
Radarize: Enhancing Radar SLAM with Generalizable
Doppler-Based Odometry

Emerson Sie
University of Illinois Urbana-Champaign

Xinyu Wu
University of Illinois Urbana-Champaign

Heyu Guo
Peking University

Deepak Vasisht
University of Illinois Urbana-Champaign

https://radarize.github.io

ABSTRACT
Millimeter-wave (mmWave) radar is increasingly being considered
as an alternative to optical sensors for robotic primitives like simul-
taneous localization and mapping (SLAM). While mmWave radar
overcomes some limitations of optical sensors, such as occlusions,
poor lighting conditions, and privacy concerns, it also faces unique
challenges, such as missed obstacles due to specular reflections
or fake objects due to multipath. To address these challenges, we
propose Radarize, a self-contained SLAM pipeline that uses only a
commodity single-chip mmWave radar. Our radar-native approach
uses techniques such as Doppler shift-based odometry and mul-
tipath artifact suppression to improve performance. We evaluate
our method on a large dataset of 146 trajectories spanning 4 build-
ings and mounted on 3 different platforms, totaling approximately
4.7 Km of travel distance. Our results show that our method out-
performs state-of-the-art radar and radar-inertial approaches by
approximately 5x in terms of odometry and 8x in terms of end-to-
end SLAM, as measured by absolute trajectory error (ATE), without
the need for additional sensors such as IMUs or wheel encoders.

CCS CONCEPTS
•Hardware→ Signal processing systems; •Computer systems
organization→ Sensors and actuators;Robotics; •Computing
methodologies → Machine learning.

KEYWORDS
Radar, SLAM, Doppler Shift, Wireless Sensing, Machine Learning

ACM Reference Format:
Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht. 2024. Radarize: 
Enhancing Radar SLAM with Generalizable Doppler-Based Odometry. In 
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA, 
14 pages. https://doi.org/10.1145/3643832.3661871

Scans Odometry

Lidars Cameras IMUs Wheel Encoders

❌ Susceptible to occlusions ❌ High translational drift

Radar
✅ Robust to occlusions ✅ Accurate motion sensing

✅ Inexpensive and widely deployable

SLAM

Wearables UGVs UAVs

Figure 1: Key advantages of radar over conventional SLAM sensors.
Radarize leverages both environmental sensing and motion sensing
capabilites of radar to perform SLAM.

1 INTRODUCTION
Simultaneous localization and mapping (SLAM) is a core requisite
for many robotics applications. Using SLAM, a robot can simultane-
ously construct a map of its surrounding environment and localize
itself within this map. Traditional SLAM relies on optical sensors
(i.e. cameras and LIDAR). However vision-based SLAM suffers from
failures in low lighting conditions and raises privacy concerns dur-
ing indoor use, while LIDAR-based SLAM is thwarted by common
obscurants like fog and smoke.

mmWave radars avoid many of these challenges. They can oper-
ate in low lighting and occluded settings, e.g., in agricultural robots
or search and rescue robots, mmWave radars can continue to op-
erate despite being occluded by dirt and smoke. For indoor robots
such as vacuum cleaning robots, radars can be easily hidden behind
a facade to not appear prying to users. Moreover, radar has lower
resolution than optical sensors, increasing privacy-friendliness. As
a result, there is an increasing interest in developing SLAM tech-
niques using frequency-modulated carrier wave (FMCW) mmWave
radar [33, 43].

1.1 Challenges for Radar-Based SLAM
Current techniques for mmWave radar-based SLAM are inadequate
due to three key challenges:

(i) Degenerate Scan Matches: Past work like RadarHD [43] uses
scan matching techniques to infer a radar’s motion. This technique
is inherited from optical SLAM pipelines that compare two frames
from a camera or LIDAR to estimate the robot’s self-motion. We
observe that relying on scan matching can induce failure modes for

331

This work is licensed under a Creative Commons Attribution International 4.0 License.
MOBISYS '24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0581-6/24/06.
https://doi.org/10.1145/3643832.3661871

https://radarize.github.io
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643832.3661871&domain=pdf&date_stamp=2024-06-04


Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

(b) Multipath Reflections (c) 3D-2D Conversion(a) Degenerate Environments

Figure 2: Common sources of artifacts in indoor environments. Each image of a scene is paired with a top-down radar heatmap superimposed
on a depth camera point cloud. (a) When moving down hallways, featureless flat walls present ambiguities during scan matching. (b) Multipath
reflections can cause objects to appear behind surfaces. (c) Limited elevation resolution on most sensors induces artifacts from floors/ceilings.

radar-based SLAM similar to those of LIDAR-based SLAM [10, 32].
Specifically, in corridor and hallway-like environments, the lack
of distinct geometric features (e.g., due to flat walls) leads to de-
generate cases where one frame can be matched with several other
frames along the corridor, leading to large errors. To illustrate this,
consider Fig. 2(a), which depicts a common hallway environment.
We can see that the radar heatmap consists of reflectors along two
parallel flat walls (circled in red). If the observer moves down the
hallway (i.e. forward) the heatmap after motion would be similar
to the heatmap captured just before the motion took place. Hence,
during scan matching, the result would be as if no motion occurred.

(ii) Inadequacy of Inertial Sensors: A common approach to
deal with degenerate environments is to use additional sensors
such as accelerometers (e.g., milliMap [33], milliEgo [34]). This
approach carries several disadvantages. First, accelerometers suffer
from integrative errors because estimating position from accelera-
tion requires double integration. Second, accelerometers fare badly
in scenarios when the robot moves at a near constant velocity which
is common in the case of ground vehicles [28]. In such scenarios,
the acceleration is nearly unobservable due to being dominated
by noise [28, 35, 50, 51]. Finally it is well known that, in practice,
effectively using multiple sensors in conjunction requires laborious
precise calibration [51]. Such factory calibration procedures of-
ten necessitate expensive bespoke infrastructure (i.e. synchronized
clocks, precision turntables, robotic manipulators, motion tracking
systems, fiducial targets [29, 35, 49]), rendering such procedures out
of reach for low-cost and self-assembled sensor suites in the field
[16, 51]. Furthermore, this calibration may need to be re-performed
periodically as the operating conditions of the robot may change
over time due to factors such as wear and tear [9, 51].

(iii) Artifacts due to Multipath: Radar-based SLAM is prone to
two types of artifacts in the generated maps. (a) Multipath effect:
radio signal reflections from every day objects cause false images
to appear in maps produced by radar-based SLAM approaches. For
example in Fig. 2(b), a phantom caused by reflections is seen behind
a cul-de-sac. Recent work in radar-based SLAM has not addressed
multipath effects [33, 43]. (b) 3D-to-2D conversion artifacts: since
SLAM focuses on creating a 2D map of the 3D world, past work
largely utilizes azimuthal beamforming techniques on single chip
mmWave radars. This approach leads to floor and ceiling reflections
being mapped to artificial obstacles in the generated map, as shown
in Fig. 2(c). A long ceiling lamp appears in the heatmap even as the
radar is pointed horizontally.

1.2 Radarize– Radar-Native SLAM
We present Radarize, a novel FMCW radar-based SLAM system
that counters these challenges. In designing Radarize, we take a
radar-native approach, i.e., we use properties unique to radio signals
that have been underexplored in past work. Notably, Radarize is
self-contained — it performs SLAM using only a simple off-the-
shelf single-chip radar [20] and does not rely on additional sensors
or custom hardware. Radarize is built on the following technical
contributions.

Doppler-based Translation Estimation: Scan-matching algo-
rithms and inertial sensors ignore a key inherent advantage of
radio signals – doppler shift. As a robot explores the environment,
the radar signal undergoes doppler shift directly proportional to
its velocity. Since doppler shift directly measures velocity, it can
accurately estimate translation even in repetitive environments.
Furthermore, velocity-to-distance estimates experience lower in-
tegration errors and drift compared to accelerometers. Therefore,
Radarize utilizes doppler shift as its primary translation estimate.

Using doppler shift to estimate translation is challenging in in-
door settings. In outdoor settings, doppler shift is commonly used
to estimate velocities, e.g., to detect speeding cars. Unlike outdoor
scenarios that have few big reflectors, indoor settings suffer from
a clutter of small reflectors. When the radar moves indoors, it ob-
serves reflections from multiple reflectors, each with a different
relative velocity. The angle between the reflector and the radar
determines the doppler shift experienced by the radar. As such, a
radar must infer its translation by comparing reflectors from dif-
ferent directions. Radarize creates doppler-azimuth heatmaps from
raw radar signals for this objective, i.e., it represents radar reflec-
tions as a function of doppler shifts along different angles. In this
doppler-azimuth representation, doppler shift across different an-
gles exhibits a unique signature that captures a radar’s self-velocity
and heading direction.

Correlation-based Rotation Estimation: We observe that while
doppler shift is accurate for translational motion, it does not cap-
ture rotational motion accurately. Therefore, we need to find an
alternative mechanism to estimate rotation of the radar. To es-
timate rotational motion, we follow a two-step approach. First,
Radarize performs a coarse grained rotation estimation using two
time-shifted radar frames. Specifically, it compares the rotational
shift between two range-azimuth heatmaps that demonstrate the
reflected signal intensity at different locations in space. We design
a neural network with a unique data augmentation procedure and
a cyclic consistency loss to accurately estimate the rotation. While
this process is similar to scan matching algorithms discussed above,
rotational motion is far less likely to suffer from the degenerate scan

332



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

matching cases (unlike translational motions). In the second stage,
Radarize relies on the SLAM pipeline discussed below to fine tune
these estimates in conjunction with the map of the environment
and the translational motion estimated using doppler shift.
Artifact Rejection: To address multipath, Radarize includes a
smart multipath rejection scheme. It analyzes the range-azimuth
output of the radar, and rejects all but the first reflection, i.e., cor-
responding to the shortest distance, along each direction. Since
multipath reflections travel longer distances, this approach sup-
presses multipath effect. In addition, to counter reflections from
floors and ceilings, we introduce an antenna array pre-processing
step to reduce reflections from high or low elevations, and a post-
processing step to reject such false objects from 2D maps.

We implemented Radarize using PyTorch [42] and evaluated it
on a large dataset of 146 trajectories collected across 4 different
buildings and mounted on 3 different platforms totalling approx-
imately 4.7 Km of travel distance. In terms of odometry, we find
that it outperforms competing radar-inertial and neural-inertial
approaches by 5× in terms of absolute trajectory error (ATE). In
terms of end-to-end SLAM, we find that this value increases up to
8×. Additionally, our qualitative results (Fig. 15) show that Radarize
can enable very long loop closures up to 80m of total travel distance.

1.3 Summary of Contributions
Our key contributions are:
• We present Radarize– a novel SLAM pipeline designed for use
with small commodity radar sensors. Radarize exploits the prop-
erties of FMCW radar signals to perform radar-based SLAM
without need for auxiliary sensors such as IMUs. Yet, Radarize
exceeds the performance of radar-based methods leveraging
IMUs.

• We identify effective representations of FMCW radar signals for
odometry and mapping tasks. We identify sources of artifacts
in such representations, and describe techniques for ameliorat-
ing them. We also show how data augmentation techniques
can enable learning-based techniques to efficiently utilize such
representations.

• We show via a large scale and comprehensive evaluation that
Radarize generalizes across platforms and environments. It
works as well when deployed on humans (e.g., as a wearable)
as it does on wheeled ground robots, and can map buildings of
diverse architectural styles.

• We contribute a new dataset for radar-driven SLAM spanning
three platforms, four buildings, and 4.7 Km of moving distance1.

2 BACKGROUND
Radar-based Sensing: mmWave-based radars have increasingly
become accessible and mainstream over the last decade [8, 31].
These devices transmit low power radio signals and capture the
reflections of these signals from the surrounding environment. By
analyzing these reflections, the radar estimates the distance, angle,
and doppler shift corresponding to each reflector in the surround-
ing.

1Demos, code, and data are available at https://radarize.github.io

(a) (b)

Heatmap on Depth Camera Point Cloud Heatmap on Radar Point Cloud

Figure 3: The range-azimuth heatmap captures the reflections along
different distances and angles. The heatmap is mapped to a carte-
sian plane for easy visualization. The intensity of reflection varies
from blue (low) to red (high). Left. Dense heatmap overlaid on depth
camera point cloud. Right. Same heatmap overlaid on sparse radar
point cloud. We trace the shadow behind each point for visibility.

Distance: A typical radar sensor relies on Frequency Modulated Car-
rier Wave (FMCW) to measure distance. FMCW signals comprise
of chirps, a specific radio signal where the frequency of the sig-
nal varies linearly with time. When a reflection is captured by the
radar, it is a delayed copy of the chirp and hence lags in frequency.
By analyzing the difference in the frequency between transmitted
and received chirps, a radar can compute the time delay between
them. The time delay corresponds to distance because radio waves
travel at the speed of light. The range resolution increases with the
bandwidth of the chirp.
Angle: A radar sensor relies on multiple transmit/receive antennas
to measure the angle of each reflection. The phase of the received
(or transmitted) signal at different antennas depends on the an-
gle of arrival (or departure). By estimating the phase difference
across antennas, a radar can identify the corresponding angles. The
antenna separation is determined by the signal wavelength, and
the antenna span defines the angular resolution (higer span offers
better resolution).
Doppler Shift: A radar can capture multiple reflections over time
to estimate the doppler shift corresponding to each reflector in
the surrounding. The doppler shift corresponds to the velocity
of the reflector. The resolution increases with the total time of
signal capture. For more concrete mathematical discussions on
radar processing, we refer the reader to [21].

We will use two different representations of the radar data in
this paper. First, we use doppler-azimuth heatmaps to denote a 2-
dimensional image where each pixel corresponds to a fixed doppler
and angle value. The color of the pixel denotes the intensity of
reflection emerging from that doppler and angle value. Similarly,
we use range-azimuth heatmaps to demonstrate the reflections
emerging at particular range and angle values. For this heatmap,
the reflectors at different doppler shifts are squished into a single
point.

Simultaneous Localization and Mapping (SLAM): In SLAM, a
moving agent, such as a robot, creates a map of the environment and
estimates its trajectory simultaneously. SLAM relies on two types of
inputs: scans (e.g., LIDAR scans) and odometry inputs (e.g., inertial
sensors that provide relative motion of the agent between scans).
The scans of the environment can come from different sensor types
such as LIDARs [46, 47], cameras [2, 38, 39, 44], acoustic sensors [6,

333

https://radarize.github.io


Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

7]. These scans are typically represented in the form of probabilistic
occupancy grids, where the probability value corresponding to each
grid point indicates the probability of presence of an obstacle at
that grid point.

We rely on the Cartographer [14] framework for 2D-SLAM. Car-
tographer was originally designed for LIDAR-based SLAM. It uses
a small sequence of scans to create local submaps. Within each
submap, it matches the current scan to the submap to estimate
the pose of the agent. The odometry input serves as a prior for the
agent’s pose, and isn’t necessarily required since scan matching can
produce odometry estimates, especially when using dense optical
sensors like LIDARs. As the agent walks the environment, the drift
in its pose increases over time. To reduce such drift, Cartographer
leverages global optimizations using constraints like loop closures,
e.g., if a robot revisits the same location, Cartographer can use this
scan to correct for accumulated drift. We refer the reader to [14]
for a detailed discussion.

3 RADARIZE DESIGN
Before we delve deeper into Radarize, we present a set of goals and
choices that motivate our design:

(i) StreamlinedHardware Requirements: There is a body of past
work that relies on large expensive scanning radars [3, 15, 37, 41]
for radar applications. Such radars rely on mechanical motors to
spin them and scan their surroundings. We do not consider such
radars in this work because they can’t support lightweight, compact
robots. Instead, we focus on the emerging context of single-chip
commodity off-the-shelf (COTS) radars [17, 18, 20]. These radar
sensors are inexpensive and small enough to be integrated into
mobile devices and small robots. We recognize that more complex
radar designs are possible, but we aim for widespread availability,
low cost, and ease of use. This choice is consistent with recent work
in radar-based SLAM [33, 43, 48].

(ii) Radar-only Design: Instead of relying on auxiliary sensors
like wheel encoders or IMUs, we opt to use radar’s intrinsic prop-
erties as the source of odometry. This makes sense for two reasons.
First, we observe that the intrinsic properties of radar make IMUs
redundant for 2D SLAM. Radar measures doppler shift as a first
order primitive. Doppler shift corresponds to velocity and as such,
is less prone to drift. Hence, the use of doppler shift can effectively
supersede accelerometers. Similarly, rotation can be observed from
the shifting of reflectors in the environment over time. Second,
adding more sensors adds unnecessary complexity and overhead,
often necessitating nontrivial calibration procedures and/or syn-
chronization procedures [52, 54]. By using only a single sensor, we
sidestep such concerns.

(iii) Dense over Sparse Methods: Radar SLAM methods can
roughly be categorized into two categories [1] (a) dense (direct)
methods that rely on dense heatmaps,and (b) sparse (indirect) meth-
ods that process radar signals into a sparser representation (i.e.
keypoints, point clouds) before being used. We show a comparison
of a radar heatmap v.s. a radar point cloud in Fig. 3. As shown,
sparse representations lose potentially useful information but of-
fer the advantage of smaller computational complexity and better
noise/artifact resilience. In contrast, dense methods preserve all the

information at the cost of potential artifacts. We choose the latter
approach, opting to capitalize on the benefits of dense methods
while introducing new methods to deal with artifacts.

3.1 Design Outline
An overview of Radarize is shown in Fig. 4. Radarize consists of
three parts. First, a preprocessing module (shown in beige) converts
radar I/Q frames into heatmaps. The tracking module (shown in
blue) identifies translation (Sec. 3.2) and rotation (Sec. 3.3) from
doppler-azimuth and range-azimuth heatmaps respectively. The
mapping module (shown in green) first suppresses vertical reflec-
tions (like floors and ceiling), then uses a lightweight segmentation
model (i.e. UNet) to segment reflectors on range-azimuth heatmaps
(Sec. 3.4). The segmentation model is followed by a de-echoing pro-
cess that performs multipath suppression. Finally, the outputs of
the mapping and tracking modules are input to the SLAM backend,
which outputs real-time global map and trajectory estimates.

We tailor our design for the Texas Instruments IWR 1843 radar [20]
shown in Fig. 5(left). This radar has three transmit antennas and
four receive antennas. One of the transmit antennas is offset in
height. We can transmit using each of the transmit antennas to cre-
ate a virtual antenna array configuration shown in Fig. 5(right). We
choose this radar because it has good azimuthal angular resolution
(8 virtual antennas in the horizontal plane) and is representative of
the capabilities of most small radars.

3.2 Estimating Translation with
Doppler-Azimuth Heatmaps

Our first goal is to track the radar’s egomotion in the horizontal
plane. The radar’s egomotion consists of 3 degrees of freedom
(two translational and one rotational). Radarize factorizes the task
of egomotion estimation into translation estimation and rotation
estimation. We describe the process of estimating translational
motion using a radar’s doppler shift below.

Consider the scenario in Fig. 6(a), which depicts a horizontally-
pointed forward-facing radar. Suppose the radar undergoes transla-
tional motion with speed 𝑣 along direction 𝜃 (red arrow from the
radar). This will induce relative motion from various reflectors in
the environment. Suppose there is a reflector along direction 𝜙 (yel-
low circle). The resultant relative radial velocity (yellow arrow) will
be 𝑣 cos(𝜃 + 𝜙), which in turn induces a doppler shift 𝑣 cos(𝜃+𝜙 )

𝑐 𝑓 ,
where 𝑓 is the radar signal frequency.

Our goal is to estimate 𝑣 and 𝜃 for the robot, given the observed
reflections. It is challenging to estimate both 𝑣 and 𝜃 from a single
measurement of doppler shift. However, indoor environments have
multiple reflectors. Reflectors are even more abundant at mmWave
frequencies, where even smooth surfaces such as walls act as a
set of reflectors due to the dispersion effect (see Fig. 2(a)). While
smooth surfaces are often considered a challenge for scan matching
(leading to degenerate cases), Radarize can use their abundance of
reflections as an advantage. Specifically, given a set of reflectors at
different directions, the doppler shift exhibits a unique signature
that identifies both 𝑣 and 𝜃 . These signatures present themselves
clearly in doppler-azimuth heatmaps, where the doppler shift is
plotted as a function of angle 𝜙 .

334



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

SLAM

Range

Scan

Odometry

Estimate

Velocity

Estimator

Trajectory

Global Map

Doppler-Azimuth Heatmap

Range-Azimuth Heatmap Scans

Odometry

De-Echo

Integration

Preprocessing

Radar I/Q Frames

n-2

n-1

n

n-2

n-2

n-1

n

n-1

n
n-k
n Rotation

Estimator

Segmentation

Intermediate Map

Figure 4: Radarize Overview. Left. Radar frames are processed into heatmaps. Top. The mapping module converts range-azimuth heatmaps into
range scans. Bottom. The tracking module (a) regresses relative rotation from successive range-azimuth heatmaps and (b) regresses velocities
from doppler-azimuth heatmaps and integrates them into odometry estimates. Right. An optimization-based SLAM backend outputs real-time
map and trajectory estimates.

TX1 TX3

TX2

RX1 RX2 RX3 RX4

1 3 42

5 7 86

9 11 1210

Figure 5: Left.Physical IWR1843 antenna array.Right.Corresponding
virtual antenna array. Azimuth-only heatmaps are derived from
subarray enclosed in red. Elevation-aware heatmaps are derived
from the subarray enclosed in blue.

To illustrate these signatures, we simulate the antenna array
depicted in Fig. 5(red) moving in three velocities (forward at 0.30
m/s, right at 0.50 m/s, forward + right at 0.50 m/s) in a reflector-
rich environment, then use beamforming and doppler fast-fourier
transform (FFT) to plot the resultant doppler-azimuth heatmaps.
The resulting plots are shown in Fig. 6(b–d). For Fig. 6(b), 𝜃 = 0 and
hence, the doppler signature follows the function 𝑣 cos𝜙 and peaks
at 𝜙 = 0with an amplitude of 𝑣 (as expected). Similar signatures can
be observed for 𝜃 = 𝜋

2 and 𝜃 = 𝜋
4 in Fig. 6(c) and (d) respectively.

We notice that an intuitive visual structure emerges for different
values of 𝜙 . The degree of forward (c.f. backward) motion results in
increasing upward (c.f. downward) displacement of all the heatmap
peaks. The degree of right (c.f. left) motion results in the peaks
sloping increasingly positively (c.f. negatively).

In practice, the heatmaps are sparser and discontinuous, but
continue to exhibit similar visual signatures in the doppler-azimuth
plots. This interpretable structure motivates us to train a visual
model that predicts 𝑣 and 𝜃 from such doppler-azimuth heatmaps.
The details of the model are presented in Sec. 4. Once we have a
model for the velocity, we derive the inter-frame translation by
multiplying with the known inter-frame arrival time.

3.3 Estimating Rotation with Range-Azimuth
Heatmaps

Using a single-chip radar for rotation estimation is an underex-
plored and challenging problem. Observe that the doppler-based
estimates do not accurately capture rotational motion. This is be-
cause during rotational motion, the radial velocity of the reflectors
with respect to the radar is zero. Therefore, we cannot rely on our
doppler-based translation estimation approach for this task.

Radarize’s rotation estimation approach relies on range-azimuth
heatmaps generated by the radar. Consider the radar in Fig. 6(a) un-
dergoing pure rotational motion e.g. rotating clockwise (c.f counter-
clockwise). Then it is expected that the range-azimuth heatmap
(see example in Fig. 7) after rotation will undergo a coherent linear
transformation, i.e., all reflectors will shift left (c.f. right) as com-
pared to the version of the range-azimuth heatmap before rotation.
This is because under pure rotation, each reflector’s range to the
radar remains constant, but their bearing angles change by the
exact same amount. Moreover, their shift along the azimuth axis is
directly proportional to the degree of the radar’s rotation. We plan
to use this intuition to estimate the rotational motion.

However, precisely matching reflectors across different frames
is a challenging task due to three reasons. First, the low resolution
of heatmaps generated by low-cost radars makes reflector identifi-
cation challenging. Second, when translation motion is mixed with
rotation, reflectors in range-azimuth heatmaps undergo various de-
grees of warping. Finally, some reflectors are only visible at certain
angles and do not appear in some heatmaps.

We notice that this task is similar to feature matching in the
vision domain. Given the success of machine learning in visual
feature matching, Radarize trains a visual model (details in Sec. 4).
Given two successive range-azimuth heatmaps, Radarize’s model
estimates the relative rotation between them by measuring the
extent of coherent left or right-translation (ignoring some poten-
tial incoherent warping due to translational motion) by making
appropriate visual correspondences between the heatmaps.

335



Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

= v cos(θ + φ)
Reflector 
Bearing

Heading
Direction

Heading
Speed

Radar

φ
θ

v

Reflector

φ

v

θ = 0

45◦−45◦ φ

v

θ = 90◦

φ

v

θ = 45◦

45◦−45◦ 45◦−45◦

(a) (b) (c) (d)
Figure 6:Estimating 2D translationalmotion fromdoppler-azimuthheatmaps. (a) A forward facing radar "squishes" reflectors in the environment
onto the horizontal plane (blue) and measures their velocity and bearing angle 𝜙 . (b) Doppler-azimuth heatmap when moving forward at 0.3
m/s. (c) Doppler-azimuth heatmap when moving right at 0.5 m/s. (d) Doppler-azimuth heatmap when moving diagonally (forward + right) at
0.5 m/s. For (b-d), theoretical values are overlaid on the heatmaps as white lines.

 Range-Azimuth Heatmaps

RotNet

RotNet

RotNet

Figure 7: Cyclic consistency loss used to train rotation model. The
radar undergoes right rotation (and some translation) from 𝑡1 to 𝑡2,
causing the heatmap at 𝑡2 to be left-shifted (modulo some warping).

We propose two data augmentation strategies to make the model
generalize to various rotation and translation speeds. First, we vary
the time spacing between two successive range-azimuth frames, i.e.,
we vary 𝑡2 − 𝑡1 in Fig. 7 to expand the range of shifting and warping
within the dataset. This helps us augment our training dataset with
different velocities. Second, we adopt a cyclic-consistency loss due
to the fact that any rotation from 𝑡1 to 𝑡2 implies the same rotation
in reverse from 𝑡2 to 𝑡1, as depicted in Fig. 7. We adopt similar
strategy at inference time – we obtain two estimates of rotation by
feeding the heatmaps in forward and reverse orders. We average
these estimates for the final output.

3.4 Generating Local Maps
Our next goal is to generate local maps of the environment sur-
rounding the robot. Multiple local maps are combined together to
form the global map using our SLAM backend. As discussed in
Sec. 1.1, the key challenge for accurate mapping is the artifacts
due to 3D-2D conversion artifacts (Fig. 2(c)) and multipath effects
(Fig. 2(b)).

Artifact Rejection: Consider the antenna array in Fig. 5 which
consists of two virtual arrays – the 1D azimuth-only antenna array
(red) and the 2D elevation-aware antenna array (blue). Deriving
a range-azimuth heatmap from the former has a high azimuthal
angular resolution. However, it is not elevation-aware, and thus is
prone to artifacts from floors and ceilings (Fig. 8 left). We use the

Before Suppression After Suppression

Figure 8:Effect of elevation beamforming on range-azimuthheatmap
in Fig. 2(c). Left. Original heatmap. Right. With elevation beamform-
ing. The artifact is significantly diminished.

2D virtual array to suppress such artifacts. Specifically, we create
an elevation-aware range-azimuth heatmap by setting the beam-
forming weights such that the radar points straight ahead in the
elevation dimension. This elevation-aware heatmap encapsulates
elevation information at the cost of azimuthal angular resolution.
We can see an example of such artifact suppression in the heatmap
in Fig. 8 (right). Our observation is that legitimate in-plane reflec-
tors are consistent across both heatmaps, while ceiling and floor
reflectors are suppressed in the elevation-aware heatmaps.

We aim to have Radarize’s mapping module benefit from this
observation. Therefore, for each incoming radar frame, we compute
both the pure-azimuthal heatmap as well as the elevation-aware
heatmap.We then feed both heatmaps to a segmentationmodel. The
model can leverage the former heatmap to output a high resolution
map, and leveraging comparisons between the two to weed out 3D
to 2D conversion artifacts.

Echo Suppression: Another source of errors is the presence of
phantoms due to multipath propagation (Fig. 2(b)). We propose a
simple heuristic to diminish the effect of such artifacts – we remove
all but the first reflection along each direction from the output of the
segmentation module. Intuitively, the output of the segmentation
module is a pixel-wise binary classification of the reflectors within
a scene. This can be interpreted as a 2D occupancy grid of points,
some of which are behind others from the radar’s point of view.
Due to the presence of phantoms in radar heatmaps, we should
place most of our confidence only on the first reflector encountered
along any particular bearing angle.

336



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

Radar
Data Capture

Card

Depth
Camera

Tracking
Camera

Figure 9: Sensor suite used for data collection.

3.5 Integrating Odometry and Mapping
We feed the odometry outputs from our tracking module and the
sequence of scans from our mapping module to the state-of-the-
art optimization-based SLAM backend (Cartographer [14]). As a
production-grade SLAM system, Cartographer can continuously
merge these inputs to generate a map of the environment and
the trajectory of the device in real-time, even on computationally
lightweight devices.

4 IMPLEMENTATION
4.1 Hardware Design
Sensors: We use the hardware setup shown in Fig. 9. It consists of
an Intel T265 tracking camera [23], Intel D435i stereo depth camera
[22], an Texas Instruments IWR1843 radar [20], and a DCA1000
data capture card [19] attached to a 3D printed fixed frame. We use
the tracking and depth cameras solely to obtain the pseudo-ground
truth trajectories and depth maps respectively. The data capture
card is used to capture unprocessed I/Q samples from the radar
rather than preprocessed sparse point clouds.

In total, this setup allows us to capture a sequence of colocated
depth images from a stereo depth camera, accelerometer and gyro-
scope readings from its built-in IMU, sparse point clouds from the
radar, frames of radar I/Q samples from the data capture board, as
well as pseudo-ground truth poses as obtained from a state-of-the-
art visual odometry sensor. Note that during deployment, only the
data capture card and radar components are necessary.

Parameters:We tune the parameters of the sensors to be appro-
priate for indoor settings. We set the chirp parameters of the radar
such that the maximum unambiguous range is 4.284m and the range
resolution is 4cm. We adjust the maximum depth of the depth cam-
era to match that of the radar. Since the depth camera’s horizontal
field of view is limited to 88 degrees ([−44◦, 44◦] deviation from
boresight), we compute range-azimuth heatmaps within the same
range (with an angular bin spacing of 1◦). As a result, the size of
our range-azimuth heatmaps is 𝑁𝑟 = 96 by 𝑁 𝑟

𝜃
= 88.

Additionally, we adjust the inter-chirp interval to be 516𝜇𝑠 . This
yields 𝑣𝑚𝑎𝑥 = 𝜆

4∗𝑇𝑐 = 1.89 m/s, which is a reasonable upper bound
on human walking speed. For our doppler-azimuth heatmaps, we
find that 𝑁𝑐 = 96 and 𝑁𝑐

𝜃
= 180 (with 1◦ angular bin spacing) to be

a good value. This gives us a velocity resolution of 𝑣𝑟𝑒𝑠 = 𝜆
2∗𝑁𝑐∗𝑇𝑐 =

0.04 m/s. Finally, the sensors operate at different frequencies (i.e.
200 Hz for the IMU, 100 Hz for the camera). We set the radar frame
rate to be 30 Hz and synchronize all sensor readings to the radar.

Figure 10: Left. Moving sensors by hand. Center. Sensors mounted on
a cart. Right. Sensors mounted on robot.

Platform Building TotalA B C D
Handheld 15 9 12 11 47
Cart 10 11 15 9 45
Roomba 9 15 15 15 54
Total 34 35 42 35 146

Table 1: Breakdown of the trajectories in our dataset.

4.2 Dataset Collection
We collect a large and diverse dataset of trajectories spanning sev-
eral floors across four different campus buildings A, B, C, and D
using the set of sensors depicted in Fig. 9. During data collection,
we ensure that there are no other moving objects in the environ-
ment. This is consistent with past work in SLAM, which classically
assumes a static environment.

Buildings: The buildings were chosen to maximize the diversity
of architectural styles and construction materials. Building A is a
modern construction featuring many glass and metallic surfaces.
Building B is the most dated construction and primarily consists
of wood and drywall. Building C comprises mainly of brick and
metallic surfaces. Building D is an intermediary between building
B and C. We choose random floors in each building to randomize
the layout.

Platforms: In addition to diversity of environments, we also aim for
a diversity of platforms. We move the sensors in one of three ways
as shown in Fig. 10: (a) Hand-held:We instruct a set of volunteers to
carry the sensors by hand while walking around the building. The
volunteers are encouraged to encompass the full range of 2D top-
downmotions – for example, they can choose to move backwards or
sideways through a narrow hallway. This leads to a challenging set
of trajectories featuring sudden accelerations and fast rotations. (b)
Cart-driven: We mount the sensors onto a cart and push it around
the building. The trajectories are more constrained and consist
mostly of constant linear velocity motion and slow rotations. Across
both aforementioned cases, the set of linear speeds range up to
a brisk walking pace of 1.6 m/s. (c) Robot-driven: We mount the
sensors onto a small ground robot (the iRobot Create3 [24]) and
use teleoperation to drive the robot around the building. The robot
has a maximum linear velocity of 0.5 m/s and holds the sensors
significantly closer to the ground than the previous cases.

Dataset Summary: We collect 146 trajectories, with roughly even
division across movement types and buildings. Each trajectory con-
sists of around a minute of capture time. The mean travel distance
across all handheld and cart-driven trajectories is over 50m. Ow-
ing to the relatively slow speed of the ground robot, the mean

337



Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

travel distance for the robot trajectories is around 20m. In total,
our dataset consists of roughly 226,800 data samples and 4680m of
travel distance. Table 1 contains a summary of the dataset.

Caveat on Adverse Conditions:We do not collect data in adverse
conditions (e.g. in occluded environments or low-light environ-
ments) for two reasons. First, such conditions would make the
optical sensors (i.e. depth and tracking camera) fail and produce
junk values, depriving us of the pseudo ground-truth for evaluation.
Second, numerous prior works have already shown the robustness
of radar to both occluded environments and low-light environ-
ments. Specifically, [43] immersed a radar within a smoke chamber
and found no difference in the output, and [48] reports identical
performance of radar in both light and dark conditions.

4.3 Model Architecture & Training
Translation Model: We use a CNN based on ResNet18 [12].
We modify the input to accept a single-channel doppler-azimuth
heatmap of size 𝑁𝑐 × 𝑁𝑐

𝜃
and modify the output layer to output

a two-dimensional velocity estimate. To train the model, we use
ground truth velocity estimates as obtained from our tracking cam-
era as supervision.We use the standard L2 (mean-squared error) loss
for training. Our optimizer is Adam [25] with parameters 𝛽1 = 0.9,
𝛽2 = 0.999. We use a learning rate of 1e − 3 and a batch size of 128.
For data augmentation, we apply random vertical flipping on the
doppler-azimuth heatmap images. Specifically, for a data sample
consisting of a doppler-azimuth heatmap image and a velocity label
𝑣 , we vertically flip the doppler-azimuth heatmap and assign the
label −𝑣 .
Rotation Model: We again use a CNN based on ResNet18 [12].
We modify the input to accept a two-channel image of size 𝑁𝑟 ×𝑁 𝑟

𝜃
consisting of stacked range-azimuth heatmaps i.e. a range-azimuth
heatmap observed at current time, 𝐻𝑛 , with a previous observation
𝐻𝑛−𝑘 , where 𝑘 > 1. The output is a single value Δ̂𝜃

𝑛

𝑛−𝑘 corre-
sponding to the rotation estimate. To train our model, we use the
pseudo-ground truth rotation estimates from the tracking camera
as supervision. We use a standard L2 (mean-squared error) loss
with cyclic consistency constraint given by

𝐿𝑟𝑜𝑡 (𝐻𝑛−𝑘 , 𝐻𝑛) = ∥Δ𝜃𝑛
𝑛−𝑘 − Δ̂𝜃

𝑛

𝑛−𝑘 ∥22 + ∥Δ𝜃𝑛−𝑘𝑛 − Δ̂𝜃
𝑛−𝑘
𝑛 ∥22 (1)

Our optimizer is Adam [25] with parameters 𝛽1 = 0.9, 𝛽2 = 0.999. We
use a learning rate of 1e−3 and a batch size of 128. We leverage two
kinds of data augmentation. First, we design a horizontal flipping
data augmentation. Specifically, for an incoming data sample (which
consists of a stacked 𝐻𝑛 and 𝐻𝑛−𝑘 and label Δ𝜃𝑛

𝑛−𝑘 ) we randomly
apply horizontal flipping on the stacked heatmap image and set the
label of the sample to be −Δ𝜃𝑛

𝑛−𝑘 accordingly. Secondly, we vary 𝑘
randomly for each training sample to lie within a small range – we
find empirically that 1-5 frames is a good value.
Segmentation Model: We choose UNet [45] as a backbone as it
is fast and achieves state-of-the-art results on segmentation tasks.
The input to the model is a two-channel image of size 𝑁𝑟 ×𝑁 𝑟

𝜃
. This

is obtained by stacking the pure-azimuthal and elevation-aware
range-azimuth heatmaps. The output of the model is a 2 channel
range-azimuth image of occupancy logits of the same size, whichwe
convert into probabilities using the softmax function. Thresholding

the output converts it into a 2D grid of discrete points. For the
ground truth, we use the point clouds given by the stereo depth
camera. For training, we use the Dice loss with Adam [25]. Our
optimizer is Adam [25] with parameters 𝛽1 = 0.8, 𝛽2 = 0.9. We use a
learning rate of 1e−4 and a batch size of 48. For data augmentation,
we use random horizontal flipping on the range-azimuth heatmaps
and depth ground-truth.

5 EVALUATION
We evaluate our method by contrasting it with several representa-
tive state-of-the-art baselines (or combinations thereof):
• RadarHD [43] is a radar super-resolution method. It leverages
an asymmetric UNet architecture to upsample range-azimuth
heatmaps into high angular resolution point clouds. The point
clouds are subsequently utilized for downstream localization
and mapping tasks.

• milliEgo [34] is an radar-inertial odometry estimator based on
sparse point clouds. It leverages a cross-attention mechanism
to merge odometry estimates from point cloud observations
with auxiliary IMU data.

• RNIN [5] is a neural-inertial navigation model that regresses
IMU readings into odometry estimates. These estimates are
designed to be integrated into various downstream state esti-
mation pipelines.
We use the publicly available implementation and pretrained

weights for the baselines. For fairness, we also fine-tune the models
on our own dataset.

Metrics: To compute the relevant evaluation metrics we use the
evo package [11], widely used to benchmark the performance of
odometry and SLAM algorithms. We consider two main metrics:
Absolute Trajectory Error (ATE) and Relative Error (RE) for both
position and rotation (heading). While ATE captures errors over the
entire trajectory, RE captures relative error over smaller trajectory
chunks. We refer the reader to [53] for an in-depth explanation of
these metrics.

5.1 Experimental Setup
Our experiments are designed to answer the following:
• How well does Radarize’s compare with IMU-aided and/or
super-resolution based methods?

• How well does Radarize generalize across different environ-
ments and platforms?
To answer the first question, we split our dataset into 5 random

training/validation/testing spits in a ratio of 70/10/20 and aggregate
the results across all splits. To answer the second question, we
consider train/test splits across different buildings and platforms
types.

5.2 Odometry Performance
First, we evaluate our odometry estimation pipeline (Sec. 3). We
summarize our results in Table 2. Our experiments show that our
odometry estimation method is superior to the baselines by a wide
margin, in spite of not leveraging any IMU information. We present
a detailed breakdown below.

338



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

Figure 11: Radarize’s odometry achieves correct scale. We observe IMU-based methods are able to reconstruct the shape of long and linear
trajectories, but struggle with absolute scale.

Figure 12: Radarize’s odometry is flexible. Our method excels at the handheld trajectories which feature a wide range of motions, whereas the
other methods become brittle.

Figure 13: Radarize’s odometry is robust. We compare performance on OOD trajectories by training on the handheld trajectories and testing on
wheeled ones. Methods leveraging IMUs struggle, whereas Radarize retains similar performance.

Achieving Accurate Scale: In general, we observe that IMU-based
methods can reconstruct the shape of long trajectories, but struggle
with its scale. This is substantiated by our cart-driven experiments,
which consists primarily of forward motion down long hallways
(Fig. 11). This is due to the IMU-based methods having to perform
double integration for translation but only single integration for
heading. As such, IMU-based methods perform better on heading
direction estimation than on translation estimation. By contrast,
Radarize almost always achieves the correct scale because it directly
estimates velocity and needs only single integration for translation.

Accommodating Diverse Motions: Recall that in our dataset, we
collect handheld trajectories with more unrestrained motion than

when placing the sensors on wheels (i.e. the cart or robot). We find
that milliEgo works reasonably well when exposed to cart or robot
motion which consists mainly of forward and backward movement
down long hallways, but fails when exposed to sideways movement
or fast rotations (Fig. 12). This is likely due to the sparse and fickle
nature of radar point clouds.

Robustness to Out-of-Distribution (OOD)Motions: To what ex-
tent is Radarize’s odometry pipeline invariant to platform-specific
features? To answer this question, we train all odometry methods
on the handheld trajectories in our dataset and test on the cart-
driven and robot-driven parts of our dataset. As shown in Table
3, Radarize is far more robust to shifts in platforms than other

339



Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

Method ATE RE
Pos (m) Rot (rad) Pos (m) Rot (rad)

milliEgo [34] 4.100 1.054 0.059 1.018
RNIN [5] 2.993 0.542 0.018 0.524
Radarize (Ours) 0.805 0.366 0.014 0.355

Table 2: Comparing odometry performance. Results are averaged
across 5 random dataset splits. Lower is better.

Method ATE RE
Pos (m) Rot (rad) Pos (m) Rot (rad)

milliEgo [34] 3.977 0.817 0.050 0.807
RNIN [5] 5.122 1.927 0.019 1.904
Radarize (Ours) 1.121 0.565 0.013 0.559

Table 3: Testing odometry generalization to OOD motion. Each
method was trained on the handheld trajectories and tested on the
cart and robot trajectories.

methods. This is due to IMU-aided methods leveraging and thus
overfitting to platform-specific side-channel information (e.g., walk-
ing gaits, floor tile spacing, imperfections in wheels, etc. [4, 5, 13]).
As expected, RNIN has the worst OOD performance with milliEgo
performing slightly better due to access to radar data (Fig. 13).
Radarize outperforms the baselines due to not leveraging such side
channel information.

5.3 SLAM Performance
Next, we evaluate the quality of trajectories and maps obtained after
feeding odometry and scans from the baselines and our method into
the SLAM backend [14]. The results are summarized in Table 4. We
note that the performance of the scan matching only approach [43]
is the worst, followed by methods leveraging odometry sources.
This is due to the prevalence of degenerate environments in indoor
environments such as long hallways where repeating features like
flat walls confuse scan matching algorithms. By contrast, Radarize’s
performance stems from a combination of its accurate odometry
and scans, which the pose graph backend can optimize to yield
high quality trajectories and consistent maps.
Map Quality: We show qualitative examples of Radarize’s local
map fragments in Fig. 14.We find that in spite of havingmore points
per scan, RadarHD does not add any improvement over Radarize.
This is due to the excess points in RadarHD contributing noise
(e.g., due to not suppressing 3D to 2D conversion artifacts), which
impedes the SLAM backend’s ability to optimize and coherently
combine scans into a consistent map.
Loop Closures: The lack of compounding errors due to high-
quality local mapping means that Radarize enables long range loop
closures, such as those in excess of 50m. We show examples in Fig.
15, where the SLAM backend successfully closes long range loops.
Generalization Across Environments:We test whether Radarize
can successfully generalize across environments. We choose a sub-
set of the 3 most distinctive buildings in our dataset (A,B,C). We
test on trajectories in one building, and train on trajectories in
the remaining buildings. The results are shown in Table 5. We ob-
serve a small but minor performance decrease, which suggests that
Radarize learns mostly environment-invariant features.

5.4 Computational Requirements
Finally, we quantify Radarize’s computational requirements. We de-
ploy Radarize on two different host devices (a desktop computer and
single-board edge computer). The desktop computer is equipped
with a 12-core AMD Ryzen 9 3900X processor, 32 GB RAM, and
an NVIDIA RTX 3090 GPU. The Jetson AGX Orin [40] is a small
form-factor computer geared towards mobile edge machine learn-
ing applications such as robotics. It is equipped with a 12-core
Arm Cortex-A78AE CPU, 32 GB RAM, and an 2048-core NVIDIA
Ampere architecture GPU with 64 Tensor Cores.

We report the running time of each of Radarize’s components
in Table 6. To determine the total pipeline runtime, we sum along
the longest (bottleneck) path. We obtain a total runtime of 17.06 ms
(desktop) and 31.22 ms (AGX Orin). This translates to an update
rate of 59 Hz and 32 Hz, which is corresponds to super-realtime
and realtime performance respectively. We conclude that Radarize
is computationally efficient enough to be deployed as a realtime
system even on edge compute devices such as the AGX Orin.

6 RELATED WORK
Methods Using Large Radars: Large spinning radars have been
used to perform localization and mapping on vehicles in outdoor
environments. Recent work in this space includes [3], RADARODO
[37]. Pharao [41], RadarSLAM [15]. As GPS is available in outdoor
environments, some of these approaches fuse their estimates us-
ing GPS [30]. Radarize differs along two axes. First, these methods
are suited for larger and more expensive radars with considerably
greater resolution. Second, these works do not address the unique
challenges of using radar within indoor environments such as mul-
tipath effects and phantom reflections.
Methods Using Commodity Hardware: As large radars are im-
practical indoors and on resource constrained edge devices, there
has been recent interest in leveraging small low cost radars and
commodity-grade IMUs. Works involving fusion of radar and IMU
data includes [26] which relies on classical methods and milliEgo
[34] which leverages deep learning. We note there is also a body
of work focusing purely on IMU-based odometry, such as RONIN
[13] RNIN-VIO [5], which could be fused with radar in a loosely-
coupled framework. Unlike these works, Radarize develops purely
radar-based odometry by relying on doppler shift, and does not
require inertial sensors. Finally, there are works also using doppler
shift for egomotion estimation such as [27] and BatMobility[48].
BatMobility leverages doppler shift and machine learning to esti-
mate ground-parallel translational motion of an autonomous UAV.
[27] uses doppler shift to estimate translation and line-fitting with
RANSAC to estimate rotation within a hallway environment. In
contrast to these methods, Radarize does not require strong apriori
assumptions about the environment (e.g. existence of a flat ground
surface in BatMobility, or a hallway environment with parallel flat
walls as in [27]).
Methods Based on Super-Resolution: Radar is noted for its
low resolution when compared with its optical counterpart (i.e.
lidar). Several works attempt to solve this issue through deep-
learning based super resolution techniques. milliMap [33] applies
GANs to densify top-down projections of sparse radar point clouds.

340



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

Method ATE RE
Odometry Scans Position (m) Rotation (rad) Position (m) Rotation (rad)

— RadarHD [43] 4.833 0.751 0.045 0.726
milliEgo [34] RadarHD [43] 3.900 0.808 0.022 0.780
RNIN [5] RadarHD [43] 3.299 0.541 0.020 0.522
Radarize (Ours) RadarHD [43] 0.658 0.154 0.018 0.149
Radarize (Ours) Radarize (Ours) 0.606 0.116 0.017 0.113

Table 4: Comparing SLAM performance. Results are averaged across 5 random dataset splits. Lower is better.

(a) (b) (c)
Figure 14: Comparing map fragments. We compare rows 4 and 5 in Table 4. (a) Pseudo-ground truth map obtained from the stereo depth camera.
(b) Radarize map reconstruction. (c) RadarHD map reconstruction. Radarize enables better mapping via artifact and multipath suppression.

Building ATE RE
Pos (m) Rot (rad) Pos (m) Rot (rad)

A 0.635 0.102 0.018 0.100
B 0.696 0.179 0.016 0.175
C 0.492 0.105 0.016 0.104

Mean 0.608 0.129 0.017 0.126
Table 5: Testing Radarize’s generalization across environments
(tested on one building and trained on the rest).

Device Mean Runtime (ms) TotalPreproc. Trans. Rot. Map SLAM
Desktop 9.53 2.23 6.60 3.11 0.93 17.06
AGX Orin 11.76 7.57 14.78 9.43 4.68 31.22

Table 6: Mean runtime of each stage of Radarize’s pipeline on differ-
ent devices. The total runtime is computed along the longest path.

RadarHD [43] applies an assymetric UNet segmentation to upsam-
ple range-azimuth heatmaps across the angular dimension. Un-
like these works, we identify 3D to 2D conversion from ceilings

and floors as a common source of mapping artifacts in indoor en-
vironments, and address this using our preprocessing algorithm
which takes into account elevation. Finally, while milliMap relies
on explicit ground truth inputs for odometry and RadarHD infers
them using scan matching on radar point clouds, Radarize relies
on doppler-based odometry.

7 CONCLUDING DISCUSSION
We present Radarize, a radar-native SLAM pipeline using only a
small commoditymmWave radar. Radarize exploits the properties of
small FMCW radars in indoor environments to simultaneously per-
form accurate odometry and mapping. Radarize is flexible enough
to be mounted on different platforms, such as headsets or handsets
mounted on humans or robots close to the ground. We conclude
with a discussion of limitations and future work:
Range Limits: We use a commodity-grade stereo depth camera
with an ideal operating range of of less than 5m. As such, we set
the radar’s maximum range to match that of the depth camera.

341



Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

(a) (b) (c)
Figure 15: Radarize enables large-scale consistent maps. Radarize’s odometry has low drift over long distances, enabling long-range loop
closures. (a) Trajectory estimate before and after loop closure. (b) Estimated map. (c) Pseudo ground-truth from depth + tracking camera.

Although this suffices for most indoor environments, it might be
prudent to extend the range of radar for operation in larger spaces
or in outdoor scenarios. This will require retraining Radarize’s
models using ground truth from a more expensive lidar sensor.
Speed Limits: As explained in Sec. 4, our dataset is collected by
humans carrying a sensor either by hand, on a cart, or on a slow
moving ground robot. Hence, the maximum linear speed in our
dataset is 1.6 m/s. We set our radar parameters such that the maxi-
mum unambiguous velocity corresponds to around the same limit.
We believe this is a reasonable speed for most ground robots and
even humans. However, if a larger speed limit is necessary, it is
possible to increase the maximum unambiguous velocity of the
radar by reconfiguring the chirp parameters.
Dynamic Objects: As mentioned in Sec. 4, we do not train or test
our system in the presence of a dynamic objects in the environment.
Similar to how the performance of camera or lidar based SLAM
deteriorates in dynamic environments [36], the presence of moving
objects within the environment is likely to adversely affect the
performance of the system. We leave the resolution of such issues
to future work.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Wen Hu for
their insightful comments and suggestions on improving this paper.
This work was supported in part by NSF RINGS Award 2148583.

A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the code and dataset for the paper Radarize:
Enhancing Radar SLAM with Generalizable Doppler-Based Odom-
etry (MobiSys’24). It includes the pretrained models and experi-
mental configurations to reproduce the main results in the paper.
Additionally, it includes a large dataset of 146 trajectories spanning
4 different buildings and collected on 3 different platforms. We
hope this proves useful for further research into radar-based SLAM
methods.

A.2 Artifact check-list (meta-information)
• Run-time environment: Ubuntu 20.04 machine with sudo access,
conda environment with Python 3.8+.

• Hardware: x86_64 CPU, CUDA >=11.3-capable GPU, 32 GB RAM
• Run-time state: Small random deviation in the output may result
due to non-determinism in the SLAM backend optimization.

• Metrics: Absolute Trajectory Error (ATE), Relative Error (RE).
• Output: Result tables for odometry and SLAM.
• Experiments: Run top-level bash scripts.
• How much disk space required (approximately)?: 1 TB
• How much time is needed to prepare workflow (approxi-
mately)?: Approximately 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: If doing evaluation only: approximately 8 hours. If
training from scratch: approximately 1 day.

• Publicly available?: Yes
• Workflow framework used?: yacs

342



Radarize: Enhancing Radar SLAM with Generalizable Doppler-Based Odometry Conference’17, July 2017, Washington, DC, USA

• Archived (provide DOI)?: 10.5281/zenodo.11093859

A.3 Description
A.3.1 How to access. The code is available in a GitHub repository
linked at https://radarize.github.io. The data is available at DOI
10.5281/zenodo.11093859. It contains the following .zip files:

• eval.zip contains pretrained models and baseline outputs.
• dataset.zip contains the 146 trajectories in rosbag format.

A.3.2 Hardware dependencies.

• x86_64 workstation.
• 32 GB RAM.
• 1 TB of free storage.
• CUDA >=11.3-capable GPU.

A.3.3 Software dependencies.

• Ubuntu 20.04.
• ROS Noetic.
• git.
• conda.
• imagemagick.

A.4 Installation
(1) Install all software dependencies (e.g. ROSNoetic, git, conda,

imagemagick) via apt-get.
(2) Clone theGitHub repository into a folder e.g. ~/radarize_ae/.
(3) Download eval.zip and dataset.zip from 10.5281/zen-

odo.11093859. Place these inside radarize_ae/.
(4) cd radarize_ae/ and unzip the zip files i.e.

unzip eval.zip
unzip dataset.zip

(5) Install conda environment with
conda env create -f env.yaml

(6) Source environmentwith conda env activate radarize_ae.
Then run

pip install -e .

(7) Create a catkin workspace e.g. ~/catkin_ws.
Install cartographer_ros into this workspace.
Under radarize_ae/cartographer/, copy the contents of
configuration_files/ and launch/ into
~/catkin_ws/install_isolated/share/cartographer_ros/.

(8) Source the cartographer_ros environment with
source ~/catkin_ws/install_isolated/setup.bash

(9) After sourcing both the conda environment and catkin_ws
concurrently, you should now be able to run all scripts under
radarize_ae/.

A.5 Experiment workflow
• To generate the main results in the paper, run run_eval.sh.
• To train models from scratch, run run.sh.

A.6 Evaluation and expected results
First, run the evaluation top-level ./run_eval.sh. Then to gener-
ate the tables, we provide two scripts to run:

• odom_eval.sh will write an output to odom_result.txt. It
should approximately match Table 2.

• slam_eval.sh will write an output to slam_result.txt. It
should approximately match Table 4.

Note:Minor deviation from these numbers might occur due to
the non-determinism of the backend SLAM optimization.

REFERENCES
[1] Abu-Alrub, N. J., and Rawashdeh, N. A. Radar odometry for autonomous

ground vehicles: A survey of methods and datasets. Publisher: arXiv Version
Number: 1.

[2] Campos, C., Elvira, R., Rodriguez, J. J. G., M. Montiel, J. M., and D. Tardos,
J. ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and
multimap SLAM. 1874–1890.

[3] Cen, S. H., and Newman, P. Precise ego-motion estimation with millimeter-
wave radar under diverse and challenging conditions. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (2018), IEEE, pp. 1–8.

[4] Chen, C., Lu, X., Markham, A., and Trigoni, N. IONet: Learning to cure the
curse of drift in inertial odometry. Publisher: arXiv Version Number: 1.

[5] Chen, D., Wang, N., Xu, R., Xie, W., Bao, H., and Zhang, G. RNIN-VIO: Robust
neural inertial navigation aided visual-inertial odometry in challenging scenes.
In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
(2021), IEEE, pp. 275–283.

[6] Dokmanic, I., Daudet, L., and Vetterli, M. From acoustic room reconstruction
to slam. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2016), IEEE, pp. 6345–6349.

[7] Evers, C., and Naylor, P. A. Acoustic SLAM. 1484–1498.
[8] Felic, G. K., Evans, R., Duong, H. T., Le, H. V., Li, J., and Skafidas, E. Single-chip

millimeter wave radar. Microwave J 58 (2015), 108–116.
[9] Feng, Z., Li, J., Zhang, L., and Chen, C. Online spatial and temporal calibration

for monocular direct visual-inertial odometry. 2273.
[10] Filip, I., Pyo, J., Lee, M., and Joe, H. LiDAR SLAM with a wheel encoder in a

featureless tunnel environment. 1002.
[11] Grupp, M. evo: Python package for the evaluation of odometry and slam. https:

//github.com/MichaelGrupp/evo, 2017.
[12] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[13] Herath, S., Yan, H., and Furukawa, Y. RoNIN: Robust neural inertial navigation
in the wild: Benchmark, evaluations, & new methods. In 2020 IEEE International
Conference on Robotics and Automation (ICRA) (2020), IEEE, pp. 3146–3152.

[14] Hess, W., Kohler, D., Rapp, H., and Andor, D. Real-time loop closure in 2d lidar
slam. In 2016 IEEE International Conference on Robotics and Automation (ICRA)
(2016), pp. 1271–1278.

[15] Hong, Z., Petillot, Y., and Wang, S. RadarSLAM: Radar based large-scale
SLAM in all weathers. Publisher: arXiv Version Number: 1.

[16] Huang, W., Liu, H., and Wan, W. Online initialization and extrinsic spatial-
temporal calibration for monocular visual-inertial odometry. Publisher: arXiv
Version Number: 1.

[17] Instruments, T. Awr2944 evaluation module for automotive second-
generation, 76-ghz to 81-ghz, high-performance soc. https://www.ti.com/tool/
AWR2944EVM.

[18] Instruments, T. Iwr6843 intelligent mmwave sensor standard antenna plug-in
module. https://www.ti.com/tool/IWR6843ISK.

[19] Instruments, T. Real-time data-capture adapter for radar sensing evaluation
module. https://www.ti.com/tool/DCA1000EVM.

[20] Instruments, T. Single-chip 76-GHz to 81-GHz industrial radar sensor integrat-
ing DSP, MCU and radar accelerator. https://www.ti.com/product/IWR1843.

[21] Instruments, T. The fundamentals of millimeter wave radar sensors. https:
//www.tij.co.jp/lit/wp/spyy005a/spyy005a.pdf, 2020.

[22] Intel. Depth Camera D435. https://www.intelrealsense.com/depth-camera-
d435/.

[23] Intel. Intel® realsense™ tracking camera t265. https://www.intelrealsense.com/
tracking-camera-t265/.

[24] iRobot. Create 3 Robot. https://edu.irobot.com/what-we-offer/create3.
[25] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. Publisher:

arXiv Version Number: 9.
[26] Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Agha-mohammadi, A.-

a., and Heckman, C. Radar-inertial ego-velocity estimation for visually degraded
environments. In 2020 IEEE International Conference on Robotics and Automation
(ICRA) (2020), IEEE, pp. 5739–5746.

[27] Kwon, S.-Y., Kwak, S., Kim, J., and Lee, S. Radar Sensor-Based Ego-Motion
Estimation and Indoor Environment Mapping. IEEE Sensors Journal 23, 14 (July
2023), 16020–16031.

343

https://zenodo.org/records/11093859
https://radarize.github.io
https://zenodo.org/records/11093859
https://zenodo.org/records/11093859
https://zenodo.org/records/11093859
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://www.ti.com/tool/AWR2944EVM
https://www.ti.com/tool/AWR2944EVM
https://www.ti.com/tool/IWR6843ISK
https://www.ti.com/tool/DCA1000EVM
https://www.ti.com/product/IWR1843
https://www.tij.co.jp/lit/wp/spyy005a/spyy005a.pdf
https://www.tij.co.jp/lit/wp/spyy005a/spyy005a.pdf
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/
https://edu.irobot.com/what-we-offer/create3


Conference’17, July 2017, Washington, DC, USA Emerson Sie, Xinyu Wu, Heyu Guo, and Deepak Vasisht

[28] Lee, W., Eckenhoff, K., Yang, Y., Geneva, P., and Huang, G. Visual-inertial-
wheel odometry with online calibration. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, pp. 4559–4566.

[29] Li, Y., Yang, S., Xiu, X., and Miao, Z. A spatiotemporal calibration algorithm for
IMU–LiDAR navigation system based on similarity of motion trajectories. 7637.

[30] Liang, Y., Muller, S., Schwendner, D., Rolle, D., Ganesch, D., and Schaffer,
I. A scalable framework for robust vehicle state estimation with a fusion of a
low-cost IMU, the GNSS, radar, a camera and lidar. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2020), IEEE, pp. 1661–1668.

[31] Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson,
E., Raja, H., and Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter
wave radar. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–19.

[32] Lim, H., Kim, D., Kim, B., andMyung, H. AdaLIO: Robust adaptive LiDAR-inertial
odometry in degenerate indoor environments. Publisher: arXiv Version Number:
1.

[33] Lu, C. X., Rosa, S., Zhao, P., Wang, B., Chen, C., Stankovic, J. A., Trigoni, N.,
and Markham, A. See through smoke: Robust indoor mapping with low-cost
mmwave radar. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services (New York, NY, USA, 2020), MobiSys ’20,
Association for Computing Machinery, p. 14–27.

[34] Lu, C. X., Saputra, M. R. U., Zhao, P., Almalioglu, Y., de Gusmao, P. P. B., Chen,
C., Sun, K., Trigoni, N., and Markham, A. milliEgo: single-chip mmWave radar
aided egomotion estimation via deep sensor fusion. In Proceedings of the 18th
Conference on Embedded Networked Sensor Systems (2020), ACM, pp. 109–122.

[35] Lv, J., Zuo, X., Hu, K., Xu, J., Huang, G., and Liu, Y. Observability-aware intrinsic
and extrinsic calibration of LiDAR-IMU systems. 3734–3753.

[36] Minoda, K., Schilling, F., Wüest, V., Floreano, D., and Yairi, T. VIODE:
A simulated dataset to address the challenges of visual-inertial odometry in
dynamic environments. 1343–1350.

[37] Monaco, C. D., and Brennan, S. N. RADARODO: Ego-motion estimation from
doppler and spatial data in RADAR images. 475–484. Conference Name: IEEE
Transactions on Intelligent Vehicles.

[38] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. ORB-SLAM: A versatile
and accurate monocular SLAM system. 1147–1163.

[39] Mur-Artal, R., and Tardos, J. D. ORB-SLAM2: An open-source SLAM system
for monocular, stereo, and RGB-d cameras. 1255–1262.

[40] NVIDIA. Jetson Orin for Next-Gen Robotics. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/.

[41] Park, Y. S., Shin, Y.-S., and Kim, A. PhaRaO: Direct radar odometry using phase
correlation. In 2020 IEEE International Conference on Robotics and Automation
(ICRA) (2020), pp. 2617–2623. ISSN: 2577-087X.

[42] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. PyTorch: An imperative style, high-performance deep learning
library. Publisher: arXiv Version Number: 1.

[43] Prabhakara, A., Jin, T., Das, A., Bhatt, G., Kumari, L., Soltanaghaei, E.,
Bilmes, J., Kumar, S., and Rowe, A. High resolution point clouds from mmwave
radar. arXiv https://arxiv.org/abs/2206.09273, 2022.

[44] Qin, T., Li, P., and Shen, S. VINS-mono: A robust and versatile monocular
visual-inertial state estimator. 1004–1020.

[45] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, Eds., vol. 9351. Springer International Publishing, 2015, pp. 234–241.
Series Title: Lecture Notes in Computer Science.

[46] Shan, T., and Englot, B. LeGO-LOAM: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2018), IEEE, pp. 4758–4765.

[47] Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., and Rus, D. LIO-SAM:
Tightly-coupled lidar inertial odometry via smoothing and mapping. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020),
IEEE, pp. 5135–5142.

[48] Sie, E., Liu, Z., and Vasisht, D. Batmobility: Towards flying without seeing
for autonomous drones. In ACM International Conference on Mobile Computing
(MobiCom) (2023).

[49] Xiao, Y., Ruan, X., Chai, J., Zhang, X., and Zhu, X. Online IMU self-calibration
for visual-inertial systems. 1624.

[50] Yang, N., von Stumberg, L., Wang, R., and Cremers, D. D3vo: Deep depth,
deep pose and deep uncertainty for monocular visual odometry. Publisher: arXiv
Version Number: 2.

[51] Yang, Y., Geneva, P., Zuo, X., and Huang, G. Online IMU intrinsic calibration: Is
it necessary? In Robotics: Science and Systems XVI, Robotics: Science and Systems
Foundation.

[52] Yang, Y., Geneva, P., Zuo, X., and Huang, G. Online self-calibration for visual-
inertial navigation systems: Models, analysis and degeneracy. Publisher: arXiv
Version Number: 3.

[53] Zhang, Z., and Scaramuzza, D. A tutorial on quantitative trajectory evaluation

for visual(-inertial) odometry. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, pp. 7244–7251.

[54] Zhu, F., Ren, Y., and Zhang, F. Robust real-time LiDAR-inertial initialization.
type: article.

344

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://arxiv.org/abs/2206.09273

	Abstract
	1 Introduction
	1.1 Challenges for Radar-Based SLAM
	1.2 Radarize– Radar-Native SLAM
	1.3 Summary of Contributions

	2 Background
	3 Radarize Design
	3.1 Design Outline
	3.2 Estimating Translation with Doppler-Azimuth Heatmaps
	3.3 Estimating Rotation with Range-Azimuth Heatmaps
	3.4 Generating Local Maps
	3.5 Integrating Odometry and Mapping

	4 Implementation
	4.1 Hardware Design
	4.2 Dataset Collection
	4.3 Model Architecture & Training

	5 Evaluation
	5.1 Experimental Setup
	5.2 Odometry Performance
	5.3 SLAM Performance
	5.4 Computational Requirements

	6 Related Work
	7 Concluding Discussion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

