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ABSTRACT

We present an improved version of the FlexType interface for non-
visual text input. FlexType enables nonvisual text input on mobile
touchscreen devices by allowing users to select from a small num-
ber of character groups with gestures instead of targeting letters
at specific screen locations. Based on an interview with users who
are blind or low vision, we added a letter-entry mode to enable
easier entry of difficult words such as proper nouns. We conducted
a longitudinal study with users who are legally blind to compare
FlexType to users’ typical text input methods. While we found Flex-
Type was significantly slower than Apple’s onscreen Braille input,
there was no significant difference in entry or error rate between
FlexType and an onscreen keyboard with VoiceOver enabled. This
was despite the participants having much more experience with the
VoiceOver keyboard compared to FlexType. Overall, legally blind
participants averaged 7.7 words per minute with a 7.0% character
error rate after correction when writing with FlexType.
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1 INTRODUCTION

Today’s mobile devices often lack physical keyboards, opting in-
stead for virtual keyboards that appear on a touchscreen. While
this allows manufacturers to include larger screens or to reduce
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the size of their devices, it can create challenges for individuals
who are blind or low vision (BLV). Without the haptic feedback
afforded by physical keys, it can be difficult for users who are BLV
to reliably target specific keys when typing on a mobile device.
While in this work we focus on accessible text input for users who
are BLV, sighted users may also wish to perform nonvisual text
input in certain situations. For example, if users are trying to be
discreet they may be entering text under a table, or if users are
multitasking their visual attention may be directed elsewhere.

In our previous work we developed the FlexType text input inter-
face to address this problem [7]. In FlexType, all of the letters and
apostrophe are divided into four groups. Instead of selecting indi-
vidual characters, users select the groups containing their intended
characters by tapping anywhere on the screen with one to four
fingers. After selecting the group for each letter in their intended
word, users swipe to the right and the system disambiguates the
input, determining the most likely matching word given the context.
If the most likely word is not their intended word, users can then
scroll through the n-best list of the n most likely words to find their
target word.

Our previous study compared the longitudinal performance of
FlexType with two different sets of groups optimized to reduce the
number of disambiguation errors [7]. One set of groups was con-
strained to alphabetical order, where each group could only contain
an unbroken sequence of characters. The other set of groups was
unconstrained, where no restrictions were placed on the charac-
ters that each group could contain. We did not find a significant
difference in the long-term performance of the groups, but we did
find that initially users made significantly more errors with the
unconstrained groups. Overall, we previously found that users en-
tered text at 12.8 words per minute with a 1.9% character error
rate. However, while the screen of the device used in the study was
blanked during text entry, all of the participants in our previous
study were sighted. We extend this work to make three primary
contributions:

(1) An improved FlexType system that incorporates feedback
from both a semi-structured interview with participants who
are BLV and from users in the prior study [7].

(2) An input model that improves the disambiguation accuracy
of FlexType and allows the system to correct errors in user
input.

(3) A longitudinal evaluation with users who are BLV that com-
pares FlexType to their typical onscreen text input method.
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2 RELATED WORK

FlexType [7] is not the first system to address nonvisual text input.
The item selection technique used by Slide Rule [11] allows users to
scan through a list of items by swiping their finger across the screen
and select the item they are currently on by tapping a second finger
in a different location. While the studies performed by Kane et al. did
not focus on text input specifically, the authors noted that their
system did enable text input using a Qwerty keyboard. A similar
technique can be used with an onscreen keyboard using Apple’s
VoiceOver! and Android’s TalkBack?. In VoiceOver or TalkBack,
users can perform a double-tap gesture to enter a selected key or
simply enter the selected key when they lift their finger, depending
on their settings.

Several interfaces have leveraged the Braille alphabet to perform
nonvisual text input. These types of interfaces rely on users desig-
nating which of the six dots are raised in the Braille encoding of
each letter. This can be done using different interactions, such as
two three-fingered taps to indicate which dots are raised on each
side [2, 16], three two-fingered taps to indicate each row [12], or
dragging gestures through each raised dot [13]. While the Braille-
based interfaces can work well for users familiar with Braille, they
require users to learn the corresponding mapping for each indi-
vidual character and to use multiple gestures (or multiple hands).
While FlexType users need to remember which characters are in
each group, the overall number of gestures is much lower, and all
gestures can be performed by a single action with a single hand.

As an alternative to typing altogether, users can also dictate their
text and have it be interpreted by a speech recognition algorithm.
While speech recognition was explored on mobile devices by Fischer
et al. [6], it was several more years before its performance as a
nonvisual text input method was investigated. Azenkot and Lee [1]
conducted the first research on speech input with users who were
BLV. They found that participants were able to use speech input
to enter text at 19.5 words per minute but spent 80% of their time
correcting errors.

Vertanen et al. [20] proposed a method where users would imag-
ine a keyboard on the screen and type a sentence without any
feedback until the sentence was complete. The system would then
decode the entire sequence of taps into text. Users entered text at
23.3 words per minute while blindfolded, but with an 18.5% char-
acter error rate. Similarly, FlickType® allows users to enter text
by tapping approximate character locations instead of definitively
locating each key. Instead of entering a full sentence at once, Flick-
Type users swipe to the right to signal to the system that they are
finished entering a word. The system produces a best guess of the
user’s intended word from their tap locations. The user can also
swipe through a list of suggested words if the system’s best guess
was incorrect.

Ambiguous keyboards, like FlexType, that place multiple char-
acters on the same key have been used in the past. Before most
commercial mobile phones had full Qwerty physical or touchscreen
keyboards, they had nine-key (T9) ambiguous keyboards. Users

!https://support.apple.com/guide/iphone/use-the-onscreen-keyboard-
iph3e2e3d1d/ios

Zhttps://www.android.com/accessibility/vision/
3https://www.flicktype.com/
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would repeatedly press a key to iterate through the characters as-
signed to that key until they reached their desired character. Several
studies have found this method to be slow, likely due to the need
for multiple key presses for most characters [3, 10]. To remedy
this, Tegic Communications [9] developed a method that would
search a dictionary for words that matched the sequence of key
presses a user entered and return the most likely matching word.
Using this method, users only needed to press each key once per
letter. More recently, ambiguous keyboards have been applied to
smartwatches, where the screen size makes a full keyboard more
challenging [4, 15]. TipText is a wearable text entry method that
uses motion tracking or a conductive-printed film to detect touch
locations on a user’s fingertip [21]. In TipText, users entered text by
touching their thumb to one of six ambiguous keys located on the
tip of their index finger. TipText users entered text at an average of
12 words per minute.

3 INTERVIEWS WITH BLIND SMARTPHONE
USERS

To identify potential areas for improvement for the FlexType inter-
face, we conducted semi-structured interviews with twelve legally
blind adults recruited from the National Federation of the Blind
email list. Participants were selected based on the order that they
responded to the advertisement. The interviews took approximately
30-60 minutes, and participants received a US$20 Amazon gift card
as compensation. Participants ranged from 38 to 66 years old (mean
50). Six identified as female, five as male, and one did not identify
with either gender. Five of the participants were completely blind,
with one more having only minimal light perception. Eight par-
ticipants reported being blind since birth, and all participants had
been blind for a minimum of 19 years.

When reviewing the results of our interviews, we looked for
common themes in the responses of our participants. We sought
to identify experiences or opinions that many of our participants
shared to help guide the direction of nonvisual text input research.
We began by asking participants about their experiences with the
text input methods that they currently use or have used in the past.
While participants most commonly reported using speech recog-
nition, all ten participants that used it reported poor recognition
accuracy. Five of these participants noted that the accuracy was
particularly poor in noisy environments, and six of the ten cited pri-
vacy concerns regarding using speech recognition in public places.
One participant that used onscreen Braille input also had privacy
concerns regarding their screen facing away from them during text
input. This highlights the need for an alternative method, such as
FlexType.

Next, we described the FlexType interface to participants and
asked if they would be interested in using it. Participants had mixed
enthusiasm about FlexType, but eight of the twelve were interested
in trying it, and only two were firmly against the idea. The chief
concern that participants voiced was the steep learning curve in-
volved with learning the new method and memorizing the groups
of characters.

Participants were also concerned about the accuracy of the al-
gorithm determining their intended word. In the prior study [7], if
a user’s intended word was not one of the six most likely words
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for the entered tap sequence, there was not a way for the user
to type that word. We most commonly observed this scenario for
intended words such as proper names or abbreviations. We asked
participants how they would foresee entering these types of words
using FlexType. Four participants recommended a personal user
dictionary, where they could predefine a list of proper names to
add to the system’s vocabulary, and three requested the ability to
enter text one letter at a time when needed.

Many keyboard interfaces commonly include word suggestions
to help users input text more quickly. These are often displayed
along the top of an onscreen keyboard. Users can select from likely
options at any point, even before finishing a word. While the origi-
nal version of FlexType did not include word suggestions prior to
each word’s completion, we considered adding this feature to the
interface in this work. When we asked the interview participants
about their usage of word suggestions, seven of the participants
either did not use word suggestions at all or had the option disabled,
one reported having used them very rarely, and the other four said
they actively used them. All four participants that actively used
word suggestions said that they needed to explore them with their
screen reader and then select them like they would a key with
VoiceOver. Participants that did not use word suggestions often
said that they were disruptive to use, and that it was easier or faster
for them to just finish typing a word. Based on this mixed feedback,
we decided against adding word suggestions to the new version of
FlexType.

4 SYSTEM DESCRIPTION

In this study, participants completed each session remotely on their
own device. Since the vast majority of our interview participants
used an iPhone as their primary mobile device, we ported the An-
droid version of FlexType used in the previous study [7] to iOS
(the iPhone operating system). All participants used a smartphone
device running at least i0S 16.0.

4.1 Available Gestures

The primary functions of the interface remained the same as the
original FlexType, with users tapping anywhere on the screen with
one to four fingers at the same time to select from the four charac-
ter groups. Since the previous study [7] did not find a significant
difference in entry or error rate between the CONSTRAINED and
UNCONSTRAINED groups and, as recommended by our interview
participants, we wanted to lower the barrier to entry, we selected
the ConsTRAINED FlexType groups for our interface:

1: (a,b,c,d, e),

2: (f,9.hi, j, k1, m),

3: (n,0,p,q,1),

4: (s, t,u,0,w,x, 4,2, )

After entering the full sequence of taps for each word, partic-
ipants swiped right to use the VelociTap decoder [19] to disam-
biguate the sequence. Mimicking the previous study, participants
were able to swipe up to navigate to the next word in the list of
six recognition results and swipe down to return to the previous
word [7]. A sound effect played to indicate if a participant attempted
to navigate past the end of the list. Participants were able to swipe
left with one finger to backspace a character and with two fingers
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all T-Mobile & 12:44PM

please 1122

Figure 1: Example of the FlexType interface showing a user
who is entering the phrase “please call”. The user has com-
pletely entered the word “please”, which is displayed in large
high-contrast text. The user has selected the groups for each
letter in “call”, but has not yet swiped right to perform recog-
nition. The unrecognized taps are displayed using the se-
lected group numbers “1122”.

to backspace a word. The version of FlexType used in this work
also added a three-finger left swipe gesture to clear the entire text
field. A long press (over 600 ms) with one finger would cause the
interface to read the prompt again as well as the text the user had
entered so far. A long press with two fingers would cause the inter-
face to speak the available gestures. During text entry, FlexType
provided visual feedback of previously recognized words and the
current pending ambiguous taps by displaying them in the center
of the screen in large high-contrast text (Figure 1).

4.2 Decoder Model

The decoder that performed disambiguation ran on a remote server,
and was queried for recognition results through a REST API. The
decoder used a 4-gram word model and 12-gram character model
to score word hypotheses. To determine the best decoder configura-
tion to use, we tested and compared decoder models with different
sets of parameters. The baseline decoder model had parameters
for the mixture weights between the language models, an out-of-
vocabulary penalty (assessed to hypotheses not in a list of 100K
frequent words that also appear in human-edited dictionaries), and
a beam width controlling how the search was pruned. In the previ-
ous study [7], the decoder restricted its search to only words that
exactly matched the group sequence entered by the user (e.g., “cat”
would be an acceptable hypothesis if and only if the group sequence
was 1-1-4, since ‘A’ and ‘C’ are in group 1, and and “T” is in group
4). To attempt to correct user errors in this study, we tested decoder
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models which added to the baseline model different tunable param-
eters that allowed the decoder to insert, delete, and/or substitute
characters.

We used the data from the previous FlexType study [7] to tune
the decoder parameters and compare the different models. We com-
pared each candidate model using leave-one-out cross validation,
withholding one of the eight participants’ data in each training
fold to evaluate the model’s performance on an unseen participant.
More details of the tuning process can be found in [8] (Chapter 7).

The best model we found allowed the decoder to produce hy-
potheses that substituted characters from different groups than
the user had input. For every substitution in a given hypothesis,
a penalty was assessed to the likelihood of that hypothesis. The
magnitude of the penalty was determined by a single tunable pa-
rameter n, set to the exponent of the distance between the input
group and the substituted group. Because of this, a group that was
further from the input incurred a larger penalty. For example, a
hypothesis with a character from group 3 where the user had input
group 4 would incur a penalty of n, since it was a difference of
one group. A hypothesis that substituted a character from group 1
instead would incur a penalty of n, since it was a substitution from
three groups away. Since the decoder was searching for the most
likely hypotheses, errors in the input would make it more difficult
for the decoder to produce the desired text, but not impossible if
the desired text was likely under the language model.

To avoid potentially unexpected behavior while the participants
were learning the technique and the groups (e.g. the decoder per-
forming a substitution during recognition), the first three sessions
of our user study used the baseline model, which required disam-
biguation results to exactly match the user input. The remainder of
the sessions used the best model that allowed substitutions.

4.3 Entry Modes

By default, FlexType began each entry task in word entry mode,
which is the mode that we have described thus far. With a two-
finger swipe up, participants were able to toggle to letter entry mode,
the other new interface feature we introduce to FlexType in this
work. This mode allowed participants to enter text a single letter at
a time to provide a deterministic input mode that was not influenced
by the decoder. In letter entry mode, each group selection would
enter and speak the character in the middle of the selected group
(e.g. ‘¢’ in group 1). Participants could then swipe up or down to
iterate forwards or backwards through the characters in the group,
the same way they could to explore the n-best list in word entry
mode. In letter entry mode, a right swipe would enter a space and
a two-finger swipe up would toggle back to word entry mode.

We opted to implement letter entry mode as opposed to increas-
ing the size of the n-best list produced by the decoder. Our main
reasoning was that increasing the size of the n-best list would still
not be guaranteed to solve the problem, and it would lead to par-
ticipants spending more time exploring deeper into the list. In the
results of the previous study [7], 89% of correctly entered words
were the first result returned by the decoder. The target word was
in the first half of the n-best list in 98.6% of cases, and the target
word was not in the n-best list at all only 0.7% of the time. The
fourth, fifth, and sixth positions contained only 0.4%, 0.2%, and 0.1%
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of entered words, respectively. Even assuming that subsequent posi-
tions in an expanded n-best list would maintain the 0.1% of entered
words seen in the sixth position (which is unlikely given the trend
of the data), we would need to double the size of the n-best list to
include all of the words seen by the users in the previous study.
Since additional out-of-vocabulary words such as proper nouns
specific to individual users’ lives are not in our phrase lists, it is
unlikely that even an expanded n-best list would allow users to
enter any word.

A personal user dictionary, as suggested by interview partici-
pants, would require the user to predefine words that might not be
in the decoder’s vocabulary. Proper names that are new to the user
(e.g. someone they just met or a new restaurant they want to try)
might not be included yet, and the user would not be able to type
them until they were defined. While not included in this study, a
potential implementation of this could automatically add words to
a user’s personal dictionary that they type using letter entry mode.

5 PROCEDURE

Prior to the study, we employed a third party accessibility expert
in the blind/low vision field to test the FlexType app. We used this
expert’s feedback to refine the length of each session and to make
the app more accessible for users with visual impairments.

We made the study app available to participants through Apple’s
TestFlight, a system designed for developers to test preliminary
versions of their applications. This allowed us to restrict access to
only the participants that were recruited for the study.

Once participants downloaded the app, we presented them with
an informed consent form, followed by an introductory question-
naire. At the beginning of each session, we showed participants
an instruction page that included a description of what was new
in that session, followed by a reminder of the available gestures
introduced in previous sessions. We instructed participants to hold
the device in portrait orientation in one hand and use the other
hand to tap the screen. We felt this would best simulate a mobile
text input scenario in which the user could not place the device on
a surface (e.g. on public transit).

Each participant completed eight sessions designed to progres-
sively get harder and introduce interface features. The first four
sessions were designed as practice, while we used the final four to
compare the FlexType interface to each participant’s typical text
entry method.

e Session 1 — Participants received single-character prompts
and were instructed to tap with the number of fingers corre-
sponding to that character’s group. After each tap, the char-
acters in the selected group were read, followed by feedback
on whether the selection was correct or not. Participants had
to get each character correct before proceeding to the next
target character. A long press in this session would read the
target character as well as its word from the NATO phonetic
alphabet to help distinguish between similar sounding char-
acters. This feature was suggested by our accessibility expert.
Participants entered each character (A-Z and apostrophe)
four times, in a randomized order.

e Session 2 — Participants received 54 single-word prompts
from a list of common words. These prompts were chosen to
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ensure that each participant encountered each character at
least three times. The prompts in this session only contained
words that could be written without requiring participants
to explore the n-best list (i.e. participants did not need to
swipe up or down after recognition). Due to a bug, one word
(“they’d”) did require use of the n-best list. We excluded this
prompt from analysis.

o Session 3 — Participants received 20 phrase prompts that
contained no more than four words, with each word being
no longer than six characters. The prompts were not pruned
to remove words not appearing as the first result in the n-
best list, but they were pruned to remove words that did not
appear at all in the n-best list. (i.e. participants could always
enter the intended word if they did not make errors, but they
may have needed to swipe up or down after recognition).
The first prompt each participant received contained a word
that required exploring the n-best list. All phrase prompts
were drawn from the memorable subset of the Enron mobile
data set [18].

e Session 4 — Participants received 20 phrase prompts that
were pruned to contain no more than four words, with each
word being no longer than six characters. The prompts were
no longer pruned to remove words not appearing in the n-
best list, and the first prompt each participant received con-
tained a word that would not appear in the n-best list. This
allowed participants to practice using letter entry mode im-
mediately after the instruction page where it was described.

e Sessions 5-8 — Participants received 20 phrase prompts
in each of two conditions, FLEXTYPE and BASELINE. The
FLEXTYPE condition used the same entry process as the pre-
vious sessions, and the BASELINE condition instructed partic-
ipants to use their typical onscreen text input method. We
instructed participants to use the same input method in the
BASELINE condition during each session. The order in which
participants completed the conditions alternated between
sessions and between participants. For example, Participant
1 completed the FLEXTYPE condition first in sessions 5 and
7 and second in sessions 6 and 8, while Participant 2 com-
pleted the FLEXTYPE condition second in sessions 5 and 7,
and first in sessions 6 and 8. Prompts were pruned to con-
tain no more than six words to help participants remember
them, but no limits were placed on word length or whether
or words appeared in the n-best list.

Based on feedback from participants in the previous study [7],
the corresponding character group was only read after each tap in
the first two sessions. In all subsequent sessions, a key tap sound
was played instead.

Prior to entry, FlexType displayed the target text and read it via
text-to-speech. Users were instructed to tap anywhere to continue
and begin entry. In all sessions after the first, participants swiped
down with two fingers to indicate when they were finished entering
a prompt. They were then presented with their accuracy and speed
for that prompt before they tapped to continue to the next prompt.
Participants completed a questionnaire at the end of each of the first
four sessions, and after each condition in the final four sessions.

134

PETRA ’24, June 26-28, 2024, Crete, Greece

In the portion of each session using FlexType, the app asked
participants to disable VoiceOver (if the system detected it was en-
abled) prior to receiving the first prompt. This was necessary since
if VoiceOver was enabled it would intercept screen touch events
and prevent FlexType from interpreting them. We designed the app
to provide its own audio feedback in instances where VoiceOver
needed to be disabled. We discuss some of the drawbacks of this
design in Section 7.

Participants were instructed to complete only one session in a
single day and to have at most one day off between sessions. If
participants enabled the permissions, they received a notification
both 24 and 48 hours after completing a session if they had not
yet begun the next session. They also received a notification if 15
minutes had passed mid-session without user activity.

6 RESULTS

We recruited a total of 25 participants from the National Federation
for the Blind email list, none of whom participated in our interview.
Of these participants, four never downloaded the app for the study
and five failed to complete all study sessions.

From the 16 complete participants, one participant displayed
signs of having significant difficulty with the word-at-a-time entry
technique utilized by FlexType. The majority of this participant’s
input in the training sessions consisted of disambiguating a single
character at a time instead of a full word, leaving spaces between
each character. Because this was a remote and asynchronous study,
we were unable to correct this participant’s misunderstanding of
the input technique. This participant used exclusively letter entry
mode for all input in the FLEXTYPE conditions of sessions 5-8. We
excluded this participant from our analysis.

Another participant, although instructed to use their typical
onscreen input method, used a wireless physical keyboard for the
BASELINE condition. While some of our interview participants used
wireless keyboards on occasion, most remarked that carrying the
extra equipment with them was too much of a burden. Since the goal
of this research was to improve onscreen text input for instances
where a physical keyboard is not available, we also excluded this
participant from analysis.

The 14 remaining participants were aged between 21 and 59
(mean 39). Four identified as male, and ten as female. Seven par-
ticipants reported being blind since birth, and all participants had
been legally blind for more than five years. Five participants were
completely blind, and five more had only light perception. All par-
ticipants rated the statement “I am a fluent speaker of English” as a
7 on a 7-point Likert scale, where 7 represented “strongly agree”.
When asked to rate the statement “I frequently enter text on a
mobile phone” on the same scale, participants responded with an
average of 6.8.

6.1 Entry Rate

We measured participants’ entry rate in words per minute (WPM),
considering every five characters, including spaces, to be a word.
As shown in Figure 2, entry rate varied considerably between the
participants. Some participants showed great improvement, with
Participant 1 improving from 5.4 WPM in session 2 to 12.8 WPM in
session 8, and Participant 7 improving from 10.1 WPM to 17.0 WPM.
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Figure 2: Entry rates of each participant on FlexType through-
out the study. Session 1 entry rates are not reported since
participants only entered single-character prompts.
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Figure 3: Entry rates of each participant with their Baseline
text input method. Participants only used this method in
sessions 5 and later.

Other participants did not see the same improvement, for example,
Participant 10 regressed from 2.6 WPM to 2.3 WPM over the course
of their sessions. Overall, participants averaged 7.7 WPM over their
final four sessions. This had quite a bit of variability, with a range
from 2.2 WPM to 14.2 WPM and a standard deviation of 2.8 WPM.
Overall, participants did appear to get faster. The mean entry rate
in session 5 was 7.0 WPM, which increased every session thereafter,
reaching 8.4 WPM in session 8.

When comparing participants’ results with their typical text
entry methods, we chose to look at each baseline method indepen-
dently. Of our 14 participants, 11 used a Qwerty keyboard with
VoiceOver in their BASELINE condition. In the final four sessions,
these 11 participants had a mean FLEXTYPE entry rate of 6.7 + a
standard deviation of 2.1 WPM, and a mean BASELINE entry rate of
10.0 + 8.2 WPM. Since a Shapiro-Wilk test showed a violation of the
normality assumption (W = 0.66, p < 0.001), we used a Wilcoxon
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Figure 4: The error rate of each participant in the FLEXTYPE
condition throughout the user study. Session 1 results depict
tap error rate, and subsequent sessions depict character error
rate. In session 2, P6 had a CER of 386%.

signed-rank test. This test did not show that this difference was
significant (V = 18, p = 0.21, moderate effect size: r = 0.40).

The other three participants (P1, P7, P11) used Braille Screen
Input as their typical text input method. These participants had a
mean FLEXTYPE entry rate of 11.2 + 3.1 WPM, and a mean BASELINE
entry rate of 26.9 + 8.7 WPM. A Shapiro-Wilk test showed no
violations of the normality assumption (W = 0.89, p = 0.36) and a
dependent t-test found the BASELINE was significantly faster (¢(2) =
-4.44, p = 0.047, large effect size: Cohen’s d = 1.16).

Each participant’s BASELINE entry rates for each session can be
seen in Figure 3. While most participants were fairly static through-
out the sessions, some (e.g. P7 and P12) seemed to get slightly faster
in later sessions. We hypothesize that this was due to the partic-
ipants gaining familiarity with the study app and the process of
submitting their text, as opposed to improvement in their use of
their typical text entry method.

6.2 Error Rate

To evaluate our participants’ error rates in session 1, we used the
error rate of their taps, since they were only being asked to select
the group containing a character, and they were not entering text.
For example, if a participant required three attempts to select the
correct group, this would yield a 67% error rate for that prompt.

For the remainder of the sessions, we used Character Error Rate
(CER). We computed the number of insertions, deletions, and sub-
stitutions required to transform the participant’s final text (after
any corrections) to the reference text (the prompt), divided by the
length of the reference text. Since it was possible for the length
of the input to exceed the length of the prompt, it was possible to
obtain a CER that exceeded 100%.

As shown in Figure 4, we did observe a CER over 100% for Partic-
ipant 6, who had a misunderstanding about how FlexType worked
in session 2, which led to an average CER of nearly 386%. The
participant was tapping each group multiple times to get to the
desired character (e.g. tapping with two fingers five times to get



Improving FlexType: Ambiguous Text Input for Users with Visual Impairments

to T, the fifth letter in group two). This led to excessively long tap
sequences that the decoder then failed to disambiguate since there
were no words matching those sequences. The participant reached
out to us following that session and we were able to clarify that the
disambiguation process would choose the letters from the groups
after the word was completed. Participant 6 went on to average
2.7% CER with FLEXTYPE over the final four sessions.

Overall, participants had slightly higher error rates in the first
couple sessions that then decreased as they became more famil-
iar with the text entry technique. Across the final four sessions,
participants had an average FLEXTYPE CER of 7.0%, though this
was inflated by Participants 10 and 13 who had CERs of 30.9% and
29.8%, respectively, in their final four sessions. We will discuss more
about why these participants may have struggled in Section 8. More
resistant to these outliers, the median CER of participants in their
final four sessions was 3.7%.

The differences in character error rate between the FLEXTYPE
and BASELINE conditions for the 11 participants that used a Qw-
erty keyboard with VoiceOver violated the normality assumption
(W =0.79, p = 0.006). While these participants had a mean FLEX-
TypE CER of 8.3% + 11.0%, and a mean BASELINE CER of 4.0% +
4.1%, a Wilcoxon signed-rank test did not find this difference to be
significant (V = 51, p = 0.12, moderate effect size: r = 0.48).

For the three Braille Screen Input users, we found a mean FLEX-
Type CER of 2.4% + 1.9%, and a mean BASELINE CER of 0.5% + 0.1%.
The differences did not violate normality (W = 0.81, p = 0.15), but a
dependent t-test did not show a significant difference (¢(2) = 1.77, p
= 0.22, small effect size: Cohen’s d = 0.39).

6.3 Error Correction and Prevention

For each session, we calculated the number of characters each par-
ticipant backspaced per character in their final text. This provides a
measure of how much correction a participant had to perform. For
this metric, we used the total characters deleted, summed across
all methods of backspacing (single character, full word, full input).
As shown in Figure 5, most participants had a fairly static number
of backspaces per character (BPC) throughout their sessions. The
exception to this was, again, Participant 10, who backspaced quite
frequently in the later sessions, and over 6 times per final character
in session 7. For the final four sessions, participants had a mean
BPC of 0.39 + 0.66, with a median of 0.21 BPC.

In the previous study [7], we saw a relatively high BPC in ses-
sion 1, followed by a fairly constant and low BPC in the remaining
sessions. In this study, we adjusted session 1 to have participants
try again if they selected the incorrect group without the need (or
ability) to backspace. Because of this, we do not have a measure of
participants’ BPC in session 1. However, if we assume that partici-
pants backspaced each incorrect tap in session 1, this would yield a
theoretical mean BPC of 0.42 + 0.46 for that session, with a median
of 0.25 BPC. This was fairly similar to the BPC performed in the
final four sessions, whereas the previous study showed a decrease
in BPC after the first session.

Of the characters backspaced in the final four sessions, 76% were
done a single character at a time, while 23% were deleted using
the word-at-a-time feature. Only 1% of characters backspaced were
the result of participants clearing the entire entry field. However,
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Figure 5: Each participant’s backspaces per final output char-
acter in the FLEXTYPE condition. This is not reported for
session 1 since participants were not able to backspace. In
session 7, Participant 10 had a BPC of 6.1.

this was affected drastically by Participant 10 since they performed
such a large proportion of the backspaces. Excluding Participant
10, the remaining participants deleted 57% of characters one at a
time, 43% as part of a word, and 0.6% by clearing the entry field.
Participant 10 deleted 98% of character one at a time, 0.4% as part
of a word, and just over 1% by clearing the entry field.

In the BASELINE condition, since participants used their typical
text input methods that we had not developed, we were not able
to log input events and could only access the final text for each
prompt. Because of this, we were not able to measure any sort of
corrective action, such as backspaces per character, for the BASELINE
condition.

In total, participants’ final text contained 4394 words in the final
four sessions. This made up only 81% of the 5430 total times they
queried the decoder for word recognition; the remainder were later
deleted by the participants. Participants explored the n-best list in
a total of 16% of the words they entered, including words that were
later deleted. This exploration was comprised of 2092 up swipes (to
navigate to the next word in the n-best list) and 356 down swipes
(to navigate to the previous word), for a total of 0.56 swipes per
word in their final output text. Participants performed an average of
2.9 swipes per word when considering only the words where they
explored the n-best list, which shows that on average, participants
were exploring more than half of the list if they explored it at all.

To prevent errors by the decoder, participants could switch to
letter entry mode and enter text one letter at a time. Participant
2 used this feature quite often, switching it on over 13 times per
session in their final four sessions. The other participants, however,
only enabled letter entry mode an average of 1.2 times per session in
their final four sessions, with two participants never using it. Three
participants did not use the feature at all in session 4, where the first
prompt was curated to have a word that would not appear in the n-
best list. We believe that this may have been caused by participants
skipping over the instructions that explained the feature, or by
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participants finding a word in the n-best list that they felt was close
enough that it did not warrant the additional time to correct.

7 LIMITATIONS

One limitation of our interface was that FlexType was not integrated
with VoiceOver. Since VoiceOver, if enabled, intercepts touchscreen
events and processes them itself, participants needed to disable
VoiceOver in the FLEXTYPE condition. While we developed the
app to provide its own audio feedback, both during entry and to
read each prompt, Participant 3 noted after a BASELINE condition
that “Being able to use VoiceOver enabled me to actually read the
words I was supposed to be typing individually and go character by
character, so I was able to know how certain things were spelled”.
This was not available in the FLEXTYPE condition, and may have
contributed to higher error rates when compared to participants’
BASELINE methods.

Further limitations of this study arose from it being conducted
entirely remotely. Since participants were using their own devices
for the study, they had a variety of devices and operating system
versions. This led to some bugs that we did not encounter during
testing. For example, Participant 10 noted that whenever they tried
to switch to letter entry mode, the app would crash. Participant 13
cited frequent crashes that we determined were a result of the web
server running the decoder API crashing. In an in-person study,
we would have been able to detect and remedy these issues more
immediately. Participant 6 also noted crashes that occurred when
they tapped with three fingers, since it conflicted with gestures used
by their screen magnification software. The remote study also made
it more difficult to clarify any misunderstandings of the instructions.
While some participants reached out via email to ask questions,
others did not, which in the case of some participants led to poorer
performance. An in-person study with the ability to standardize the
device would have allowed participants a smoother experience with
FlexType. However, it would have been more difficult to recruit a
large and diverse pool of participants.

Another difficulty of the remote study was enforcing our de-
sired session pacing. While six participants followed our pacing
instructions, six other participants had a large time gap within a
single session. Participant 11 had an overnight 14-hour gap partway
through session 4, and Participant 14 had a one-day gap between
two prompts in session 2. Participant 6 encountered a bug within
the final session that took us a few days to fix. On several occasions,
Participant 13 took multiple days to complete a single session, and
Participant 5 often had several days to a week between the two
conditions of a single session. Participant 12 had a three-day gap
partway through session 3, and a two-week hiatus between sessions
7 and 8. Participant 2 had a 4-day gap between their first and second
session, and Participant 8 completed all four of their final sessions
within a 14-hour total time span. While some of these occurrences
were minor and we have no reason to believe they impacted the
final results, Participant 8’s results may have been affected by the
fatigue of doing so many sessions in quick succession. Additionally,
the large time gaps we observed for Participants 5, 12, and 13 may
have reduced participants’ ability to remember interface features
or character groupings.
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While we recruited 25 total participants, we only had 14 for our
analysis. This led to limited power for our statistical tests, especially
for the users of Braille Screen Input (BSI), where we only had a
sample size of three. While we did recruit more participants that
used BSI, not all of them finished the study. This also created a slight
imbalance in the ordering of conditions. Since all three participants
that used BSI had odd participant numbers, they completed the
FLEXTYPE condition first in session 5. Since we swapped the order
of conditions in alternating sessions (odd numbered participants
completed the BASELINE condition first in sessions 6 and 8), we
believe the effect of this order imbalance on the final data was
minimal.

8 DISCUSSION

In the FLEXTYPE condition, Participant 10 had the lowest entry
rate and both error rates and BPC that were quite elevated. In
post-session comments, Participant 10 stated that they had trouble
getting their fourth finger down to select group 4, and that once
the feedback on which group had been selected went away, it was
difficult for them to know if it had been recognized properly. In
this study, we removed the audio feedback that read the selected
group after each tap in session 3 and later. This decision was based
on feedback from participants in the previous study [7] who said
they found the audio feedback annoying in later sessions once they
were familiar with the groups.

Participant 13 also showed an elevated error rate across most of
their FLEXTYPE sessions. Post-session feedback from Participant 13
also referenced difficulty with the three- and four-finger taps due to
a small device size. The experiences of Participants 10 and 13 suggest
that the group audio feedback should be a configurable setting for
users. A possible compromise option would be to read the selected
group number after each tap, which was suggested by Participant
1, or to play some other sound effect that is unique to each group.
While some participants in our previous study [7] noted difficulty
tapping with four fingers (e.g. one participant stated “tapping with
all 4 fingers is difficult when tapping fast”), none expressed so much
difficulty that we felt it necessitated a change. Seeing Participant
10’s and 13’s consistent comments that they struggled to select
group four, it is worth considering a reduction to three groups
or devising an alternate way to select group four. While not as
ergonomic, it may have also been beneficial for participants to hold
the phone in landscape orientation instead of portrait.

Based on the feedback from our interviews, we chose not to
include word suggestions prior to the completion of each word.
However, after their BASELINE condition in session 5, Participant
8 commented “some keyboards have autocorrect, and some key-
boards have suggested words which could lead to shortcuts”. If
some participants were using these features with their typical text
entry method, that could have led to increased performance in the
BASELINE condition. While we asked participants to report the text
entry method they used for the BASELINE condition, we did not
ask about their use of word suggestions or autocorrect. In future
development of FlexType, it could be beneficial to implement word
suggestions. One possible implementation would be to play the
most likely prediction after each tap and allow users to swipe right
to select it. This would allow users to know what result they will get
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when they swipe right and potentially increase their entry rate by
eliminating keystrokes. However, this has the potential to confuse
users if their intended word has a similar starting group sequence
to the words being read, without necessarily having similar letters
(e.g. “help” and “fair” have the same tap sequence without sharing
any letters).

While we were hopeful that FlexType might outperform typical
onscreen text input methods, this was not the case. When compar-
ing our participants’ performance on FlexType to their baseline text
entry methods, the only significant difference we found was that
Braille Screen Input users were faster with their typical method.
This was supported by participant comments, with Participant 11
remarking after the FLEXTYPE condition in session 6, “after using
my normal text input method, I found this method to be espe-
cially slow”. However, compared to their typical text input methods,
participants had very little practice with FlexType. After the final
session, Participant 11 was hopeful for the future of FlexType, stat-
ing, “I believe right now that FlexType is slower than my regular
text input method, but, I am sure with improvements it can become
faster than Braille screen input” Conversely, Participant 1 stated
they did not think FlexType would ever be faster than Braille screen
input for them, but that it would be great for people who did not
know Braille.

While we found no significant difference between a Qwerty
keyboard with VoiceOver and FlexType, the majority of subjective
user feedback seemed to favor FlexType. Of the 11 participants that
used a Qwerty keyboard with VoiceOver as their BASELINE text
input method, seven expressed that they wanted to learn more about
the development of FlexType in the future. In the final questionnaire,
Participant 8 commented, “I really hope that this entry method
becomes widely available because I am honestly sad that I don’t
get to use it anymore. I think that a lot of blind people would
appreciate this method since it is so much easier than using the
typical typing interface.” Participant 4 preferred FlexType to their
typical method, stating, “When I had to go back to entering on the
QWERTY keyboard on screen, it felt slow and clumsy.” Negative
comments about FlexType were mostly related to difficulty getting
used to the technique, bugs with the app for the study, and issues
with tap recognition. Participant 10 suggested the possibility of
using VoiceOver to select the groups, which would alleviate the
issue some encountered selecting the four-finger gesture.

9 CONCLUSION

In this work, we improved the FlexType nonvisual text input method
based on feedback from users who are BLV. We used character
groups that were constrained to alphabetical order to lower the bar-
rier to entry, and we added letter entry mode to allow users to type
any word, even if it was not recognized by the decoder. We used the
data collected in our prior study [7] to tune the decoder to model
user input errors in its disambiguation process. We conducted a
longitudinal study to compare legally blind users’ performance
using FlexType to their typical text input methods. Three users
input text using Braille Screen Input and had an average entry rate
of 26.9 words per minute. These same users averaged 11.2 words
per minute with FlexType, which was significantly slower. Eleven
users input text using a Qwerty keyboard with VoiceOver at 10.0
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words per minute, which was not significantly different from those
users’ FlexType entry rates of 6.7 words per minute. Feedback from
some of the VoiceOver users stated that it felt easier and faster to
use FlexType compared to their typical interface. Combining both
groups, the 14 legally blind users entered text at an average of 7.7
words per minute using FlexType.

In this work we used the VelociTap decoder [19] to disambiguate
sequences of character groups into words. For our user study, we
performed disambiguation on a remote server, which could lead to
latency or privacy concerns for a real-world input method. Further,
VelociTap uses n-gram language models to make predictions based
on the frequencies of character and word sequences in the models’
training data. Recently, large language models (LLMs) have been
shown to provide state-of-the-art performance for many natural
language processing tasks [5, 14, 17, 22]. Future work could fine-
tune a large language model, of an appropriate size to be able to run
locally on users’ devices, to disambiguate sequences of character
groups into words. This could be done either after the completion of
the word as we did here, or by producing likely word completions
based on the first few groups selections in a word (or both).

Even though this was a longitudinal study, users only had about
four hours of training before we began our evaluation sessions.
Given that users reported entering text with their baseline methods
frequently, our evaluation may not show FlexType’s full potential.
In future work, it would be interesting to evaluate how users im-
prove with FlexType with continued practice. This could be done
by releasing FlexType as a standalone input method that users
could utilize for real-world text input. This would require addi-
tional consideration on how to enter characters such as capital
letters, numbers, and punctuation, but it would allow us to explore
how user performance evolves with long-term use. The subjective
feedback from the participants in our study and their desire to
continue using FlexType suggests that such a further evaluation
could be promising.
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