submodular cover problem, the input
is a collection of m random variables (or items) X =
{X1,...,X,}. Each item X; has a cost ¢; € R, and real-
izes to a random element of ground set U. Our results
extend easily to the more general setting in which each
item realizes to a subset of U rather than a single ele-
ment; see Online Appendix E. Let the joint distribution
of X be denoted by D. The random variables X; may or
may not be independent; we discuss this issue in more
detail at the end of this section. The realization of item
X is denoted by X; € U; this realization is only known
when & is probed at a cost of c;. Extending this nota-
tion, given a subset of items S C X, its realization is
denoted S ={X; : X;eS}cU.

In addition, we are given an integer-valued mono-
tone submodular function f : 2Y — 7., with AU) = Q.
A realization S of items S C X is feasible if and only if
f(S) = Q the maximal value; in this case, we also say
that S covers f. The goal is to probe (possibly adap-
tively) a subset S C X' of items that gets realized to a
feasible set. We use the shorthand c¢(S) := 3;.y.cs¢; to
denote the total cost of items in S C X and use cax :=
max;¢;. The objective is to minimize the expected cost
of probed items, for which the expectation is taken
over the randomness in . We assume that A(X) = Q
for every realization X of the full set of items &
this ensures that the function can be covered with
probability one. We consider the following types of
solutions.

Definition 1. For an integer r > 1, an r-round adaptive
solution in the set-based model proceeds as follows.
For each round k=1,...,r, it specifies a subset Sy of
items that is probed in parallel. The cost incurred in
round k is ¢(S), the total cost of all probed items in
that round. The choice of subset S in round k can
depend on realizations seen in all previous rounds
1,...,k-1.

In the set-based model, we allow solutions to be
infeasible (i.e., to fail to cover f) with some small prob-
ability 1 > 0. As shown in Online Appendix D, such a
relaxed notion is necessary. In designing algorithms,
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we find it more convenient to work with a slightly dif-
ferent “permutation” model, which we define next.

Definition 2. For an integer > 1, an r-round adaptive
solution in the permutation model proceeds in r
rounds of adaptivity. In each round ke {1,...,r}, the
solution specifies an ordering of all remaining items
and probes them in this order until some stopping
rule. The decisions in round k, that is, the ordering and
the stopping rule, can depend on the realizations seen
in all previousrounds 1, ...,k —1.

The permutation model is also used in prior litera-
ture (Goemans and Vondrdk 2006, Agarwal et al.
2019). In the permutation model, solutions must be fea-
sible with probability one. In Online Appendix D, we
show that our algorithms in the permutation model
can be converted into algorithms in the set-based
model with similar approximation ratios. Henceforth,
an r-round adaptive algorithm refers to one in the per-
mutation model unless specified otherwise.

Setting r = 1 in Definition 2 gives us a nonadaptive
solution as studied in Goemans and Vondrdk (2006)
and Agarwal et al. (2019). Setting r = m gives us a fully
adaptive solution that may adapt after every probe.
Having more rounds leads to a smaller objective value,
so fully adaptive solutions have the least objective
value. Our performance guarantees are relative to an
optimal fully adaptive solution; let OPT denote this
solution and its cost. The r-round adaptivity gap is
defined as follows:

E[cost of best r-round adaptive solution on I|

instance I E[cost of best adaptive solution on I]

)
Setting r = 1 gives the adaptivity gap.

1.1.1. Independent and Correlated Distributions. We
first study the case in which the random variables X’
are independent. In keeping with existing literature
(Deshpande et al. 2016, Im et al. 2016, Agarwal et al.
2019), we refer to this case simply as stochastic sub-
modular cover. We then consider the case when the
random variables X’ are correlated with a joint distri-
bution D of support size s: the realizations in the sup-
port of D are also called scenarios. We refer to the
correlated setting as scenario submodular cover as in
Grammel et al. (2016).

1.1.2. Comparison with “Adaptive Submodularity.” We
note that some previous papers, such as Golovin and
Krause (2017) and Esfandiari et al. (2021b), model cor-
relations in stochastic submodular cover in a different
way. This involves assuming that the function f and
the item distribution D satisfy the following condition
(called adaptive submodularity): the conditional ex-
pected increase in f resulting from any item never

increases when we condition on more realizations.
Adaptive submodularity is more general than (inde-
pendent) stochastic submodular cover, but it does not
generalize scenario submodular cover. See Section 1.3
for more details.

1.2. Results and Techniques
Our first result is when the items have independent
distributions.

Theorem 1 (Independent Items: Permutation Model).
For any integer r > 1, there is an r-round adaptive algo-
rithm for the stochastic submodular cover problem with
expected cost O(QY" -log Q) times the cost of an optimal
adaptive solution.

This improves over the O(r Qur log Qlog (mcax))
bound of Agarwal et al. (2019) by eliminating the
dependence on the number of items mm and the item costs
(which could be much larger than Q). Moreover, our

result nearly matches the lower bound of Q(%Ql/ ")

given by Agarwal et al. (2019). Setting r = log Q shows
that O(log Q) adaptive rounds give an O(log Q)-approx-
imation. By transforming this algorithm into a set-based
solution (using Theorem 10 in Online Appendix D), we
get the following.

Corollary 1 (Independent ltems: Set-Based Model).
There is an O(logQ)-round algorithm for stochastic sub-
modular cover in the set-based model that (i) has expected
cost O(log Q) times the optimal adaptive cost and (ii) covers
the function with probability at least 1 — é

This approximation ratio of O(logQ) is the best
possible (unless P = NP) even with an arbitrary number
(r = m) of adaptive rounds. Corollary 1 improves upon
an O(log”Qlog (MCmax))-approximation in a logarith-
mic number of rounds (Agarwal et al. 2019) and an
O(log (mQcmax))-approximation in O(log m1og (Qmicmax))
set-based rounds (Esfandiari et al. 2021a).

Moreover, Theorem 1 (with r = 1) implies an O(Qlog Q)
gap between nonadaptive and fully adaptive solutions for
stochastic set cover, a special case of submodular cover.
This resolves an open question of Goemans and Vondrak
(2006) up to an O(log Q) factor, in which Q is the number
of objects in the set cover instance.

Our second set of results is for the case when items
have correlated distributions. Recall that s denotes the
support size of the joint distribution D, that is, the
number of scenarios.

Theorem 2 (Correlated Items: Permutation Model). For
any integer v > 1, there is an r-round adaptive algorithm for
scenario submodular cover with cost O(s"/"(logs + rlog Q))
times the optimal adaptive cost.
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We also obtain a 2r-round adaptive algorithm with a
better cost guarantee of O(s'/"log (sQ)) times the opti-
mal adaptive cost (see Corollary 3). Setting r =log s
and using the conversion to a set-based solution (Theo-
rem 10), we infer the following.

Corollary 2 (Correlated Items: Set-Based Model). There
is an O(logs)-round algorithm for scenario submodular
cover in the set-based model that (i) has expected cost
O(log (sQ)) times the optimal adaptive cost and (ii) covers
the function with probability at least 1 -1,

This approximation guarantee is nearly the best
possible even with an arbitrary number of adaptive
rounds: there is an Q(logQ)-factor hardness of ap-
proximation even for the deterministic case (in which
s = 1). We note that scenario submodular cover general-
izes the classic optimal decision tree problem, which
is studied extensively; see, for instance, Garey and
Graham (1974), Loveland (1985), Kosaraju et al. (1999),
Dasgupta (2004), and Gupta et al. (2017a). Corollary 2
improves upon the fully adaptive O(log (sQ))-approxi-
mation for scenario submodular cover (Grammel et al.
2016) by achieving the same approximation guarantee in
just O(logs) rounds. It is also an improvement over the
O(log (mQ :ﬁ))—approximation in O(log mlog (Qm ;ﬁ))
set-based rounds, which follows from Grammel et al.
(2016) and Esfandiari et al. (2021a); here, pmin < % is the
minimum probability of any scenario.

We note that, when the number of rounds is less
than logarithmic, our result provides the first approxi-
mation guarantee even in the well-studied special
case of optimal decision trees.

The results in Theorems 1 and 2 are incomparable:
whereas the independent case has more structure in
the distribution D, its support size is exponential.
Finally, the dependence on the support size s is neces-
sary in the correlated setting as our next result shows.

Theorem 3 (Correlated Items Lower Bound). For any
integer v > 1, there is an instance of scenario submodular
cover with Q =1 for which the cost of any r-round adaptive

solution is Q(%) times the optimal adaptive cost.

This lower bound is information-theoretic and does
not depend on computational assumptions, whereas
the upper bound of Theorem 2 is given by a polyno-
mial algorithm.

Finally, our algorithms are also easy to implement.
We test our algorithms on both synthetic and real data
sets; these tests validate the practical performance of
our algorithms. Specifically, we test our algorithm for
the independent case (Theorem 1) on instances of sto-
chastic set cover and our algorithm for the correlated
case (Theorem 2) on instances of optimal decision tree.

For stochastic set cover, we use real-world data sets
to generate instances with ~ 1,200 items. We observe
a sharp improvement in performance within a few
rounds of adaptivity and that six to seven rounds of
adaptivity are nearly as good as fully adaptive solu-
tions. For optimal decision tree, we use both real-world
and synthetic data. The real-world data has = 400 sce-
narios, and the synthetic data has 10,000 scenarios.
Again, we find that about six rounds of adaptivity suf-
fice to obtain solutions as good as fully adaptive ones.
We also compared our algorithms’ cost to information-
theoretic lower bounds for both applications: our costs
are typically within 50% of these lower bounds.

1.2.1. Techniques. The algorithms for the independent
and correlated cases are similar in spirit but have some
crucial technical differences. In each round of both algo-
rithms, we iteratively compute a “score” for each item
and greedily select the item of maximum score. This
results in a nonadaptive list of all remaining items, and
the items are probed in this order until a stopping rule is
satisfied. The stopping rule in the independent case cor-
responds to reducing the remaining target (on the func-
tion value) by a factor of Q'/7, whereas the stopping rule
in the correlated case involves reducing the number of
“compatible scenarios” by an s!/" factor.

The analysis for Theorems 1 and 2 follows parallel
lines at the beginning. For each integer i > 0, we relate
the following two quantities: (i) the probability that
the algorithm does not complete within cost a -2’ and
(ii) the probability that the optimal adaptive solution
does not complete within cost 2'. The “stretch factor”
a corresponds to the approximation ratio and is
chosen differently for the independent and correlated
cases. In order to relate these noncompletion probabil-
ities, we consider the total score G of items selected by

the algorithm between costs a2”' and a2'. The crux of
the analysis lies in giving lower and upper bounds on
the total score G; this is when the arguments for the
independent and correlated settings begin to differ.

In the independent case, the score of any item X, is
an estimate of its relative marginal gain, for which we
take an expectation over all previous items as well as
X,. We also normalize this gain by the item’s cost. See
Equation (2) for the definition. In lower bounding the
total score G, we use a variant of a sampling lemma
from Agarwal et al. (2019) as well as the constant-factor
adaptivity gap for submodular maximization from Bra-
dac et al. (2019). We also need to partition the outcome
space (of all previous realizations) into “good” and
“bad” outcomes: conditional on a good outcome, OPT
has a high probability of completing before cost 2'.
Good outcomes are necessary in our proof of the sam-
pling lemma, but luckily, the total probability of bad
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outcomes is small (and they can be effectively ignored).
In upper bounding G, we consider the total score as a
sum over decision/sample paths and use the fact that
the sum of relative gains corresponds to a harmonic
series.

In the correlated case, the score of any item A, is the
sum of two terms: (i) its expected relative marginal
gain as in the independent case and (ii) an estimate of
the probability on “eliminated” scenarios. Both terms
are needed because the algorithm needs to balance (i)
covering the function and (ii) identifying the realized
scenario (after which it is trivial to cover f). Again, we
normalize by the item’s cost; see Equation (17). In
lower bounding the total score G, we partition the out-
come space into good/okay/bad outcomes that corre-
spond to a high conditional probability of OPT (i)
covering function f by cost 2/, (ii) eliminating a con-
stant fraction of scenarios by cost 2!, or (iii) neither of
the two cases. Further, by restricting to outcomes that
have a large number of compatible scenarios (else, the
algorithm’s stopping rule would apply), we can
bound the number of relevant outcomes by s1/7. Then,
we consider OPT (up to cost 2%) conditional on all
good/okay outcomes and show that one of these
items has a high score. To upper bound G, we again
consider the total score as a sum over decision paths.

1.3. Related Work

A (1+InQ)-approximation algorithm for the basic
submodular cover problem is obtained in Wolsey
(1982). Dinur and Steurer (2014) show that this is also
the best possible (unless P = NP) because submodular
cover generalizes the set cover problem. In the past
several years, there have been many papers on stochas-
tic variants of submodular cover as this framework
captures many different applications; see Golovin and
Krause (2011), Im et al. (2016), Deshpande et al. (2016),
Grammel et al. (2016), and Navidi et al. (2020).

The stochastic set cover problem was first studied
by Goemans and Vondrak (2006), who show that the
adaptivity gap lies between Q(d) and O(d?), where d is
the number of objects to be covered. Recently, Agar-
wal et al. (2019) improved the upper bound to
O(dlogdlog (mcyax)). As a corollary of Theorem 1, we
obtain a tighter O(dlogd) adaptivity gap. Importantly,
we eliminate the dependence of the items m and maxi-
mum cost, which may even be exponential in d.

An O(log Q) adaptive approximation algorithm for
stochastic submodular cover (independent items) follows
from the work of Im et al. (2016). Liu et al. (2008), Golovin
and Krause (2011, 2017), and Deshpande et al. (2016)
obtain related results for special cases or with weaker
bounds. As mentioned earlier, Agarwal et al. (2019)
obtain r-round adaptivity gaps for independent items.

Theorem 1 improves their bound by an O(r - log (m1¢yax))
factor. We bypass computationally expensive steps in
prior work, such as solving several instances of stochastic
submodular maximization: so our algorithm is more effi-
cient. Our analysis (outlined earlier) is also very different.
Whereas we use a sampling lemma similar to Agarwal
etal. (2019), this result is applied in different manner, and
it only affects the analysis (see Lemma 4).

The scenario submodular cover problem was intro-
duced by Grammel et al. (2016) as a common general-
ization of several problems, including optimal decision
tree (Garey and Graham 1974, Gupta et al. 2017a),
equivalence class determination (Cicalese et al. 2014),
and decision region determination (Javdani et al. 2014).
Grammel et al. (2016) obtain an O(log (sQ)) fully adap-
tive algorithm for it. The same approximation ratio (in
a more general setting) is also obtained by Navidi et al.
(2020). In the correlated setting, we are not aware of
any prior work on limited rounds of adaptivity (when
the number of rounds r <log s). Some aspects of our
analysis (e.g., good/okay/bad outcomes) are similar to
that of Navidi et al. (2020), but additional work is
needed as we have to bound the r-round adaptivity
gap.

As noted earlier, the framework of adaptive sub-
modularity from Golovin and Krause (2017) models
correlations in stochastic submodular cover in a differ-
ent way. Whereas stochastic submodular cover with
independent items satisfies adaptive submodularity,
scenario submodular cover does not. Esfandiari et al.
(2021a) give an O(log (mQ))-approximation in O(logm
log (Qm)) rounds of adaptivity for adaptive submodu-
lar cover (AdSubCov), assuming unit costs. So their
result implies the same bounds for (independent) sto-
chastic submodular cover. Although scenario submod-
ular cover is not a special case of AdSubCov, Grammel
et al. (2016) reformulate scenario submodular cover as
AdSubCov but with a different goal function that is
indeed adaptive submodular. However, this new goal

function has a larger Q-value of r% because of which
the algorithm of Esfandiari et al. (2021a) only implies an

O(log (mQ %:))-approximation in O(log mlog (Qm ;ﬁ))
rounds (see Table 2). To the best of our knowledge,
there are no algorithms for AdSubCov using fewer than
squared-logarithmic rounds of adaptivity.

Tables 1 and 2 provide a comparison of results for sto-
chastic and scenario submodular cover. These results
are in the set-based model with failure probability o(1).

The role of adaptivity is extensively studied for stochas-
tic submodular maximization. Asadpour and Nazerzadeh
(2016) give a constant adaptivity gap under matroid con-
straints (on the probed items). Gupta et al. (2017b) obtain
a constant adaptivity gap for a very large class of prefix-
closed constraints; the constant factor was subsequently



Downloaded from informs.org by [141.211.4.224] on 07 July 2024, at 09:44 . For personal use only, all rights reserved.

Ghuge, Gupta, and Nagarajan: Adaptivity in Stochastic Submodular Cover

Operations Research, 2024, vol. 72, no. 3, pp. 1156-1176, © 2022 INFORMS

1161

Table 1. Comparison of Results for Stochastic Submodular Cover

Stochastic submodular cover

Approximation guarantee

Set-based rounds

Im et al. (2016) O(log Q) Fully adaptive
Agarwal et al. (2019) O(log?Qlog (1max)) O(log Q)

Esfandiari et al. (2021b) O(log (mQcmax)) O(log mlog (Qmcmax))
Our result O(log Q) O(logQ)

improved to two, which is also the best possible as shown
by Bradac et al. (2019). We make use of this result in our
analysis. More generally, the role of adaptivity is exten-
sively studied for various stochastic maximization prob-
lems. Dean et al. (2008) and Bhalgat et al. (2011) study the
stochastic knapsack problem; Bansal et al. (2012) and Beh-
nezhad et al. (2020) examine the stochastic matching
problem; Gupta and Nagarajan (2013) obtain results for
stochastic probing; and Guha and Munagala (2009),
Gupta et al. (2015), and Bansal and Nagarajan (2015)
study stochastic orienteering.

Karbasi et al. (2021), Esfandiari et al. (2021b), and
Gao et al. (2019) study the role of adaptivity and batch
processing in online learning. Their work was moti-
vated by noting that many real-world data observa-
tions are processed in batches. Recently, there have
been several results examining the role of adaptivity in
deterministic submodular optimization (see, for exam-
ple, Balkanski and Singer 2018, Balkanski et al. 2019,
Chekuri and Quanrud 2019). The motivation here was
to parallelize function queries, which are often expen-
sive. In many settings, there are algorithms using a
(poly)logarithmic number of rounds that nearly match
the best sequential (or fully adaptive) approximation
algorithms. Whereas our motivation for parallelizing
the expensive probing steps in stochastic submodular
cover is similar to that in these two lines of work
(online learning and deterministic submodular optimi-
zation), the techniques we use are very different.

A different (and extensively studied) model for sto-
chastic online optimization is the setting of prophet
inequalities, in which the algorithm observes several
random items sequentially and needs to make immedi-
ate selection decisions. The classic setting, introduced
by Krengel and Sucheston (1977), involves selecting a
single item so as to maximize its expected value. See,
for example, Correa et al. (2018) for a recent survey.

Kleinberg and Weinberg (2019) extend the classic
prophet inequality setting to one in which multiple
items may be selected subject to a matroid constraint
(the objective is a linear function of the selected items).
See also the extension to multiple matroid constraints
by Feldman et al. (2021). Rubinstein and Singla (2017)
generalize this setting even further to the case of sub-
modular objectives. A key difference from our setting
is that the benchmark in prophet inequalities is omnis-
cient and allowed to be aware of all the random realiza-
tions before making its decisions, so the focus here is
on competitive analysis, and constant competitive algo-
rithms are known for all these settings. In contrast,
for stochastic submodular cover, we cannot compare
with such a strong omniscient benchmark: one cannot
obtain competitive ratios better than O(Q). Given this,
we compare with the best policy restricted in the same
manner as the algorithm, that is, which is not aware of
item realizations up front.

2. Stochastic Submodular Cover

We now consider the (independent) stochastic sub-
modular cover problem and prove Theorem 1. For
simplicity, we assume that costs ¢; are integers. Our
results also hold for arbitrary costs (by replacing cer-
tain summations in the analysis by integrals). We
work with the permutation model of rounds through-
out this section. We use the notation S ~ S to denote
realization S drawn from the distribution induced by
S; for example, Es_s[f(S)] is the expectation of f(S)
over the randomness of S.

We find it convenient to solve a partial cover version of
the stochastic submodular cover problem. In this partial
cover version, we are given a parameter 6 € [0,1], and
the goal is to probe some items R C A that realize to a
set R achieving value f(R) > Q(1 — 6). We are interested
in a nonadaptive algorithm for this problem. Clearly, if

Table 2. Comparison of Results for Scenario Submodular Cover

Scenario submodular cover

Approximation guarantee

Set-based rounds

Grammel et al. (2016) O(log (sQ)) Fully-adaptive

Esfandiari et al. (2021b), O(log (mQ ;ﬁ)) O(logmlog (Qm iﬁ))
Grammel et al. (2016)

Our result O(logsQ) O(logs)

Note. s <1/pPmin.
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0=1/Q, the integrality of the function f means that
AR) = Q, and we solve the original (full-coverage) prob-
lem. Moreover, we can use this algorithm with different
thresholds to also get the r-round algorithm. The main
result of this section is the following.

Theorem 4. There is a nonadaptive algorithm for the par-
tial cover version of stochastic submodular cover with cost

O(%) times the optimal adaptive cost for the (full) sub-

modular cover.

The algorithm first creates an ordering/list L of the
items nonadaptively, that is, without knowing the real-
izations of the items. To do so, at each step, we pick a
new item that maximizes a carefully defined score
function (Equation (2)). The score of an item cannot
depend on the realizations of previous items on the list
(because we are nonadaptive). The summation in the
score (2) corresponds to the increase in the function
value for the new item X, (scaled by the residual tar-
get) for a random realization of the previous items S;
we also refer to this term as the incremental value of the
item. The actual score is the ratio of the incremental
value and the cost of item &,. Once this ordering L is
specified, the algorithm starts probing and realizing
the items in this order and does so until the realized
value exceeds (1 -0)Q.

Algorithm 1 (Partial Covering Algorithm PARCA(X, f, Q, 6))
1: S0,listL <« (), 7« Q(1-0)
2: while § # X do > Building the list nonadaptively
3: select an item X, € X'\ S that maximizes:

score(X,) :=
1 f(SUX,)—f(S)
—- P(S=S)-Ex.-x. [— )
Ce s~s%)sf Q-£(S)
4: S« SU{X} andlistL < Lo X,
5: R<—0,R«<0
6: while f(R) <7 do > Probing items on the list
7:

X, « first r.v. in list L not in R, and let X, €
U be its realization.

8: Re—RU{X.},R «—RU{X,}

9: return probed items R and their realizations R.

Given this partial covering algorithm, we immedi-
ately get an algorithm for the r-round version of the
problem, in which we are allowed to make r rounds
of adaptive decisions. Indeed, we can first set 6 = Q!/"
and solve the partial covering problem with this value
of 6. Suppose we probe variables R, and their reali-
zations are given by the set R C U. Then, we can con-
dition on these values to get the marginal value
function fg, where fz(S) = f(RU S) — f(R). We note that
fr is submodular, and so we can inductively get an

(r —1)-round solution for this problem. The following
algorithm formalizes this.

Algorithm 2 (r-Round Adaptive Algorithm For Stochastic
Submodular Cover SSC(r, X, f))
1: run PARCA (X, f,Q,Q~1/") for round #1.
2: let R (respectively, R) denote the probed items
(respectively, their realizations) in PARCA.
3: define residual submodular function f := fx.
4: recursively solve SSC(r— 1, ¥ \ R, f).

Theorem 5. Algorithm 2 is an r-round adaptive algorithm
for stochastic submodular cover with cost O(Q" "log Q)
times the optimal adaptive cost.

Proof. We proceed by induction on the number of
rounds 7. Let OPT denote the cost of an optimal adaptive
solution. The base case is r=1, in which case 6 = Q~/"
= é By Theorem 4, the partial cover algorithm PARCA
(X,f,Q,Q7Y/") obtains a realization R with f(R)>
(1-6)Q=0Q-1. As fis integer-valued, we must have
f(R) = Q, which means the function is fully covered. So
the algorithm’s expected cost is O(Qlog Q) - OPT.

We now consider * > 1 and assume (inductively)

that Algorithm 2 finds an r — 1-round O(Qﬁlog Q)-

approximation algorithm for any instance of stochastic
submodular cover. Let 6=Q7'/". By Theorem 4, the
expected cost in round 1 (step 1 in Algorithm 2) is
O(%Ql/rlog Q) -0PT.Let Q := Q - f(R) = f(U) denote the
maximal value of the residual submodular function
f =fr. Note that é <6Q=QUV/" by the definition of
the partial covering algorithm. The optimal solution OPT
conditioned on the variables in R realizing to R gives a
feasible adaptive solution to the residual problem of cov-
ering f; we denote this conditional solution by OPT. We
inductively get that the cost of our r — 1-round solution

onf is at most

O(@ﬁlog Q) .OPT < o(% Q""log Q) - OPT,
where we used é <QU=V/ As this holds for every

realization R, we can take expectations over R to get
that the (unconditional) expected cost of the last r — 1

rounds is O(% Q'"og Q)-OPT. Adding to this the

cost of the first round, which is O(%Ql/ "log Q) -OPT,
completes the proof. O

Remark 1. Assuming that the scores (2) can be computed
in polynomial time, it is clear that our entire algorithm
can be implemented in polynomial time. In particular,
if T denotes the time taken to calculate the score of one
item, then the overall algorithm runs in time poly(m, T),
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where m is the number of items. We are not aware of a
closed-form expression for the scores (for arbitrary sub-
modular functions f). However, as discussed in Section
A2, we can use sampling to estimate these scores to
within a constant factor. Moreover, our analysis works
even if we only choose an approximate maximizer for
(2) at each step. It turns out that T = poly(m1, ¢;ur) many
samples suffice to estimate these scores. So the final run-
time is poly(m, c;uqx); Note that this does not depend on
the number |U| of elements. We note that even the pre-
vious algorithms (Agarwal et al. 2019, Esfandiari et al.
2021a) have a polynomial dependence on ¢, in their
runtime. In the following analysis, we assume that the
scores (2) are computed exactly; see Online Appendix
A2 for the sampling details.

2.1. Analysis for a Call to PARCA

We now prove Theorem 4. We denote by OPT an opti-
mal adaptive solution for the (full) covering problem
on f. We denote by NA the nonadaptive strategy given
by algorithm PARCA. Note that NA probes variables
according to the order given by the list L and stops
when the realized coverage exceeds 7:= Q(1-6) (see
Algorithm 1 for details).

Now, we relate the expected costs of NA and OPT.
We refer to the cumulative cost incurred (by either
OPT or NA) until any point in the solution as time
elapsing. We say that OPT is in phase i when it is in
the time interval [2/,2"") for i>0. Let a:= O(%),
where the constant factor is fixed later. We say that NA
is in phase i when it is in time interval [a -2, & - 2') for
i > 1; phase 0 refers to the time interval [1, a). Define

e ;2 probability that NA goes beyond phase i, that is,
has cost at least a - 2'.

e u: probability that OPT goes beyond phase i — 1,
that is, costs at least 2'.

As all costs are integers, 1 = 1. For ease of notation,
we also use OPT and NA to denote the random cost
incurred by OPT and NA, respectively. The following
lemma, which bounds the noncompletion probability
u;in terms of u;, forms the crux of the analysis.

Lemma 1. For any phase i > 1, we have u; < ** +2u;.

Lemma 1 implies Theorem 4 using standard techni-
ques (see Online Appendix A.1).

2.2. Proof of the Key Lemma (Lemma 1)

Recall the setting of Lemma 1 and fix the phase i > 1.
Consider the list L generated by PARCA(X,f,Q,0).
Let NA denote both the nonadaptive strategy of Algo-
rithm 1 as well as its cost. Note that NA probes items in
the order given by L until a coverage value greater
than 7 := Q(1 — 9) is achieved. We assume (without loss
of generality) that 0 is a power of two, that is, 6 =27%

for some integer z > 0. Indeed, if this is not the case,
we can use a power-of-two value &', where § <6’ <¢:

this only increases the approximation ratio O(% In %) in

Theorem 4 by a constant factor.

For each time t > 0, let X, ;) denote the item that is
selected at time f. In other words, this is the item
that causes the cumulative cost of L to exceed t for
the first time. We define the total gain as the follow-
ing quantity:

a2

Z score(Xep)), (3)

t=a2!

which corresponds to the sum of scores over the time
interval [a -2, a-2"). The proof of Lemma 1 is com-
pleted by giving upper and lower bounds on G, which
we do next. The lower bound views G as a sum over
time steps, whereas the upper bound views G as a sum
over decision paths.

2.2.1. A Lower Bound for G. We show that G = Q(ad)-

(ui —guj-). To this end, we prove the contribution to

G at each time te[a2i_1,a2i),score(é’(g(t))ZQ(%)-

<u7 —Su; ) To prove the lower bound on score(X,)),
we show that there exists a set 7 of items with total

cost O(2'/6) and incremental value Q(ul guj), see

Lemma 5.

Henceforth, fix some time t € [a2'7},a2") in phase i
of our algorithm. Let S be the set of chosen items
(added to list L) until time t and let S denote its real-
ization. Note that S is used crucially in the definition
of score (2), and the total cost of the items S is at most
t. We also need the following key definitions:

1. For any power-of-two 0 E{ :0<j< logQ}
say that a reahzatlon S of S belongs to scale 0 if and
only if ¢ <
scale because it is a power of two. We use £y to denote
all outcomes of S that belong to scale 6. We also use
S ~ &g to denote the conditional distribution of S corre-
sponding to £g.

2. For any scale O, let rj,:=P(OPT covers f with
cost at most 2" and S € &p).

(s) < 0. Note that 6 corresponds to some

3. Scale 0 is called good if H
Ps_s(S € &p).

Here is an outline of the rest of the analysis. Lemma 2
characterizes the stopping rule in NA in terms of the
scale O of realization S. Lemma 3 lower bounds the
total 7j, value over good scales in terms of the noncom-
pletion probabilities #; and u;. Then, Lemma 4 shows
that, for each good scale 0, there is a subset 7 g of items

>1, where P(g) :=
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in which (i) the total cost is O(2'/6) and (ii) the total
incremental value is large conditional on realization
S € £p. Finally, Lemma 5 shows that taking all items in
T o (for all good scales 0 > 6) provides a set 7 with total
cost O(2'/6) and large incremental value (uncondition-
ally). This can then be used to lower bound G as noted.

Lemma 2. The realization S is in a scale O < ¢ if and only if
f(S) = t. Hence, NA terminates by time t if and only if the
realization of S is in a scale 0 < 0.

Proof. Note that, if the realization of S is in some scale
0 > 20, then

f9)<0-B<0-s0=1,

and NA would not terminate before time t. On the other
hand, if the realization of S is in a scale 6 < 0 (note that
all scales are powers of two), then f(S) > Q—-0Q >,
and NA would terminate before timet. O

Q

61
Lemma 3. We have Y.9-5, good?jp = Ui — 5

Proof. First, we upper bound X g not goodrlg Consider

any scale 0 that is not good. Then, P(‘;:“ 7<% L that is,
P(OPT <2/|S € 59) <1/6, which implies P(OPT > 2|

Seé‘@)> >5P(5) So

> r§6<5

6 not good

> P(Eg)-P(OPT >2'|S € &)
6 not good

1 .
< 5291 P(OPT > 2" and S € £p) < (4)

ul| &

where the last inequality uses the fact that oP(OPT >
2'and S € Eg) = u.

We now upper bound Y g<s7jy. By Lemma 2, if the
realization S is in scale 6 < 9, then NA ends before time

t < a2’ that is, it does not go beyond phase i. Hence,
Drg< D P(S€&p) <1—u; (5)

0<6 0<6

We now use the fact that 1-uj = X7}, where we
sum over all scales. So

Z ze—an Z 7;9_27:9

0>6, good Onot good 0<6

> (=) =g - (- ==,

where we use (4) and (5). O

We now define a function g : 2" — Ry as follows:

gT):= > P(E)- EMSM

scale 0>6 Q —f(S)
fs(T)
= P(S=9)- , VTcU. 6
o2 TGS Q)

We use fs(T) =f(SUT) —f(S). The second equality is
by Lemma 2. The function g is monotone and sub-
modular because fs is monotone and submodular for
each S C U, and g is a nonnegative linear combination
of such functions. Moreover, for any item X, its incre-
mental value (the summation in (2)) is Ex,[ g(X.)], and
we have

score(X,) = cl ‘Ex, [8(Xe)].

Constrained Stochastic Submodular Maximization.
Our analysis makes use of some known results for sto-
chastic submodular maximization. Here, we are given
as input a nonnegative monotone submodular function
h:2Y - Ry and independent stochastic items X =
{X1,..., X} such that each X; realizes to some element
of the ground set U. There is a cost c; associated with
each item X; and a budget B on the total cost. The goal is
to select S C X (possibly adaptively) such that the total
cost of S is at most B and it maximizes the expected
value Es.s[h(S)]. Note that an adaptive solution selects
items S sequentially (based on prior realizations), so the
subset S is itself random. On the other hand, a nonadap-
tive solution involves selecting a deterministic subset S
up front. The adaptivity gap for stochastic submodular
maximization is at most two; see theorem 1 in Bradac
etal. (2019). In other words, for any instance, the optimal
adaptive value is at most two times the optimal nona-
daptive value.

Lemma 4. For any good scale O, there exists a subset T g C

X\ S with o(T ) <242 such that

L 0Q 7
6 P(&)

Es-eoBro-1,[f(SU To) = f(S)] = @)

Proof. We construct set T 9 as follows. Initially,
Tg« 0.Foreachk=1,2,..., 9,

1. Sample realization S of S from &g.

2. Let T € X'\ S be an optimal nonadaptive solution
to the stochastic submodular maximization instance
with items X'\ S, submodular function fs, and cost
budget B = 2'. Note that the distribution of items X'\ S
is independent of the realization S of S.

3. Set T@ — T@ U Tk.

By construction, ¢(7g) < %‘21. So we focus on the
expected function value. Consider any S € & as the
realization of S. Let 75 denote the nonadaptive solu-
tion obtained in step 2 for realization S. Define wj 5 as

the probability that OPT covers f with cost at most 2’
given that S realizes to S; that is,

wj s := P(OPT covers f with cost at most 2118 =9).

Note that Ysce,w;s - P(S = S) = 7}y. Let ADs denote OPT
conditional on §=S§, restricted to items X\ S and
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until time 2. Note that ADs is a feasible adaptive solu-
tion to the stochastic submodular maximization in-
stance in step 2: every decision path has total cost at

most 2'. The expected value of ADs (under function fs)
is at least (Q—f(S)) wjs by definition of wjs. As
Se&p, we have Q —f(S) 2
value at least TQ wj 5. Now, usmg the factor two adap-

tivity gap for stochastic submodular maximization
(discussed earlier), it follows that the nonadaptive sol-
ution 7 g has expected value

Erg-74[fs(Ts)] = Er-7,[f(SUTs) —f(S)]

1 0
= (value of ADg) > TQ-ZU;S, VSe&y.

wh1ch implies ADs has

Taking expectations over S (conditional on S € &),
EsErs-7[f(S U Ts) —f(S)|S € Ep]

= S Err [f(SUTs)~£(S)]-P(S = 5|S € £o)
Se€y

>Z ‘wjgP(S=S|S € &)
Se&y
P(S=5)_0Q 1

0Q .
4 S;gg iSTP(Ey) 4 P(Ep)

The first equality uses the fact that the item realiza-
tions in 7s are independent of the realization S of S.
The left-hand side of the relation can be rewritten to
give

L0Q 7
Bse Br [ f(SUT) ~fO) 2 g @
For a contradiction to (7), suppose that
6 *
B Br,-r (S U To) = fS)] < 2 ol )

6 P&
Subtracting Equation (9) from Equation (8) gives the
following;:
0Q T

12 P(&y)

< Es-g,ErsEr, [f(S U Ts) — f(S U To)]

< Esg,Er,Er,[f(SUTg UTs)—f(SUTo)]
< Es-gyErsEr, [f(To U Ts) — f(To)], (10)

where the second inequality uses monotonicity of f
and the last one its submodularity.

Let7H =T, UT,...
until iteration k. Then,

U 7 denote the items selected

144/6

Er,[f(Te)] = Z Eqo [F(T®) - f(T*V)],

where we define f(T(?)) := 0. Note that, in each iteration
k, the sample S is drawn independently and identically

1165
from £y, and items 7, = 7 5 are added.
Eoo [f(T®) = F(T* )]
= Es-g, Er, Eren [f(T* D U Ts) - A(TD)]
QQ r;
> Es.g, ErEr, [f(To U Ts) = f(Tg)] > B P(? )

The first inequality uses 7% € 7 and submodular-
ity, and the second inequality uses (10). Adding over
all iterations k,

rl@ %@ 7;6
Er,[f(To)] >Z 12 P(&) 6 12 P(&) ~ 9

where the last inequality uses the fact that 0 is a good
scale. This is a contradiction because the maximum
function value is Q. This completes the proof of (7). O

Lemma 5. For any S C X, there exists a subset T C X\ S
of total cost at most 12 - 2" with

>3 Elg(X)] 2 5

X.eT

DT T

0>6, good

Proof. Let B denote the set of good scales 0 with 0 > 6.
Note that degé S% as the scales are powers of two.
From Lemma 4, let 7 denote the items satisfying (7)
for each scale O € B. Define T = UgepT g. As claimed,
the total cost is

144 144

(T)<Z(Te)<22 —2’

0eB 0eB

Next, we bound the total incremental value as

S E[g(X)] = Err

X.eT

8w

ueT

>Err[g(D)], (11)

where the inequality is by submodularity of g.
By definition of function g (see (6)),

f(SVUT) —f(S)}
Q-f(S)

f(SUT) —f(S)]
Q-f(& |

Er-7[g(T)] = > P(€o) - Es.g,Er1

0>0

> > P(Ep) - Es-g, Er-r
0eB

(12)

In order to bound the last term, consider any 0 € B. By
(7) and T 2 7Ty, it follows that

L 0Q 1y

Y .
o P(S) OeB

Es-g, Er-r[f(SUT)-f(S)] 2
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Using the fact that % <Q-f(S)<6Qforall Se &y we
get

VO eB.

Es-g,Er-1

f(SuT)—f(S)]> 1 7,
Q-f5) |76 Pleo)

Combined with (11) and (12), we get 3 x,e7E[g(X.)] =
1.3 geprig, which completes the proof of the lemma. O

Using Lemma 5 and averaging,

E[ g(X
max score(X,) > max score(X,) > ZaerBlgXe)]
XoeX\S X.€T Sx.e7Ce
6 *
> o (13)

= i
ﬁ -2 0>0, good

where g = O(1).
Combining (13) and Lemma 3, and using the greedy
choice in step 3 (Algorithm 1),

0 6 .
score(Xy(p) = 7y (ui ~z ui).

We note that this inequality continues to hold (with a
larger constant ) even if we choose an item that only
maximizes the score (2) within a constant factor.

Using this inequality for each time ¢ during phase i,
we have

G>a2! -i(ui - éu’-*)

_ad ( 6
B2’ 5

—%’ Uu; —gu:). (14)

We use this lower bound for G in conjunction with an
upper bound, which we prove next.

2.2.2. An Upper Bound for G. Here, we show that
G=0(n(1/6))-ui—1. We now consider the imple-
mentation of the nonadaptive list L and calculate G
as a sum of contributions over the observed decision
path. Let IT denote the (random) decision path fol-
lowed by the nonadaptive strategy NA: this consists
of a prefix of L along with their realizations. Denote
by (X1,X5,...,) the sequence of realizations (each in
U) observed on Il. So item & is selected between

time Zj;ll ¢ and ch:l c¢. Let h(p) index the first (last)
item in II (if any) that is selected (even partially)
during phase i, that is, between time a2 and a?2'.
For each index h <j<p, let t; denote the duration of
time that item & is selected during in phase i, so t; is
the width of interval [Z];l ce, Z]%:l cel N2, a2']. Tt
follows that t; <c;. Define G(IT):=0 if index h is
undefined (i.e., IT terminates before phase i), and

otherwise,

_wt (X, XD (X, X))

G(H)._%;Cj Q—-f({Xy,..., Xj-1})

fUXy, ., X)) = f({ Xy, ..., X))
Q-f({Xy,...,Xj1}) )

<

=

Il
=

(15)
j

By the stopping criterion for L, the f value before the
end of I'T remains at most 7 = Q(1 — 9). So the denom-
inator, that is, Q —f({X1,...,Xj_1}), is at least 6Q for
all j.

Lemma 6. For any decision path I1, we have G(II) <
1+1In(1/0).

Proof. For each h<j<p, let V;:=f({Xy,...,X;}); also
let Vo =0. Forj<p—1, as noted, V; < 7; as f is integer-
valued, V; €{0,1,...,[7]}. We have

j=h y=0 Q- Vf—l -y

g1 Q
E —<In[=]=1 .
= e=son t = n(éQ) n{1/0)

The second inequality uses Q—-V;.1—y>Q-V;+1
>Q-1+1=0Q +1. Theright-hand side of (15) is then

-1
PZ Vi=Via  Vy=Vpa
Q-Vi1 Q-V,u

j=h
where we used V), < Q. This completes the proof. [

<1+1n(1/5),

Taking expectations over the various decision paths
means G = En[G(IT)], so Lemma 6 gives

G < (1+1In(1/0))-P(IT doesn't terminate before phase i)
=(1+1In(1/6))- uj—1. (16)

2.2.3. Wrapping Up. To complete the proof of Lemma 1,
we set a = %(1 +In(1/0)) = O(%) and combine (14)
and (16) to get

s G ad -(u-—éu*)
S 14In(1/6) T 21 +In(1/0) \ 15

6 *
= 4(14[ 5 u; )
This completes the proof of Lemma 1 and, hence, The-
orem 1.

3. Scenario Submodular Cover
In this section, we describe an r-round adaptive algo-
rithm for the scenario submodular cover problem.
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Again, we work with the permutation model of rounds
(unless stated otherwise). As before, we have a collec-
tion of m stochastic items X = {X3,...,X,,} with costs
{ci};. In contrast to the independent case, the stochas-
tic items here are correlated, and their joint distribution
D is given as input. The goal is to minimize the
expected cost of a solution & C A" that realizes to a fea-
sible set (i.e., (S) = Q). The joint distribution D specifies
the (joint) probability that X realizes to any outcome
X e U™. We refer to the realizations X € U™ that have a
nonzero probability of occurrence as scenarios. Let s
denote the number of scenarios in D, that is, the sup-
port size of distribution D. The set of scenarios is
denoted M ={1,...,s}, and p, denotes the probability
of each scenario w € M. Note that 3.° _, p,, = 1. For each
scenario w € M and item X,, we denote by X.(w)e U
the realization of X, in scenario w. The distribution D
can be viewed as selecting a random realized scenario
w* € M according to the probabilities {p,,}, after which
the item realizations are deterministically set to
(X1(w"), ..., Xu(w")). However, an algorithm does not
know the realized scenario w: it only knows the real-
izations of the probed items (using which it can infer a
posterior distribution for w*). As stated in Section 1.1,
our performance guarantee in this case depends on the
support size s. We also show that such a dependence is
necessary (even when Q is small).

For any subset S C X of items, we denote by S(w) the
realizations for items in S under scenario w. We say
that scenario w is compatible with some realization {1, :
X, € S}if and only if, X.(w) = 1, for all items X, € S.

3.1. The Algorithm

Similar to the algorithm for the independent case, it is
convenient to solve a partial cover version of the sce-
nario submodular cover problem. However, the notion
of partial progress is different: we use the number of

Figure 1. (Color online) Illustrations of Key Definitions

compatible scenarios instead of function value. For-
mally, in the partial version, we are given a parameter
0€[0,1], and the goal is to probe some items R that
realize to a set R such that either (i) the number of com-
patible scenarios is less than 6s or (ii) the function f is
fully covered. Clearly, if 6 =1/s, then case (i) cannot
happen (it corresponds to zero compatible scenarios),
so the function f must be fully covered. We use this
algorithm with different parameters 0 to solve the -
round version of the problem. We show the following.

Theorem 6. There is a nonadaptive algorithm for the partial
version of scenario submodular cover with cost

O(%(ln%+log Q)) times the optimal adaptive cost of the

(full) submodular cover.

The algorithm first creates an ordering/list L of
the items nonadaptively, that is, without knowing the
realizations of the items. To do so, at each step we pick
a new item that maximizes a carefully defined score
function (Equation (17)). The score of an item depends
on an estimate of progress toward (i) eliminating sce-
narios and (ii) covering function f. Before we state this
score formally, we need some definitions.

Definition 3. For any S C X, let H(S) denote the parti-
tion {Y1,..., Y} of the scenarios M in which all scenar-
ios in a part have the same realization for items in
S. Let Z:={Y € H(S): |Y| = 6s} be the set of “large”
parts having size at least 6s.

In other words, scenarios w and ¢ lie in the same
part of H(S) if and only if S(w) = S(0). Note that parti-
tion H(S) does not depend on the realization of S.
Moreover, after probing and realizing items S, the set
of compatible scenarios must be one of the parts in
H(S). Also, the number of large parts |Z]| <=1 as
the number of scenarios |M| =s. See Figure 1(a) for an
example.

(b)

Notes. (a) S ={X,,, X, } and we partition the scenarios M based on outcomes of S to get H(S) = {Y1, Y2, Y3}. (b) We further partition scenarios Y,
based on realizations of X,,.The part of Y, compatible with outcome X,, = 2 is the largest cardinality part, that is, B.,(Y>). The shaded region is

Le; (YZ)
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Definition 4. For any X, € X and subset Z C M of sce-
narios, consider the partition of Z based on the real-
ization of X,. Let B.(Z) C Z be the largest cardinality
part and define L.(Z) := Z\B,(Z).

Note that L.(Z) comprises several parts of the pre-
ceding partition of Z. If the realized scenario w* € L,(Z)
and X, is selected, then at least half the scenarios in Z
are eliminated (as being incompatible with X,). Figure
1(b) illustrates these definitions.

For any Z € H(S), note that the realizations S(w) are
identical for all w € Z: we use S(Z) C U to denote the
realization of S under each scenario in Z.

If S denotes the previously added items in list L, the
score (17) of any item X, involves a term for each part
Z € Z,which itself comes from two sources:

e Information gain 3,1, (z)Po, the total probability of
scenarios in L¢(Z).
fSZ)VX, (0)—f(5(2))

orsz)
the expected relative gain obtained by including ele-
ment X,, where the expectation is over the scenarios in
part Z.

The overall score of item X, is the sum of these terms
(over all parts in Z) normalized by the cost c,. In defin-
ing the score, we only focus on the large parts Z. If
the realization of S corresponds to any other part, then
the number of compatible scenarios is less than 0s
(and the partial-cover algorithm would terminate).

Once the list L is specified, the algorithm starts prob-
ing and realizing the items in this order and does so
until either (i) the number of compatible scenarios
drops below 0s or (ii) the realized function value equals
Q. Note that, in case (ii), the function is fully covered.
See Algorithm 3 for a formal description of the nona-
daptive partial-cover algorithm.

e Relative function gain ¥ ,ezpPo -

Algorithm 3 (Scenario Partial Covering Algorithm
SPARCA(X, M, f,Q,0))

1: Se—0andlistL « ().

2: whileS # X do > Building the list nonadaptively

3: define Z and L.(Z) for each Z € Z as in Defini-
tions 3 and 4.
4: select an item X, € X'\ S that maximizes:
score(X,)
1 (8(2) U Xe(w)) —f(S(2))
:_Z Z pm+2pw'f _e SZf
Ce Zez\weL(2) weZ Q-f(5(2))
17)
5: S—SU{X,}andlistL < Lo X,
6: R—0,R—0, He— M.
7: while |H| > 6|M| and f(R) < Q do > Probing items
on the list
8: X, « firstr.v.in list Lnotin R
9: X, = v € U be the realization of X,.

10: R—RU{v},R —RU{X.}

11: He«—{weH:X.,(w) =0}
12: return probed items R, realizations R and compat-
ible scenarios H.

Given this partial covering algorithm, we immedi-
ately get an algorithm for the r-round version of the
problem, in which we are allowed to make r rounds
of adaptive decisions. Indeed, we can first set 6 = s~/
and solve the partial covering problem. Suppose we
probe the items R (with realizations R C U) and are
left with compatible scenarios H C M. Then we can
condition on scenarios H and the marginal value func-
tion fr (which is submodular) and inductively get an
r — 1-round solution for this problem. The following
algorithm and result formalizes this.

Algorithm 4 (r-Round Adaptive Algorithm For Scenario
Submodular Cover NSC(r, X, M, f))

1: run SPARCA(X, M, f,Q, |M|~"/") for round one. Let
R denote the probed items, R their realizations,
and H C M the compatible scenarios returned by
SPARCA. _

2: define residual submodular function f := fx.

3: recursively solve NSC(r—1, ¥ \ R, H, f).

Theorem 7. Algorithm 4 is an r-round adaptive algorithm
for scenario submodular cover with cost O(s'/"(logs+
rlogQ)) times the optimal adaptive cost, where s is the
number of scenarios.

3.2. Analysis for the Partial Covering Algorithm
We now prove Theorem 6. Consider any call to
SPARCA. Let s = |M| denote the number of scenarios
in the instance. Recall that the goal is to probe items
R € X with some realization R and compatible scenar-
ios H € M such that (i) |H| < 6s or (ii) AR) = Q. We de-
note by OPT an optimal adaptive solution for the
covering problem on f. Let NA denote the nonadaptive
strategy given by algorithm SPARCA. Note that NA
probes items in the order given by the list L and stops
when either condition (i) or (ii) occurs. We consider the
expected cost of this strategy and relate it to the cost of
OPT. The high-level approach is similar to that for the
independent case, but the details are quite different.

We refer to the cumulative cost incurred until any
point in a solution as time. We say that OPT is in phase
i in the time interval [2/,2"*!) for i > 0. We say that NA
is in phase i in the time interval [ - 21 B 2') fori>1.
We use phase 0 to refer to the interval [1,5). We set
B :=18log (Q/6); this choice becomes clear in the proof.
For any phase i > 0, we use

e 1;: probability that NA goes beyond phase 7, that is,
costs at least 8- 2".

e u: probability that OPT goes beyond phase i — 1,
that is, costs at least 2'.
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Because all costs are integers, uj=1. For ease of
notation, we also use OPT and NA to denote the random
cost incurred by OPT and NA, respectively. The main
result here is that E[NA] < O(g) - E[OPT]. As in the in-
dependent case, it suffices to show the following key
lemma.

Lemma 7. For any phase i > 1, we have u; < *- + 2u;.

Using this lemma, we can immediately prove Theo-
rem 6: this part of the analysis is identical to the one for
Theorem 4 (using Lemma 1). We provide the complete
proof of Lemma 7 in Online Appendix B.

3.3. Tight Approximation Using More Rounds

We now show that a better (and tight) approximation is
achievable if we use 2r (instead of r) adaptive rounds.
The main idea is to use the following variant of the
partial covering problem, called scenario submodular
partial cover (SSPC). The input is the same as scenario
submodular cover: items X, scenarios M with |M| =s,
and submodular function f with maximal value Q.
Given parameters 0, ¢ € [0,1], the goal in SSPC is to
probe some items R that realize to set R C U such that
either (i) the number of compatible scenarios is less
than 6s or (ii) the function value f(R) > Q(1 — ¢). Unlike
the partial version studied previously, we do not
require f to be fully covered in case (ii). Note that setting
€= é, we recover the previous partial covering prob-

lem, so SSPC is more general.

Corollary 3. There is a nonadaptive algorithm for SSPC
with cost O(% (ln%+ In %)) times the optimal adaptive cost

for the (full) submodular cover.

The algorithm and proof are nearly identical to
SPARCA. See Online Appendix B for the details.

The following result shows how SSPC can be used
iteratively to obtain a 2r-round algorithm.

Theorem 8. There is a 2r-round adaptive algorithm for sce-
nario submodular cover with cost O(sl/ "log (sQ)) times the
optimal adaptive cost, where s is the number of scenarios.

Setting 7 =logs, we achieve a tight O(log(sQ)) ap-
proximation in O(log s) rounds. Combined with the con-
version to set-based rounds (Theorem 10), this proves
Corollary 2.

4. Applications

4.1. Stochastic Set Cover

The stochastic set cover problem is a special case of
stochastic submodular cover. The input is a universe
E of d objects and a collection {X7, ..., X}, } of m items.
Each item &; has a cost c; € R, and corresponds to a
random subset of objects (with a known explicit distri-
bution). Different items are independent of each other.

The goal is to select a set of items such that the real-
ized subsets cover E and the expected cost is mini-
mized. This problem was first studied by Goemans
and Vondrédk (2006), in which it is shown that the
adaptivity gap lies between Q(d) and O(d?). The cor-
rect adaptivity gap for stochastic set cover was posed
as an open question by Goemans and Vondrak (2006).
Subsequently, Agarwal et al. (2019) made significant
progress by showing that the adaptivity gap is
O(dlogd -log (mcyay)). However, as a function of the
natural parameter d (number of objects), the best
adaptivity gap remained O(d?) because the number of
stochastic sets m and maximum cost ¢,y may be arbi-
trarily larger than d.

As a corollary of Theorem 1, we obtain an O(dlogd)
adaptivity gap that nearly matches the Q(d) lower
bound. In fact, for any r>1, we obtain an r-round
adaptive algorithm that costs at most O(d'/"logd)
times the fully adaptive cost. This nearly matches the

Q(r%dl/ ’) r-round adaptivity gap shown in Agarwal

et al. (2019). We note that, when r = logd, we obtain an
O(logd)-approximation algorithm with a logarithmic
number of adaptive rounds; this approximation ratio
is the best possible even for deterministic set cover.

4.2. Sensor Placement with Unreliable Sensors

In the sensor placement problem, we are concerned
with deploying a collection of sensors for visual sur-
veillance or to acquire information on air quality, tem-
perature, humidity, etc. One approach to model this
problem (suitable for visual surveillance) is to assume
that each sensor has a particular sensing region and to
minimize the number of sensors required to cover
some target region. This corresponds to the art gallery
problem (see Gonzalez-Banos 2001), which, in turn, is
a special case of set cover. In the setting with unreli-
able sensors that we consider, each sensor may fail
independently with some probability (in which case it
does not cover its region), and the goal is to minimize
the expected number of sensors so as to cover the tar-
get region. This can be modeled as an instance of sto-
chastic set cover discussed in Section 4.1.

An alternative approach (suitable for information
acquisition) is to model sensor readings as Gaussian
processes (Deshpande et al. 2004), in which the goal is
to place the minimum number of sensors so as to
achieve a target level of information gain. Formally,
let [m] denote the set of locations and Z; be a random
variable representing the information at location
ie[m]. Let Z=(Z;:ie[m]) denote the information at
all locations. A sensor at location i makes observation
Yi=Z;+e€;, where ¢; is an independent (random)
noise term. For any subset A C [m], let Y4 ={Y;: i€ A}
denote the random observations at the locations in A.
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Given Y4 =Y4, we can use E[Z;|V4 =Y4] to make
predictions on the information at any location i. The
information gain of the system if we place sensors at
locations A C [m] is defined as

§(A) =H(2) -H(Z[Va),

where H(Z|YV4) = Ey, [H(Z|YVa = Ya)] denotes the con-
ditional entropy of Z given V4.

Krause and Guestrin (2005) show that the function
g(A) is monotone and submodular in A assuming that
the observations Y, are conditionally independent
given Z; see, corollary 4 in their paper. The conditional
independence assumption is satisfied in our setting
because the noise terms ¢€; are independent. Given a

target Q on the information gain, the goal in the deter-
ministic problem is to find sensor locations A C [m] so
that g(A) > Q.

In the stochastic setting (with unreliable sensors),
each sensor i € [m] is active independently with some
probability p; (and fails otherwise). The goal is to place
sensors (possibly adapting based on the active/failure
outcomes) so that the information gain from the active

sensors is at least @ This can be modeled as an
instance of stochastic submodular cover as follows.
The items correspond to the m locations. For each sen-
sor at location i € [m], we define two elements T; and F;
corresponding to active and failure outcomes, respec-
tively. The ground set U = {T;:i € [m]} U {F;:ie[m]}.
For each i€ [m], random variable X; =T, with pro-
bability p; and X; =F; otherwise. Define function f :
2U 5 R, asfollows

£(S)=g(W(S)), where W(S)={ie[m]:T;€S}, VScU.

Observe that f is monotone and submodular because g
is monotone and submodular (over [m]). Furthermore,
let M be a large enough integer so that scaling f by a fac-
tor of M makes it integer-valued. Theorem 1 can be

applied to the scaled function f with target Q =M - Q.
Then, we obtain an r-round adaptive algorithm of cost at
most O(Q'/"log Q) times an optimal fully adaptive algo-
rithm for the unreliable sensor placement problem.

4.3. Optimal Decision Tree

The optimal decision tree problem captures problems
from a variety of fields, such as learning theory, medi-
cal diagnosis, pattern recognition, and Boolean logic;
see the surveys Moret (1982) and Murthy (1997). In an
instance of optimal decision tree (ODT) we are given s
hypotheses with probabilities {p;};_;. An unknown
random hypothesis y* € [s] is drawn from this distri-
bution. There is a collection of m tests, and test e costs
c. € Ry and returns a positive result if y* lies in some
subset T, C [s] and a negative result if y* ¢ T,. The goal
is to identify y* using tests of minimum expected cost.

We can transform any ODT instance into an instance
of scenario submodular cover. We associate scenarios
with hypotheses, and the distribution D is given by
probabilities {p;};_,. For each test ¢, we have an item X,
of cost c.. The ground set U = {e*,e” : ¢ test}, which
corresponds to all possible (individual) test results.
Item X, realizes to e (¢7) if test e is positive (,negative).
If y* is the realized scenario, then the item realizations
correspond to the test outcomes for hypothesis y*. For
each test ¢, define subsets T(e™) = T, and T(e*) = [s]\T.
The submodular function is f(S) = min{|UyesT(v)],
s—1} for S € U. Note that f(S) is the number of incom-
patible hypotheses given the tests results S. Moreover,
Q =s5-1. Applying Theorem 2, for any r > 1, we obtain
an r-round adaptive algorithm that costs at most
O(rs'/"logs) times the fully adaptive optimum. Our
lower bound for scenario submodual cover (Theorem

3) also implies an Q(@ st/ r) bound on the r-round-

adaptivity gap for ODT. So, for any constant r > 1, our
r-round-adaptivity gap is tight up to an O(log?s) factor.
Moreover, using Corollary 2, we obtain an O(logs)
round algorithm of cost O(logs) times the adaptive
optimum. As shown in Chakaravarthy et al. (2011),
O(logs) is the best possible approximation ratio even
for fully adaptive algorithms.

4.3.1. Application to Medical Diagnosis. Recall our
motivating application in medical diagnosis in which
we know s possible conditions from which a patient
may suffer (along with the priors of their occurrence),
and our goal is to adaptively perform tests to identify
the correct condition as quickly (and cheaply) as possi-
ble. This problem, known as automated diagnosis, can
be directly cast as the optimal decision tree problem.
See, for example, Azar and El-Metwally (2013) for
applications of decision tree methods to diagnostic
problems. See also Bellala et al. (2012) for an applica-
tion of ODT in emergency response. Here, a first res-
ponder observes the symptoms of a victim of chemical
exposure in order to identify the toxic chemical.

4.3.2. Application to Active Learning. In a typical
(binary) classification problem, there is an X set of data
points, each of which is associated with a + or — label.
There is also a set H of hypotheses, in which each
hypothesis provides a +/— labeling of the data points.
It is assumed that the true classifier/hypothesis h*
belongs to H. In the average-case setting that we con-
sider, there is also a Bayesian prior py(-) for the true
hypothesis, that is, Pr [l = h] = py(h) for all h € H. The
learner needs to identify the true hypothesis i*. In active
learning, the learner can query the label of any point e €
X by incurring some cost ¢, (which corresponds to
some expert labeling e). The goal is to identify i by
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querying points (possibly adaptively) at the minimum
expected cost. See, for example, Dasgupta (2004), Guil-
lory and Bilmes (2009), and Cicalese et al. (2014) for
more details on this approach. This is exactly an in-
stance of an optimal decision tree, in which the data
points correspond to tests. Applying Theorem 2, for
any r > 1, we obtain an r-round adaptive algorithm that
costs at most O(r|H|'/"log (|H|)) times the fully adap-
tive optimum.

4.4. Shared Filter Evaluation

This problem is introduced by Munagala et al. (2007)
in the context of executing multiple queries on a data
set with shared (Boolean) filters. There are n independ-
ent “filters” X1, ..., X,, and each filter i has cost ¢; and
evaluates to true with probability p; (and false other-
wise). There are also m conjunctive queries, in which
each query j € [m] is the “and” of some subset Q; C [#]
of the filters. So query j is true iff X; = true for all i € Q;.
The goal is to evaluate all queries at the minimum
expected cost. This can be modeled as an instance of
stochastic submodular cover. The items correspond to
filters. The ground set U = {T;,F;}._,, where T; (F;) cor-
responds to filter i evaluating to true (false). The sub-
modular function is

£5):= S min{IQ], 1Q- 1SN (Fi:ic Q)|
j=l

+1SN{Ti:ie Q) ).

Note that the term for query Q; is |Q;| iff the query’s
value is determined: it is false when a single false filter
is seen and it’s true when all its filters are true. The max-
imal value of the function is Q = Zi |Qj| <mn. Using
Theorem 1, for any r > 1, we obtain an r-round adaptive
algorithm with cost at most O((mn)""
the optimal adaptive cost.

-log (mmn)) times

4.5. Correlated Knapsack Cover

There are n items, each of cost ¢; and random (integer)
reward X;. The rewards may be correlated and are
given by a joint distribution D with s scenarios. The
exact reward of an item is only known when it is
probed. Given a target Q, the goal is to probe some
items so that the total realized reward is at least Q, and
we minimize the expected cost. This is a special case of
scenario submodular cover. The ground set U = {(7,v) :
i€[n],0 <v<Q}, where element (i, v) represents item
X realizing to v. Any realization of value at least Q
is treated as equal to Q: this is because the target is
itself Q. For each element e = (i,v) € U, let a, = v de-
note its value. Then, the submodular function is f(S) =
min{¥,esa., Q} for S € U. By Theorem 1, we obtain an
r-round adaptive algorithm with cost at most O(s!/"
(logs +rlogQ)) times the optimal adaptive cost.

4.6. Stochastic Score Classification
The stochastic score classification (SSClass) problem
introduced by Gkenosis et al. (2018) models applica-
tions such as assessing disease risk levels of patients
and giving quality ratings to products. Formally, there
are n binary random variables A, ..., X, which are
used to compute a score r(X) = X7, 4;X;, where a; € Z,
for all i. The realization X; € {0,1} of variable X; can
be determined by performing a query of cost ¢; € R,.
Additionally, there are B + 1 integers a; <--- < ap4
that partition the possible scores into classes. Realiza-
tion X of X' is in class j € [B] iff a; < r(X) < aj41 — 1. We
can view the a; values as “cutoffs” for the classes. The
goal is to determine the correct class by querying vari-
ables at minimum expected cost. Note that it is not
necessary to query all variables to determine the class.
Gkenosis et al. (2018) show that any instance of
SSClass can be converted into an instance of stochas-
tic submodular cover as follows. The ground set
U=1{(0),(@1) : i € [n]}, corresponding to the possible
realizations of the variables. Consider any index
j€12,...B}. Recall the cutoff a; and let ﬁj =30 a—
a;j + 1. Define two submodular functions:

R}(S) = min{aj, D al} and

(i,1)eS

RJQ(S) = min{ﬁj, > ai}, vSscu.
(i,0)eS
Observe that R} (S) = a; (i.e., R} is covered) iff the real-
izations in S imply that the score is af least a;. Similarly,
RY(S) = B; iff the realizations in S imply that the score is
at most aj.1 —1. We combine these two functions using
the “OR” construction of submodular functions to get

8(5) =, — (@~ RN(S) - (B, ~ R(S)).

Note that g; is covered (i.e., has value a;8)) if and only

if either R} or R]Q is covered. Moreover, gj is monotone
and submodular. Finally, we combine all these B func-
tions using the “AND” construction to obtain f(S) :=
Z]B:z gi(5). Note that f is monotone and submodular,
and it is covered if and only if each of the g/s is
covered, which implies that the class is correctly iden-
tified. Moreover, the maximal value of f is Q=
Sioaif; < BW? < W3, where W= 31 a;.

Using Theorems 1 and 2, we obtain r-round adap-
tive algorithms for independent and correlated distri-
butions with approximation ratios O(W*"log W) and
O(rs'/"log (sW)), respectively (relative to the fully ad-
aptive optimum). Recall that s is the number of scenar-
ios for correlated distributions. Very recently, Ghuge
et al. (2022) obtained a nonadaptive (i.e., one round)
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algorithm that achieves an O(1) approximation for
stochastic score classification with independent distri-
butions; however, their result is not applicable for cor-
related distributions.

We can also extend our result to the d-dimensional
score classification problem, in which one needs to
determine the classes of d different score functions
r1, --- 4. For each score r, we define a submodular
function f as earlier and define a combined function
f(S) :=34_ £i(S). Now, the maximal value Q <dW>.
So we obtain r-round adaptivity gaps of O(d"/"W3/"
log (dW)) and O(rs'/"log(dsW)) for the independent
and correlated cases.

5. Computational Results

We provide a summary of computational results of
our r-round adaptive algorithms for the stochastic set
cover and optimal decision tree problems. We con-
ducted all experiments using Python 3.8 and Gurobi
8.1 with a 2.3 Ghz Intel Core i5 processor and 16 GB
2133 MHz LPDDR3 memory.

5.1. Stochastic Set Cover

5.1.1. Instances. We use the Epinions network (http: //
snap.stanford.edu/) and a Facebook messages data
set described in Rossi and Ahmed (2015) to generate
instances of the stochastic set cover problem. The Epi-
nions network consists of 75,879 nodes and 508,837
directed edges. We compute the subgraph induced by
the top 1,000 nodes with the highest out-degree (this
subgraph has 57,092 directed edges) and use this to gen-
erate the stochastic set cover instance. The Facebook
messages data set consists of 1,266 nodes and 6,451
directed edges. Given an underlying directed graph,
we generate an instance of the stochastic set cover prob-
lem as follows. We associate the ground set U with the
set of nodes of the underlying graph. We associate an
item X, with each node u. Let I'() denote the out-
neighbors of u. We sample a subset of I'() using the

binomial distribution with p = 0.1 for 500 times. Let S C
I'(1) be sampled ag times: then, X, realizes to S U {u}
with probability as/500. This ensures that &', always
covers 1. We set f to be the coverage function. We inter-
pret the realization of a node as the set of neighbors it
influences, and so f computes the total number of peo-
ple that are influenced. We set Q = 611, where n repre-
sents the number of nodes in the underlying network.
We use 0=0.5 for the Epinions network. However,
because the Facebook messages network is sparse, we
set 6 = 0.25 in the second instance. All costs are one.

5.1.2. Results. We test our r-round adaptive algo-
rithm on the two kinds of instances described. We vary
the number 7 of rounds over integers in the interval
[1,logn], where n ~ 1,000. We compare with our fully
adaptive algorithm, which adapts after every probe: in
each step, this algorithm probes the item that maxi-
mizes the score (2) with § =0. We note that this also
corresponds to the adaptive algorithm from Im et al.
(2016). To compute an estimate of the expected cost of
any algorithm, we sample item realizations 20 times
independently and take the average cost incurred.
We also find an estimate of an information-theoretic
lower bound by sampling item realizations 20 times
and taking the average cost of an integer linear pro-
gram (solved using the Gurobi solver) that computes
the optimal off-line cost to cover Q elements for a given
realization. Note that no adaptive policy can do better
than this lower bound. In fact, the gap between this
information-theoretic lower bound and an optimal
adaptive solution may be as large as Q(Q) on worst
case instances. We observe that, in both cases, the
expected cost of our solution after only a few rounds of
adaptivity is within 50% of the information-theoretic
lower bound. Moreover, in six to seven rounds of ad-
aptivity, we notice a decrease of ~ 8% in the expected
cost, and these solutions are nearly as good as fully
adaptive solutions. We plot this trend in Figure 2.

Figure 2. (Color online) Computational Results for Stochastic Set Cover

(a)

= Our Algorithm
571 ——— Fully Adaptive

Information-theoretic Lower Bound: 40.6

56 -

54 -

53

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

Notes. (a) Epinions network. (b) Facebook messages network.

(b)

96 = Our Algorithm
- Fully Adaptive

Information-theoretic Lower Bound: 64.85

Rounds of adaptivity
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Figure 3. (Color online) Computational Results for ODT on WISER Data Set

(a)

= Our Algorithm
10.25 ~ = Fully Adaptive

= Information-theoretic lower bound
10.00 -

9.75 1

Cost

9.50 4

9.25 4

9.00 4

875 mmmmm———

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

Notes. (a) WISER —U. (b) WISER —R.

Finally, note that the increase in expected cost with
rounds of adaptivity (see Figure 2(a)) can be attributed
to the probabilistic nature of our algorithm (and the
experimental setup). We also notice this in the next
batch of experiments.

5.2. Optimal Decision Tree

5.2.1. Instances. We use a real-world data set called
WISER (http://wiser.nlm.nih.gov/) for our experi-
ments. The WISER data set describes symptoms that
one may suffer from after being exposed to certain
chemicals. It contains data corresponding to 415 chem-
icals (scenarios for ODT) and 79 symptoms (elements
with binary outcomes). Given a patient exhibiting cer-
tain symptoms, the goal is to identify the chemical to
which the patient has been exposed (by testing as few
symptoms as possible). This data set is used for evalu-
ating algorithms for similar problems in other papers
(Bhavnani et al. 2007; Bellala et al. 2011, 2012; Navidi
et al. 2020). For each symptom—chemical pair, the data
specifies whether someone exposed to the chemical
exhibits the given symptom. However, the WISER
data has “unknown” entries for some pairs. In order to

(b)

30

= Our Algorithm

== Fully Adaptive
28
Information-theoretic Lower Bound: 10.25

26

24

Cost

224

204

18

T T T T T T T T T
1 2 3 4 5 6 7 8 9
Rounds of adaptivity

obtain instances for ODT from this, we generate 10 dif-
ferent data sets by assigning random binary values to
the unknown entries. Then, we remove all identical
scenarios to ensure that the ODT instance is feasible.
We use the uniform probability distribution for the
scenarios. Given these 10 data sets, we consider two
cases. The first case (called WISER —U) has all tests
with unit costs. In the second case, we generate costs
randomly for each test from {1,4,7,10} according to
the probabilities [0.1,0.2,0.4,0.3]; for example, with
probability 0.4, a test is assigned cost 7. Varying cost
captures the setting in which tests may have different
costs, and we may not want to schedule an expensive
test without sufficient information. We refer to this
case as WISER —R.

We also test our algorithm on synthetic data that we
generate as follows. We set s = 10,000 and m = 100. For
each y € [s], we randomly generate a binary sequence of
outcomes that correspond to how y reacts to the tests.
We do this in two ways: for test ¢, we set y € T, with
probability p € {0.2,0.5}. If a sequence of outcomes is
repeated, we discard the scenario to ensure feasibility of
the ODT instance. We assign equal probability to each

Figure 4. (Color online) Computational Results for ODT on Synthetic Data with Unit Costs

(a)
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—— Information-theoretic lower bound
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Notes. (a) SYN—U-0.2.(b) SYN—U-0.5.

(b)
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Figure 5. (Color online) Computational Results for ODT on Synthetic Data with Nonuniform Costs

(a)

= Our Algorithm
55.0 == Fully Adaptive

Information-theoretic Lower Bound: 16.59

T T T T T T T T T
0 1 2 3 4 5 6 7 8
Rounds of adaptivity

Notes. (a) SYN—R—0.2. (b) SYN—R—0.5.

scenario. We generate instances using (i) unit costs or
(ii) random costs from {1,4,7, 10} with respective proba-
bilities [0.1,0.2,0.4,0.3]. Thus, we generate four types of
instances with synthetic data. We refer to the instance
generated with p = 0.2 and unit costs as SYN—-U—-0.2.
Other instances are named similarly.

5.2.2. Results. We test our r-round adaptive algo-
rithm on all of the aforementioned data sets. We vary
r over integers in the interval [1,logs]. Again, we
compare with our fully adaptive algorithm, which
adapts after every probe: in each step, this algorithm
probes the item that maximizes the score (17) in
which §=0 and Z consists of a single part with all
scenarios. We also implemented the fully adaptive
“generalized binary search” algorithm from Dasgupta
(2004) as an algorithmic benchmark: on the instances
considered, this algorithm performed nearly identi-
cally to our fully adaptive algorithm, so we exclude it
from the plots.

We also compare with information-theoretic lower
bounds obtained as follows. For instances with unit
costs (WISER — U, SYN—U—-0.2 and SYN—U - 0.5) this
lower bound corresponds to the entropy that is log,(s),
where s is the number of scenarios. Recall that all
instances have uniform probabilities across scenarios.
For instances with nonuniform costs (WISER — R, SYN
—R-0.2 and SYN—R - 0.5), the entropy is no longer a
valid lower bound. Instead, we use an integer pro-
gramming formulation to compute the optimal cost to
identify a given scenario (see Online Appendix F for
details) and then average over all scenarios. We note
that there are instances in which this information-
theoretic lower bound is smaller than the optimal
adaptive cost by an O(s) factor.

For the WISER data sets, we compute averages using
all scenarios. Figure 3(a) plots our algorithm’s expected
cost as a function of r for WISER — U. We observe that our

(b)

= Our Algorithm
14.34 ~ = Fully Adaptive

Information-theoretic Lower Bound: 10.98

T T T T T T T T T
0 1 2 3 4 5 6 7 8
Rounds of adaptivity

algorithm gets very close to the information-theoretic
lower bound in only three rounds of adaptivity. Figure
3(b) plots our algorithm’s costs for WISER — R. Here, we
observe a sharp decrease in costs within four rounds of
adaptivity, after which our algorithm’s cost is within =
50% of the information-theoretic lower bound. Note that
we only plot results on our first data set for WISER — U
and WISER — R. We include plots for all 10 WISER data
sets in Online Appendix G.

For the synthetic data, we compute averages by sam-
pling scenarios over 100 trials (because s = 10,000, com-
puting expectation over all s would be very slow). We
plot the results in Figures 4 and 5. We observe that,
with six rounds of adaptivity, our algorithm’s cost
nearly matches that of the fully adaptive algorithm.
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