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Abstract

Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several
transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be
enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed
nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every
poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM
elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms
employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of
the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements.
Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green
ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We
demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly
related plant species.

Introduction repeats are 150-200 bp long, a characteristic length for wrapping
a single nucleosome. This 1 repeat-1 CENH3 nucleosome relation-
ship was demonstrated in humans (Hasson et al. 2013) and several
plant species (Zhang et al. 2013; Yang et al. 2018; Su et al. 2019).
The 155 bp centromeric satellite repeat CentO in rice (Oryza sativa)
shows both translational and rotational phasing on CENH3 nucle-
osomes, a feature that may play a role in the stability of centro-
meric nucleosomes and chromatin (Zhang et al. 2013).
Retrotransposons fall into 2 large groups including long termi-
nal repeat (LTR) and non-LTR elements (Kumar and Bennetzen
1999). A Ty3-gypsy type of centromeric LTR retrotransposon (CR)
was first discovered in grass species (Aragon-Alcaide et al. 1996;

The centromere was first recognized as the “primary constriction”
of metaphase chromosomes and represents the most distinct cy-
tological domain of metaphase chromosomes in higher eukar-
yotes. Chromatin in the centromeres is defined by the presence
of the centromeric histone H3 (CENH3), a centromere-specific
H3 histone variant (Henikoff et al. 2001). In most multicellular eu-
karyotes, centromeres are composed of highly repetitive DNA se-
quences. Long arrays of satellite repeats and retrotransposons are
2 of the most common types of centromeric repeats (Henikoff
etal. 2001;Jiang et al. 2003). The evolutionary dynamics of centro-

meric satellite repeats have been studied in a number of plant and
animal species. Like other satellite repeats, centromeric satellite
repeats often evolve rapidly and can be diverged among closely re-
lated species (Gong et al. 2012; Zhang et al. 2014; Robledillo et al.
2020). However, certain types of satellite repeats appear to specif-
ically fitin the centromeric chromatin environment. For example,
the monomeric units of many classical centromeric satellite

Jiang et al. 1996; Miller et al. 1998; Presting et al. 1998). CR ele-
ments were best characterized in rice (CRR, CR of rice) (Cheng,
Buell, et al. 2002; Cheng, Dong, et al. 2002; Nagaki et al. 2004;
Nagaki et al. 2005) and maize (CRM, CR of maize) (Zhong et al.
2002; Jin et al. 2004; Wolfgruber et al. 2009). Both CRR and CRM el-
ements are highly enriched with CENH3 nucleosomes (Zhong
et al. 2002; Nagaki et al. 2005). Cytologically, both CRR and CRM
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appeared to be largely restricted within the primary constriction
of metaphase chromosomes (Cheng, Buell, et al. 2002; Cheng,
Dong, et al. 2002; Zhong et al. 2002). Based on phylogeny,
CR elements belong to a specific lineage of chromoviruses
(Chromoviridae), which has been commonly named as CRM, after
the CR of maize (Gorinsek et al. 2004; Kordis 2005). Although CRM
lineage elements were found in a wide range of distantly related
species of spermatophyta, their centromeric localization was con-
firmed only in angiosperm species (Neumann et al. 2011;
Neumann et al. 2019). A distinctive feature of the CRM elements
is the presence of an integrase chromodomain, which differsin se-
quence from that of other chromoviruses and was hypothesized
to be responsible for targeting centromeres (Kordis 2005;
Neumann et al. 2019). However, the actual mechanism behind
the centromeric specificity of the CRM elements in plants remains
a mystery.

In addition to the CRM elements discovered in plants, several
other transposable elements (TEs) were found to reside in centro-
meres. The K111 provirus, a human endogenous retrovirus
(HERV), has atleast 100 copies in the human genome and is spread
across the centromeres of 15 human chromosomes. Chromatin
immunoprecipitation (ChIP) experiments confirmed the enrich-
ment of K111 sequences in CENP-A-associated chromatin
(Contreras-Galindo et al. 2013). Long interspersed nuclear ele-
ments (LINEs) are a group of non-LTR retrotransposons. LINE-1
(L1) represents one of the most abundant retrotransposons in
mammalian species, including humans (Beck et al. 2011).
Interestingly, the L1 elements were found to be enriched in the
centromeres of phyllostomid bats (de Sotero-Caio et al. 2017).
Similarly, LINEs were reported to be in centromeres in banana
(D’'Hontetal. 2012) and sunflower (Nagaki et al. 2015). Here, we re-
port the discovery of Celine, a LINE element that has colonized in
the CENH3-associated functional centromeres of poplar chromo-
somes. On the basis of genome-wide CENH3-binding mapping in
Populus trichocarpa and pachytene chromosome and DNA fiber-
based high-resolution cytological mapping in Populus simonii, we
were able to analyze the structure, organization, and evolution
of a centromeric LINE element with an unprecedented scale and
details. The underlying mechanism of Celine evolution is
discussed.

Results

Pt45, a centromeric repeat related to a LINE
element in poplar

To identify DNA sequences associated with the centromeres of
poplar chromosomes, we developed an antibody against histone
CENHS3 of poplar (see Materials and methods). The specificity of
this antibody to CENH3 was confirmed by immunofluorescence
assay on somatic metaphase chromosomes prepared from
P. trichocarpa (Fig. 1A). We conducted ChIP using chromatin iso-
lated from young leaf tissue of P. trichocarpa. Two DNA libraries,
prepared from ChIPed DNA and input DNA, respectively, were
prepared and sequenced. We obtained 36.1 and 36.5 million (M)
of sequence reads from the 2 libraries. We used 5 wm of random
reads from the input library to computationally identify repeat se-
quence clusters using a similarity-based sequence clustering ap-
proach (Novak et al. 2010). The proportion (%) of each repeat
cluster in the poplar genome was estimated based on the number
of reads associated with each cluster. We then mapped the
ChIP-sequencing (ChIP-seq) reads to the repeat clusters to identify
candidate centromeric repeats based on the enrichment of each

Figure 1. Identification of a centromeric repeat Pt45 in poplar. A)
Immunofluorescence assay of the anti-CENH3 antibody on somatic
metaphase chromosomes prepared from P. trichocarpa. B) FISH of the
Pt45 repeat on the somatic metaphase chromosomes prepared from
P. trichocarpa. Bars =5 um.

repeat cluster in the centromeres (Gong et al. 2012; Yang et al.
2018). We analyzed the top 9 most centromere-enriched repeat
clusters (Supplementary Table S1). Five of the repeats were found
to be related to the CRM family. Two other repeats were related to
the Athila and Tekay classes of retrotransposons (Supplementary
Table S1). Interestingly, a 2,816 bp repeat cluster, Pt45, which ex-
hibited 29 times enrichment in the centromeres and accounted
for 0.15% of the poplar genome, showed 99.7% sequence similarity
with a LINE-like repeat (L1-1_PTr) that was previously reported in
poplar (Jurka 2010). Fluorescence in situ hybridization (FISH) anal-
ysis confirmed that Pt45 is located in the centromeres of every P.
trichocarpa chromosome (Fig. 1B).

Celine, the most abundant LINE family in poplar

We used Pt45 as an anchor sequence and identified a full-length
LINE family, named Celine (Centromeric LINE), in the P. trichocarpa
genome. An example of a full-length Celine element is 6,114 bp in
length and encodes 2 overlapping open reading frames (ORFs) of
1,617 and 3,765 bp, respectively. The ORFs are preceded by a
635 bp untranslated region (UTR) at the 5 end and an 189 bp
UTR at the 3’ end and terminated by a poly(A) tail of 12 bases
(Fig. 2A). The function of the protein encoded by ORF1is unknown,
but its sequence possesses a domain DUF4283 (https:/www.ncbi.
nlm.nih.gov/Structure/cdd/PF14111) (Fig. 2A) that is conserved
among LINEs from diverse plant species, suggesting its impor-
tance for LINE replication and/or transposition. ORF2 encodes
the domains typical for all autonomous LINEs: an endonuclease
and a reverse transcriptase (RT). Given that the transcripts are
not spliced, the presence of the 2 ORFs suggests that Celine may
use noncanonical strategies to translate both ORFs from a single
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Figure 2. Structure and organization of Celine elements. A) Structure of a full-length Celine element from P. trichocarpa. This element is located on
chromosome 11 (10,103,867 to 10,109,980 bp, minus strand, element ID Celine_full034). ORF1 contains the DUF4283 domain conserved among LINEs
from diverse plant species. ORF2 contains the endonuclease (en) and RT domains. Underlined sequences represent TSD. The 12 bp ploy[A] tail is
depicted as [A]q». The positions of the 2 FISH probes are indicated. B) The organization of Celine elements in a single Nanopore read from the P. simonii
genome. The Celine elements are depicted as triangles with coding and noncoding sequences as diagramed in A).

transcript (Gupta and Bansal 2020). Translation reinitiation and
an internal ribosome entry site may mediate the initiation of
translation, which was described for the L1 elements in human
and mouse (Alisch et al. 2006; Li et al. 2006).

In addition to Celine, additional LINE families were identified in
the P. trichocarpa genome. Using protein sequences from known
LINE elements, we retrieved a total of 18 LINE families of all
LINEs from P. trichocarpa, including Celine and 2 families from the
Repbase database (Supplementary Table S2). DNA sequences as-
sociated with these 18 LINE families account for only 0.85% of
the genome. Non-LTR retrotransposons (mainly LINEs) usually
occupy a small portion of the plant genomes, but they amplify
to a moderate degree in some species. In a previous study, we col-
lected 87 plant genomes with an estimated fraction of non-LTR
retrotransposons (Cerbin et al. 2022). Among them, 11 (13%) har-
bor over 6% of non-LTR elements (range from 6% to 22%), and
17 (20%) contain <0.85%. As a result, the amplification of LINE
elements in poplar is limited compared with the majority of
other plants. Celine is the most abundant LINE element in the
P. trichocarpa genome (Supplementary Table S2).

Celine colonized in poplar centromeres

To further characterize the location of Celine elements in poplar
centromeres, we conducted immunofluorescence using the anti-
CENH3 antibody (Fig. 3B) followed by FISH using Pt45 (Fig. 3C) on
meiotic pachytene chromosomes prepared from P. simonii, which di-
verged from P. trichocarpa ~4.36 million years ago (Mya) (Wu et al.
2020). Pachytene chromosomes have superior cytological resolution
compared with the small and highly condensed mitotic metaphase
chromosomes of poplar (Xin et al. 2018). The immunofluorescence
signals nearly completely overlapped with the FISH signals
(Fig. 3A), suggesting that the Pt45 sequence is highly enriched in
the CENH3-associated functional centromeres. We observed a sim-
ilar size and intensity of the immunofluorescence signals in different
centromeres (Fig. 3B), suggesting a similar size of the centromeres
from different chromosomes. However, the size and intensity of
the FISH signals varied significantly among different chromosomes
(Fig. 3C), suggesting variable copy numbers of Celine in different
centromeres.

To further confirm the centromeric localization of the Celine
elements, we conducted pachytene FISH using another Celine-
related DNA probe PL2, a 3,334 bp DNA fragment that is immedi-
ately adjacent to Pt45 within the full-length Celine element
(Fig. 2A). The FISH signals generated from Pt45 and PL2 overlapped
completely and were confined in the centromeres (Fig. 3, D to F).

Organization of the Celine elements in
centromeres

We mapped the 36.1 m CENH3 ChlIP-seq reads to the P. trichocarpa
reference genome (see Materials and methods). The distribution
of unique ChIP-seq reads was displayed in 1kb windows along
the 19 poplar chromosomes. Significant sequence enrichment
was observed in the centromeres of most poplar chromosomes,
except for Cen13 and Cenl4 (Supplementary Fig. S1). The sizes of
the 17 CENH3-binding domains averaged 633 kb, ranging from
427 to 1,267 kb among the 17 chromosomes (Supplementary
Table S3). The centromeres of chromosomes 13 and 14 are likely
composed of highly repetitive satellite repeats, which may not
be included in the current reference genome. A similar phenom-
enon was previously reported in potato centromeres (Gong et al.
2012). To validate this hypothesis, we performed FISH analysis
of all top 9 most abundant repeats identified in the P. trichocarpa
centromeres (Supplementary Table S1). Interestingly, we discov-
ered that repeat Pt7 hybridized to the 4 centromeres of chromo-
somes 4 and 13. Repeat Pt20 hybridized to 3 centromeres of both
copies of chromosomes 14 and 1 copy of chromosome 5
(Supplementary Fig. S2).

We conducted dual-color FISH on DNA fibers prepared from
P. simonii using Pt45 (green) and PL2 (magenta) as probes. The 2
probes generated long contiguous fiber-FISH signals (Fig. 4A).
We collected many long fiber-FISH signals and selected 12 high-
quality signals for measurement (Supplementary Fig. S3). These
signals appeared to be intact and spanned 215.1+63 um (n=12),
representing an average of 690.5+202.2 kb using a 3.21 kb/um
conversion rate (Cheng, Buell, et al. 2002). Thus, the total amount
of centromeric sequences from the 19 P. simonii chromosomes was
estimated to be 13.11+3.8 Mb. A significant proportion of the
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Figure 3. Mapping of CENH3 and Celine on pachytene chromosomes of P. simonii. A) Combined immunofluorescence assay of CENH3 and FISH using Pt45. B)
Immunofluorescence signals that were digitally separated from A). C) FISH signals that were digitally separated from A). D) FISH mapping of PL2 and Pt45. E)
FISH signals of PL2 that were digitally separated from D). F) FISH signals of Pt45 that were digitally separated from D). Bars =10 um.

Figure 4. Dual-color fiber-FISH analysis of Celine using probe Pt45 (green) and PL2 (magenta) on DNA fibers prepared from P. simonii. A) A 273.6 um
fiber-FISH signal, which represents ~878 kb of DNA and likely represents an intact centromere. B) A representative fiber-FISH signal with adjacent green
and magenta signal dots. C) A representative fiber-FISH signal with contiguous green signal dots. D) A representative fiber-FISH signal with contiguous

magenta signal dots. Bars =10 um.

fiber-FISH signals were composed of adjacent green and magenta
dots (Fig. 4B), indicating that these Celine elements contain both
sequences and are likely full-length or near full-length elements.
However, we observed contiguous green (Fig. 4C) or magenta sig-
nals (Fig. 4D), which were as long as 25.2 um (~81 kb). The Celine
elements associated with these single-color signals are likely
truncated. These clustered single-color signals were possibly de-
rived from nested insertions or from regional duplication/amplifi-
cation events.

Recent amplification and short life span of Celine
elements

TEs can be grouped into autonomous elements, which code the
proteins required for transposition, or nonautonomous elements,
which rely on their cognate autonomous elements for movement

within the genome. A total of 58 full-length or nearly full-length
Celine elements (<100 bp truncation at the 5’ end and <500 bp in-
ternal deletion) were identified in the latest assembly of the
P. trichocarpa genome (Pop_tri_v4) (Supplementary Data Set 1
and Supplementary Fig. S4). Among the full-length elements, 14
(24%) harbor both intact ORF1 and ORF2 (Supplementary Data
Set 1 and Supplementary Fig. S4), suggesting that they have the
potential to encode the functional transposition machinery.
Among them, 12 overlap with the CENH3-binding domains, and
the 2 additional elements are located within 20kb of the
CENH3-binding domains. As a result, virtually all the putative
autonomous elements are buried in the functional centromeres.
For the remainder (44) of the elements, the ORFs are disrupted
by insertions, deletions, or point mutations (Supplementary Fig.
S4). Thus, these elements are likely nonautonomous despite their
sizes. The overall nucleotide level pairwise identity among these
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Figure 5. Estimated insertion time of full-length Celine elements and
intact centromeric retrotransposon of maize (CRM) elements in
P. trichocarpa. The x axes show the insertion time in Mya.

elements ranged from 93.8% to 99.7%. Because each individual in-
sertion was derived fromits immediate ancestral copy, an approx-
imate distribution of elements over time can be estimated
through the highest pairwise similarity of elements in the ge-
nome. Using an “all versus all match,” the highest pairwise iden-
tity for each element varied from 95.2% to 99.7%. This analysis
revealed the presence of many recent elements and a few old ele-
ments with a median identity of 99.1%. Assuming a mutation rate
of u=1.3x 1078 per bp per year (Ma and Bennetzen 2004), 55 out of
the 58 (95%) of the Celine elements were inserted into the genome
within 1 million years, with the 3 other elements inserted within 1
to 2 million years, suggesting a recent amplification of the Celine
family (Fig. 5). Nevertheless, we did not identify 2 identical full-
length elements, suggesting a lack of current or extremely recent
transposition activity.

As a comparison, we identified 74 intact CRM elements from
the P. trichocarpa genome and used the sequence identity of the 2
LTRs to estimate the insertion time as described (SanMiguel
et al. 1998). The median LTR identity is 99.2%, which is slightly
higher than the pairwise identity of Celine elements (99.1%).
However, the CRM elements and Celine elements have distinct am-
plification spectra (Fig. 5). The oldest CRM element was inserted
3.3Mya, which is close to the detection limit. Meanwhile,
14 CRM elements have identical LTRs, suggesting current or
very recent activity. Among them, only 6 are located in the
CENH3-binding domains or within 20 kb flanking regions. The oth-
er 8 elements are located on chromosomal arms, with 5 of them
harboring intact ORFs. These results suggest that CRM elements
have been active from the trackable past. In other words, CRM el-
ements have a much longer life span than the Celine elements.

Targeting specificity of Celine
Both CRM and Celine elements are highly enriched in the
CENH3-binding domains. However, CRM elements are also
present throughout individual chromosomes (Supplementary
Fig. S5). A majority (84%) of the Celine elements was detected in
the CENH3-binding domains; in contrast, only 51% of the CRM el-
ements were bound to CENH3 domains (Fig. 6A). Celine elements
outside of centromeres are relatively rare compared with CRM el-
ements (Fig. 6B). Among the 58 full-length Celine elements identi-
fied in P. trichocarpa, 52 inserted into other TEs; most of these
insertions were into Gypsy-like LTR retrotransposons, including
30 into CRM elements.

In humans, L1 elements recognize specific target sequences
through its endonuclease domain, which generates staggered
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nicks prior to retrotransposition (Jurka 1997). To investigate
whether Celine has any sequence specificity, we retrieved target
site duplication (TSD) sequences as well as 10 bp sequences flank-
ing the TSDs. We detected TSDs (10 bp or longer) in 43 of the 58
full-length elements (Supplementary Data Set 1) and in 100 trun-
cated Celine elements (Supplementary Data Set 2). The length of
TSDs ranged from 10 to 30 bp, with an average of 15 bp. The fre-
quent insertions of Celine into other elements raise the question
whether the amplification of Celine is due to the transposition of
the target element also carrying Celine. If that is the case, one
would expect duplicated TSD and flanking sequences among indi-
vidual Celine elements. However, each Celine element has a unique
TSD sequence (Supplementary Data Sets 1 and 2). Moreover, all of
the 14 CRM elements with identical LTRs do not contain Celine se-
quences or other nested insertions, suggesting elements with
nested insertions are unlikely competent for further transposi-
tion. Those observations indicate that Celine was amplified
through their own transposition machinery instead of piggyback-
ing on other TEs including CRM elements.

The average GC content of these retrieved sequences is 35.5%,
which is slightly higher than the 33.8% GCin P. trichocarpa genome.
We examined the base occurrence in each individual position.
Base bias is most significant around the junction between the 5’
flanking sequence and TSD. The first nucleotide of the TSD (posi-
tion 1)is G or T (90%); the nucleotide immediately upstream of the
TSD (position 0) and the 2nd nucleotide of the TSD (position 2) are
mostly A (66% and 58%, respectively), and the 2nd nucleotide up-
stream of TSD (position —1) is also biased toward A (57% of occur-
rences) (Fig. 6C). However, there is no significant bias at the 3’
junction site (Fig. 6D). This suggests that Celine primarily targets
AAGA/AATA or its variants as the 5’ nicking site. In contrast, the
target sequences of CRM elements contain a few AT-rich sites
(Fig. 6E); hence, the 2 elements have distinct specificity at the se-
quence level.

For many CRM retrotransposons, a chromodomain (CHDCR) is
present at the C-terminus of integrase, and this domain was as-
sumed to direct CRM elements to centromeres (Neumann et al.
2011). Analysis of intact Celine sequences using DANTE failed to
detect any CRM-related domains (Neumann et al. 2019).

Celine elements in P. simonii

To further investigate the genomic distribution and organization of
Celine elements, we examined the presence of Celine elements in our
recently developed reference genome of P. simonii, which was se-
quenced using Oxford Nanopore long-read methodology. This
reference genome contains 413 Mb of sequences and is comprised
of 2,814 contigs assembled using wtdbg? (Ruan and Li 2020).
Sequences similar to Celine were found in 245 contigs, accounting
for 21.1 Mb of the genome. Celine elements represent 11% of the ge-
nomic sequences in the 245 contigs. However, 10 of the 245 contigs
only contain <2% of Celine-related sequences, suggesting that these
contigs were likely derived from the boundary regions between
centromere and pericentromeric region. If these 10 contigs are ex-
cluded, the remaining 235 contigs may represent the core centro-
meric regions containing 15.2 Mb, which is close to the estimation
of 13.1 Mb based on fiber-FISH measurements (see above). The
Celine elements account for ~15% of the DNA in the 235 contigs.
Similar to what is observed in P. trichocarpa, most Celine elements
(~65%) in P. simonii inserted into LTR retrotransposons, and some
of them (~7%) were nested within themselves. For example, a sin-
gle nanopore read of 46.5 kb was found to harbor 9 Celine elements,
which accounts for over half of the sequence (Fig. 2B).
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Figure 6. Distribution and targeting specificity of Celine and centromeric retrotransposon of maize (CRM) elements. A) Percentages of CRM and Celine
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of total CENH3-binding domains. The average percentage of CRM and Celine within with the random genomic regions is shown in the y axis. B)
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sequence of CRM elements. Sequences inside the boxes represent TSD.

Celine-like LINE elements in plants

We selected a set of 4 diploid Populus species from different sec-
tions and a diploid willow species for FISH mapping using Pt45
and PL2. Both probes produced robust centromeric signals on
all chromosomes from Populus deltoides (section Aigeiros),
Populus lasiocarpa (section Leucoides), and Populus euphratica (sec-
tion Turanga) (Fig. 7, A to C). However, the FISH signals were sig-
nificantly weaker on chromosomes of Populus tomentosa (section
Leuce), which diverged from P. trichocarpa 13.4 Mya (An et al.
2022) (Fig. 7D). Unambiguous FISH signals were not detected
in the centromeres of chromosomes prepared from shrub wil-
low (Salix suchowensis), which diverged from poplar 65 Mya
(Tuskan et al. 2006).

Previous studies reported 3 LINE elements located in the
centromeric regions in plants, including the Nanica element in ba-
nana (D'Hont et al. 2012; Belser et al. 2021), HaCEN-LINE in sun-
flower (Nagaki et al. 2015), and LINE-CL3 in the parasitic and
holocentric Cuscuta europaea (Oliveira et al. 2020; Vondrak et al.
2021). To further test whether Celine-like elements are present in
additional plant species, we searched for related elements in the
National Center for Biotechnology Information (NCBI) nonredun-
dant database and available plant genomes in phytozome (https:/

phytozome.jgi.doe.gov/). The RT domain from the recovered se-
quences and those from the 3 known centromeric LINE elements
were used to build a phylogenetic tree (Fig. 8). LINEs from plant
species fall into 2 clades: the L1 clade and the RTE clade. Of the
7 subclades within the L1 clade (Heitkam et al. 2014), the L1-CS
subclade contains LINEs associated with centromeres. We identi-
fied 2 putative centromeric LINEs based on their phylogenetic re-
lationship with Celine (Fig. 8). The first element, L1-01_Cs, was
identified in the tea plant (Camellia sinensis). FISH analysis using
a probe developed from L1-01_Cs revealed dispersed signals on
most chromosomes. However, punctuated signals were observed
in the centromeric regions of several chromosomes (Fig. 7E). The
second element, Cenline_Fp, was identified in the green ash tree
Fraxinus pennsylvanica. Distinct centromeric FISH signals were ob-
served on 2 chromosomes (Fig. 7F). Examination of the green ash
genome identified 15 Cenline_Fp elements on 10 (out of 23) chromo-
somes, accounting for 0.015% of the genome. Only 4 chromo-
somes harbor 2 or more elements. The highest pairwise identity
of those elements range from 84% to 96% (corresponding to 6.2
to 1.5 million years), suggesting limited recent activity of the
Celine-like LINE in green ash with much older elements when com-
pared with P. trichocarpa.
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Figure 7. FISH mapping of Celine and Celine-related LINE elements in different plant species. A to D) Dual-color FISH of Pt45 (magenta) and PL2 (green)
on metaphase chromosomes from P. deltoides (A), P. euphratica (B), P. lasiocarpa (C), and P. tomentosa (D). E) FISH mapping of a Celine-related LINE element
in C. sinensis. The arrow indicates one of the punctuated centromeric signals. F) FISH mapping of a Celine-related LINE element in F. pennsylvanica. A pair

of centromeric signals is indicated by arrows. Bars =5 um.

Discussion

The centromere targeting specificity of CRM and
Celine elements

The centromeric specificity of CRM elements has been one of the
most intriguing mysteries in plant centromere biology. The inte-
grase of the CRM elements contains a distinct chromodomain
compared with other chromoviruses. This chromodomain has
been speculated to play a role in the centromeric specificity of
CRM elements (Kordis 2005; Gao et al. 2008). However, extensive
analysis of CRM elements from a large number of plant species
has yet toreveal a key domain or motif in the integrase that would
be required for their centromeric specificity (Neumann et al.
2011). CRM elements intermingle with the centromeric satellite
repeat CentOin rice (Cheng, Dong, et al. 2002) and CentC in maize
(Jin et al. 2004). Nevertheless, CRM elements do not appear to tar-
get satellite repeats in rice and maize. CRM elements become the
major centromeric DNA component in plant species lacking a
dominant centromeric satellite repeat(s) such as in wheat (Liu
et al. 2008; Li et al. 2013).

LINEs have different structures compared with LTR retrotrans-
posons. Proteins encoded by the 2 ORFs of Celine do not contain a
domain similar to the chromodomain of CRM elements. In gener-
al, LINE elements have distinct niches from Gypsy-like LTR ele-
ments (Cerbin et al. 2022), so it is intriguing to observe that
Celine-like elements colocalize with CRM elements. The Nanica el-
ement was extensively intermingled with CRM elements in ba-
nana centromeres (Belser et al. 2021). Similarly, Celine elements
are frequently nested with CRM elements in poplar (see Results).
Despite the colocalization of these 2 elements, it is clear they tar-
get different sequences (Fig. 6, C to E). Moreover, Celine is more
specifically located in centromeric regions than CRM elements
in poplar (Fig. 6B, Supplementary Fig. S5). As a result, the frequent
association of Celine with CRM elements is because they are both
enriched in centromeric regions, not because they share targeting

mechanisms. At this stage, it is unclear how Celine targets centro-
meres. Our analysis indicates it preferentially targets AAGA or
AATA sequence motifs. Nevertheless, these combinations of nu-
cleotides are common in the genome. Thus, it is unlikely that
these motifs are sufficient to determine its chromosomal loca-
tions. It is possible that both Celine and CRM elements target a
component or different components associated with CENH3 nu-
cleosomes but with different affinities.

Evolution of Celine-like retrotransposons

TEs are major components of eukaryotic genomes. The success
of a TE relies on the genetic and epigenetic environments of the
genome and the presence of other TE families. TEs are more dy-
namic and variable than genes due to their ability to amplify and
that most of them are dispensable to the host organisms. Most
TE families experience a full life cycle of birth, amplification,
and extinction (Blumenstiel 2019; Liu et al. 2022). From an evolu-
tionary point of view, individual families of transposons are
only transiently present in the genome. LINEs represent the
most abundant TE in mammalian genomes (Lander et al.
2001). Whereas in most plant genomes, LINEs only account for
a few percent or less (Cerbin et al. 2022). The underlying mech-
anism for the low abundance of LINEs in plants is not well
understood. LINEs were recently found to preferentially insert
in introns in sacred lotus (Nelumbo nucifera) (Cerbin et al. 2022).
Concordantly, the average intron size is 1,988 bp in lotus, which
is significantly larger than the average intron sizes in other mod-
el plant species, such as Arabidopsis thaliana (170 bp) (Kaul et al.
2000) (TAIR10), rice (447 bp) (Kawahara et al. 2013) (IRGSP-1.0),
and poplar (<400 bp) (Tuskan et al. 2006). Intriguingly, large in-
trons are a well-known characteristic associated with mamma-
lian genomes. Celine is the most abundant LINE element in
poplar (Supplementary Table S2). Thus, centromeres may serve
as a “safe haven” for Celine to survive and thrive, similar to the
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large introns housing for LINEs in lotus and mammalian
genome.

Besides the Nanica element from banana (a monocot plant), all
the other 5 Celine-like elements were found in eudicots. Among
them, 4 plants (C. europaea, sunflower, tea, and F. pennsylvanica)
are asterids (but in different orders), whereas Populus belongs to
rosids (Moore et al. 2010). Interestingly, Celine is phylogenetically
related to elements from Asterids (Fig. 8). Since asterids diverged
from rosids about 125 Mya (Zeng et al. 2017), it suggests that
there was either an ancient horizontal transfer event or Celine di-
verged into multiple groups before the divergence of dicots. The
presence of Celine-like elements in distantly related species sup-
ports that Celine has an ancient origin. If so, it raises the question
of why a Celine-like element is absent in most of the sequenced
plant genomes while CRM elements are widely present in plants.
This is likely attributed to the unique transposition mechanism of
LINEs and the high specificity of Celine. Upon insertion into the ge-
nome, most LTR elements are intact elements, and it is common
for an autonomous element to give birth to another autonomous
element. In contrast, most LINE elements are truncated at the 5’
end upon insertion, representing nonautonomous elements
(Hancks and Kazazian 2016). In this scenario, the consequence
of the high specificity of Celine leads to the high density of ele-
ments in the centromeric regions, with elements nested with
each other. This elevates the frequency of truncated elements
due to the interruption of the autonomous elements. Even if the
element remains intact, the formation of heterochromatin
around the centromere may prevent active transcription, result-
ing in loss of transposition activity and eventual extinction.
In contrast, the targeting of CRM elements is not as specific as
Celine, and multiple putative autonomous elements are found in
chromosomal arms, allowing the continuous activity of this fam-
ily of elements (Fig. 5) and likely contributing to the prevalence of

CRM in many plant genomes. Again, this demonstrates the impor-
tance of targeting specificity and transposition mode to the suc-
cess of TEs. From this point of view, the activity of Celine is
transient on an evolutionary scale, and this explains why it is
only detected in a few plant species among thousands of se-
quenced plant genomes. This model would predict that in a few
million years, no FISH signal of Celine will be detected in green
ash and signals will be detected on approximately half of the pop-
lar chromosomes. As a result, the high centromere specificity of
Celine represents an evolutionary “dead end.” Meanwhile, new
Celine elements may evolve from elements with lower centromere
specificity or be introduced through horizontal transfer.

Materials and methods

Plant materials

Six poplar species (2n=2x=38) were used in the present
study, including P. trichocarpa, P. simonii, P. deltoides, P. euphratica,
P. lasiocarpa, and P. tomentosa. Three additional nonpoplar species
were also used for the presence of Celine-like elements, including
willow (S. suchowensis, 2n = 2x=38), tea plant (C. sinensis, 2n=2x =
30), and green ash tree (F. pennsylvanica, 2n =2x =46).

Immunofluorescence assay, FISH and fiber-FISH

A CENH3 antibody was developed as a rabbit polyclonal antise-
rum and raised against the synthesized peptide of the 20 most
N-terminal amino acid sequence (MARTKHPVARKRARSPKRSD)
of the CENHS3 protein of P. trichocarpa. Immunofluorescence was
performed according to previously published protocols using the
poplar anti-CENH3 antibody (Zhang et al. 2005). For the immuno-
fluorescence combined with FISH assay, after recording of the im-
munostaining signals, the cytological preparations were washed
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and followed with a sequential FISH procedure as previously de-
scribed (Xin et al. 2020).

Preparation of mitotic and meiotic chromosomes was per-
formed according to the protocols described in our previous stud-
ies (Xin et al. 2018; Xin et al. 2020). DNA probes specific to the Pt45
and PL2 sequences were amplified via PCR using P. trichocarpa DNA
as a template. DNA probes of Celine-like elements were amplified
from the genomic DNA of C. sinensis and F. pennsylvanica using spe-
cific primers (Supplementary Table S4). These amplified DNA
fragments were excised from agarose gel, purified, and labeled
by nick translation with either digoxigenin-dUTP or biotin-dUTP.
FISH and fiber-FISH were performed according to published proto-
cols (Jackson et al. 1998; Xin et al. 2020). Cytological measure-
ments of the fiber-FISH signals were converted into kilobases
using a 3.21 kb/um conversion rate (Cheng, Buell, et al. 2002).

ChIP-seq and mapping of CENH3-binding
domains

ChIP was performed as previously described (Nagaki et al. 2003).
Young leaf tissue of P. trichocarpa was used to extract chromatin
for ChIP assays. Approximately 30 ng of ChIP and input DNA
were used for library preparation and sequenced by Illumina
HiSeq 2000 platform with 125 bp paired reads. The sequence reads
from ChIP and input were mapped to genome v4.0 of P. trichocarpa
(http://www.phytozome.net/poplar) by Bowtie2 (Langmead et al.
2009). We allowed a 1 bp mismatch threshold between each se-
quence read and the reference genome. Only the reads mapped
to a unique site in the poplar genome were used for further anal-
ysis. We divided each poplar chromosome into 1 kb windows and
calculated the unique read number per base pair mappable re-
gion. Read density was presented as the number of unique reads
in a 1 kb window per the length of mappable region in the same
window. The final read density was adjusted using the input se-
quence read data to reduce background signals.

We used SICER2 (Zang et al. 2009) to identify CENH3-binding
domains in each poplar centromere within 1 kb windows. We set
a mapping stringency that the false discovery rate (FDR) value of
a CENH3-subdomain was <0.001 and the fold change of normal-
ized reads number ChIP/input was >5. Identification of centro-
meric repeats was performed based on the similarity-based
clustering method (Novak et al. 2013). Briefly, 5 million reads
from the input were used to perform graph-based clustering using
the RepeatExplorer web server (https:/repeatexplorer-elixir.cerit-
sc.cz/). Repeats were identified and classified based on their se-
quence similarity as individual repeat clusters. To identify repeats
enriched in centromeres, ChIP and input reads were mapped to
the repeat clusters using BLAT (Kent 2002). The CENH3 enrich-
ment for each repeat was determined as described previously
(Gong et al. 2012).

Identification of Celine and CRM elements in the
poplar genome and estimation of abundance

To search for full-length Celine elements, the initial Pt45 sequence
(see Results), which is 2,816 bp in length, was used to search the
latest poplar genome assembly ((Tuskan et al. 2006), Pop_tri_v4)
using BLASTN (E < 107%°) (Altschul et al. 1990). Pop_tri_v4 was de-
rived from a 133.2x of PACBIO coverage sequences as well as a
high-density poplar map (https:/phytozome-next.jgi.doe.gov/info/
Ptrichocarpa_v4_1). Sequences matching Pt45 as well as 4 kb flank-
ing sequences on each side were retrieved and aligned with
MUSCLE using default parameters (Edgar 2004). The alignment
was manually examined for the presence of TSDs flanking the
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boundary of the alignment. Only TSDs that are 10 bp or longer
are considered high confidence and included in Supplementary
Data Sets 1 and 2. One of the longest elements, located on chromo-
some 11 (10,103,867 to 10,109,980 bp; Fig. 2A), harbors 2 appa-
rently intact ORFs when compared with known LINEs in
Repbase (Bao et al. 2015) and was considered a representative
Celine element. Using this element as a standard, Celine with a sim-
ilarlength or truncated <100 bp at the 5’ end were considered full-
length elements, while other elements were considered truncated
elements. For CRM elements, poplar LTR elements in Repbase
were extracted. Additional LTR element sequences in poplar
were collected using LTR_retriever (Ou and Jiang 2018). Al LTR el-
ements were classified using DANTE (Neumann et al. 2019), and
those containing CRM domains are considered CRM elements.
The sequences of CRM elements and Celine were included in a re-
peat library to mask the poplar genome using RepeatMasker
(https://www.repeatmasker.org/), with the abundance of each el-
ement assessed based on the length of each element masked. For
Celine elements, both full-length and 5’ end truncated elements
are considered a copy. Fragments (without either end) are not in-
cluded in copy number estimations.

Target specificity of Celine and CRM elements

For chromosomal level distribution of Celine and CRM elements,
each chromosome was divided into bins that are 100 kb in length.
The fraction of Celine or CRM elements was estimated based on
the length they covered in each bin. Thereafter, the relative abun-
dance value of the bin with the highest fraction was set to 100 and
used to normalize the values in other bins. For the sequence pref-
erence at the junction sites of Celine, sequences at the 5’ junction
site (10 bp upstream of TSD plus 10 bp into TSD) were retrieved
and the sequence logo was generated using WebLogo (Crooks
et al. 2004). Sequences at the 3’ junction site (the last 10 bp of the
TSD plus 10bp downstream of TSD) were processed similarly.
The sequence logo was generated for CRM elements with the 5 bp
TSD plus 10 bp flanking sequences on each side. To evaluate the
number of Celine elements inserted into CRM elements, 150 bp se-
quence downstream of each Celine element was masked using a
CRM element library. If the flanking sequence was masked, the rel-
evant Celine was considered to be inserted into a CRM element.

Phylogenetic analysis

The RT domain of Celine elements and other LINEs were
aligned with MUSCLE using default parameters (Edgar 2004).
The origin of sequences used in phylogenetic analysis is listed in
Supplementary Tables S5 and S6. The RT domain was defined
based on comparison with ORF2 of L1 from the human genome
(511 to 773 amino acids, GenBank: AAA51622.1). Phylogenetic
trees were generated using a neighbor-joining method with
MEGA (Kumar et al. 2018). Support for the internal branches of
the phylogeny was assessed using 1,000 bootstrap replicates.
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