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In free-space optical communications and other applica-
tions, it is desirable to design optical beams that have reduced
or even minimal scintillation. However, the optimization
problem for minimizing scintillation is challenging, and
few optimal solutions have been found. Here we investigate
the general optimization problem of minimizing scintilla-
tion and formulate it as a convex optimization problem. An
analytical solution is found and demonstrates that a beam
that minimizes scintillation is incoherent light (i.e., spatially
uncorrelated). Furthermore, numerical solutions show that
beams minimizing scintillation give very low intensity at the
receiver. To counteract this effect, we study a new convex
cost function that balances both scintillation and intensity.
We show through numerical experiments that the minimiz-
ers of this cost function reduce scintillation while preserving
a significantly higher level of intensity at the receiver. ©
2023 Optica Publishing Group

https://doi.org/10.1364/OL.492565

As optical beams propagate through the atmosphere, they
undergo unwanted distortions. These distortions could be in
the form of, for instance, intensity reduction, beam wander, or
scintillation at the receiver [1]. While fully coherent beams max-
imize the total average intensity at the receiver [2], partially
coherent beams are known to have reduced scintillation. Much
effort has been made in studying different types of beams with
the aim of increasing intensity or reducing scintillation [1–22].

Given the desire to reduce scintillation, it is also natural to try
to minimize it. The mathematical formulation for scintillation
minimization as an optimization problem was proposed in [2],
and it was shown theoretically that an optimal beam that mini-
mizes scintillation is partially coherent. However, further details
of the optimal, partially coherent beam are difficult to discern,
since the optimization problem is challenging. For instance, it
has been unclear as to how to compute the mutual intensity
function J that characterizes the optimal beams.

Here, we consider the optimization problem for minimizing
scintillation, and aim to overcome the difficulties of the optimiza-
tion problem. In what follows, we first present the mathematical
setup and notation, and then demonstrate that scintillation min-
imization can be formulated as an optimization problem that is
convex. Then we describe numerical methods that are tractable
and allow the optimal beam to be computed. In earlier work,

optimal beams had been found when restricted to a special
class of beams, such as Gaussian Schell-model beams [23–27].
Here, moving beyond special classes of beams, we look for the
mutual intensity function J among general beams. For solving
this general optimization problem, we present both numerical
and analytical results.

The mathematical setup and notation are as follows. Consider
a source ϕ(X) located in a transmitter region X ∈ A, and denote
I0 as the transmitted intensity. Let U(X′) be the field in the
receiver region at X′ ∈ R. The received field U is related to the
source ϕ as

U(X′) =

∫
X∈A

h(X, X′)ϕ(X)dX, (1)

where h(X, X′) is the propagator function. Both the source and
medium can have randomness, but they are assumed to be inde-
pendent. The randomness of the medium is encoded in h. Then
the received intensity is

I =
∫

X1 ,X2∈A

⟨ϕ(X1)ϕ
∗(X2)⟩H(X1, X2)dX1dX2, (2)

where ∗ denotes the complex conjugate,

H(X1, X2) =

∫
X′∈R

h(X1, X′)h∗(X2, X′)dX′ (3)

is a Hermitian semi positive definite kernel, and ⟨·⟩ is an
expectation with respect to the randomness in the source.

Two statistical quantities of interest are the mean and variance
of this received intensity I. The expected received intensity can
be computed by taking the average of Eq. (2):

E[I] =
∫

X1 ,X2∈A

E[H](X1, X2)J(X1, X2)dX1dX2, (4)

with

J(X1, X2) = ⟨ϕ(X1)ϕ
∗(X2)⟩. (5)

The quantity J is a Hermitian semi positive definite function
called the mutual intensity function [28]. Here, E[·] is an expec-
tation with respect to the randomness in the medium. The
scintillation index reflects the ratio of the variance and the
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expected received intensity, namely:

S =
Var[I]
E[I]2

=
E[I2]

E[I]2
− 1. (6)

The quantity E[I]/I0 characterizes the beam efficiency, and S

characterizes the distortion of the beam due to the random
medium (e.g., due to atmospheric turbulence).

Next, in considering the optimization problem for minimizing
scintillation, a first question is whether or not it is convex. Based
on Eq. (6), it is not clear whether scintillation is a convex function
of I or J or ϕ. We now show that the optimization problem
can be reformulated and seen to be convex. Consequently, due
to convexity, the optimization problem is guaranteed to have a
minimum, and many computational algorithms that are designed
for convex problems can potentially be used.

To reformulate the minimization of Eq. (6) in manifestly con-
vex form, one can note a similarity to the Rayleigh quotient from
linear algebra: the scintillation in Eq. (6) is unchanged if I or J is
rescaled by a constant factor. As a result, following a brief cal-
culation shown in the Supplement 1, Section 2, and substituting
Eq. (2) in Eq. (6), we can write the problem of scintillation min-
imization in discrete form as the following constrained convex
optimization:

min
J

J∗AJ such that Tr(E[H]JT) = 1, J ≽ 0, (7)

where J ≽ 0 denotes that J is positive semi-definite and

A = E[H(X1, X2)H∗(X3, X4)]. (8)

Note that the notation in Eq. (7) treats J as a discrete quantity, so
that Tr(E[H]JT) is the discrete version of Eq. (4) as a Frobenius
inner product, and J∗AJ is the quadratic form

∑︁
ijkl J∗

ijAijklJkl. This
cost function J∗AJ is convex with respect to the variable J. Since
the constraint also forms a convex cone, the full problem can
now be seen to be a convex minimization. Note that, while the
reformulation and constraint have removed the non-uniqueness
due to rescaling of J by a constant factor, the minimizer may
still be non-unique due to a different aspect: the operator A is
nonnegative definite but may not be strictly positive definite.

For numerical calculations, when the problem has a moderate
size, one can also use CVX, a package for specifying and solving
convex programs [29,30], and in general cases, one can use the
projected gradient descent algorithm [31], see also the iterative
solver in [32]. For a 2D simulation, A and R ⊂ R, and A is
a 4-dimensional tensor, and in 3D, a similar argument implies
that A is 8-dimensional. This poses a serious requirement on
the computer memory. On top of the memory issue, the compu-
tational requirement is also prohibitive. Since A is the mean of
HH∗, with the expectation taken on the random field, to compute
A, one would need to run Monte Carlo simulation with many
realizations of the random field, to make an ensemble average
as an estimate to A. Moreover, each realization of HH∗ amounts
to calling the propagator h four times, each of which stores the
full information of the associated Green’s function. This is an
infeasible numerical task for a brute-force computation.

To alleviate both computational and memory challenges,
several computational strategies are employed here. The fore-
most technique is the incorporation of the randomized singular
value decomposition (SVD) solver [33] that finds the eigen-
value/eigenfunction structure of A ≈ VΣV∗. There are two main
advantages to use this solver. First, the solver finds the eigen-
functions with a reduced cost. It has a quadratic dependence on

(a) (b)

Fig. 1. Two illustrations that the scintillation-minimizing J is
a Dirac-delta function. (a) Profile of optimal J in the non-
parameterized case for PWE model. The optimal J resembles a
delta function. (b) Evolution of parameter λ for a Gaussian parame-
terized J = exp

(︁
− λ2(X1 − X2)

2/2
)︁
, and the multiple phase screen

model. The value of λ approaches infinity as the gradient descent
progresses, meaning J approaches a delta function.

the size of A instead of cubic in conventional methods. A more
attractive feature of this solver is that it does not require one to
prepare A ahead of time, but instead, only the knowledge of the
action of Aω, for a given vector ω. In our particular case, this
amounts to solving the field (corresponding to acting H and H∗

on a vector) a couple times (corresponding to Monte Carlo sam-
pling of the field) and take an average, completely removing the
task of preparing the propagator. Further details of the numerical
algorithms are described in the Supplement 1, Section 7.

This strategy has enabled some reasonable computations. We
simulate the field using the paraxial wave equation (PWE) with
the frequency k = 2π × 106 rad/m and a propagation distance
of Z = 3000 m. A simple sinusoid function is used to represent
the random potential V(x, z) = V1 sin(ωxx) sin(ωzz). A splitting
method [34] is adopted for simulating the PWE, and the standard
cvx routine is called to find the optimal J.

A plot of the optimal J is shown in Fig. 1(a). One interesting
finding from Fig. 1(a) is that the optimal J gives a delta-like
function. This implies that the beam should be fully incoherent
(white noise) to achieve the minimum scintillation.

As a second illustration of the same finding, we use a multi-
ple phase screen model instead of the PWE. The setup is a 2D
problem with k = 2π × 106rad/m, Z = 2000 m, transmitter half-
width r = 0.04 m, and 15 phase screens and a point receiver.
Also, rather than allowing J to be general, J is parameterized of
the form exp

(︁
− λ2(X1 − X2)

2/2
)︁
. Figure 1(b) shows the param-

eter λ as gradient descent progresses. In this case, the optimal
J is found when λ = ∞, implying the fully incoherent beam is
optimal in reducing scintillation.

The observation is in agreement with the physical intu-
ition that partial coherence brings a reduction in scintillation,
and here, taken to the extreme, it is seen that a minimum in
scintillation is achieved by complete incoherence.

In addition to the numerical examples above, we are also able
to mathematically rigorously demonstrate this observation in the
setting of the random phase screen model of turbulence. In the
case of a single phase screen model, the propagator function
takes the form

h(X, X′) = h0(X, X′)eiψ(X), (9)

where h0(X, X′) denotes the propagator for a uniform medium.
Here, ψ is a random phase such that ψ(X′

1) − ψ(X′
2) is a sta-

tionary random process with mean 0 and covariance Dψ [35],
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the structure function of turbulence. One of the most com-
monly used structure functions is a power law of the form
Dψ(X1, X2) = 6.88(∥X1 − X2∥/r0)

5/3, where r0 is the Fried param-
eter of atmospheric turbulence. This formulation drastically
simplifies the computation of E[H] and A [23].

Now we would like to consider a source that is incoherent
light, so that the mutual intensity J is a Dirac delta function, and
we now show by direct calculation that the scintillation is zero
and therefore is minimized. To consider an approximate form of
a Dirac delta function, let ϵ denote a small correlation length
scale, and consider

J(X1, X2) =
Iϵ (X1 − X2)

H0(0)ϵ |A|
, (10)

where Iϵ is an indicator function that takes value 1 if |X1 − X2 |<ϵ
and a value of 0 otherwise, and |A| denotes the area of the
transmitter region. Here, H0 represents the value of H in uniform
medium and can be calculated explicitly [22]. This |A| scaling
leads to a transmitted intensity I0 =

1
H0(0)ϵ

. For small ϵ , to leading
order in ϵ , a calculation shows

E[I] = 1 and E[I2] = 1, (11)

leading to a scintillation S = 0. See Supplement 1, Section 3 for
details of the calculation. This means that a completely inco-
herent beam provides an optimal beam when scintillation is the
only criterion.

Note that for this optimal beam, the ratio E[I]/I0 of expected
received intensity versus transmitted intensity is small and O(ϵ),
so the “beam” of incoherent light will transmit a very low inten-
sity signal that is practically useless. Also, note that this optimal
J in Eq. (10) can be rescaled by any constant factor (due to
the form of the scintillation function in Eq. (6)) and will still
lead to zero scintillation. Hence, if the transmitted intensity I0 is
rescaled to be O(1), then the expected received intensity E[I] is
O(ϵ).

One can also show an elegant proof (see Supplement 1, Sec-
tion 3 for details) that the variance of I is zero in the case when
J is a Dirac-delta function, under a quite general scenario for
the turbulence model. However, the transmitted intensity I0 in
this case has infinite power and is not correctly mathematically
defined (since it involves the evaluation of δ(0), the evaluation
of a Dirac-delta function at the origin); and the finite-epsilon
case in Eq. (10), Eq. (11) clarifies the meaning of the (infinite)
transmitted intensity I0 in the ϵ → 0 limit.

If the one phase screen model is replaced by a multiple phase
screen model, it can be shown that a Dirac-delta J still achieves
near zero scintillation, provided the transmitter is sufficiently
large. See Supplement 1 for details.

Clearly from the examples above, reducing scintillation and
amplifying expected received intensity are goals pointing into
opposite directions. The “optimal” beam in the sense of mini-
mizing scintillation happens to be the worst beam in terms of
preserving light intensity. Some previous work has also noted
the importance of both intensity and scintillation in the cost
function or metric, and has found optimal beams via numerical
computation, for beams of a special class [24–27]. Here we pro-
vide advances in the form of an analytical solution in Eq. (10),
Eq. (11), and numerical solutions for beams of any general form
of J.

These considerations motivate us to look for a modified cost
function that balances scintillation and intensity efficiency. We

Fig. 2. Alternative cost function from Eq. (12) with J parameter-
ized as exp

(︁
− λ2(X1 − X2)

2/2
)︁
. (a) Cost function in Eq. (12) as a

function of λ, for different µ. A unique minimum at finite λ value
is seen for µ ≠ 0. (b) Evolution of scintillation S and intensity quo-
tient Q at each iteration of gradient descent. Note that the µ = 0
case in panel (b) has a larger stepsize. The iterations converge if
µ ≠ 0. Note that the Q plots in panel (b) are very similar for µ = 3
and 30, while the S plots differ greatly.

use a modified objective function of

min
J

S(J) + µQ(J), such that J ≽ 0, (12)

where Q(J) =
|︁|︁ I0
E[I] (J) − 1

|︁|︁2 is a measure of the ratio of the trans-
mitted and received intensities. A smaller value of Q suggests a
smaller ratio I0

E[I] , meaning a larger amount of expected received
intensity. As in Eq. (7), any non-trivial constant scaling of the
J will leave the cost function invariant, so this alternative opti-
mization problem can be reformulated in a similar way to be
manifestly convex. This new cost function was chosen because
it allows a convex formulation, and because it balances the low
scintillation at the receiver and the high intensity efficiency, with
µ being the balancing coefficient.

We now evaluate the effect of such balancing via µ using
numerical examples. To start, we use the phase screen model as
setup for Fig. 1(b), where J is parameterized as exp{−λ2(X1 −

X2)
2/2}. Figure 2(a) shows the relationship between the objec-

tive in Eq. (12) and λ under different values of µ. It is clearly
seen that when µ = 0, the objective monotonically decreases and
the minimizer is achieved for λ = ∞, whereas the minimizer is a
finite λ value whenever µ ≠ 0. Figure 2(b) shows scintillation S

and the quotient Q at different iterations in the direct use of gra-
dient descent [32]. A higher value of µ gives a larger scintillation
and also a small quotient.

When J is not parameterized but is allowed to take any general
form, the optimal solution for different values of µ is plotted in
Fig. 3 using both the phase screen model and the PDE simu-
lation. For both models, it is clear to see that a smaller value
of µ favors a mutual intensity J that is relatively diagonal and
partially coherent, whereas the optimal J in the case of a large
µ is essentially coherent. The quantitative relation between the
scintillation S and the quotient Q with respect to µ is plotted in
Fig. 4. The value of µ controls a transition in the optimiza-
tion problem from minimizing scintillation alone (µ = 0) to
maximizing the expected received intensity with little consider-
ation of scintillation (µ ≳ 2.5 for the phase screen model and
µ ≳ 20 for the PDE model), and intermediate values of µ pro-
duce optimal beams with reduced scintillation and substantial
intensity.
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Fig. 3. Profile of optimal J (real part), where J is allowed to be
of general form and is non-parameterized. Panel (a) uses the phase
screen model to compute the operator A while panel (b) uses PDE
simulations.

Fig. 4. Scintillation S and intensity quotient Q of optimal J. For
small µ values [e.g., µ ≈ 0.25 in panel (a) and µ ≈ 0.5 in panel
(b)], the optimal J provides substantial reduction in scintillation
while maintaining adequate intensity. See the zoomed-in version in
Supplement 1, Section 7D.

In conclusion, in this paper, we investigated the optimiza-
tion problem proposed in the literature [2] of finding the
optimal beam that minimizes scintillation. We find that the
scintillation-minimizing beam is incoherent light and has low
expected received intensity. We find this result in both analyti-
cal solutions and numerical solutions, including cases where the
mutual intensity function J is non-parameterized and is allowed
to be general. A modified objective function is introduced to
balance scintillation versus expected received intensity, with the
balancing weight µ determined per users’ preference. This opti-
mization problem is convex. Using machine learning algorithms
(especially the randomized SVD solver) that exploit low-rank
features, we can reduce both memory and computational cost,
and find the optimal mutual intensity function.

For practical applications of free-space optical communi-
cation, the methods here could potentially be used to design
beams with optimal properties per users’ preference on the
balance between scintillation and intensity. For such a pur-
pose, the numerical setup, such as the turbulent phase screen
parameters, could be designed to match the experimental con-
ditions of interest. The optimization methods can be used to
find the optimal beam from either an unparameterized, general
form of mutual intensity functions J(X1, X2) or a parameter-
ized form [e.g., for a Gaussian parameterization of J(X1, X2) as
exp

(︁
− λ2(X1 − X2)

2/2
)︁
, the optimal parameter was λ ≈ 32 for

µ = 3 in the setup in Fig. 2(a)].
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