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Zhu et al. EST (2013)
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• MEA is currently the most used CCS technology and may be released into the 
atmosphere.

• MEA has been found in ambient particles (Sullivan et al., 2020; Zhang et al., 2003)



• MEA is currently the most used CCS technology and may be released into the 
atmosphere.

• MEA has been found in ambient particles (Sullivan et al., 2020; Zhang et al., 2003)

• MEA is an amine and thus will participate in acid-base reaction with strong acids 
in air such as H2SO4 (Tian et al. 2022; Xie et al., 2017) and MSA (Shen et al. 2019).
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4-Aminobutanol (4AB)

• 4AB is used in drug 
manufacturing and is a precursor 
to biodegradable polymers used 
for gene therapy delivery 
(Prabowo et a. 2020).

• 4AB has a higher CO2 solubility 
than MEA hence may be a better 
CCS media (Idris et al. 2015; Meng 
et al. 2022).

• 4AB has a much higher gas phase 
basicity (932.1 kJ mol-1) compared 
to MEA (896.8 kJ mol-1).
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ÞMEA forms particles more efficiently with MSA than MA consistent with 
reported DFT calculations.

Þ Consistent with higher gas phase basicity of MEA (896.8 kJ mol-1) versus 
MA (864.5 kJ mol-1).

Results – MSA + alkanolamines (dry conditions)

(Perraud et al. 2024)
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Results – MSA + alkanolamines (dry conditions)

Þ 4AB is even more efficient at nucleating particles with MSA.

Þ Consistent with higher gas phase basicity of 4AB (932.1 kJ mol-1).

Þ 4AB still forms detectable particles with MSA = 30 ppt.

MSA + MEA MSA + 4AB
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Þ Extremely efficient 
at forming particles 
even at very short 
reaction times.

Þ Coagulation is 
observed at high 
concentration.

(Perraud et al. 2024)

Results – MSA + alkanolamines (dry conditions)

MSA + MEA MSA + 4AB
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ÞDFT calculations suggests that the MSA1-MEA1 cluster is the initial step of 
the particle growth.

ÞOur kinetics plot shows that the particle formation rate follows an 
acid+base reaction till ~5 ppb2; coagulation takes over at higher conc.

Results – MSA + MEA dry conditions

(Shen et al., 2019; Perraud et al. 2024)
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ÞWater has a modest effect on the MSA+MEA but has no effect on MSA+4AB.

Results – MSA + alkanolamines (in presence of H2O)
MSA (0.7 ppbv) + MEA (1.4 ppbv) MSA (1.8 ppbv)  + 4AB (0.5 ppbv)

(Perraud et al. 2024)
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Þ In contrast, water has a drastic effect on simple alkylamines such as MA.

Results – Contrast with simple alkylamines
MSA (1.4 ppbv) + MA (10.8 ppbv)

(Perraud et al. 2024)
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Results – MSA + alkanolamines - TDCIMS

Þ TDCIMS measurement were possible down to 4 nm.
ÞMSA is detected in NEG ion mode while MEA is detected in POS ion mode.

(Perraud et al. 2024)



Results – MSA + alkanolamines - TDCIMS

ÞParticles from MSA + alkanolamines remain neutral at all diameters studied.

Þ Formation and growth of the clusters is different from simple alkylamines. 

(Perraud et al. 2024; Perraud et al. 2020)
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Summary

• MSA + 4AB > MSA + MEA > MSA + MA in terms of NPF potential, likely due to the 
extra H-bonding capabilities of the –OH and extra –NH2 groups and the higher 
gas phase basicity of 4AB compared to MEA.

• Currently working on DFT calculations to try to explain the clusters stability & 
formation route in the MSA + 4AB system.

• Designed and tested a high flow DMA (half-mini-DMA; de la Mora and Kozlowski, 
2013) to be able to scan and select diameters smaller than 4 nm to send to 
TDCIMS and study the cluster chemical composition at the smallest sizes.

• Future work also includes a structure study examining the NPF potential of a 
diamine (PUT, NH2(CH2)4NH2) and the C4 alkylamine butylamine.



Thanks!

The Finlayson-Pitts lab is recruiting two post-doctoral fellows for two projects
• Thermal Desorption Program (TPD) and Uptake Project
• MAIV-MS (MAGIC) Ionization Project


