
Composition of nested embeddings with an application to outlier removal∗

Shuchi Chawla†

shuchi@cs.utexas.edu

Kristin Sheridan†

kristin@cs.utexas.edu

Abstract

We study the design of embeddings into Euclidean space with outliers. Given a metric space (X, d) and an

integer k, the goal is to embed all but k points in X (called the “outliers”) into `2 with the smallest possible

distortion c. Finding the optimal distortion c for a given outlier set size k, or alternately the smallest k for

a given target distortion c are both NP-hard problems. In fact, it is UGC-hard to approximate k to within

a factor smaller than 2 even when the metric sans outliers is isometrically embeddable into `2. We consider

bi-criteria approximations. Our main result is a polynomial time algorithm that approximates the outlier set

size to within an O(log
2
k) factor and the distortion to within a constant factor.

The main technical component in our result is an approach for constructing Lipschitz extensions of

embeddings into Banach spaces (such as `p spaces). We consider a stronger version of Lipschitz extension

that we call a nested composition of embeddings: given a low distortion embedding of a subset S of the metric

space X, our goal is to extend this embedding to all of X such that the distortion over S is preserved, whereas

the distortion over the remaining pairs of points in X is bounded by a function of the size of X \ S. Prior

work on Lipschitz extension considers settings where the size of X is potentially much larger than that of S

and the expansion bounds depend on |S|. In our setting, the set S is nearly all of X and the remaining set

X \ S, a.k.a. the outliers, is small. We achieve an expansion bound that is polylogarithmic in |X \ S|.

1 Introduction

Low distortion metric embeddings are an important algorithmic tool with a myriad of applications. The goal is
to transform a dataset that lies in an unwieldy metric space into one lying in a nicer space, enabling clean and
fast algorithms. Embeddings play an important role in the design of approximation algorithms, in finding good
low dimensional representations for data in machine learning and data science, in data visualization, in the design
of fast algorithms, and more. (See, e.g., [21].)

One of the most enduring concepts from the vast literature on embeddings is that of distortion, which is defined to
be the maximum ratio over all pairs of points in the metric by which the distance between the points is expanded
or contracted by the embedding. Since this is a worst case notion, it can be particularly sensitive to errors or
noise or even intentional corruption of the underlying data. Indeed adversarial or random data corruption is a
frequent problem in data science contexts.

Motivated by these applications, Sidiropoulos et al. [32] introduced the notion of embeddings with outliers. Given
a metric space (X, dX) of finite size and a target space (Y, dY) our goal is to find a low-distortion embedding into
Y of all but a few points in X; these points are called the outliers. Formally, we say that the space (X, dX) has
a (k, c)-outlier embedding into space (Y, dY) if there exists an outlier set K ⇢ X of size at most k and a map ↵
from X \K to Y with distortion at most c. [32] showed that for many host spaces (Y, dY) of interest, computing
the optimal outlier set size k for a given target distortion c, or the optimal distortion c for a given target outlier
set size k, is NP-hard.

In this work, we study the design of approximately optimal outlier embeddings into the Euclidean metric.
Given a metric (X, dX) that admits a (k, c)-outlier embedding into `2, we provide a polynomial time algorithm
that constructs an (O(k polylog k), O(c))-outlier embedding into `2. In other words, our algorithm removes

∗The full version of the paper can be accessed at https://arxiv.org/abs/2306.11604
†Department of Computer Science, University of Texas at Austin.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1641

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2306.11604

O(k polylog k) outliers and returns an embedding of the remaining metric into `2 that has distortion only a
small constant factor worse than the desired one. In fact, our algorithm allows for a tradeo↵ between the outlier
set size and the distortion obtained – allowing us to obtain a distortion of (1 + ✏)c for any ✏ > 0 at the cost of
blowing up the outlier set size by an additional multiplicative factor of at most 1/✏.

To our knowledge, the only approximations to multiplicative distortion for outlier embeddings known prior to our
work considered the special case of embedding unweighted graphs into a line. For this setting, Chubarian and
Sidiropoulos [11] developed an algorithm that constructs an (O(c6k log5/2(n)), O(c13))-outlier embedding when
the input metric is an unweighted graph metric. Here n is the size of the given metric X. While our result is
incomparable to theirs (as it does not limit the dimension of the embedding), we emphasize that our approximation
factors do not depend on the size of the metric X and has a vastly improved dependence on the distortion c, as
we discuss below.

Lipschitz extension and composition of nested embeddings. The main technical tool in our work is a
stronger version of Lipschitz extensions that we call a composition of nested embeddings. Formally, consider a
metric space (X, dX) and a subspace S ⇢ X. Let ↵S : S ! Y be an embedding from S into Y with distortion cS .
A Lipschitz extension is an embedding ↵ of the entire set X into Y such that ↵(s) = ↵S(s) for all s 2 S and the
expansion on any pair of points in X is not too much more than cS . Observe that we only require the expansion on
points in X to be bounded – distances are allowed to shrink arbitrarily. Results for Lipschitz extensions typically
achieve expansion bounds that depend on the size of S and are independent of the size of X. In particular, X
can be arbitrarily larger than S, even unbounded.

In our setting, we are interested in the case where S (i.e. the “good” set) is almost all of X and X \ S is much
smaller. We desire an extension where the expansion bounds depend on the size of |X \ S|. We call such a
Lipschitz extension a weak composition of nested embeddings; the terminology is explained below. In Section
4 we design weak nested compositions for embeddings into `p spaces (or more generally Banach spaces) where
expansion on any pair of points is at most O(Hk) times cS .

Weak nested compositions into the Euclidean metric allow us to identify outliers with the help of a fractional
relaxation. We express the problem of finding an outlier embedding into the Euclidean metric as a semi-definite
program where all but k fractionally chosen points are required to have small distortion between them. (See
Section 3.) The distortion allowed for any pair of points depends on the fractional extent to which either is
chosen as an outlier. The existence of a weak O(Hk)-nested composition implies that we can find a feasible
fractional solution where the outliers su↵er only a small factor larger distortion than the non-outliers. This
enables a rounding scheme that approximates the number of outliers to within an O(H2

k) factor and preserves the
distortion over non-outliers to within a constant factor.

Strong nested composition. Although our application to outlier embeddings requires only bounding the
expansion of the Lipschitz extension from S to X \ S, more generally we ask whether we can construct an
extension which has small distortion over all of X, that is, it doesn’t expand or contract by much. We call such
an extension a strong nested composition, and we believe this concept is of independent interest. Observe that
the distortion of such an embedding cannot simply be a function of S alone, as X \ S may not admit any good
embedding at all.

Formally, we are given two nested embeddings ↵X : X ! Y and ↵S : S ! Y with distortions cX and cS
respectively. In general we would expect that the distortion of ↵S is smaller than that of ↵X . In fact, the
distortion of ↵X even restricted to just the subset S may be larger than cS . Our goal is to find a new embedding
from X into Y such that the distortion of this embedding over the good set S is the same as before – cS – while
the distortion over all of X is comparable to cX . In particular, we want a combination of the two embeddings that
inherits their respective distortions, with small multiplicative worsening, over the corresponding sets of points.
In Section 5 we show that strong nested compositions exist for the `1 metric, and leave open the question of
extending this result to other `p metrics.

The concept of nested composition is similar in some ways to unions of embeddings studied previously in [25] and
[29]. The goal in these works is to combine two embeddings over disjoint subsets A and B of a metric space into a
single embedding over their union such that the distortion over the union is comparable to the distortions cA and

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1642

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

cB of the given embeddings. When the host metric is `2 or `1, these works construct unions whose distortion is
some constant factor times the product, cA · cB , of the distortions of the given embeddings. Additionally, both
the sets inherit the same distortion bound – if, for example, cA ⌧ cB , it is not guaranteed that points in A will
retain similarly lower distortion in the composition. Extending these results to `p metrics for p 62 {2,1} is open.
By contrast, our composition guarantees the same distortion cS as the given embedding on the “inner” set of
points S, and a bound on the expansion over the remaining points that is linear in cX (although the latter does
not imply a bound the distortion over X as the composed embedding may contract some pairs of points).

Our results are also reminiscent of local versus global guarantees for metric embeddings. In particular, Arora et
al. [3] ask: suppose that every subset of metric space X of size at most k admits a low distortion embedding into
`1, does X also admit a low distortion embedding into `1? Charikar et al. [9] show that this is indeed possible
but that the distortion blows up by a factor of ⇥(log n/k). Our setting is slightly di↵erent in that we not only
need every small set of size k to be embeddable with low distortion, but we also need a good embedding for one
set of size n� k + 1.

A tradeo↵ between outlier set size and distortion. Armed with a weak nested composition into `2 space,
we develop an SDP-rounding algorithm for obtaining bicriteria approximations for outlier embeddings into `2.
For a metric (X, dX) that admits a (k, c)-outlier embedding into `2, and any given target distortion c0 = �c,

� � 1, our algorithm constructs a (k0, c0)-outlier embedding with at most k0 = O(log
2 k

�2�1 · k) outliers. Additionally,

we achieve a tradeo↵ between the outlier set size k0 and the target distortion c0. Setting c0 = (1 + ✏)c for a small
✏ > 0, for example, increases the outlier set size by an O(1/✏) factor.

Hardness of approximation. Finally, we note that Sidiropolous et al. [32] showed that it is NP-hard to
determine the size of the smallest outlier set such that the remaining metric is isometrically embeddable into `d2
for any fixed dimension d > 1. Designing an outlier embedding into `2 with arbitrary dimension is potentially
an easier problem. Since we do not limit the dimension of the outlier embeddings we construct, we revisit and
strengthen [32]’s result along these lines. We show that NP-hardness continues to hold even for embeddings
into `2 without a specified dimension bound, and also when the given metric is the shortest path metric of an
unweighted undirected graph. Our construction of a hard instance is arguably simpler than that of Sidiropolous
et al., and is readily seen to extend to `p metrics for p > 1. We present a separate, more involved, construction
for p = 1. As with Sidiropolous et al.’s results we show that, under the unique games conjecture, it is also hard
to obtain a 2� ✏ approximation for the minimum outlier set size, for any ✏ > 0.

Further related work
Approximations for distortion. Much of the work on low distortion embeddings focuses on providing uniform
bounds for embedding any given finite metric into a structured space. Indyk and Matousek [21] give an excellent
overview of many of these results. Bourgain’s Theorem [7, 24] shows that all finite metric spaces of size n have
an O(log n)-distortion embedding into `p-space for p � 1 and that a randomized version of such an embedding
can be computed quickly. A derandomized such embedding can be computed in polynomial time with ⇥(n2)
dimensions.

More closely related to our work, a number of papers study the objective of approximating the instance-specific
minimum distortion for embedding into various host metrics. This includes, e.g., embeddings into constant
dimensional Euclidean space [5, 13, 17, 26, 31], the line [26, 19, 4, 28], trees [10, 6], and ultrametrics [2]. These
works tend to use combinatorial arguments as they focus on low dimensional embeddings, whereas ours relies on
an SDP formulation of the problem.

Lipschitz extension. Much of the prior work on Lipschitz extensions has largely focused on extending
embeddings of small subsets of a metric (X, d) into a target space. The Johnson-Lindenstrauss extension theorem
shows that for any metric (X, d) and Lipschitz embedding ↵S : S ✓ X ! `2 with |S| = n, there exists an
embedding ↵ : X ! `2 with Lipschitz constant at most O(

p
log n) times the Lipschitz constant of the original

embedding [22]. (Note that contraction may be arbitrary in this embedding, and X does not have to be a finite
space.) More recent work by Naor and Rabani [27] shows that in general, some Lipschitz extensions into Banach
spaces require ⌦(

p
log n) increase in the Lipschitz factor. Other work on Lipschitz extensions has largely focused

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1643

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

on extending embeddings of subsets of X in which all point-wise distances in S are at least an ✏ fraction of the
subspace’s diameter (i.e. the distances between points in S aren’t too di↵erent from each other).

In this paper, we focus on extending embeddings of subsets S ✓ X of relatively large size compared to X into `p
spaces. In particular, we show that if |X| = n and |X \ S| = k, then there exists a Lipschitz extension of any
embedding of S into `p that increases the Lipschitz constant by at most a factor of O(log k). Because we are
considering outlier sets X \S that we expect to be small, this is generally going to give us a better approximation
factor for our purposes.

Outlier embeddings. The notion of outlier embeddings was first introduced by Sidiropolous et al. in [32]. In
that paper, they showed that it is NP-hard to find the size of a minimum outlier set for embedding a metric
into ultrametrics, tree metrics, or `d2 for constant d. Under the Unique Games Conjecture, it is also NP-hard to
approximate these values to a factor better than 2. On the algorithmic side, they gave polynomial time algorithms
to 3, 4, or 2-approximate minimum outlier set size for isometric embeddings into ultrametrics, tree metrics, or `d2
for fixed constant d, respectively. The algorithm for `d2 embeddings is exponential in d, so d cannot grow with the
size of the input while remaining e�cient.

Sidiropolous et al. also gave bi-criteria approximations for `1 (i.e. additive) distortion. In particular, they give
a polynomial time algorithm to find embeddings with at most 2k outliers and O(

p
�) `1-distortion when there

exists an embedding of the metric with at most k outliers that has `1-distortion at most �. The algorithm is
polynomial in k, �, and n but exponential in d which is taken to be a constant.

Chubarian et al. [11] expanded on the results of Sidiropolous et al. by giving the first bicriteria approximation for
minimum outlier sets with multiplicative distortion. In particular, they showed that given an unweighted graph
metric and tuple (k, c), there is a polynomial time algorithm that either correctly decides that there does not
exist an embedding of the metric into the real line with at most k outliers and at most c distortion, or outputs
an (O(c6k log5/2 n), O(c13))-outlier embedding into the real line.

Embeddings with slack. A di↵erent notion of distortion that is robust to noise in the data was introduced by
Abraham et al. [1]. In this embeddings with slack model, a budget of slack is applied to pairs of vertices in the
metric space (as opposed to individual vertices, as in our model). An embedding of a metric space (X, dX) into
another space (Y, dY) has distortion c with ✏-slack if all but an ✏ fraction of the distances are distorted by at most
c. Abraham et al. [1] showed that there exists a polynomial time algorithm that finds an O(log 1

✏)
1/p-distortion

embedding with ✏ slack for embeddings into `p for p � 1, ✏ > 0. Chan et al. [8] showed that there is a polynomial
time algorithm for embedding a metric (V, d) of n points into a spanner graph of at most O(n) edges with ✏-
slack and O(log 1

✏) distortion. Lammersen et al. [23] extended results in this topic to the streaming setting by
giving an algorithm using poly-logarithmic space that computes embeddings with slack into finite metrics. From
an algorithmic viewpoint, defining outliers in terms of edges versus nodes leads to very di↵erent optimization
problems. Furthermore, an important di↵erence between our work and these previous works on embeddings with
slack is that we are interested in instance-specific approximations, whereas these latter works aim to find uniform
bounds on distortion with slack that hold for all input metric spaces.

2 Definitions and main results

We begin by defining terms used in this paper and discussing our main results.

Outlier embeddings and distortion

Definition 2.1. A metric space is a pair (X, dX) such that X is a set of elements we call points or nodes and
dX : X ⇥X ! R�0 is a function that has the following properties:

1. For all x, y 2 X, dX(x, y) = 0 if and only if x = y

2. For all x, y 2 X, dX(x, y) = dX(y, x)

3. For all x, y, z 2 X, dX(x, z)  dX(x, y) + dX(y, z)

In this paper we will focus on expanding embeddings from a given finite metric into `p.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1644

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 2.2. An expanding embedding ↵ : X ! Y of a metric space (X, dX) into another metric space (Y, dY)
has distortion c � 1 if for all u, v 2 X:

dX(u, v)  dY (↵(x),↵(y))  c · dX(u, v)

Following [11] and [32], we consider so-called outlier embeddings that embed all but a small set of outliers from
the given metric into the host space.

Definition 2.3. An embedding ↵ : X ! Y of a metric space (X, dX) into another metric space (Y, dY) is a
(k, c)-outlier embedding if there exists K ✓ X such that |K|  k and ↵|X\K (the restriction of ↵ to the domain
X \K) is an embedding of (X \K, d|X\K) with distortion at most c.

Nested compositions and Lipschitz extensions A main component of our approach is showing that a low-
distortion embedding of a subset of the given metric space into some `p space can be extended into an embedding
of the entire metric with small expansion.

Definition 2.4. Let (X, dX) and (Y, dY) be two metric spaces and ↵S : S ✓ X ! Y be an embedding with
Lipschitz constant at most L. Then ↵ : X ! Y is a Lipschitz extension of ↵S with extension factor g(|S|, |X|) if
for all x 2 S, ↵(x) = ↵S(x) and for all x, y 2 X,

dY (↵(x),↵(y))  g(|S|, |X|) · L · dX(x, y).(2.1)

We introduce a new variant of Lipschitz extension called nested composition, which focuses on parameters of
interest for us, and aims to preserve both the expansion and contraction of the embedding. In particular, we
start with expanding nested embeddings of S and X into Y with distortions cS and cX respectively. Our goal is
to produce a single expanding embedding that preserves the smaller distortion cS over pairs of points in S, and
bounds the distortion over X by cX times some function g of the size of X \S. Importantly, the factor g depends
only on the size of X \S, and not on the size of S, that may be much larger. The weak variation of this notion is
similar to Lipschitz extension in that it will still allow arbitrary contraction over X, but it will no longer require
that the exact points of the original embedding be preserved.

Definition 2.5. (Composition of nested embeddings) Let (X, dX) and (Y, dY) be two metric spaces and
g : [0,1)2⇥N! [1,1). A weak g-nested composition is an algorithm that, given a set S ✓ X with k := |X \S|,
and two expanding embeddings, ↵S : S ! Y with distortion cS and ↵X : X ! Y with distortion cX � cS, returns
an embedding ↵ : X ! Y such that,

for all u, v 2 S, dX(u, v) dY (↵(u),↵(v))  cS · dX(u, v),(2.2)

and, for all u, v 2 X, dY (↵(u),↵(v))  g(cS , cX , k) · dX(u, v).(2.3)

We say that it is a nested composition if the embedding ↵ is additionally an expanding embedding. That is,

for all u, v 2 S, dX(u, v)  dY (↵(u),↵(v))  cS · dX(u, v),(2.4)

and, for all u, v 2 X, dX(u, v)  dY (↵(u),↵(v))  g(cS , cX , k) · dX(u, v).(2.5)

We use randomness in our construction of nested compositions. For a randomized Lipschitz extension, we require
that ↵(x) = ↵S(x) for all x 2 S for any possible ↵ in the distribution, and that expansion is bounded in expectation
over the randomness in the construction. For a randomized nested composition, all contraction bounds should be
satisfied with probability 1 and expansion bounds in expectation.

In our work, we will show that there is an e�cient algorithm that finds a randomized Lipschitz extension (or weak
nested composition) with extension factor O(log |X \ S|) where (Y, dY) is any target metric space. However, the
application to outlier embeddings requires the existence of a single deterministic extension/composition, so our
deterministic extension requires that the target metric be a Banach space (such as an `p space).

Main results

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1645

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Nested compositions. Our main technical result shows that we can e�ciently construct randomized weak
O(log k)-nested compositions when the host space Y is an `p metric. For p = 2, the case of interest for us, we can
even e�ciently construct a deterministic weak O(log k)-nested composition into `2 space by solving an appropriate
semi-definite program. Finally, for p = 1, our construction ensures expansion and satisfies both inequalities in
constraint (2.5). We leave open the question of constructing (strong) nested compositions satisfying expansion
for p > 1.

Theorem 2.6. Let (X, dX) be any finite metric and (Y, dY) be any Banach space. Let ↵S : X ! Y be any
Lipschitz embedding of S ✓ X into Y with k := |X \S|. Then there exists a 125Hk-Lipschitz extension (and thus
a weak 125HkcS-nested composition) from X into Y , where Hk is the kth Harmonic number.

Theorem 2.7. Let (X, dX) be any finite metric. Then there exists a 382HkcX-nested composition from X into
`1.

For metric spaces (X, dX) where the distortion of the embedding into `1 depends on the size of the subset being
embedded, we can in fact obtain a stronger guarantee – the distortion of the composition depends only on the
size of the outlier set k = |X \ S| and not on the size of the entire space X. In particular, we can replace the
quantity cX in constraint (2.5) by the worst case distortion from embedding any subset of size k+1 into the host
metric.

Theorem 2.8. Let (X, dX) be any finite metric. Suppose that for k 2 Z+ every subset of X of size k + 1 can be
embedded into `1 with distortion ⇣k. Then, there exists a 382Hk⇣k-nested composition from X into `1.

Outlier embeddings. With these results in hand, we obtain the following bicriteria approximation for outlier
embeddings from finite metrics into `2.

Theorem 2.9. Let (X, dX) be a metric space that admits a (k, c)-outlier embedding. Then there exists a
polynomial time algorithm A that, for any � > 1, finds a subset K ✓ X and an embedding ↵ : X \ K ! `2
such that ↵ has distortion at most �c, and

|K|  2
(125 ·Hk)2 + �2

�2 � 1
k

Choosing � = 1 + ✏ for ✏ 2 (0, 1], in particular, provides an
⇣
O(log

2 k
✏ k), (1 + ✏)c

⌘
-outlier embedding from X into

`2.

Hardness of approximation. Finally, we provide a strengthening of Sidiropolous et al. [32]’s hardness result
for outlier embeddings, showing that it is NP-hard to determine the size of the smallest outlier set such that the
remaining metric is isometrically embeddable into `2 even when the dimension of the embedding is unrestricted. As
with Sidiropolous et al.’s results, under the unique games conjecture, it is also hard to obtain a 2�✏ approximation
for the minimum outlier set size, for any ✏ > 0. Furthermore, our construction achieves two other properties that
[32]’s doesn’t: (1) Our hardness results apply also to shortest path metrics over unweighted undirected graphs.
(2) We show that the hardness result holds for embedding into the `p metric for any p � 1.

Theorem 2.10. Let (X, d) be the distance metric for an unweighted undirected graph G = (V,E). then, given
(X, d, k) it is NP-hard to decide if there exists a subset K ✓ X with |K| = k such that (X \ K, d|X\K) is
isometrically embeddable into `p for any finite integer p � 1.

Under the unique games conjecture, it is NP-hard to find a 2� ✏ approximation for the minimum such k, for any
✏ > 0.

3 SDP relaxation and approximation

In this section we will prove Theorem 2.9. We begin with a semi-definite programming formulation for constructing
an outlier embedding into `2. In the absence of outliers, the optimal embedding of any finite metric into `2 can
be found using an SDP. In particular, for a given such metric (X, d), let ~vx for x 2 X denote the mapping of x

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1646

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

into `2. Then, the constraint d2(x, y)  || ~vx � ~vy||2  c2 · d2(x, y) ensures that the distance between points x and
y is distorted by a factor of at most c. The challenge is to incorporate outliers into this formulation.

Consider the finite metric space (X, d), and suppose that there exists a (k, c)-outlier embedding from (X, d) into
Euclidean space for some integer k > 0 and real number c � 1. We use the vector ~vx for x 2 X to denote the
mapping of x into `2, and �x 2 [0, 1] as an indicator for whether x is an outlier. We then construct the following
SDP:

min
�,~v

X

x2X

�x(Outlier SDP)

s.t. 8x, y 2 X : (1� �x � �y) · d2(x, y)  || ~vx � ~vy||2  (c2 + (�x + �y)f(k)) · d2(x, y),(3.6)

8x 2 X : �x 2 [0, 1].

Here f(k) is a function to be determined. We claim that for an appropriate choice of f , this SDP is a relaxation
for the problem of minimizing the outlier set size such that all non-outlier elements in X can be embed into `2
with distortion c. In particular, given a (k, c)-outlier embedding from (X, d) into `2, we can find a feasible solution
for the SDP with value at most k. For Theorem 2.9, it will be su�cient to set f(k) = (125 · c ·Hk)2.

Lemma 3.1. Let (X, d) be a finite metric space with expanding embedding ↵ : S ! `2 of distortion at most c
for S ✓ X. Then if there exists a (g(k)/c)-Lipschitz extension (or a weak g(k)-nested embedding) of ↵ with
k = |X \ S|, (Outlier SDP) with f(k) := g(k)2 has a feasible solution with value equal to k.

Proof. Let K = X \ S. We will construct a feasible solution for (Outlier SDP). Set �x to 1 if x 2 K and 0
otherwise. Set ~vx to ↵(x). Clearly

P
x2X �x = k. We show that this setting of the variables satisfies the given

constraints.

Consider a constraint corresponding to x, y 2 X \ K. Then we have that (1 � �x � �y) · d(x, y)2 = d(x, y)2 
||↵(x)� ↵(y)||22  c2 · d(x, y)2 = (c2 + (�x + �y)f(k)) · d(x, y)2 by the facts we have already asserted about ↵.

Next, consider a constraint corresponding to x 2 X, y 2 K. In this case, �y = 1 and (1� �x� �y)  0, so the first
inequality in (3.6) is satisfied. On the other hand, by the definition of f and ↵, ||↵(x)�↵(y)||22  f(k)·(d(x, y))2 
(c2+(�x+ �y)f(k)) · (d(x, y))2, which gives us the second inequality. Thus, the solution (�,~v) is a feasible solution
with value k.

Observe that f is a function of k, and so in order to set up and solve the SDP, we require knowing the value of
the parameter k. We can get around this by setting k = 1, 2, · · · , and so on until we find the smallest value of k
for which the SDP with parameter f(k) has a feasible solution of value at most k. Rounding this solution then
gives the desired theorem.

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. Suppose that (X, d) a (k, c)-outlier embedding into `2. By Lemma 3.1, there exists a
solution to the SDP (Outlier SDP) with f(k) = (125Hk · cS)2 with value at most k, which we can find e�ciently
by solving the SDP. Let {(~vx, �x)}x2X denote such a solution. Let � be a parameter to be defined. Define
↵(x) 7! 1p

1�2�
~vx, and K 7! {x : �x � �}. We claim that for an appropriate choice of �, the solution (K,↵)

satisfies the requirements of the theorem.

In particular, we note that |K|  (
P

x2X �x)/�  k/�. To bound the distortion of ↵ restricted to X \ K by
�c, let us consider some pair of points x, y 2 X \ K, and recall that we have �x, �y < �. Then, substituting
~vx =

p
1� 2�↵(x) in (3.6) gives us:

(1� 2�) · d2(x, y)  (1� 2�)||↵(x)� ↵(y)||22  (c2 + 2�f(k)) · d(x, y)2

The first inequality implies expansion. The second provides an upper bound on the distortion of:

c2 + 2�f(k)

1� 2�

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1647

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 4.1. Lipschitz extension

Input: Metric space (X, d), |X| = n, subset S ✓ X, embedding ↵S : X \ S ! Y for some target metric (Y, dY),
and real number ⌧ > 0
Output: A randomized embedding ↵ : X ! Y such that for all x, y 2 X, E[dY (↵(x),↵(y))]  125Hk · c · d(x, y)
for k = |X \ S|, and for all x 2 S, ↵(x) = ↵S(x)

1: K X \ S.
2: Define � : K ! S such that �(u) 2 argminv2S d(u, v). . ie �(u) is one of u’s closest neighbors in S
3: Select b uniformly at random from the range [2, ⌧ + 2]
4: Select a uniformly random permutation ⇡ : K ! [k] of the vertices in K
5: K 0 K
6: for i = 1 to k do
7: ui ⇡�1(i)
8: Ki {v 2 K 0 | d(v, ui)  b · d(v, �(v))} . Let the “center” of Ki be ui

9: K 0 K 0 \Ki

10: Define an embedding ↵0 : X ! `p such that

↵0(v) =

(
↵S(v) if v 2 S

↵S(�(ui)) if v 2 Ki and with ui being the center of Ki
.

11: Output ↵0 as ↵

Figure 1: Algorithm for finding a Liptschitz extension for finite metrics

Setting this quantity equal to �2c2 and solving for � gives us � = c2(�2�1)
2f(k)+2c2�2 and |K|  2f(k)+2c2�2

c2(�2�1) k.

4 Lipschitz extensions

In this section, we will show existence of Lipschitz extensions of embeddings into `p, p � 1 space for arbitrary
`p. To do this, we first give a randomized Lipschitz extension of an embedding ↵S : S ✓ X ! Y for (X, d) and
(Y, dY) being metric spaces with |X \ S| finite.1 In the case that (Y, dY) is an `p metric, we show that because
the output of the algorithm is over a distribution of finite support, averaging over the distribution will result in
an embedding in which no distance is stretched too much. In this step, we fundamentally use the fact that the
embedding is a Lipschitz extension and not just a weak nested embedding, as the averaging leaves the embeddings
of nodes in S the same, whereas averaging in general may cause contraction compared to the expectation itself.
Our algorithm for the randomized Lipschitz extension, Algorithm 4.1, is formally specified below.

Let cS denote the distortion of ↵S . We now show that if ↵ is the output of Algorithm 4.1 on input ((X, d), S,↵S , ⌧)
with ⌧ = 2, the distortion between elements in S is at most cS and all other distortion is at most 125cS ·Hk in
expectation.

The following lemma states our expansion bounds; we prove it in the following subsection. Throughout these
arguments we assume that ⌧ = 2, although it is possible to obtain slightly better distortion bounds by choosing
a value for ⌧ carefully. We present general versions of the lemmas, exhibiting the dependence of the bounds on ⌧
in Appendix A. Section 4.2 gives a deterministic construction of a Lipschitz extension and thus proves Theorem
2.6.

Lemma 4.1. Let ↵ Algorithm 4.1((X, d), S, p,↵S ,↵X , ⌧) with ⌧ = 2. Then we have the following bounds on
the expansion for each pair x, y 2 X:

1Note that line 4 of the randomized algorithm given here is inspired by the algorithm given by [18] for randomized embeddings of
metrics into trees. In this case however, we want to group together nodes that are close to each other relative to the “good” set of
nodes, as this will allow us to place nodes at the same spot as good nodes that they are relatively close to.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1648

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

membership of x and y restrictions on d(x, y) upper bound on expected distortion
x, y 2 S none cS (a)

x 2 S, y 2 X \ S none 10cS (b)
x, y 2 X \ S d(x, �(x))  2 · d(x, y) 50cS (c)
x, y 2 X \ S d(x, �(x)), d(y, �(y)) > 2 · d(x, y) 125cS ·Hk (d)

Table 1: Summary of the bounds in Lemma 4.1. Let ↵ Algorithm 4.1((X, d), S,↵S , ⌧) where ↵S : S ! `p is an
expanding embedding of distortion at most cS . Then the third column of the table gives an upper bound on the
the expected value of dY (↵(x),↵(y)) where x and y meet the criteria of the first two columns. Here � and Ki are
as defined in lines (2) and (7)-(8) of the algorithm.

S

K1

Ki

KjKn

y

x S

K1

Ki

KjKn

yx

Figure 2: Left: Visualization of nodes referenced in Lemma 4.1 (a) and Lemma 5.2 (a) Right: Visualization of
nodes referenced in Lemma 5.2 (b)

(a) If x, y 2 S, then dY (↵(x),↵(y))  cS · d(x, y).

(b) If x 2 S, y 2 X \ S, then dY (↵(x),↵(y))  10cS · d(x, y)

(c) If x, y 2 X \ S and d(x, �(x))  2 · d(x, y) for � as defined in line 2 of the algorithm, then dY (↵(x),↵(y)) 
50cS · d(x, y).

(d) If x, y 2 X \ S and d(x, �(x)), d(y, �(y)) > 2 · d(x, y) for � as defined in line 2 of the algorithm, then
E↵[dY (↵(x),↵(y))]  125cS · d(x, y).

4.1 Proofs of expansion bounds The bounds in Lemma 4.1 are summarized in Table 1. We will prove each
statement separately.

Lemma 4.1 a is automatically true by definition of ↵.

Now consider the distortion between outliers and non-outliers (i.e. nodes in S compared to nodes in K).

Proof of Lemma 4.1 (b). Let i be the index of x’s cluster, that is, x 2 Ki. First, suppose that x = ui, that is, x
is the center of the cluster it’s in. Then we get that ↵S(x) = ↵S(�(x)). Clearly this implies that if y = �(x), the
distortion is at most cS . Otherwise, we have d(y, x) � d(�(x), x), so we get

dY (↵(x),↵(y)) = dY (↵S(�(x)),↵S(y))

 cS · d(y, �(x))
 cS · d(y, x) + cS · d(x, �(x))
 2cS · d(x, y),

where the second line is by the fact that distortion of ↵S is at most cS , the second is by the triangle inequality,
and the third is by the fact that d(x, �(x))  d(x, y) by definition of �.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1649

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

S

K1

Ki

KjKn

y

x�(x)

�(y)

S

K1

Ki

KjKn

y

x�(x)

�(y)

Figure 3: Left: Visualization of nodes referenced in Lemma 4.1 (c) and Lemma 5.2 (d); Right: Visualization of
nodes referenced in Lemma 4.1 (d) and Lemma 5.2 (e)

Now consider an arbitrary x 2 Ki for some i, and let ui be the center of Ki (i.e. ⇡(ui) = i). We get the following:

dY (↵(x),↵(y)) = dY (↵(ui),↵(y))

 2cS · d(ui, y)

 2cS · (d(ui, x) + d(x, y))

 10cS · d(x, y),

where the first line is because x is also assigned to the same position as ui’s closest neighbor, the second line is
by the argument we just made for ui, the third line is by the triangle inequality, and the last line is by the fact
that d(ui, x)  4d(x, �(x))  4d(x, y) since b  4 and x 2 Ki.

Next we consider comparing two the distance of two nodes x, y 2 X \ S. First we consider the case that at least
one of the nodes has a relatively short distance to S compared to the distance to the other node.

Proof of Lemma 4.1 (c). Let � be as defined in line (2) of the algorithm. We get

dY (↵(x),↵(y))  dY (↵(x),↵(�(x))) + dY (↵(�(x)),↵(y))

 10cS · d(x, �(x)) + 10cS · d(�(x), y)
 20cS · d(x, �(x)) + 10cS · d(x, y)
 40cS · d(x, y) + 10cS · d(x, y)
= 50cS · d(x, y),

where the first line is by the triangle inequality on Y , the second is by Lemma 4.1 (b), the third is by the triangle
inequality on X, and the fourth is by the fact that d(x, �(x))  2d(x, y), a condition of this lemma.

Now we consider the final case, where we must consider expected distance.

Proof of Lemma 4.1 (d). Let � be as defined in line (2) of the algorithm. We will say that x and y are “split” if
x 2 Ki, y 2 Kj for i 6= j and Ki,Kj as defined in line (8) of the algorithm. Let ui, uj be as defined in line (7) of
the algorithm for the same choice of i, j respectively.

• First consider the worst-case distortion when x and y are not split. Then x, y 2 Ki for some i, so
dY (↵(x),↵(y)) = 0.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1650

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Now consider the worst-case distortion when x and y are split.

dY (↵(x),↵(y))  dY (↵(x),↵(�(x))) + dY (↵(�(x)),↵(y))

 10cS · d(x, �(x)) + 10cS · d(�(x), y)
 20cS · d(x, �(x)) + 10cS · d(x, y)
 20cS · d(x, �(x)) + 5cS · d(x, �(x))
= 25cS · d(x, �(x)),

where the first inequality is by the triangle inequality on Y , the second is by Lemma 4.1 (b), the third is
by the triangle inequality on X, and the fourth is by the fact that d(x, y) < 1

2d(x, �(x)) as a condition of
this part of the lemma. Note that an identical analysis shows that dY (↵(x),↵(y))  25cS · d(y, �(y)).

Now consider the probability of x and y being split. First, let us fix some node u chosen in some iteration of
Step (7) of the algorithm and let Ku be the cluster formed by this vertex. Suppose that the placement of x and
y is undetermined prior to this point of time. We will bound the probability that x and y are split by u, that is,
exactly one of these vertices ends up in the clusterKu. Without loss of generality, assume that d(x,u)

d(x,�(x)) 
d(y,u)

d(y,�(y)) .

This implies that if x, y are split, then x 2 Ku, y /2 Ku and we have

d(x, u)

d(x, �(x))
 b  d(y, u)

d(y, �(y))
.

This implies b must fall in a range of width

W  d(y, u)

d(y, �(y))
� d(x, u)

d(x, �(x))

 d(x, u) + d(x, y)

d(x, �(y))� d(x, y)
� d(x, u)

d(x, �(x))

 d(x, u) + d(x, y)

d(x, �(x))� d(x, y)
� d(x, u)

d(x, �(x))

= d(x, y) · d(x, �(x)) + d(x, u)

d(x, �(x)) · (d(x, �(x))� d(x, y))

 d(x, y) · 5

(d(x, �(x))� d(x, y))

 10 · d(x, y)

d(x, �(x))
,

where the second inequality is by applying the triangle inequality twice, the third inequality is by the fact that
�(x) is a closest node in S to x, and the fourth is by cross-multiplying. The fifth line is by the fact that
x 2 Ku, which implies d(x, u)  max possible value of b · d(x, �(x)). Finally, the sixth follows from the fact that
d(x, y) < 1

2 · d(x, �(x)), a condition of the lemma.

Next we will bound the overall probability that x and y are split by some node u. For a vertex u, define

�u = min
n

d(x,u)
d(x,�(x)) ,

d(y,u)
d(y,�(y))

o
. This is the smallest value of b at which the cluster Ku formed by u contains either

x or y. Consider ordering vertices u in K in increasing order of �u, and let index : K ! [k] denote this ordering.
We say that a node u “decides” the pair (x, y) if at least one of x and y is in Ku. u can decide (x, y) i↵ b � �u (i.e.
at least one of x, y meets the criteria to be in the cluster u is the center of). This implies that if u and u0 satisfy
index(u) < index(u0) and u appears before u0 in the ordering ⇡, then at the time we consider u0 in Step (7),
either it is the case that b � �u and (x, y) has already been decided by u, or it is the case that b < �u < �u0 , in
which case u0 cannot decide (x, y). Therefore, in either case, u0 does not decide (x, y), and consequently does not
split them.

In other words, in order for a vertex u to be able to split (x, y), it must be the case that among the index(u)
vertices before u in the index ordering (and including u itself), u is the first vertex to appear in the ordering ⇡.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1651

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Let us call this latter event Eu, and observe that this event is independent of the choice of b — it only depends
on the choice of the permutations ⇡ and index. We also note that Pr⇡[Eu] = 1/index(u).

We can now write down the probability that x and y are split as follows, using the fact that from our discussion
above, Prb[u splits (x, y)|¬Eu] = 0 for all u.

Pr
⇡,b

[x, y are split] =
X

u2K

Pr
b
[u splits (x, y)|Eu] · Pr

⇡
[Eu] + Pr

b
[u splits (x, y)|¬Eu] · Pr

⇡
[¬Eu]


X

u2K

W

⌧
· 1

index(u)

=
X

u2K

10

2

d(x, y)

d(xu, �(xu))
· 1

index(u)
.

Here we used xu to denote the node in {x, y} that is closer to u, and we substituted expressions from above for
W , ⌧ , and Pr⇡[Eu].

Finally, let us consider the expected distance between ↵(x) and ↵(y). Note that by our earlier analysis, the
distance between x and y when they are split by u is at most 25cS · d(xu, �(xu)). Thus, we can compute the
expected distance between x and y as follows:

E
⇡,b

[dY (↵(x),↵(y))]  0 · Pr[(x, y) are not split]

+
X

u2K

Pr
b
[x, y are split by u|Eu] · Pr

⇡
[Eu] · 25cS · d(xu, �(xu))


X

u2K|�u⌧+2

5

index(u)
· d(x, y)

d(xu, �(xu))
· 25cS · d(xu, �(xu))

 125cS · d(x, y) ·
kX

i=1

1

i

= 125cS ·Hk · d(x, y),

where Hk is the kth Harmonic number.

4.2 Deterministic extensions In this section we prove Theorem 2.6. Note that in the previous part, we
were able to allow the target metric to be arbitrary, but now we require that it be some `p space so that we
can “average” the possible outputs of the embedding. Thus, in this section we assume that Y is Rn with the `p
metric.

Proof of Theorem 2.6. We have shown that for all x, y 2 X \K, ||↵(x) � ↵(y)||p = d(x, y) and for all x, y 2 X,
E⇡,b[||↵(x)�↵(y)||2]  125cS ·d(x, y). We can now use the convexity of the `p norm to upper bound the distance
between the expected points. In particular, note that the point that x is mapped to is completely determined

by the choice of subsets Ki. There are at most 22
|K|

ways to partition K, so the set of points over which ↵(x)
is chosen is finite, and we can assign finite probability pt to Pr[↵(x) = ↵t(x)] such that ↵t is a function in the
support of ↵ and the sum over this probability for all points in the support is 1. Let E[↵(x)] := E⇡,b[↵(x)] beP

t pt · ↵t(x) where the sum is over all functions ↵t points in the support of ↵. We claim that the embedding
↵⇤ : X ! `np defined by ↵⇤(x) := E[↵(x)] is a Lipschitz extension of ↵S . In particular, we will use the Banach
space properties of the `p norm to obtain our desired bound.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1652

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

||↵⇤(x)� ↵⇤(y)||p = ||E[↵(x)]� E[↵(y)]||p
= ||

X

t

pt · ↵t(x)�
X

t

pt · ↵t(y)||p

= ||
X

t

(pt↵
t(x)� pt↵

t(y))||p


X

t

||pt · (↵t(x)� ↵t(y))||p

=
X

t

pt||↵t(x)� ↵t(y)||p

= E
⇡,b

[||↵(x)� ↵(y)||p]

 125cS ·Hk · d(x, y),

where the first line is by definition of ↵⇤, the second is by definition of E[↵(x)], E[↵(y)], the third is by regrouping,
the fourth is by the triangle inequality of `p, the fifth is by scalar properties of `p, the sixth is by the definition
of expectation, and the seventh is by our bounds from the previous subsection.

Note that for x 2 S, ↵t(x) = ↵t0(x) for all ↵t,↵t0 in the support of ↵. Thus, ↵⇤(x) = ↵t(x) = ↵S(x).

In fact, in the proof of the previous theorem, the properties of `p space that we used were properties of any
Banach space, so Theorem 2.6 applies when the destination metric is any Banach space.

5 Nested compositions into `1

In this section, we will give a modification of Algorithm 4.1 when (Y, dY) is `1 space that will allow us to avoid
excessive contraction. We will then use this to argue that compositions of nested embeddings exist for embeddings
into `1. This will allow us to prove Theorems 2.7 and 2.8.

As in the previous case, we first give Algorithm 5.1, a randomized algorithm that will have good expected distortion
for every pair, but now we will work to ensure the distances are not too contracted in addition to not being too
expanded.

Note that Algorithm 5.1 appends together a bunch of embeddings, one for S and one for each Ki. The idea is
that the main source of our contraction in the previous algorithm comes from the fact that many points may be
mapped to the same place. To avoid this, we will use our embedding ↵X to add some extra indices that will
distinguish points that end up in the same set from each other and from their center’s neighbor.

Let cS and cX denote the distortion of ↵S and ↵X respectively. We now show that if ↵ is the output of Algorithm
5.1 on input ((X, d), S,↵S ,↵X , ⌧) with ⌧ = 2, the distortion between elements in S is at most cS and all other
distortion is at most

�
155
2 ·Hk · cS + (2252 ·Hk + 1) · cX

�
in expectation. Our argument is broken into two parts:

Lemma 5.1 shows that the embedding ↵ has low contraction; Lemma 5.2 bounds the amount by which every
distance expands.

We state the lemmas first and then prove them in the following subsections. Throughout these arguments we
assume that ⌧ = 2, although it is possible to obtain slightly better distortion bounds by choosing a value for ⌧
carefully. We present general versions of the lemmas, exhibiting the dependence of the bounds on ⌧ in Appendix
A.

Lemma 5.1. Let ↵ Algorithm 5.1((X, d), S,↵S ,↵X , ⌧) with ⌧ = 2. Then for all x, y 2 X, we have
||↵(x)� ↵(y)||1 � d(x, y).

Lemma 5.2. Let ↵ Algorithm 5.1((X, d), S,↵S ,↵X , ⌧) with ⌧ = 2. Then we have the following bounds on the
expansion for each pair x, y 2 X:

(a) If x, y 2 S, then ||↵(x)� ↵(y))||1  cS · d(x, y).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1653

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 5.1. Nested embeddings

Input: Metric space (X, d), subset S ✓ X, expanding embedding ↵S : X \ S ! `1, expanding embedding
↵X : X ! `1, and real number ⌧ > 0
Output: A randomized expanding embedding ↵ : X ! `1 such that for all x, y 2 S, d(x, y)  ||↵(x)� ↵(y)||1 
cS · d(x, y) and for all x, y 2 X, d(x, y)  E[||↵(x)� ↵(y)||1]  g(cS , cX) · d(x, y).

1: K X \ S.
2: Define a function � : K ! S such that �(u) 2 argminv2S d(u, v). . ie �(u) is one of u’s closest neighbors in S
3: Select b uniformly at random from the range [2, ⌧ + 2]
4: Select a uniformly random permutation ⇡ : K ! [k] of the vertices in K
5: K 0 K, i 1
6: for i = 1 to k do
7: ui ⇡�1(i)
8: Ki {v 2 K 0 | d(v, ui)  b · d(v, �(v))} . Let the “center” of Ki be ui

9: Define an embedding ↵i : X ! `1 such that

↵i(v) =

(
↵X(v) v 2 Ki

↵X(�(ui)) v /2 Ki

10: K 0 K 0 \Ki

11: Define an embedding ↵0 : X ! `1 such that

↵0(v) =

(
↵S(v) if v 2 S

↵S(�(ui)) if v 2 Ki and with ui being the center of Ki
.

12: Define an embedding ↵ : X ! `1 such that ↵(v) 7! (↵0(v)|↵1(v)| · · · |↵t(v)) . here | denotes concatenation
13: Output ↵

Figure 4: Algorithm for finding a nested embedding

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1654

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

(b) If x, y 2 Ki, then ||↵(x)� ↵(y))||1  cX · d(x, y).

(c) If x 2 S, y 2 X \ S, then ||↵(x)� ↵(y))||1  [7 · cS + 9 · cX] · ·d(x, y).

(d) If x, y 2 X \S and d(x, �(x))  2 · d(x, y) for � as defined in line 2 of the algorithm, then ||↵(x)�↵(y))||1 
[31 · cS + 45 · cX] · d(x, y).

(e) If x, y 2 X \ S and d(x, �(x)), d(y, �(y)) > 2 · d(x, y) for � as defined in line 2 of the algorithm, then
E↵[||↵(x)� ↵(y))||1] 

�
155
2 ·Hk · cS + (2252 ·Hk + 1) · cX

�
· d(x, y).

5.1 Proof of contraction bounds Proof of Lemma 5.1. Let � be as defined in line (2) of the algorithm and
let the ui and Ki be as defined in lines (7) and (8) of the algorithm. We divide into cases.

1. If x, y 2 S, then ||↵(x)� ↵(y)||1 = ||↵0(x)� ↵0(y)||1 � d(x, y) because ↵S is expanding

2. If x, y 2 Ki for some Ki defined in line (8) of the algorithm or if x 2 Ki, y = �(ui), their embeddings di↵er
only on the coordinates associated with ↵i, so we have

||↵(x)� ↵(y)||1 = ||↵i(x)� ↵i(y)||1
= ||↵X(x)� ↵X(y)||1
� d(x, y),

where the second line is by definition of ↵i and the last line is because ↵X is expanding.

3. If x 2 S, y /2 S, then let y 2 Ki for some i as defined in line (8) of the algorithm and let ui be the center for
this i defined in line (7). This implies that ↵(x) and ↵(y) di↵er only on coordinates associated with ↵0 and
↵i.

||↵(x)� ↵(y)||1 = ||↵0(x)� ↵0(y)||1 + ||↵i(x)� ↵i(y)||1
� ||↵S(x)� ↵S(�(ui))||1 + ||↵X(�(ui))� ↵X(y)||1
� d(x, �(ui)) + d(�(ui), y)

� d(x, y),

where the second line is by definition of ↵0 and ↵i, the third is by cases 1 and 2 of this lemma, and the fifth
is by the triangle inequality.

4. If x 2 Ki, y 2 Kj for some Ki,Kj defined in line (8) of the algorithm. Let ui, uj be the centers of these sets
as defined in line (7) of the algorithm. Note that ↵(x) and ↵(y) di↵er only on the indices associated with
↵0,↵i, and ↵j . Thus we get

||↵(x)� ↵(y)||p1 = ||↵0(x)� ↵0(y)||1 + ||↵i(x)� ↵i(y)||1 + ||↵j(x)� ↵j(y)||1
� ||↵S(�(ui))� ↵S(�(uj))||1 + ||↵X(�(ui))� ↵X(x)||1 + ||↵X(�(uj))� ↵X(y)||1
� d(�(ui), �(uj)) + d(�(ui), x) + d(�(uj), y)

� d(x, y),

where the second line is by definition of the three embeddings, the third line is by cases 1 and 2 of this
lemma, and the fifth is by the triangle inequality.

Note that if we were to use Algorithm 5.1 to nest embeddings into more general `p spaces, we can use the same
analysis as above, but rather than adding the distance between the concatenated vectors, we will need to raise
the distances to the power of p, add them, and take the sum to the power 1/p. Then by applying the power mean

inequality we will get that contraction is at most 3�1+ 1
p for all pairs of points, and at most 1 for pairs in S.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1655

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

membership of x and y restrictions on d(x, y) upper bound on expected distortion
x, y 2 S none cS (a)
x, y 2 Ki none cX (b)

x 2 S, y 2 X \ S none [7 · cS + 9 · cX]· (c)
x, y 2 X \ S d(x, �(x))  2 · d(x, y) [31 · cS + 45 · cX] (d)
x, y 2 X \ S d(x, �(x)), d(y, �(y)) > 2 · d(x, y)

�
155
2 ·Hk · cS + (2252 ·Hk + 1) · cX

�
(e)

Table 2: Summary of the bounds in Lemma 5.2. Let ↵ Algorithm 5.1((X, d), S, p,↵S ,↵X , ⌧) where ↵S : S ! `p
is an expanding embedding of distortion at most cS and ↵X : X ! `p is an expanding embedding of distortion at
most cX . Then the third column of the table gives an upper bound on the the expected value of ||↵(x)� ↵(y)||p
where x and y meet the criteria of the first two columns. Here � and Ki are as defined in lines (2) and (7)-(8) of
the algorithm.

5.2 Proofs of expansion bounds The bounds in Lemma 5.2 are summarized in Table 2. We will prove each
statement separately.

Proof of Lemma 5.2 (a). u, v /2 Ki for all i, so ↵i(u) = ↵i(v) for all i. Thus,

||↵(u)� ↵(v))||1 = ||↵0(u)� ↵0(v)||1
= ||↵S(u)� ↵S(v)||1
 cS · d(u, v),

where the last equality is by definition of ↵S .

Proof of Lemma 5.2 (b). Since x, y 2 Ki for a fixed i, we have that ↵(x),↵(y) di↵er only on coordinates associated
with ↵i. Thus, we get

||↵(x)� ↵(y))||1 = ||↵i(x)� ↵i(y))||1
= ||↵X(x)� ↵X(y))||1
 cX · d(x, y),

where we have used the fact that ↵X(u) = ↵i(u) for x 2 Ki.

Now we consider the distortion between outliers and non-outliers. To prove these bounds, we will need to define
extra points in the `p space that X is mapped to. Consider the points ui defined in Step (7) of the algorithm.
We will now define a point �(ui) for each such ui 2 K. If ui 2 Ki we set �(ui) = ↵(ui). Otherwise if ui 2 Kj for
j < i, we set all of the coordinates of �(ui) to be the same as ↵(ui), except for the coordinates associated with
↵j(ui), that are replaced with those of ↵X(�(uj)); and the coordinates associated with ↵i(ui), that are replaced
with those for ↵X(ui). In other words, �(ui) is the point that ui would be mapped to by ↵ if it had so happened
that ui belonged to Ki.

Now we are ready to prove Lemma 5.2 (c). We break this proof up into two parts: Lemmas 5.3 and 5.4.

Lemma 5.3. Let ↵ Algorithm 5.1((X, d), S,↵S ,↵X , ⌧) with ⌧ = 2. Consider x 2 S; ui as defined in Step (7)
of the algorithm for some i; and �(ui) as defined above. If x = �(ui) where � : X \S ! S is as defined in Step (2)
of the algorithm, then ||↵(x)� �(ui)||1  cX · d(x, ui). For all other x, ||↵(x)� �(ui)||1  (cS + cX) · d(x, ui).

Proof. First, note that the point �(ui) is exactly the point that would have been assigned to ↵(ui) if it was not
placed in some Kj for j < i. Additionally, this means that �(ui) and ↵(x) are the same on the indices associated
with ↵j for all j 6= i (namely they are assigned ↵X(�(uj))).

Now we have ↵j(x) = ↵j(ui) for all j 6= i. Thus, we have

||↵(x)� �(ui)||1 = ||↵0(x)|↵i(x)� ↵0(ui)|↵X(ui)||1
 ||↵0(x)� ↵0(ui)||1 + ||↵i(x)� ↵X(ui)||1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1656

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

S

K1

Ki

KjKn

yx ui�(ui)

�(y)

Figure 5: Visualization of nodes referenced in Lemmas 5.3 and 5.4 when ui 2 Ki.

We have two cases to consider.

1. If x = �(ui), then we have ↵0(ui) = ↵0(x) by definition, so we have

||↵(x)� �(ui)||1  ||↵i(x)� ↵X(ui)||1
= ||↵X(x)� ↵X(ui)||1
 cX · d(x, ui),

where the last line is by the fact that ↵X is an embedding with at most cX distortion.

2. If x 6= �(ui), we have d(�(ui), ui)  d(x, ui) by definition of �(ui). Then we use the triangle inequality as
follows.

||↵(x)� �(ui))||1  ||↵(x)� ↵(�(ui))||1 + ||↵(�(ui))� �(ui)||1
 cS · d(x, ui) + cX · d(�(ui), ui)

 cS · d(x, ui) + cX · d(x, ui)

= (cS + cX)d(x, ui)

where the second line comes from Lemma 5.2 (a) and the first case of this lemma.

Next we want to consider the distortion between more general members of a set Ki and members of X \ Ki.
For the coming proofs, to show that x and y are not too distorted, we will generally focus on showing that the
distance between x and y is at least a constant factor larger than the distance from x or y to some other point
whose distance to x or y is already known not to be too distorted.

Lemma 5.4. Let ↵ Algorithm 5.1((X, d), S,↵S ,↵X , ⌧) with ⌧ = 2. Let Ki be as defined in Step (8) of
the algorithm for some i. Consider x 2 S and y 2 Ki for some i. If x = �(y) where � is as defined
in line (2) of the algorithm, then we have ||↵(x) � ↵(y)||1  [5 · cS + 9 · cX] · d(x, y). For all other x,
||↵(x)� ↵(y)||1  [7 · cS + 9 · cX] · d(x, y).

Proof. Let � : X \ S ! S be as defined in Step (2) of the algorithm, ui be as defined in Step (7) for i consistent
with the lemma statement, and �(ui) be as defined above. We divide analysis into two cases.

1. If x = �(y), the lemma essentially comes from the triangle inequality and y’s relative closeness to ui that it

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1657

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

must have if it is assigned to Ki.

||↵(x)� ↵(y)||1 =

||↵(�(y))� ↵(y)||1  ||↵(x)� �(ui)||1 + ||↵(y)� �(ui)||1
 [(cS + cX) · d(x = �(y), ui) + cXd(y, ui)]

 (cS + cX) · [d(�(y), y) + d(y, ui)] + cX · d(y, ui)

= (cS + cX) · d(�(y), y) + (cS + 2cX) · d(y, ui)

 (cS + cX) · d(�(y), y) + 4(cS + 2cX) · d(y, �(y))
= [5cS + 9cX] · d(y, �(y) = x).

Here the first inequality is by the fact that ↵(x) and ↵(y) may only di↵er on the indices associated with ↵0

and the indices associated with ↵i. The second inequality is by Lemma 5.3 and Lemma 5.2 (b), the third
is by the triangle inequality, and the fourth line is by rearranging terms. The fifth line is by the fact that
d(y, ui)  b · d(y, �(y)) since y is in Ki and ui is the center, and the fact that b  4 no matter the result of
the random choice in the algorithm.

2. If x 6= �(y), we have d(�(y), y)  d(x, y) by definition of �(y). Thus, we get

||↵(x)� ↵(y)||1  ||↵(x)� ↵(�(y))||1 + ||↵(�(y))� ↵(y)||1
 [cS · d(x, �(y)) + [5cS + 9cX] · d(�(y), y)]
 [cS · [d(x, y) + d(y, �(y))] + [5cS + 9cX] · d(�(y), y)]
 [7cS + 9cX] · d(x, y),

where the second inequality is by Lemma 5.2 a and by the previous case of this lemma, the third inequality
is by the triangle inequality, and the last inequality is because �(y) is a closest node in S to y.

Finally, we consider comparing two the distance of two nodes x, y 2 X \ S. First we consider the case that at
least one of the nodes has a relatively short distance to S compared to the distance to the other node.

Proof of Lemma 5.2 (d). Let � be as defined in line (2) of the algorithm. We get

||↵(x)� ↵(y)||1  ||↵(x)� ↵(�(x))||1 + ||↵(�(x))� ↵(y)||1
 [5cS + 9cX] · d(x, �(x)) + [7cS + 9cX] · d(�(x), y)
 [12cS + 18cX] · d(x, �(x)) + [7cS + 9cX] · d(x, y)
 [31cS + 45cX] · d(x, y),

where the first inequality is by the triangle inequality, the second is by Lemma 5.3, the third is by the triangle
inequality applied to d(�(x), y) and rearranging terms, and the fourth is by the fact that d(x, �(x))  2 · d(x, y)
and rearranging terms.

Now we consider the final case, where we must consider expected distance.

Proof of Lemma 5.2 (e). Let � be as defined in line (2) of the algorithm. We will say that x and y are “split” if
x 2 Ki, y 2 Kj for i 6= j and Ki,Kj as defined in line (8) of the algorithm. Let ui, uj be as defined in line (7) of
the algorithm for the same choice of i, j respectively.

• First consider the worst-case distortion when x and y are not split. Then x, y 2 Ki for some i. We have
||↵(x)� ↵(y)||1  cX · d(x, y) by Lemma 5.2 b, no matter the choice of b.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1658

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Now consider the worst-case distortion when x and y are split such that x is placed in Ki and y is placed
in Kj for i < j. We have

||↵(x)� ↵(y)||1  ||↵(x)� ↵(�(x))||1 + ||↵(�(x))� ↵(y)||1
 [5cS + 9cX] · d(x, �(x)) + [7cS + 9cX] · d(�(x), y)
 [5cS + 9cX] · d(x, �(x)) + [7cS + 9cX] · [d(x, y) + d(x, �(x))]

 [5cS + 9cX] · d(x, �(x)) + [7cS + 9cX] · 3
2
d(x, �(x))

= [
31

2
cS +

45

2
cX] · d(x, �(x)),

where the first inequality is by the triangle inequality, the second is by Lemma 5.4, the third inequality is
by the triangle inequality on d(�(x), y), the fourth inequality is by the fact that d(x, y) < 1

2d(x, �(x)) by
the condition of this lemma, and the final equality is by rearranging terms.

Note that the probability of x and y being split is no di↵erent in this case than in the proof of Lemma 4.1 (e).
The only changes are to the amount of distortion incurred when they are split versus when they are not split.
Using the same definitions as in the proof of Lemma 4.1 (e) and our earlier analysis that the distance between
x and y when they are split by u is at most [312 cS + 45

2 cX] · d(xu, �(xu)), we can compute the expected distance
between x and y as follows:

E
⇡,b

[||↵(x)� ↵(y)||1]  cX · d(x, y) · Pr[(x, y) are not split]

+
X

u2K

Pr
b
[x, y are split by u|Eu] · Pr

⇡
[Eu] ·

✓
31

2
cS +

45

2
cX

◆
· d(xu, �(xu))

 cX · d(x, y) +
X

u2K|�u⌧+2

5

index(u)
· d(x, y)

d(xu, �(xu))
·
✓
31

2
cS +

45

2
cX

◆
· d(xu, �(xu))

 cX · d(x, y) + 5 ·
✓
31

2
cS +

45

2
cX

◆
· d(x, y) ·

kX

i=1

1

i

=

✓
155

2
·Hk · cS +

✓
225

2
·Hk + 1

◆
· cX

◆
· d(x, y),

where Hk is the kth Harmonic number.

5.3 Deterministic nested embeddings In this section, we show that we can obtain O(Hk)(cS + cX)-nested
embeddings when the target metric is `1. As in the proof of Lipschitz extensions for general `p spaces, this method
is not e�cient and only serves as a proof of existence.

Proof of Theorem 2.7. Consider the embedding ↵⇤⇤ that is ↵⇤⇤(x) := ||tpt↵t(x), where ||t implies concatenation
over all choices of t and pt,↵t are as defined in the proof of Theorem 2.6. Now we show that ↵⇤⇤(x) = E⇡,b[x] for
all x 2 X.

||↵⇤⇤(x)� ↵⇤⇤(y)||1 =
X

t

||pt↵t(x)� pt↵
t(y)||1

=
X

t

pt||↵t(x)� ↵t(y)||1

= E⇡,b[||↵(x)� ↵(y)||1],

where the first line is by definition of ↵⇤⇤ and the fact that for `1, the norm of two concatenated vectors equals
the sum of their individual norms. The second line is by the scalar properties of `p norms, and the third line is by

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1659

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

how we defined the pt and ↵t. Thus, we get that our bounds on distortion for individual pairs in our randomized
embedding holds for all pairs simultaneously in this choice of embedding and we get existence as desired. Note
that the embedding presented here may have a large (but finite) number of coordinates, but any `dp metric on n
points is isometrically embeddable into `np , so we obtain existence of an embedding with low distortion and at
most n dimensions.

Note that trying to expand the above proof to work for other `p bounds we have the problem that the norm of
vectors u concatenated with v is (||u||pp + ||v||pp)1/p, which is smaller than ||u||p + ||v||p for p > 1. However, the
randomized analysis goes through for any p � 1.

Proof of Theorem 2.8. Notice that Algorithm 5.1 can replace its use of ↵X in line 8 with any embedding of
Ki [{�(ui)}, and if we have an upper bound on such an embedding’s distortion, we can replace cX in all of the
theorems and lemmas in this section with that bound.

6 Conclusion

In this paper, we give a bi-criteria approximation algorithm that given a constant c and metric (X, d) finds an
(O(k log2 k), O(c))-outlier embedding into `2 if the metric has a (k, c)-outlier embedding into `2. In doing so, we
show that given a metric space (X, d), a cS-distortion embedding of a subset S ✓ X into `1, there exists a Lipschitz
extension with Lipschitz factor at most O(Hk · cS) on every pair of points. Additionally, when the target metric
is `1 and we have an embedding of the entire space with distortion at most cX , there exists a single (composition)
embedding of X into `1 such that distortion between pairs of points in S is at most cS and distortion between all
pairs of points is at most O(cS +Hk · cX). We also leave several open questions on this topic. Among them, we
ask:

• Is there a polynomial time algorithm that given constant c, finds an (O(k), O(c))-embedding into `2?

• What bicriteria approximations can be obtained for outlier embeddings into `p for other values of p?

• Do there exist nested compositions into `p for p 6= 1 that do not incur the contraction presented in this
paper (i.e. “strong” nested embeddings)?

• Can the parameters for our nested embedding or Lipschitz extension algorithms be improved?

• Can our hardness of approximation result be extended to non-isometric outlier embeddings for large
constants or slow-growing functions in n?

• Can we obtain any larger concrete lower bounds on approximation factors for an optimal outlier set?

Acknowledgements

We are grateful to Ola Svensson for comments on a previous version of this paper that allowed us to simplify
Algorithm 4.1 and improve our approximation factor for the number of outliers from O(log4 k) to O(log2 k).

This work was supported in part by NSF awards CCF-2217069 and CCF-2225259.

References

[1] I. Abraham, Y. Bartal, J. Kleinberg, T.-H.H. Chan, O. Neiman, Kedar Dhamdhere, A. Slivkins, and Anupam
Gupta. Metric embeddings with relaxed guarantees. In 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’05), pages 83–100, 2005.

[2] Noga Alon, Mihai Badoiu, Erik D. Demaine, Martin Farach-Colton, Mohammad Taghi Hajiaghayi, and
Anastasios Sidiropoulos. Ordinal embeddings of minimum relaxation: General properties, trees, and
ultrametrics. ACM Trans. Algorithms, 4(4):46:1–46:21, 2008.

[3] Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala. Local
versus global properties of metric spaces. SIAM Journal on Computing, 41(1):250–271, 2012.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1660

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[4] Mihai Badoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Low-distortion embeddings of
general metrics into the line. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 225–233. ACM,
2005.

[5] Mihai Badoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Embedding ultrametrics into low-
dimensional spaces. In Nina Amenta and Otfried Cheong, editors, Proceedings of the 22nd ACM Symposium
on Computational Geometry, Sedona, Arizona, USA, June 5-7, 2006, pages 187–196. ACM, 2006.

[6] Mihai Badoiu, Piotr Indyk, and Anastasios Sidiropoulos. Approximation algorithms for embedding general
metrics into trees. In Nikhil Bansal, Kirk Pruhs, and Cli↵ord Stein, editors, Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007, pages 512–521. SIAM, 2007.

[7] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathematics,
52:46–52, 1985.

[8] T. H. Hubert Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In Yossi Azar and
Thomas Erlebach, editors, Algorithms – ESA 2006, pages 196–207, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[9] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global tradeo↵s in metric embeddings.
SIAM Journal on Computing, 39(6):2487–2512, 2010.

[10] Victor Chepoi, Feodor F. Dragan, Ilan Newman, Yuri Rabinovich, and Yann Vaxès. Constant approximation
algorithms for embedding graph metrics into trees and outerplanar graphs. Discret. Comput. Geom.,
47(1):187–214, 2012.

[11] Karine Chubarian and Anastasios Sidiropoulos. Computing bi-lipschitz outlier embeddings into the line. In
International Workshop and International Workshop on Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 2020.

[12] James A. Clarkson. Uniformly convex spaces. Transactions of the American Mathematical Society, 40:396–
414, 1936.

[13] Mark de Berg, Krzysztof Onak, and Anastasios Sidiropoulos. Fat polygonal partitions with applications to
visualization and embeddings. J. Comput. Geom., 4:212–239, 2010.

[14] M. Deza and S. Shpectorov. Recognition of the `1-graphs with complexity O(nm), or football in a hypercube.
European Journal of Combinatorics, 17(2-3):279–289, 1996.

[15] Michel Deza and Monique Laurent. The cut cone and `1 metrics. In R. L. Graham, B. Korte, Bonn L. Lovasz,
A.Wigderson, and G.M. Ziegler, editors, Geometry of Cuts and Metrics, chapter 4, pages 37–52. Springer,
1997.

[16] D Ž Djoković. Distance-preserving subgraphs of hypercubes. Journal of Combinatorial Theory, Series B,
14(3):263–267, 1973.

[17] Je↵ Edmonds, Anastasios Sidiropoulos, and Anastasios Zouzias. Inapproximability for planar embedding
problems. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 222–235. SIAM, 2010.

[18] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by
tree metrics. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’03, page 448–455, New York, NY, USA, 2003. Association for Computing Machinery.

[19] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A. Rosamond, and Saket
Saurabh. Distortion is fixed parameter tractable. ACM Trans. Comput. Theory, 5(4):16:1–16:20, 2013.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1661

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[20] Ronald L Graham and Peter M Winkler. On isometric embeddings of graphs. Transactions of the American
Mathematical Society, 288(2):527–536, 1985.

[21] Piotr Indyk and Jiŕı Matousek. Low-distortion embeddings of finite metric spaces. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, Second Edition, pages
177–196. Chapman and Hall/CRC, 2004.

[22] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into hilbert space.
Contemporary mathematics, 26:189–206, 1984.

[23] Christiane Lammersen, Anastasios Sidiropoulos, and Christian Sohler. Streaming embeddings with slack.
In Frank Dehne, Marina Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Algorithms and Data
Structures, pages 483–494, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[24] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic
applications. In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA,
20-22 November 1994, pages 577–591. IEEE Computer Society, 1994.

[25] Konstantin Makarychev and Yury Makarychev. A union of euclidean metric spaces is euclidean. Discrete
Analysis, 14, 02 2016.

[26] Jiŕı Matousek and Anastasios Sidiropoulos. Inapproximability for metric embeddings into rˆd. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA,
USA, pages 405–413. IEEE Computer Society, 2008.

[27] Assaf Naor and Yuval Rabani. On lipschitz extension from finite subsets. Israel Journal of Mathematics,
219, 06 2015.

[28] Amir Nayyeri and Benjamin Raichel. Reality distortion: Exact and approximate algorithms for embedding
into the line. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 729–747. IEEE Computer Society,
2015.

[29] Mikhail I. Ostrovskii and Beata Randrianantoanina. On l1-embeddability of unions of l1-embeddable metric
spaces and of twisted unions of hypercubes. Analysis and Geometry in Metric Spaces, 10(1):313–329, 2022.

[30] S. V. Shpectorov. On scale embeddings of graphs into hypercubes. Eur. J. Comb., 14(2):117–130, March
1993.

[31] Anastasios Sidiropoulos, Mihai Badoiu, Kedar Dhamdhere, Anupam Gupta, Piotr Indyk, Yuri Rabinovich,
Harald Räcke, and R. Ravi. Approximation algorithms for low-distortion embeddings into low-dimensional
spaces. SIAM J. Discret. Math., 33(1):454–473, 2019.

[32] Anastasios Sidiropoulos, Dingkang Wang, and Yusu Wang. Metric embeddings with outliers. In ACM-SIAM
Symposium on Discrete Algorithms, 2015.

A Full constants for Sections 4 and 5

Lemma A.1 gives a version of Lemma 4.1 more generally in terms of ⌧ and other flexible parameters. The proof
would be identical to that given in Section 4.

Lemma A.1. Let ↵ Algorithm 4.1((X, d), S,↵S , ⌧). Then we have the following bounds on the expansion for
each pair x, y 2 X:

(a) If x, y 2 S, then dY (↵(x),↵(y))  cS · d(x, y).

(b) If x 2 S, y 2 X \ S, then dY (↵(x),↵(y))  (2⌧ + 6)cS · d(x, y).

(c) If x, y 2 X \ S and d(x, �(x))   · d(x, y) for positive  and � as defined in line 2 of the algorithm, then
dY (↵(x),↵(y))  (2+ 1)(2⌧ + 6)cS · d(x, y).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1662

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

(d) If x, y 2 X \ S and d(x, �(x)), d(y, �(y)) >  · d(x, y) for � as defined in line 2 of the algorithm and real
number  > 1, then

E
↵
[dY (↵(x),↵(y))] 

✓
(⌧ + 3)(2⌧ + 6)(2+ 1)

⌧(� 1)

◆
· cS · d(x, y).

Lemma A.2 gives a version of Lemma 5.2 more generally in terms of ⌧ and other flexible parameters. The proof
would be identical to that given in Section 5.

Lemma A.2. Let ↵ Algorithm 5.1((X, d), S,↵S ,↵X , ⌧). Then we have the following bounds on the expansion
for each pair x, y 2 X:

(a) If x, y 2 S, then ||↵(x)� ↵(y))||1  cS · d(x, y).

(b) If x, y 2 Ki, then ||↵(x)� ↵(y))||1  cX · d(x, y).

(c) If x 2 S, y 2 X \ S, then ||↵(x)� ↵(y))||1  [(⌧ + 5)cS + (2⌧ + 5)cX] · d(x, y).

(d) If x, y 2 X \ S and d(x, �(x))   · d(x, y) for positive  and � as defined in line 2 of the algorithm, then

||↵(x)� ↵(y)||1  [((2⌧ + 8)+ ⌧ + 5) · cS + ((4⌧ + 10)+ 2⌧ + 5) · cX] · d(x, y).

(e) If x, y 2 X \ S and d(x, �(x)), d(y, �(y)) >  · d(x, y) for � as defined in line 2 of the algorithm and real
number  > 1, then

E
↵
[||↵(x)� ↵(y))||1]




⌧ + 3

(� 1)⌧
·Hk · ((⌧ + 3) + (+ 1)(⌧ + 5))

�
cS +


1 +

⌧ + 3

(� 1)⌧
·Hk · (2⌧ + 5)(2+ 1)

�
cX

�
· d(x, y).

B Hardness of finding outlier sets

Sidiropoulos et al. [32] showed that for any t � 2, it is NP-hard to determine the size of the smallest outlier
set for a finite metric (X, d) such that the metric without the outlier set is isometrically embeddable into `t2.
Additionally, because they reduce from Vertex Cover, they show that under the Unique Games Conjecture it is
NP-hard to approximate the size of such a set to a factor better than 2� ✏.

In this appendix, we will give an alternate proof of a similar conclusion, but we extend their result to show that it
holds even if the input metric is an unweighted graph metric. We note that unlike the Sidiropolous et al. proof,
our proof does not apply for arbitrary choice of dimension d.

First, we claim the following Lemma B.1 which we will prove later. Note that it is NP-hard to decide if a
general metric is isometrically `1-embeddable and thus it is hard to decide if the minimum outlier set for such
an embedding has size 0 or size larger than 0, implying hardness of any approximation for this value. However,
`1-embeddability can be decided in polynomial time for unweighted graph metrics [30, 14, 15], and we show that
even with this restriction on the input, it is hard to determine minimum outlier set size.

Lemma B.1. Let (X, d) be the distance metric for an unweighted graph G = (V,E). then, given (X, d, k) it is
NP-hard to decide if there exists a subset K ✓ X with |K| = k such that (X\K, d|X\K) is isometrically embeddable
into `1, even when the input metric is an unweighted graph metric.

Under the unique games conjecture, it is NP-hard to find a 2� ✏ approximation for the minimum such k, for any
✏ > 0.

We can now use this result to prove Theorem 2.10.

Proof of Theorem 2.10. We appeal to Lemma B.1 to show that the theorem holds for p = 1 and here we show
that it holds for 1 < p <1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1663

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

x w

y z

Figure 6: Example of a subgraph formed by nodes {u1 = x, u2 = y, v1 = w, v2 = z} as defined in the proof of
Theorem 2.10.

Consider a graph G = (V,E). Given G, we give a polynomial time construction of an unweighted graph metric
(V 0, dG0) such that the size of the minimum outlier set for embedding the metric into `p is the same as the size
of the minimum vertex cover on G. In this proof, minimum outlier set refers to the minimum outlier set for
distortion 1 and we consider embeddings into `p for finite integer p > 1.

Construction: We will construct an unweighted graph G0 = (V 0, E0) and let dG0 be the distance metric on this
graph. In particular, let V 0 = {u1|u 2 V }[{u2|u 2 V }. Add edges between every pair of nodes in the graph, but
omit edges u2v2 for uv 2 E.

Correctness: Let K be a minimum outlier set on (V 0, dG0) and let V̂ be a minimum vertex cover on G. We
claim |K| = |V̂ |.

|K|  |V̂ | : We construct an outlier set of size at most |V̂ |. Define K 0 := {u2|u 2 V̂ }. We claim that
(V 0 \K 0, d|V 0\K0) is the equidistant metric with distance 1 between all points, which is always embeddable
in `p for any p. Assume this is not the case. Note that all distances in G0 are 1 or 2, so there exists a
pair of nodes with distance 2 between them. The only such pairs are of the form {u2, v2} for uv 2 E.
However, u2, v2 2 V 0 \K 0 implies that V̂ does not cover edge uv so it is not a vertex cover and we reach a
contradiction. Thus since K is minimum, we get |K|  |K 0|  |V̂ |.

|V̂ |  |K| : We construct a vertex cover of size at most |K|. Define V̂ 0 := {u|u1 2 K or u2 2 K}. We see
|V̂ 0|  |K| and we claim it is a vertex cover. Assume otherwise. Then there exists an edge uv that is
not covered by V̂ 0 and there is a subgraph of the form in Figure 6 in the induced subgraph of G0 on
V 0 \K 0, G0[V 0 \K 0]. Note that distances in this subgraph are exactly distances in the entire graph by our
construction. Thus we need only show that this subgraph is not isometrically embeddable in `p.

Note that `p is a strictly convex space for 1 < p < 1 [12]. Thus, for a, b 2 Rt for any fixed t, if
||a||p = ||b||p = 1 and a 6= b, then ||a+b

2 ||p < 1, which implies ||a + b||p < 21/p. Let w, x, y, z be four
points in `p such that the distance between all pairs of points is 1, except between y and z which are a
distance 2 apart. Then let a = y � x and b = x� z. We have ||y � x||p = ||x� z||p = 1, so ||y � z||p < 21/p

unless y � x = x � z. Since 21/p < 2 for p > 1, we get that y � x = x � z =) x = y+z
2 . However,

equivalent analysis on w implies w = y+z
2 . This means that x and w are the same point and their distance

is 0, not 1. Thus, this set of four points cannot exist in `p for 1 < p < 1 and the subgraph in Figure 6 is
not isometrically embeddable into this space.

Proof of Lemma B.1. As in the previous lemma, we reduce the vertex cover problem to this problem. Consider
a graph G = (V,E). We give a polynomial time construction of an unweighted graph metric (V 0, dG0) such that
that size of the minimum outlier set for embedding the metric into `1 is the same as the size of the minimum
vertex cover on G. In this proof, minimum outlier set refers to the minimum outlier set for distortion 1 and we
consider embeddings into `1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1664

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Construction: We will construct an unweighted graph G0 = (V 0, E0) and let dG0 be the distance metric on this
graph. In particular, let V 0 = {xi, yi, zi, wi|i 2 V }. Add edges between every pair of nodes in the graph, but omit
edges xiyi for all i. Additionally, omit edges xixj if ij 2 E.

Correctness: Let K be a minimum outlier set on (V 0, dG0) and let V̂ be a minimum vertex cover on G. We
claim |K| = |V̂ |.

|K|  |V̂ | : Define K 0 := {xi|i 2 V̂ }. We claim that (V 0 \K 0, dG0 |V 0\K0) is `1 embeddable. In particular, [30, 14],
and [15] show that if an unweighted graph is such that each node has at most one other node it does not
have an edge to (i.e. if the graph is a subgraph of a cocktail party graph), then the graph is `1-embeddable.
Note that dG0 restricted to the nodes in V 0 \K 0 is in fact the distance metric on the induced subgraph of
G0 on those same nodes, G0[V 0 \K 0]. This is because we only removed some of the xi, which cannot a↵ect
distances between any remaining pairs.

Thus, we are left with showing that G0[V 0 \K 0] is such that each node has at most one other node to which
it does not have an edge. Assume otherwise. Then there exists a, b, c 2 V 0 \K 0 such that a does not have
an edge to b or to c. The only nodes in G0 that are missing an edge to more than one other node in G0 are
some of the xi, so a must be xi for some i. Additionally, the nodes that xi does not have an edge to are yi
and all xj such that ij 2 E. Thus, at least one of b and c must be xj for some j such that ij 2 E. However,

this implies xi, xj /2 K 0 =) i, j /2 V̂ , so V̂ is not a vertex cover and we reach a contradiction. Thus K 0 is

an outlier set and we get |K|  |K 0| = |V̂ |

|V̂ |  K : Define V̂ 0 := {i|xi, yi, zi, or wi 2 K}. We have |V̂ 0|  |K|, so if V̂ 0 is a valid vertex cover then
we obtain the desired bound. Assume V̂ 0 is not a vertex cover. Then there exists uiuj 2 E such that
{xi, yi, zi, wi, xj , yj , zj , wj} ✓ V 0 \K. These nodes form the subgraph pictured in Figure 7, and dG0 on this
subset of nodes has the same value as the graph metric on this subgraph. Thus, we need only show that
the subgraph in Figure 7, which we call G00, is not `1-embeddable.

By [15], an unweighted graph is `1-embeddable if and only if there exists an integer t 2 Z+ such that the
same graph with all edge weights set to t is hypercube embeddable. Deza and Shpectorov [30, 14] show that
if an unweighted graph is `1-embeddable and it is not “reducible” as defined by [20], then it must be an
isometric subgraph of a cocktail party graph or a half-cube (a type of graph that is hypercube embeddable
at scale 2). In Lemma B.2 we use Graham and Winkler’s [20] techniques to show that G00 is not reducible.

Additionally, xi lacks neighbors yi and xj , so this is not a subgraph of a cocktail party graph, which is a
graph in which each node is a neighbor of all but one node. This leaves us with showing that G00 is not
a subgraph of a half-cube, which we prove by showing that it is not hypercube embeddable at scale 2 in
Lemma B.3. Thus, we conclude G00 cannot be a subgraph of G0[V 0 \K] and V̂ 0 must be a vertex cover.

Lemma B.2. The graph appearing in Figure 7 is not reducible, where reducible is as defined by [20]

Proof. Graham and Winkler show that a graph is not reducible if all of its edges are in the same equivalence
class of the equivalence relation ✓̂. ✓̂ is defined to be the transitive closure of ✓, which is defined on the edges of
a graph as follows:

For a graph G00 = (V 00, E00), edges ab, cd 2 E00 are related by ✓ if and only if

[dG00(a, c)� dG00(a, d)]� [dG00(b, c)� dG00(b, d)] 6= 0.

We will show that all edges of G00 are in the same equivalence class of ✓̂.

First, notice that in the big/main clique of yi, yj , zi, zj , wi, wj in G00, all edges must be related by ✓̂. Take two
adjacent edges ab, bc. Since all distances in the clique are 1, we get [dG00(a, b)�dG00(a, c)]� [dG00(b, b)�dG00(b, c)] =
1 6= 0. Thus all adjacent edges in the clique are related by ✓ and thus all edges in the clique are related by ✓̂.
This just leaves us to consider the edges to xi and xj . We see that zixi ✓ ziwi because again we have adjacent

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1665

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

xi

yi

zi

wi

xj

yj

zj

wj

Figure 7: Example of a subgraph formed by nodes {xi, yi, zi, wi, xj , yi, zj , wj} as defined in the proof of Lemma
B.1, where ij 2 E.

edges with distances between all three vertices being 1. The same analysis goes for all the other edges to xi and
to xj since they are part of forming a smaller clique with xi or xj and two members of the main clique. This
means they are all in the same equivalence class as the edges in the main clique and thus all edges are in the same
equivalence class, meaning it is irreducible.

Lemma B.3. The graph appearing in Figure 7 is not hypercube embeddable, and the same graph with all edge
weights scaled to 2 is also not hypercube embeddable.

Proof. The graph is not bipartite, so it is not hypercube embeddable at scale 1 [16].

For the second part of this proof, we need only verify that the graph is not an isometric subgraph of a halved cube.
To do this, we could run the algorithm of Deza and Shpectorov [14] for doing so. However, we will present the
proof in a di↵erent way because their algorithm is more generalized than what is needed for our specific purposes.

To begin the second part of this part of the proof, we first consider an alternative view of a hypercube embedding.
In particular, if we have a hypercube embedding in dimension t for a metric space on n nodes, we can write an
n⇥ t matrix in which each row of the matrix is the binary string associated with a particular node. The number
of of columns where two rows di↵er is then the distance between the corresponding nodes in the graph. Notice
that this matrix defines a hypercube embedding and a hypercube embedding defines this matrix. Additionally,
we can remove any columns in which all rows have the same value without a↵ecting the “distance” between rows.
Additionally, if we swap the order of the columns or if we pick a column of this matrix and flip all bits in that
column, it has no e↵ect on the distance between the rows. Thus, we can always assume that the top row of
the matrix for a hypercube embedding is made up of all 0s, as such a choice of embedding must exist if some
hypercube embedding does.

Let’s begin constructing a hypercube embedding for the graph G00. In particular, we define a matrix in which
the top row corresponds to the node xi 2 V (G00) and the row consists of all 0s (which we’ve already argued is a
fine assumption). Then we know that all rows except those corresponding to yi and xj must have exactly two 1s
in their rows, and yi and xj have exactly four 1s in their rows (in order to make their distance from xi correct).
We will assume that all the columns in the matrix we construct have at least two distinct values in each column,
as we have argued such an embedding must exist if any embedding exists since we can delete columns where all
values are equal. Thus, we can assume that M has at most 18 columns since there are at most eighteen 1s in the
entire matrix. This leads us to the following partial embedding where most values are unassigned so far.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1666

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zi
yi
xj

wi

wj

zj
yj

We will next assume that the two 1s in zi’s row are in the first two columns. (As we mentioned, we can always
rearrange the columns of a hypercube embedding matrix to make one that looks this way since those columns at
this point are indistinguishable.) This gives us the following matrix:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zi 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yi
xj

wi

wj

zj
yj

Next, consider node yi that is a distance 2 closer to zi than to xi (in the scaled graph, as it is a distance 1 closer
in the original graph). Notice that in all columns after the first two columns, if yi doesn’t match xi, then it also
doesn’t match zi. Thus, the only place where it can have these two di↵erences with xi that it does not have those
di↵erences with zi is the first two columns. Thus, yi must have 1s in the first two columns. The same goes for xj

because it is also a distance 2 closer to zi than to xi. For all the other nodes, they are equidistant from xi and zi.
Thus, because they must have the same number of di↵erences with xi’s and zi’s rows after the first two columns,
they must also have the same number of di↵erences in the first two columns. This means they either have 10 or
01 in the first two columns. Because we don’t know which of these to put in those columns, for now we don’t fill
those values in yet. Because yi and xj are a distance 4 from xi, they must have four 1s total. We will assume that
the first four 1s for yi are in the first four columns, because we can rearrange any matrix in which the other two
1s are in later columns such that they are in the second two columns. This leaves us with the following matrix
constructed so far.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zi 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yi 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
xj 1 1
wi

wj

zj
yj

Now we can consider the distance between xj and yi. They are a distance 2 apart in the scaled graph, and we
only have two more 1s that we can place in xj ’s row. If we put both of these 1s in positions 3 and 4, then there
are no di↵erences between xj and yi, and if we put none of these 1s in positions 3 or 4, the two have a distance
4 apart. Thus, we must have exactly a single 1 in columns 3 and 4. We will assume that this is in column 3,
as at the moment these columns are indistinguishable so if a good embedding has the opposite assignment, we
can swap the columns to get something consistent with this embedding. We will also assume that the last 1 is in
column 5 since the columns after 4 are indistinguishable at this point.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1667

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zi 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yi 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
xj 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
wi

wj

zj
yj

Now we can consider labeling wi, wj , zj . We already established that due to the fact they are equidistant from
xi and zi, they must all have either 10 or 01 in the first two columns. Then they have a single 1 left for the rest
of the columns since they are a distance 2 from xi. We notice that if we put this second 1 in column 4, then the
distance between the node and xj is 4 (one di↵erence in the first two columns and one each in each of columns 3
through 5), when it should be 2. Analogously, if the 1 is in column 5, the distance to yi is 4 instead of 2. If the
1 is in column 6 or larger, the distance to yi and xj is 4 instead of 2. Thus, this leaves us with putting the 1 in
column 3 for all three of these nodes. Everything after this must be 0s since we used up our only other 1 in the
first two columns. This gives us the following partial embedding.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zi 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yi 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
xj 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
wi 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wj 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zj 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yj

Now we notice that wi, wj , zj have no di↵erences after column 3. Thus, all of their di↵erences must be in the first
two columns. This means that we must come up with three length 2 binary strings that are all Hamming distance
2 from each other, which is impossible. Because all of the decisions we made in constructing this embedding were
necessary, this partial construction is required which means it’s impossible to construct a hypercube embedding
for this graph at scale 2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1668

D
ow

nl
oa

de
d

07
/0

7/
24

 to
 7

0.
11

3.
11

.1
03

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Definitions and main results
	SDP relaxation and approximation
	Lipschitz extensions
	Proofs of expansion bounds
	Deterministic extensions

	Nested compositions into 1
	Proof of contraction bounds
	Proofs of expansion bounds
	Deterministic nested embeddings

	Conclusion
	Full constants for Sections 4 and 5
	Hardness of finding outlier sets

