IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

2057

An ASIC Accelerator for QNN With Variable
Precision and Tunable Energy Efficiency

Ankit Wagle, Member, IEEE, Gian Singh™, Member, IEEE, Sunil Khatri

, Senior Member, IEEE,

and Sarma Vrudhula™, Life Fellow, IEEE

Abstract—This article presents TULIP, a new architecture for
a variable precision quantized neural network (QNN) inference.
It is designed with the goal of maximizing energy efficiency per
classification. TULIP is constructed by arranging a collection of
unique processing elements (TULIP-PEs) in a single-instruction—
multiple-data (SIMD) fashion. Each TULIP-PE contains binary
neurons that are interconnected using multiplexers. Each neuron
also has a small dedicated local register connected to it. The
binary neurons are implemented as standard cells and used
for implementing threshold functions, i.e., an inner-product and
thresholding operation on its binary inputs. The neurons can
be reconfigured with a single change in the control signals to
implement all the standard operations used in a QNN. This
article presents novel algorithms for implementing the operations
of a QNN on the TULIP-PEs in the form of a schedule of
threshold functions. TULIP was implemented as an ASIC in
TSMC 40nm-LP technology. A QNN accelerator that employs a
conventional multiply and accumulate-based arithmetic processor
was also implemented in the same technology to provide a fair
comparison. The results show that TULIP is 30x-50x more
energy-efficient than an equivalent design, without any penalty
in performance, area, or accuracy. Furthermore, TULIP achieves
these improvements without using traditional techniques such as
voltage scaling or approximate computing. Finally, this article
also demonstrates how the run-time tradeoff between accuracy
and energy efficiency is done on the TULIP architecture.

Index Terms—Area efficient, energy efficient, high
performance, high throughput, quantized neural network (QNN),
reconfigurable, threshold logic.

I. INTRODUCTION

EEP neural networks (DNNs) have been remarkably suc-
Dcessful in numerous applications of pattern recognition
and data mining, including speech recognition, image classifi-
cation, object recognition, autonomous vehicles and robotics,
recommendation systems, and many more. Consequently,
they have become the dominant algorithmic framework in

Manuscript received 8 July 2023; revised 26 October 2023 and 7 January
2024; accepted 9 January 2024. Date of publication 24 January 2024;
date of current version 20 June 2024. This work was supported in part
by the National Science Foundation under Grant 2008244, and in part by
Qualcomm Technologies Inc. This article was recommended by Associate
Editor T. Theocharides. (Corresponding author: Sarma Vrudhula.)

Ankit Wagle, Gian Singh, and Sarma Vrudhula are with the School of
Computing and Augmented Intelligence, Arizona State University, Tempe,
AZ 85281 USA (e-mail: awaglel @asu.edu; gsingh58 @asu.edu; vrudhula@
asu.edu).

Sunil Khatri is with the Department of Electrical and Computer
Engineering, Texas A&M University at College Station, College Station, TX
77843 USA (e-mail: sunilkhatri@tamu.edu).

Digital Object Identifier 10.1109/TCAD.2024.3357597

machine learning. DNNs are computationally and energetically
intensive algorithms that perform billions of floating-point
multiply—accumulate operations on very large dimensional
datasets, some involving tens of billions of parameters [1].
Because training of large networks entails much greater
computational effort and storage than inference, it is performed
on high-performance servers with numerous CPU and GPU
cores.

The energy cost and the environmental impact of training
and inference of large DNNSs are fast becoming unsustainable.
For instance, training of the GPT-3 model with 175B param-
eters using NVidia’s A100 with 1024 GPUs would consume
936 MWh of energy and take 34 days at a cost of $4.6M.
Models even larger than the GPT-3 are being developed [1].

Improvements in the energy efficiency of DNNs are not
just limited to high-performance servers or desktop machines.
The latest midrange and high-end mobile SoCs [2], [3]
are being equipped with custom NN hardware accelerators
to perform inference on mobile (e.g., mostly smartphones)
and edge devices (e.g., IoT devices deployed in numerous
spaces) for many of the above applications. The energy
efficiency of inference on battery-powered devices is also
of critical importance in terms of value to the customer
and environmental impact. Given the rapid proliferation of
ML techniques, several orders of magnitude improvement in
energy efficiency over CPU-GPU implementations for training
and inference of DNNs is needed for ML technology to be
sustainable.

FPGA and ASICs are the two alternates to CPU-GPU
implementations. The energy efficiency and throughtput of
FPGA implementations of DNNs is in between ASICs and
CPU-GPUs [4], [5]. Past and ongoing works on executing
DNNs on FPGAs include the development of optimizing
compilers that automatically map DNNs expressed in standard
frameworks onto FPGAs with the objective of minimizing
latency or throughput subject to constraints on energy, memory
bandwidth, the number of DSPs [6], [7], [8], [9], [10].

ASIC implementations have orders of magnitude higher
energy efficiency than the CPU-GPU implementations.
Analog and mixed-signal solutions implement the inner prod-
uct of fixed-weight matrices and input vectors by summing
currents in crossbar arrays, where the weights are realized by
various types of resistive elements (ReRAM [11], MTJ [12],
and Flash [13]). This approach continues to be an active area
of on-going research, driven by the constant introduction of
novel nonvolatile multistate memory devices.

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6649-8487
https://orcid.org/0000-0001-7134-9929
https://orcid.org/0000-0001-9278-2959

2058

Purely digital ASIC implementations are constructed by
synthesis of custom logic blocks for specific operations,
such as 2-D convolution, inner product, matrix multiplica-
tion, and others [14], [15], each optimized for throughput
and energy efficiency. A common approach to maximizing
energy efficiency is to pare down the functionality of the
circuit, e.g., eliminate processing of the integer layers as in
XNORBIN [16], or reduce the size of the kernels and/or reduce
the bitwidth of operands as in [17] and [18].

A few architectures, however, support complete end-to-end
neural networks, i.e., convolution layers and fully connected
layers, such as YodaNN [14] (which supports 12-bit inputs
and 1-bit weights), UNPU [19] (which supports 1-16 bit
variable precision inputs and weights), and BitBlade [20]
(which supports bit precision of 2, 4, and 8 for inputs
and weights). They also support variable-sized kernels. The
UNPU [19] architecture is based on bit-serial processing of
the weights with the activations to compute the partial prod-
ucts. It uses lookup-table-based processing elements (LBPEs)
and the overall architecture is designed to perform dense
matrix multiplications with high parallelism. The independent
DNN cores in the UNPU use a fived-size accumulator to
obtain partial sums which are finally processed in a sepa-
rate 1-D single-instruction—multiple-data (SIMD) core. The
SIMD core performs vector operations such as nonlinear
activation or element-wise multiplication to generate the final
output. The UNPU includes a RISC controller to orchestrate
the intercore communication via an NoC during the DNN
operation.

The processing element (PE) in BitBlade [20], introduces a
new bitwise summation scheme which reduces the shift and
add logic in the PE to reduce overall area and power con-
sumption. The PE of BitBlade consists of 16 2-bit multipliers
and summation logic to perform the multiply and accumulate
(MAC) operation. The operands are decomposed into chunks
of 2-bits to utilize 2-bit multipliers. The other operations of the
quantized neural network (QNN) such as linear activation is
performed using either additional dedicated logic or by using
the host CPU.

YodaNN [14] is an SIMD processor that consists of an
array of MAC PEs with on-chip standard-cell memory (that
can be synthesized). The design presented in this article,
named TULIP, is also a complete end-to-end system. A
detailed comparison of YodaNN and TULIP is presented in
Section VIII.

Regardless of whether it is an FPGA or ASIC imple-
mentation, throughput and energy efficiency can also be
improved by modifying the structure of the NN. This includes
tuning the hyperparameters [21], [22], modifying the network
structure by removing the weights and connections [23], [24],
or by altering the degree of quantization [25], [26]. Another
category of methods focuses on reducing the huge energy
expenditure for moving data between the processor and off-
chip memory, which is especially acute in NNs because of
the large number of weights involved. The techniques to
mitigate this include maximizing the reuse of data fetched
from memory [27], [28], or transferring compressed data from
the memory to the processor [29], [30].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Of the many available techniques for modifying NN struc-
ture, quantization remains the best way to achieve high energy
efficiency and reduce computation time [31], [32], especially
for energy-constrained systems. Quantization refers to using
smaller bit-widths for the weights and/or the inputs during
training, reducing them from 32-bit values to anywhere from
8-bit to 1-bit values. The term BNN refers to neural networks
with 1-bit weights and inputs. Anything larger than that, but
below full 32-bit precision is referred to as QNN. Quantization
takes advantage of the fact that the accuracy of NNs is not
very sensitive to substantial reductions in bit-widths until some
critical value. Depending on the network, 4-bit to 1-bit QNNs
for mobile applications provide an excellent tradeoff between
energy efficiency and throughput versus accuracy [32].

II. OVERVIEW OF THIS ARTICLE

This article presents the design of an ASIC for acceler-
ating QNNs. The design, named TULIP, achieves substantial
improvements in energy efficiency compared to the state-of-
the-art design of QNNs [14]. Energy efficiency is defined as
throughput-per-watt, or equivalently, operations-per-joule.

Fig. 1 shows the main components of TULIP. The following
is a summary of these components, which will be elaborated
upon in the subsequent sections.

1) Fig. 1(a) shows the top-level system diagram of TULIP.

It is a scalable SIMD machine that consists of a
collection of independent, concurrently executing TULIP
processing elements (TULIP-PEs), shown in Fig. 1(b).
The architecture of the TULIP-PE is very different from
the PEs used in any other QNN accelerators [11], [14],
[18], [33]. It consists of a small network of binary
neurons, whose circuit structure is shown in Fig. 1(c),
and described in greater detail in Section III.

2) Briefly, a neuron is a clocked logic cell that com-
putes a threshold function of its inputs, on a clock
edge. It is a mixed-signal circuit, whose inputs and
outputs are logic signals but internally it computes
the inner-product and threshold operation of a neuron,
ie, f&r, o Wi, wy, T) = > Pwixg > T
Implemented as a standard cell, and after optimized
for robustness and accounting for process variations, a
neuron in 40nm is just a little larger than a conventional
D-type flip-flop [34]. The neurons in a TULIP-PE can
be configured at run-time to execute all the operations
of a QNN, namely the accumulation of partial sums,
comparison, max-pooling, and RELU. Consequently,
only a single PE is required to implement all the
operations in a QNN, and switching between operations
is accomplished by supplying an appropriate set of logic
signals to its inputs, which incurs no extra overhead in
terms of area, power, or delay.

3) Unlike conventional MAC [14] or fixed-size
accumulator-based [19] PEs, that are designed to operate
at maximum bit-width (determined at design-time), the
bit precision of TULIP-PEs can be changed within a
single cycle without incurring a delay or energy penalty.
The TULIP-PEs enable control over the precision of both

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

2059

LOCAL |
REGISTER 1
+

(a)
MEMORY CONTROL SIGNALS
CONTROLLER —— DATASIGNALS
KERNEL
DATA KERNEL BUFFER
™M _) A
DATA | 12 IMAGE
IMAGE | | BUFFER TULIP-PE H TULIP-PE l “ee | TULIP-PE l
BUFFER
TULIP-PE H TULIP-PE l e | TULIP-PE l PROCESSING
UNIT
. . N CONTROLLER

R(=16) ROWS OF
PROCESSING UNITS

TULIP-PE H TULIP-PE l e | TULIP-PE)

*NOTE: BOXES IN THE L J

IMAGE ARE NOT !
C (=32) PROCESSING UNIT COLUMNS.

PROPORTIONAL TO THE
ACTUAL DIMENSIONS. EACH TULIP-PE HANDLES ONE OUTPUT PIXEL

REGISTER 4 ‘
L v

SET OF FOUR CLUSTERS

Sense Amplifier (SA

T
n-diu M,
MIb

NI,

Fig. 1.

WIWA T e} D ® ¢
Zqg, Youcl, UN Yo, | Lt BN sl o,

mMidJkax

ax -4%41;

(c)

TULIP architecture overview. (a) Top-level architecture of TULIP: controller configures the processing units. The input pixels and weights are sent

through image and kernel buffers. The output of the processing units is collected in the output buffers before sending it back to the memory. (b) Architecture
of a TULIP-PE, consisting of four clusters and four local registers. Each cluster contains K neurons (K=5). (c) Architecture of a binary neuron.

inputs (weights and activation) and output unlike [19].
The operation of TULIP-PEs prevents overprovisioning
of the hardware for an operation of a certain bitwidth,
thus improving the energy efficiency of the overall
computation. This characteristic allows for making
tradeoffs between energy efficiency and accuracy at
run-time.

4) Against the state-of-the-art MAC units used in QNN
accelerators [14], the TULIP-PE is ~ 16x smaller and
consumes 125x less power. Although it is 9.6 x slower,
this can be compensated by replicating 16 PEs and
operating TULIP in an SIMD mode, executing multiple
workloads in parallel that share inputs, which reduces
the need to repeatedly fetch data from off-chip memory.

5) Since the neurons in the TULIP-PE have limited fan-in,
much larger inner product calculations have to first be
decomposed into smaller bit-width operations and then
scheduled on the TULIP-PEs. For this, a novel routing-
aware, resource-constrained, scheduling algorithm is
presented that maps the nodes of a QNN onto TULIP-
PEs.

6) The combined effect of the low-area of TULIP-PE,
the uniform computation at the individual node and
network levels, and the mapping algorithm results in
an improvement of up to 50x in energy efficiency for
QNNs over a MAC-based design for the same area and
performance.

This article is organized as follows. Sections III, IV, and VI
describe the architecture of the binary neuron, TULIP-PE, and
the top-level architecture of TULIP, respectively. Section V
presents the scheduling algorithm needed to execute each node
of the QNN on a TULIP-PE. Section VII then describes how
the small size of the TULIP-PEs enables us to deploy a number
of them in the same space as a conventional processing unit,
thereby enabling better weight reuse. Finally, Section VIII

presents a both quantitative and qualitative evaluation of
TuLIP-PEs and the TULIP architecture against equivalent
state-of-the-art architectures.

Note that we presented a preliminary version of this work
in [35]. This article includes an updated hardware architecture
that extends support for varying precision of QNNs while
also significantly improving the overall energy efficiency.
We perform an extensive evaluation using multiple NNs and
datasets to demonstrate the efficacy of the updated TULIP. This
article also provides a generalized formulation for mapping
arbitrary compute graphs to the TULIP-PEs.

III. BACKGROUND

A Boolean function f(x1, x2, ..., x,) is called a threshold
function if there exist weights w; for i = 1,2,...,n and a
threshold 7' such that

n
fanx,) =1 & Y wx>T (1)

i=1

where > denotes the arithmetic sum. A threshold function
is denoted by the pair (W,T) = [wi,w2,...,wy;T]. An
example of a threshold function is f(xy, x2, X3, x4) = x1x3 V
X1x3 VX1X4 V X2Xx3x4, With [wy, wo, w3, we; T] =1[2,1,1, 1; 3].
A binary neuron is a circuit that realizes a threshold function
defined by (1). Fig. 1(c) shows the design of the binary neuron
that is used in TULIP. A detailed description of its operation,
the algorithms for optimizing its robustness, performance,
power, and area, and its use in ASIC synthesis appear in [34].
As the design of the binary neuron is not the focus of this
article, only a summary of its operation is presented here.

IW.L.0.G., the weights w; and threshold T can be integers [36].

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2060

The binary neuron shown in Fig. 1(c) has four main
components®: 1) the left input network (LIN); 2) the right
input network (RIN); 3) a sense amplifier (SA); and 4) an
output latch (LA). The SA outputs are differential digital
signals (N1, N2), with (1,0) and (0, 1) setting and resetting
the latch. The LIN and RIN consist of a set of branches,
each branch consisting of two devices in series, one (labeled
Z) which provides a configurable conductance between its
two terminals, and a MOSFET driven by an input signal x;.
The conductance of a branch controlled by x; serves as a
proxy of the weight w; in (1). Let G(X|W) and Ggr(X|W)
denote the conductance of the LIN and RIN, respectively. For
a given threshold function f, the conductance of each branch
is configured so G (X|W) > Gr(X|W) for all on-set minterms
of f, and vice versa for all off-set minterms of f.

When CLK = 0, the LIN and RIN play no role and
(N1,N2) = (1,1), and the output Y of the latch remains
unchanged. Before the clock rises, inputs are applied to the
LIN and RIN. Suppose that an on-set minterm is applied.
When CLK 0 — 1, both N1 and N1 will start to discharge.
However, since Gp(X|W) > Gr(X|W), N1 will discharge
much faster than N2, which will also turn off the discharge of
N2, resulting in N2 going back to 1. The result is (N1, N2) =
(0, 1), which will set the latch output Y = 1. Thus, the binary
neuron in Fig. 1(c) may be viewed as a multi-input, edge-
triggered flip-flop that computes a threshold function of its
inputs on a clock edge. Note that there are a number of choices
for realizing the configurable conductance devices, which are
explored in [34], [37], and [38].

IV. TuLIP-PE IMPLEMENTATION
A. Primitive Operations

The TULIP-PE is designed to implement the nodes of all the
layers in a QNN. This is achieved by decomposing the node’s
operations (multiplication, ReLU, etc.) into K-bit primitive
operations. These are addition, comparison, or logic operations
that are executed in at-most two cycles. They are realized
as threshold functions and computed by artificial neurons.
N-bit (N > K) operations are executed as a sequence of K-
bit operations. In this section, we describe the representation
of the primitive operations threshold functions. The following
notation will be used to describe single and multibit values.

1) Characters (e.g., A or Ap, etc.) without dimensions
specified will denote variables that may either be a
single-bit or a multibit value.

2) Square brackets (e.g., Ao, Axk—1.0], etc.) are used to
represent bit vectors.

3) Characters having subscripts but no square brackets
(e.g., Ag) denote single-bit variables.

4) Bit replication is denoted with the variable enclosed in
curly braces with the multiplier in the subscript. For
instance, {Ajo)}xn represents an N-bit vector with all
bits equal to Ajg;.

Equation (2) shows a template that is used to describe

the primitive operations using threshold functions. In the

2This is a simplified version of the design shown in [34], with the test and
programming circuitry not shown.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

expression, p is an integer, X and Y are p-bit operands, and
Zo and Z; are 1-bit values

p—1 p—1
0P, 20, X, 21, V) =Zo+) 22X, > Z1 + Y _2V;. (2
J=0 Jj=0

1) Logic Operations: Primitive logic functions AND, OR,
and NOT are threshold functions [36]. The corresponding
logic operations on K-input operands A and B are denoted as
LK(A, B) (binary) or LK(A) (unary). They are realized as a
vector of K threshold functions on each corresponding bit

AND (A(x-1:0, Bik—1.01)
= [Q(1.0. Ak-13. 1. Big—11). ... Q(1.0. Aoy, 1. Bioy)]. 3)

As an example, consider a 2-bit AND operation between
two 1-bit operands A and B, which can be calculated using
0(1, 0, A, 1, B). By substituting appropriate values in (2), we
get 04+A > 14 B, which in turn can be rewritten as A+B > 2.

Other K-bit logic operations are similarly defined. These
can be computed in one cycle by a neuron cluster in an
NPE. On the other hand, XOR(Aj;, B;)) is realized as a two-
level threshold network and therefore requires two cycles.
In terms of Q, it is derived as follows: XOR operation is
represented as a pseudo-Boolean equation A[;4-B(ij —2A(; By
This can be written in the form of an inequality A[;; + B —
2A[1Br) > 1 which in-turn can be written as Ap;) + B >
1+ 2A(;By;;. Consequently, by using the representation in (2),
and substituting the term AB with (3), we get

XOR (A1, Bjiy)
= Q0(2, A, {0, Brip}, 1, {Q(1, 0, Afip, 1, Bip), 0}). (4)

For instance, an XOR operation between two 1-bit operands A
and B can be rewritten using a combination of (4) and (2) as
A+ B—2AB > 1.

2) Addition (ADDK(A, B, Cyp)): Let Ciy1 denote the car-
ryout of stage i, i > 0. A carry lookahead of size i means
that C; is expressed as a function of Aj;_1.0), B[i—1:0], and Cp.
While the carryout function is a threshold function regardless
of the size of the lookahead, the sum function S; is a threshold
function of carry-out C;y| and carry-in Cj, as shown in Fig. 2.
Hence, a K-bit addition, denoted by ADDK, takes two cycles.
Cit+1 and S; are expressed as

Cit1 =0(i+ 1, Co, Ajioy, 1, Bigp) 0<i<K—1 (5
Si = 0(2, A1, {0, Big}, 0, {Ciy1. Ci}). (6)

To illustrate, consider an addition operation involving three
1-bit operands A, B, and Cy. This operation can be computed
using (5) and (6). When we substitute the appropriate values
into (2), we obtain the following.

1) The carry bit C; can be expressed as Cy +A > 1 + B.

This can be further rewritten as A + B + Cy > 2.
2) The sum bit Sy can be represented as A+ B > 2C + Co.
This, in turn, can be rewritten as A+B+ Cy —2C1 > 1.

3) Comparison (COMPK (A[g—1.01- Bik—1:01, C)): This
computes the predicate ¥ = (Ajx—1.00 + C > Bix—1.01). In
terms of Q, it is represented by

Y = Q(K, C, Aik—1:01, 1, Big—1.07)- N

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

2061

A4 A3 A2 Al AO CO B4 B3 B2 B1 BO 1

0 A0 CO 0 BO 1

2l

16 84211 /16 84211

= 3

N
-
-
N
(N

2 al alliz dl Al

0 A4 B4 | oca 0A3B3 | 0c3 0oA2B2 | oc) 0o AL BL) ocl 0 A0 BO | 0 co

2l L[z gl Al Gl AL il 7l al|[7 Gl il 7 A a7 Al

N 54 Ns S3 N, “ N; “ N, “
Fig. 2. 5-bit carry lookahead adder using binary neurons that adds two 5-bit numbers A and B, and a 1-bit carry-in CO. Each box represents (2), such that

the left sub-box and right sub-box represent the left- and right-hand side of the equation, respectively.

BIN-1] BIN-2] B[1] B[O]
A[K-1:0] A[K-1:0] e e IF==fF AIN-1:.0] A[N-1:N-K-1] A[2K-1:K] AK-1:0]
B[K-1:0] B[K-1:0] | ! DARTIAL B[N-1:N-K-1] /" B[2K-1:K B[K-1:0]
A[2K-1:K] AK-1:K] G B8 © EBED T
B[2K-1:K] B[2K-1:K] e ‘/:“““:\\‘/:‘\ [“ “ ﬁ]
1 I ¥ ¥ ¥
A[N-1:N-K-1] AIN-L:N-K-1] ! A LADDER YIN-LNK-1] Y[2K-1K] YIK-1:0]
BIN-1:N-K-1] BIN-1:N-K-1] 1 Y j TEE (d)
1]
ADD[N:0] COMPIN:0] (U, prnmms= = d A[N—Y[N-l:o]
(a) (b) (©) (e)
Fig. 3. Decomposition of various N-bit operations needed for QNNs into K-bit primitive operations. Here, K < N. (a) ADD. (b) COMP. (c) MUL. (d)
AND/OR/NAND/NOR.

For N-bit operands (N > K), addition, comparison, logic,
multiplication, and ReLU operations (among other operations)
can be realized using K-bit primitive operations. Examples are
shown in Fig. 3. These primitive operations can be executed
sequentially on a TULIP-PE.

B. Hardware Architecture of TULIP-PE

A TuLIpP-PE [Fig. 1(b)] contains four clusters, each cluster
containing K neurons. The neurons in each cluster are labeled
Ny, where « is the fan-in of the neuron in a cluster (indexed
left to right). The ith significant bit (i € [1,K]) of a
primitive operation is computed by the ith neuron of a cluster.
Therefore, the fan-in needed for a cluster’s ith neuron is
determined by the maximum number of inputs needed to
represent the threshold function corresponding to the ith bit
of every primitive operation.

As shown in Fig. 1(b), multiplexers are used to connect each
neuron to its external inputs, to its neighboring neurons, its
local registers (designed using latches), and to its own output
(feedback). In the present implementation of the TULIP-PE,
the weights associated with the neurons are chosen so to allow
the implementation of all the primitive operations by simply
applying the appropriate signals to each neuron’s inputs, and
also to ensure that neuron N; can realize all the functions
realizable by N, j < i.

TULIP-PE requires a minimum of four clusters to ensure a
single cycle delay between the launch of any two consecutive
primitive operations. Considering that each primitive operation
can be represented as a two-level (or one-level) computation
of threshold functions, only two clusters are needed to perform
the computation at any given time (compute mode), while
the remaining two clusters are needed to read operands from
their respective local registers and share them with the first
two clusters (routing mode). The clusters switch between the
compute and routing modes depending on the local registers in

which the operands are stored and the local register to which
the output must be written.

Note that the number of bits that can be processed in
each cycle increases with the number of neurons K in each
cluster. The larger the K, the better the performance. However,
as K increases, the maximum fan-in of the binary neurons
in each cluster also increases. Since there is a maximum
fan-in limitation of the binary neuron [34], in the present
implementation of TULIP-PE, K = 5.

V. REALIZING QNN NODE ON TULIP-PE

A QNN is a directed acyclic graph (DAG), where each node
either represents an inner product that involves a sum of multi-
bit products, or a nonlinear activation function (e.g., ReLU,
etc.). The multibit products are computed using multibit logic
and addition operations (see Fig. 3), which are primitive
operations that are performed by a network of neurons. Thus,
at the lowest level of granularity, a QNN node is a network
of threshold functions that must be scheduled on the neurons
(the compute elements) in the TULIP-PE with the objective of
minimizing the completion time, subject to the registers and
the routing constraints.

The threshold graph scheduling (TGS) problem is the same
as the well-studied problem of mapping a dataflow graph
(DFG) of computations onto a course grain reconfigurable
array (CGRA). There is an extensive body of literature on
CGRA architectures and scheduling computations onto them
that spans more than two decades. A precise formulation of
the CGRA scheduling problem first appeared in [39] and
was shown to be NP-complete. In the Appendix, we present
a precise formulation of TGS, which is the problem of
scheduling a compute graph of threshold functions onto a
specific network of neurons that constitute a TULIP-PE.

Since existing approaches to solve the above problem have
exponential time complexity for the number of nodes in the

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2062

SYMBOLS
(Vi) privimive
— DATAFLOW
CONNECTOR
---- BITWIDTH
(a)
CLUSTERS
1 2] M| (e
— — [Aik20) | E—
: <> T - «»
[5ix2:0) | — — K20
o | » <> L cikil g - - o=
E — [cik1) | I—
s @ -
— XN — U2l
. > - - -
— — — —
symoLs @P CLUSTER — ESLAI:égT“C’)R ‘R‘Eéf‘;rm
(b)

Fig. 4. Mapping a primitive graph Gp to a resource graph, where each
resource is either a cluster or local register. (a) Primitive graph Gp. (b)
Mapping to resource graph.

compute and resource graphs, they do not scale well. In the
following, we present an alternate approach that is efficient
and scalable. This is done by increasing the granularity of the
nodes in the compute and resource graphs, which results in
a drastic reduction in their sizes. The nodes in the compute
graph are now primitive operations and the compute units
are now clusters. The mapping problem is further simplified
because a new operation can be initiated on a cluster on
every cycle, i.e., its initiation interval is one. We first compute
the register-aware, minimum latency schedule of the primitive
graph on the clusters and then configure the neurons on each
cluster to compute the function of the primitive node assigned
to each cluster. This is illustrated in Fig. 4, which shows a
feasible mapping of a primitive graph to a resource graph. The
compute graph in Fig. 4(a) contains three primitive operations
LK, ADDK, and COMPK, which are initialized in consecutive
cycles as shown in Fig. 4(b). Operands A and B are stored
in local registers 3 and 1. The operation LK is executed in
cluster 4 and stored in its local register. The sum and carry
bits of ADDK operation are calculated in cluster 2 using the
data stored in local registers 1 and 4 and the result is stored
in local register 2. Finally, the data from local registers 2 and
4 are used to compute COMPK to generate the final output Y.

A. Scheduling Primitive Graph on TULIP-PE

Definition 1 (Primitive Graph Gp(Vp, Ep)): This is a DAG
where each node v € Vp represents a K-input primitive
operation, i.e., K-bit addition, comparison, or logic. Each edge
e € Ep represents a data dependency between the primitive
operations.

An integer linear programming (ILP) formulation is
presented for the problem of scheduling a primitive graph that
represents a single QNN node, on a TULIP-PE. The principle

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

TABLE I
NOTATION FOR ILP USED TO SOLVE THE
PRIMITIVE SCHEDULING PROBLEM

Notation | Description
(Sv, €v) Lifetime of storage of node v.
dy Delay of a primitive operation (1 < d,, < 2) cycles.
b Bits needed to store the output of a primitive operation.
Xov,rt Value is 1 if output of node v is stored
in register 7 at time ¢.
DPo,r Value is 1 if output of node v is stored
in register r at any time.
To,t Value is 1 if output of node v is available
at time ¢ in any of the local registers.
U< v u is the immediate predecessor of v.
E Makespan (execution time) of Gp on TULIP-PE.

behind the design of ILP is based on the high-level scheduling
algorithm presented in [40], but differs from it because of the
unique register and data routing constraints and the fact that
the initiation interval of a cluster is one. Table I shows the
notation used in the ILP formulation.

The primitive scheduling problem has to establish bindings
between operations v, time steps f, and resources (local
registers) r, since clusters store outputs in their respective local
registers. Such bindings are represented using triple-indexed
binary decision variables y, ,; shown in

1, if v is mapped to r at time ¢
Xvrt = { PP ®)

0, otherwise.

Using the above equation, two additional binding variables are
derived: p, ., which represents the mapping of v with local
register r, and 7,; which represents the mapping of v with
time t. These variables are used to express resource and time-
specific constraints, respectively

=T—1

\/ Xv,r,t ©)]
=0

r=3
Tyt = \/ Xv,rt-
r=0

There are L local registers, each of size B bits. The minimum
time required to execute all the primitives on Gg is T = 2|Vp|.
With the goal of minimizing the makespan E (execution time)
of Gp on TULIP-PE, the following constraints are needed to
define the set of feasible solutions:

Pv,r =

(10)

Minimize E such that.

(an

1) Resource Availability Constraints: These constraints are
added to ensure that the local registers are not overutilized.
The first constraint (12) ensures that the storage used by a
local register r at any time ¢ must never exceed the maximum
capacity B

> by xerd <BVrel0.3] Ve[0T —1].
YveVp

12)

The second constraint (13) ensures that each primitive’s
output is stored in only one local register

Y pur=1Ye Vs
VreJ

13)

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

t=2

Time

t=3

t=4

Primitive Graph Gp Local Registers

Fig. 5. Example to illustrate routing constraints in the primitive scheduling
problem. The output of each node in the primitive graph Gp is stored in the
local registers of TULIP-PE.

2) Precedence Constraints: Constraint in (14) is added
to ensure that the data dependency due to the precedence
relationship between any two primitives u and v is satisfied in
the schedule

Sut+d,<s,<e,+1Vu,veVp, u=<nv.

(14)

For the schedule in Fig. 5, s, =1,¢, =3, d, =1, s, = 2.

3) Timing Validity Constraints: These constraints ensure
that the start and end times of all the nodes are valid and
feasible (15), and that the start times of any two nodes are not
equal (16)

0<s,<e, <T—-1%YWeVp

u#v

5)
(16)

a7)

Sy # Sy Yu,v € Vp,
S IL,sy <t=<e
V™1 0, otherwise.

Constraint in (18) is added to identify the end time of the
last primitive that will be scheduled on TULIP-PE, so that it
can be minimized in the objective function

Vv e Vp, e, <E. (18)

4) Routing Constraints: The following constraints ensure
that the data-routing capabilities of local registers are not
violated, and are explained as follows. A local register can
perform either a read or a write operation at any given time,
but not both simultaneously. Therefore, two nodes that share
an edge cannot be assigned to the same local register. In
Fig. 5, since u is the immediate predecessor of v, the output
of u is stored in a different local register than v. While the
output of u is read from a local register, the output of v
is simultaneously written to a different local register (19).
Furthermore, two sibling nodes cannot be assigned the same
local register. As shown in Fig. 5, u and v are immediate
predecessors of w. Therefore, u and v cannot have the same
local register. This constraint is because the local registers
supply only one operand to each primitive in TULIP-PE. As
a result, we need two separate local registers to provide two
operands (20)

Yu,ve Vp Vre [0,3] u < v:

19)
(20)

Pur+ prr <1
Pu,r + Py + pwr < 1.

2063

TABLE II
NUMBER OF ILP DECISION VARIABLES AND THE RUN-TIME REQUIRED
TO GENERATE SCHEDULE ON TULIP-PE. HERE, THE COMPUTE GRAPH IS
A NEURON THAT COMPUTES Zi.\:ol wix; FOR VARYING N

Neuron Decision Time
Inputs (N) | Variables (Sec)
64 6.88E+03 0.04
128 2.81E+04 0.12
256 1.14E+05 0.49
512 4.56E+05 2.14
1024 1.83E+06 9.32
2048 7.33E+06 | 41.82
4096 2.93E+07 | 216.46

The mapping of the primitive operations to the clusters of
TULIP-PE is determined by analyzing the decision variables
pv.r and s,. A node v is executed on the cluster associated
with the local register r if p, , = 1, at the time specified by s,.
The stored data of v is then maintained in the local register
till time instance e,. Table II shows the number of decision
variables generated and the time required when using the ILP
to generate the schedule of compute graphs of neurons that
compute Zi\]: B] wix; for a varying number of inputs (N). This
is a one-time cost to obtain the schedule for QNN nodes on
a TULIP-PE. The size of the largest neuron is N = 4096 in
AlexNet [41].

The ILP described above enables TULIP-PE to modify
its schedule depending on the number of neurons enabled
in each cluster. Fig. 6(a) and (b) shows how the schedule
of addition operation can be varied based on the available
neurons (denoted by K). For example, assume that we need
to execute an addition operation of two 4-bit numbers, X
and Y. TULIP-PE uses five cycles (4 cycles before the next
primitive can be launched) to finish its addition operation
if only one neuron (K = 1) is enabled in each cluster.
Howeyver, if the number of neurons in each cluster is doubled
(K = 2), the schedule can be readjusted to finish the addition
operation in three cycles (2 cycles before the next primitive
can be launched). If all five neurons are enabled in each
cluster, then TULIP-PE would only require two cycles (1
cycle before the next primitive can be launched) to finish
the addition operation. This critical feature enables a run-time
tradeoff between delay and energy efficiency on the TULIP-
PE. Furthermore, if some neurons in the manufactured chip
stop working, those neurons can be bypassed by modifying the
schedule.

VI. MAPPING COMPLETE QNN ON TULIP

In the previous section, we described how a single QNN
node, which is a DAG of operations, is executed on a single
TuLIP-PE. We now present the final step of mapping QNN
nodes to TULIP array, taking into account its specific structure,
which is shown in Fig. 7. Although the QNN is a DAG,
its nodes are arranged in layers with all nodes in a layer
performing the same function but on different inputs. As the
computations have to proceed layer by layer, the main goal

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2064

CLUSTERS WITH ONE NEURON ACTIVATED

Inputs

— SYMBOLS
| IEN I) W X YiCig 0O () THRESHOLD
—] = v " FUNCTION
e X X ,l., oomsiow
0} N 3
- 0] 4 CONNECTOR
: @ O @ ‘- = LOCAL REGISTER
"B\ O |« = o
2 um
§ |) 2 el COLOR CODES
| R
@ ? ‘a‘ ([] Inpuits
i % 1 2 i Toother O PREVIOUS
« @ o] 6 { — [y nodes OPERATION N-1
- mm |G|
el | J S . C: ‘ CURRENT
7 & i
® O® @ ’o opERATION N
Output=C;
(@

CLUSTERS WITH TWO NEURONS ACTIVATED

1 [z 1 [1 [Ca]

= o o =
C::::inmn o |

- p N
gy T (€D - .,

s e B E = Sir G S0 G
3- - -
(®)

PARTIAL
SUM1

STORE k ‘

PARTIAL
SUM 2

READ m BITS

0

STORE m BITS
STORE k

BITS READ m BITS

O

READ AND
DISCARD k BITS

READ AND

E m Bl
DISCARD k BITS STORE m BITS

PARTIAL

sum3 READ m BITS

STORE m BITS

I

© (d)

21 [

4

|
(— = o Yot
o—e ® e |
[xox1 N | X3 X3 Y3 Y2
: -_ n‘ - -- X{‘ "{.‘I ;’1/70
[x2x3 Wi | [V23 |
g | Oy O] € -
g
¢ ? -m- -b‘ - - Output
] after n/2 cycles
- o e e
(e)

Fig. 6. Addition operation, adder-tree, accumulation, and comparison using
the TULIP-PE architecture. Depending on the number of neurons available in
each cluster, the scheduler can automatically tune the schedule for the best
performance. (a) Addition operation (1-bit per cycle). (b) Addition operation
(2-bit per cycle). (c) Addition-tree memory management. (d) Accumulation
operation to add partial sums. (¢) Comparison operation.

of improving energy efficiency and latency is achieved by
maximizing the data reuse.

Consider a single layer of a QNN that performs a 2-D
convolution, as illustrated in Fig. 7(b). The dimensions of the
input image are (/, I, L), the output image are (O, O, M) and
weights are (K, K, L, M). Each pixel in the output image repre-
sents a node in a QNN. For this convolution, the opportunities
for data reuse (sharing) are as follows.

1) Each input pixel can be reused |K20?/I?] times when

computing one dimension of the output image.

2) Each kernel weight is reused O times.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

K*K*L

Kernel
Weights and |_ |
Image Pixels

Layer1 | Layer2

| o
o |
=ul ol ||} | |
KERNELS INPUT IMAGE OUTPUT IMAGE
(b)

Fig. 7. Representation of QNN as a DAG and data reuse opportunities in
2-D Convolution. (a) QNN as a DAG. (b) Convolution operation.

3) Each dimension of the input (L) is reused M times.

However, since the data and computation resources required
for an arbitrary layer of a QNN might exceed what is available
on the TULIP architecture, the nodes of a QNN must be
scheduled so that the cost of refetching inputs and weights to
the cache from off-chip memory is minimized, subject to the
following constraints.

1) A 2-D array of TULIP-PEs operating in an SIMD
fashion, such that the TULIP-PEs in the same row share
input pixels, and TULIP-PEs in the same column share
weights.

2) A fixed cache size for storing input pixels.

3) A fixed cache size for storing weights.

Similar problems have been addressed in several prior
works, targeting different platforms [9], [14], [42], [43]. These
works minimize data fetches from the external memory by
exploiting the fact that the core computations in all CNNs
are convolutions and are expressed as deeply nested loops,
which can be unrolled either in software or in hardware. The
data fetching scheme described in [14] was for a 1-D array
of PEs. In this article, we extend the data flow and the node
scheduling algorithm presented in [14] for TULIP in a way
that maximizes the reuse of input pixels and weights, and
achieves high energy efficiency. This allows us to keep the
external memory interface uniform between the architectures
and allows for a fair comparison between the two architectures.

An illustration of the schedule for the convolution layer of
a QNN based on [14] is shown in Fig. 8. Given an image and
kernel buffers of a given capacity, a subset of the required
data (image pixels and weights) for a convolution operation
is loaded from external memory. The computation on the
TULIP-PEs is started as soon as the required data is available
and partial results are computed. To complete the convolution
operation across all input channels (L) and output channels

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

LOAD WEIGHTS ~ LOAD 1-32 INPUT CHANNELS LOAD WEIGHTS FOR LOAD 33-64 INPUT CHANNELS
FOR 1-32 OUTPUT AND PERFORM 2-D 33-64 OUTPUT AND PERFORM 2-D
CHANNELS CONVOLUTION CHANNELS CONVOLUTION

KERNEL BUFFER |:| |:|
L2 BUFFER |:|
L1 BUFFER DDDDD DDDDD
compuTATIoN oooono ooooo

TIME

Fig. 8. Convolution schedule used by TULIP on the basis of algorithms
presented in [14].

(M), new input pixels and kernels are loaded to the respective
on-chip buffers replacing the previous data.

The architecture presented in [14] has one row with C MAC
units (columns) whereas, TULIP has R rows with C TULIP-
PEs (columns) which share image pixels along the row and
weights along the column. Therefore, at any given instance
TULIP computes the convolution operation for R times more
output pixels than in [14], with R times higher kernel reuse
than [14]. Therefore, the number of external data transfers to
load the kernel weights to the kernel buffer reduces by a factor
of R in the case of TULIP as compared to [14]. In Section VIII,
we show that these comparisons are based on both designs
with the same area.

VII. ENHANCING DATA-REUSE USINGTULIP-PES

This section provides a quantitative analysis to show how
the use of TULIP-PEs enhances data reuse, as compared to
a MAC unit. This is done by comparing the delay and area
complexity when using TULIP-PEs and when using MACs.
Let m and n be the number of bits needed to represent inputs
and weights, respectively.

To multiply N pairs of weights and inputs, the area complex-
ity of the MAC unit [44] is O(mn), whereas for a TULIP-PE
it is O(1). The area complexity of TULIP-PE is a constant
because it performs multiplication sequentially, in a bit-sliced
manner.

The delay complexity of the MAC unit [44] O(N) and
that of the TULIP-PE is O(mnN). Although the TULIP-PE
is smaller, it is much slower than a MAC unit. However,
as explained next, these tradeoffs change when MACs and
TuLIp-PEs are used in an SIMD architecture.

Consider the following two SIMD architectures. First is the
baseline architecture for reference, which consists of a row
of C MAC units. Second is the TULIP architecture, with a
grid of R x C grid of TULIP-PEs. The baseline has a gate
complexity of O(Cmn) and a delay complexity of O(N/C).
Similarly, TULIP has a gate complexity of O(CR) and a delay
complexity of O(mnN/CR). TULIP can match the area and
delay of the baseline by setting R = mn. However, TULIP
is still better than the baseline because the grid arrangement
provides higher opportunities for weight reuse. If we assume
that a workload of R x C graphs will be processed by both
the architectures, then the baseline would fetch each weight R
times whereas the TULIP would fetch each weight just once.
As a result, significant energy-efficiency improvements are
observed by enhancing data reuse. The complexity analysis
discussed above is summarized in Table III.

2065

TABLE IIT
GATE AND DELAY COMPLEXITY OF MAC UNITS AND TULIP-PES.
TuLIP-PES MATCH THE DELAY AND GATE COMPLEXITY OF MAC UNITS
WHEN R = mn. HOWEVER, SINCE THERE ARE NOW R TULIP-PES FOR
EVERY MAC UNIT, THE INCREASED PARALLELISM PROMOTES DATA
SHARING, THEREBY IMPROVING DATA REUSE BY A FACTOR OF R

Gate Delay
complexity complexity
T MAC Unit O(mn) O(N)
1 TuLIP-PE o(1) O(mnN)
Row of C' MAC units O(Cmn) O(N/C)
Grid of R x C' TULIP-PEs O(CR) O(mnN/CR)
TULIP YodaNNT+
I "’ Technology | TSMC 40LP | TSMC 40LP
‘ Area (mm?) 10.6 10.9
E w L2/L1/Kernel | 603K/125K | 603K/125K
- Area (um?) /1682K /1682K
° ‘M i P‘gizzsagm [2];‘“ 1986K 2151K
\MJIMMM | [#Std. Cells 2958K 3258K
= ' # Nets 1548K 1312K
33 mm 1 ["Wirelength (m) 88.67 64.65

Fig. 9. Layout of TULIP architecture in TSMC 40nm-LP.

Note that the concept discussed above has already been used
in other design settings. For instance, processor designers often
choose to use several slower cores instead of using fewer faster
cores, to enhance the energy efficiency without compromising
on throughput. The work presented in this article also uses
the same concept but at the level of PEs. TULIP replaces the
traditionally used MAC units with slower but more energy-
efficient TULIP-PEs.

VIII. EXPERIMENTAL RESULTS
A. Experimental Setup

TULIP architecture was evaluated using TSMC 40nm-LP
library. Synthesis was done using Cadence Genus, and then the
design was placed and routed using Cadence Innovus (Fig. 9).
Timing checks were performed using cross-corner analysis at
{SS, 125C, 0.81V}, {TT, 25C, 0.9V}, and {FF, 0C, 0.99V}.
The VCD file generated using real QNN workloads was used
for accurate power analysis by modeling switching activity.

The primitive component of a TULIP-PE is the binary
neuron shown in Fig. 1(c). A detailed analysis and design of
this cell, along with its advantages over its CMOS functional
equivalents appears in [34]. For instance, a 5-input binary
neuron in 40nm is about the size of a high-drive strength
D-flipflop, but it can replace numerous functions that would
normally require several levels of logic implemented using
conventional CMOS logic. Overall, at the individual cell
level [34] shows that a 5-input binary neuron in 40nm results in
improvements in area, power, and delay of [80%, 60%, 40%],
respectively, over the performance optimized, functionally
equivalent CMOS circuit. These reductions at the individual
cell level lead to significant improvements in throughput and
energy of the TULIP-PE and of the TULIP architecture.

The three closest comparison points for TULIP are
YodaNN [14], UNPU [19], and BitBlade [20]. The UNPU

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2066

TABLE IV
COMPARISON OF FULLY RECONFIGURABLE MAC UNIT BASED ON THE
YODANN ARCHITECTURE [14], WITH A TULIP-PE (K=5), FOR
COMPUTING A 288 INPUT WEIGHTED SUM (32 INPUT CHANNELS,
KERNEL =3x3). TULIP-PE IS 15.8 x SMALLER THAN THE
MAC UNIT. PDP: POWER DELAY PRODUCT

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

TABLE V
ENERGY EFFICIENCY [EN. EFFE. (TOP/J)] AND THROUGHPUT (GOP/S) OF
TULIP AND YODANNT+ FOR CIFAR-10 CLASSIFICATION. K INDICATES
THE NUMBER OF NEURONS USED IN EACH CLUSTER. TWO VARIANTS OF
TULIP ARE SHOWN: ONE Is TUNED FOR ENERGY EFFICIENCY, WHILE
THE OTHER IS TUNED FOR PERFORMANCE. (A) ALEXNET.
(B) RESNET18. (C) RESNET20

architecture contains a full processor core, memory controller,
etc., and hence it is harder to reproduce. Simillarly, the
BitBlade architecture also uses a CPU for some operations of
the QNN. Furthermore, the data presented in this article is all
relative to another benchmark architecture. The energy num-
bers and throughput numbers are normalized to their chosen
benchmark. Thus, it is difficult to perform a meaningful quan-
titative comparison with UNPU and BitBlade. On the other
hand, YodaNN paper had sufficient details that allowed us to
reproduce the architecture reliably. Note that both architectures
are similar fundamentally since they use accumulator-based
PEs. Since the main focus of this article is to highlight
how TULIP-PE avoids hardware overprovisioning while also
supporting a variety of QNN operations, the comparison was
done against the YodaNN architecture. YodaNN is a BNN
accelerator that was designed in 65nm technology. To present
a fair comparison, we implemented the complete design of
YodaNN using TSMC 40nm-LP technology and extended the
design to support 2 to 4 bit QNNs. Our implementation of
YodaNN will be referred to as YodaNN*+,

Although YodaNN [14] does not report the throughput and
energy efficiency for fully connected layers, we estimated them
by performing element-wise matrix multiplications using the
MAC units present in their architecture. In summary, TULIP
and YodaNN*+ were both designed in the same technology,
with the same memory organization, with support for 12-bit
inputs, support for up to 4-bit weights and activations and
kernel sizes of 3, 5, and 7.

B. Evaluation of TULIP-PE Against MAC

Table IV compares the baseline 18-bit reconfigurable MAC
unit used in YodaNN*+ with a TULIP-PE with five neurons
in each cluster and a 16-bit local register for each neuron. In
large QNN architectures such as Alexnet [45], the input layers

Bit 1 2 3 4
width UW | YodaNNTF | TULIP-Q for En. EIf. I TULIP-Q for Perf I
Power bits || En. Eff. [Perf. || En. Eff. [Perf. [K] En Eff.] Perf. [K]
(mW) 0.18 0.18 0.18 0.18 I (@) I
TuLIP-PE - i 3.0 [666 || 1424 (@6.7X) | 86.9 (1.3X) | I || 86.2 (283X) | 92.7 (14X) | 5
(4366 m?) Cycles 155 170 227 307 2 [0 | 666 | 438 (44.3%) | 797 (1.2X) | 2 || 30.3 (30.6X) | 86.7 (1.3%) | 5
H #) 3 05 | 666 || 233 (47.6X) | 71.6 (1I.1X) | 3 || 183 (374%X) | 789 (1.2X) | 5
Time 3 04 | 666 || 149 (425%) | 643 (10X) | 4 || 13.1 (374%X) | 694 (1L.0X) | 5
(ns) 356.5 | 391.0 | 522.1 706.1 [® I
PDP i 24 | 316 || 1086 449%) | 397 (13X) | 1]| 658 272X) | 443 (14X) | 5
655 71.8 959 129.7 2 08 | 316 || 322 (40.7%) | 348 (1I.1X) | 2 || 22.8 288%) | 400 (I3%) | 5
(§22)] : : : ' 3 0.4 316 || 17.0 43.6X) | 31.0 (1.0X) | 3 || 13.7 352X) | 36.1 (L.IX) | 5
Power 4 03 | 316 | 109 (388%) | 28.7 (09X) | 4 || 98 (34.9%) | 325 (1L0X) | 5
, (mW) 2.6 8.0 16.2 22.6 I ©) I
MAC Unit I i 23 | 533 || 135.7 (39.5X) | 908 (1.7X) | 1 || 858 (37.6X) | 1173 22X) | 5
(69028 1m?) Cycles 32 32 32 32 2 07 | 533 || 409 (552%) | 669 (13X) | 2 || 299 (403X) | 862 (1.6X) | 5
H #) 3 04 | 533 || 218 (604%) | 524 (10X) | 3 || 18:0 300X) | 662 (1.2X) | 5
Time 4 03 | 533 | 140 (53.7%) | 443 (08X) | 4 || 128 @93X) | 527 (1L.0X) | 5
(ns) 73.6 73.6 73.6 73.6
PDJP 189.4 | 590.3 | 1193.8 | 1666.3) .)
T () are integer, while the other layers are quantized. Consequently,
(letsl;)T) PDP 29 8.2 124 12.8 both the MAC unit and TULIP-PE can support both types

of layers. The MAC unit and TULIP-PE are compared when
computing the outputs of the quantized layers. Both modules
perform the weighted sum with quantized activations and
weights. The MAC unit realizes convolution by multiplying
and accumulating one kernel window in each cycle. On the
other hand, the TULIP-PE treats convolution as a weighted sum
represented as a compute graph of multiplication operations
connected to an adder tree. This is important because TULIP
realizes adders, multipliers, etc., of custom bit widths, thereby
reducing the energy incurred by MAC unit that uses maximum
width addition and multiplication operations in every cycle.

Table IV shows that the TULIP-PE is 15.8x smaller than
the MAC unit and consumes up to 125x less power. However,
its delay is 9.5x higher than the MAC unit since it performs
bit-level addition. As a result, the power delay product of a
TULIP-PE is up to 5.8 x lower than the MAC unit while at the
same time being 15.8x smaller than the MAC. Furthermore,
since a MAC unit cannot compute operations, such as compari-
son, max-pooling, etc., the data is sent to other parts of the chip
for these operations in the baseline [14]. However, the TULIP-
PE preserves the data locality and performs the comparison
and max-pooling operations using the same hardware, without
moving the data to other modules, thus resulting in additional
energy savings. The reduced area allows us to have more
TuLIP-PEs, which leads to higher throughput.

C. Evaluation of the TULIP Architecture

The implementation of TULIP has 512 TULIP-PEs. This is
to ensure that the area of YodaNN*+ and that of TULIP are
the same. Note that the number of processing units in TULIP
can easily be scaled to suit the application. For both designs,
the size of the L1 buffer is 2.3 kB, the size of the L2 buffer
is 10.5 kB, and the size of the kernel buffer is 24.5 kB.

Tables V and VI show the energy efficiency and throughput
values for various neural networks (at varying bit-precisions),
accelerated using both the TULIP and YodaNN**. For TULIP,

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

60 ® Inp/weightl Inp/weight2 Inp/weight3 Inp/weight4
=)
€ a0
£
EL
E
g2
=3
£10 I
°
& & & > & &
& 5 5 S S
S o o e 5 g
& N N S S &
e & & & $ &
< & & « & &
Dataset/NN
(a)

Fig. 10.
(b) Improvements in throughput.

80

< o Inp/weightl Inp/weight2 Inp/weight3 Inp/weight4
= 60
<
£
o 40
>
2
s 20
E

0

1 2 3 4 5
Cluster Size
(a)

Fig. 11.
(a) Improvements in energy efficiency. (b) Improvements in throughput.

TABLE VI
ENERGY EFFICIENCY [EN. EFF. (TOP/J)] AND THROUGHPUT (GOP/S) OF
TULIP AND YODANNTT FOR IMAGENET CLASSIFICATION. K INDICATES
THE NUMBER OF NEURONS USED IN EACH CLUSTER. TWO VARIANTS OF
TuLIP ARE SHOWN: ONE IS TUNED FOR ENERGY EFFICIENCY, WHILE
THE OTHER IS TUNED FOR PERFORMANCE . (A) ALEXNET. (B)
RESNETI18. (C) RESNET34

H UW | YodaNN¥¥ T TULIP-Q for En. Eff. I TULIP-Q for Perf 1
bits || En. Eff. | Perf. || En Eff.] Perf. [K || EnEff.] Perf. [K]
[@ |
1 43 [1232] 842 (198X) | 1728 (1.4X) | 4]| 66,5 (15.7 X) | 1772 (1.4X) | 5
2 17 | 1232|385 (224X) | 1714 (1.4X) [5 || 385 (224 X) | 1714 (14X) | 5
3 0.9 | 1232 || 27.0 (30.0X) | 163.4 (1.3X) | 5 || 27.0 30.0 X) | 1634 (1.3X) | 5
4 0.7 | 1232 || 208 (315X) | 1293 (1.0X) | 5 || 208 3.5 X) | 1293 (1.0X) | 5
[® |
1 32 [846][1393 (43.9X) [1117 (13X) | 1 || 958 (30.2X) | 130.7 (15X) | 5
2 10 | 846 || 438 (421X) | 927 (ILIX) [2 || 342(329%) | 1I1.9(13X) [5
3 05 | 846 || 238 (458X) | 789 (09X) | 3 || 20.7 (39.8X) | 96.0 (IIX) | 5
4 04 | 846 || 156 (422X) | 69.4 (0.8X) | 4 || 148 (40.0X) | 80.9 (1.0X) | 5
[© |
1 31 [882][1780 (574X) | 129.0 (15X) | 1 || 1049 (33.8X) | 1425 (1.6X) | 5
2 10 | 882 || 529 (529X) | 1093 (1.2X) | 2 || 363 (363X) | 1231 (1.4X) | 5
3 05 | 882 | 279 (558X) | 93.1 (LIX) | 3 || 21.9 (43.7X) | 1052 (1.2X) | 5
g 04 | 882 || 177 (505X) | 786 (09X) | 4 || 15.6 (445X) | 86.0 (1.0X) | 5

two sets of results are presented: 1) TULIP tuned for the best
energy efficiency and 2) TULIP tuned for the best throughput.
Here, tuning is done by changing the number of active neurons
(cluster size K) in each cluster. Based on Tables V and VI,
TULIP shows consistent improvement in the energy efficiency
over YodaNN*+ for all the neural networks.

Fig. 10(a) shows that TULIP consistently achieves an order
of magnitude improvement in energy efficiency for all variants
of the neural networks. This is primarily attributed to the fact
that TULIP realizes adders, multipliers, etc., of different bit
widths, which eliminates the waste incurred by conventional
accumulation methods that use operators to accommodate the
maximum width. This, coupled with the improved weight
reuse, results in a substantial improvement in energy efficiency
over YodaNN++,

2067

= Inp/weight1 p/weig! p/weigl p/weigl

Improvement (X)
o i L

sReisd

|—

Dataset/NN

(b)

Improvements of TULIP (using five neurons per cluster) over YodaNN*¥, for various neural networks. (a) Improvements in energy efficiency.

M Inp/weight1 Inp/weight2 Inp/weight3 Inp/weight4

15
1
0.5
[}

1 2 3 4 5

Cluster Size

(b)

Improvement (X)

Improvements of TULIP (with varying number of active neurons in each cluster) over YodaNN+t+, for ImageNet Classification using ResNet-34.

Fig. 10(b) shows throughput can be improved by reduc-
ing the bit precision. This is because fewer bits need to
be processed for each operation. Fig. 11(b) shows that the
throughput increases as the number of neurons in each cluster
increases. Although this graph is restricted to the inference of
Imagenet classification using ResNet-34, this trend applies to
other neural networks as well. The increase in the throughput
due to the increase in the number of neurons allows each
operation to execute faster on the TULIP-PE. By appropriately
choosing the right configuration, it is possible to match
the throughput of the baseline (or even improve it) while
gaining significant improvements in energy efficiency. The
corresponding improvements in energy efficiency are shown
in Fig. 11(a).

Fig. 12 demonstrates how the TULIP architecture can be
used to tradeoff energy efficiency and accuracy at runtime
for neural networks used for ImageNet classification tasks.
As the bit-precision increases, the energy efficiency decreases
but accuracy increases. Hence, accuracy can be traded off at
run-time with energy efficiency and throughput. This would
be particularly useful for energy-constrained mobile devices
where high accuracy may not be necessary to make the
correct decision, or conversely, the accuracy could suddenly
be increased in a critical situation, after operating at a lower
precision.

In summary, there are two key observations that can be
made from the experimental results.

1) TULIP can support multiple bit-precision of the weights
and activations of a QNN and achieves consistently
greater energy efficiency than the baseline architecture
for the same.

2) TULIP enables a high degree of runability at run-time,
to tradeoff energy efficiency, throughput, and accuracy.

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2068

W Energy efficiency Accuracy === Full Prec. Acc. s Energy efficiency

__70.0 80 §12°-°
2600 | oo 70 Ll R e
= 50.0 :g é 80.0
E 200 =
Z 60.0
]

ccuracy (Top 1 %)

=
15
A

20.0 I
0.0

Energy Effici

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

s Energy efficiency Accuracy === Full Prec. Acc.

Accuracy === Full Prec. Acc.

k] 30
§ 20.0 20
¥ 100

&

E 0.0 0
- 1 2 3 4

Input and Weight Bit Width

(a)

1 2

Input and Weight Bit Width

(b) ©

80 200 80
.......... 70 _ 3 705
s 3100.0 g
60 = 60
50 E_ g 800 50 §
a0 3 2 60.0 40 3
H 3
30 8 g
- ‘S 40.0 30 g
20 3 E 20 g
. 10 < % 200 . 10 <
&
L [g 00 .— 0
3 4 w 1 2 3 4

Input and Weight Bit Width

Fig. 12. Trading off energy efficiency [En. Eff (TOP/J)] with accuracy (%) for ImageNet Classification using the TULIP architecture. Full Prec. Acc. indicates
top the 1% accuracy when using 32-bit integers and weights. (a) ImageNet/AlexNet. (b) ImageNet/ResNet-18. (c) ImageNet/ResNet-34.

IX. CONCLUSION

This article presents a new design of a QNN accelerator,
called TULIP, that uses binary neurons as its core compute
elements. TULIP and the baseline design YodaNN** were
designed to the layout level and simulated on several well
known neural networks. The simulations were carried out
using commercial libraries and design tools and account for
all the device, circuit and layout characteristics. The results
show that TULIP can improve the energy efficiency by 30x—
50x when compared the baseline design YodaNN**, with
both designs having approximately the same area. These
improvements do not rely on standard low-power techniques
such as voltage scaling and approximate computing. The
improvements in energy efficiency can be attributed to several
factors: 1) the use of operators of the required bit-width instead
of the maximum bit width; 2) the use of artificial neurons
to compute complex logic functions within a very small
area, thereby allowing for greater number of PEs for parallel
operations; and 3) the ability to reconfigure the function of the
neurons without sacrificing performance or energy efficiency.
TuLIP allows for tuning the precision and throughput and
energy efficiency.

APPENDIX
A. Problem of Scheduling QNN Node on TULIP-PE

In this section, we provide a precise formulation of the
problem of register-aware scheduling of a QNN node on a
TuLIP-PE. It finds a mapping between two graphs: 1) a DFG
of threshold functions that represents a QNN node and 2) a
time-extended resource graph that represents TULIP-PE.

Definition 2 (Threshold Graph Gth(Vth, Eth)): This is a
DAG where the nodes Vth represent threshold functions and
an edge (1, v) € Eth means that the output of u is an input of
the threshold function v.

Definition 3 (Time Extended Resource Graph (TERG)
GRr(Vg, Eg)): This is a DAG where a node is a pair (i,) € Vg,
u is a local register or a neuron and ¢ is a time instance at which
the resource u is available. An edge between two resources
(u, t) and (v, t+1) is represented as (u, v,) to indicate that the
output of u is input to v at time 7+ 1. Edges are absent between
resources if their timestamps differ by more than 1 or if there
is no physical datapath between their associated neurons (or
local registers). The latency of Gg is max, nevg{t}.

Gth

Gr
1
DD
O,

. D D
O D D
o DD

(a) (b) (©)

Cycles

Fig. 13. Scheduling graphs of threshold functions on binary neurons.
(a) Compute graph Gyy,. (b) Time-extended resource graph Gg. (c) Mapping
solution of Gy, to Gg.

Definition 4 (Feasible Schedule): Let VI”Q C Vg, and let
M : Vi — Vg, denote a surjective mapping, i.e., M(V}) =
V. For definiteness, let M = {(vi,t;)) — uy, (va,) —
u), ..., (Wp, ty) = uy}.

A feasible schedule is a pair (Gr(Vg, Er), M : Vi — Vi),
where Gr is TERG on V}; and for each (u, v) € Vy,, there exists
a path P = {(ro, t0), - .., (", t), (Fkt1, tk+1)} in Gg such that
M(rg) = u, M(ry41) = v, and t;41 =, + 1, 0 <i <k, and
k> 0.

Fig. 13 shows an example mapping of a given compute
graph containing four nodes to a time-extended resource graph
containing two resources, extended over four cycles.

Definition 5 (TGS Problem): Given a threshold graph
Gi,(Van, Eip), the TGS problem is to construct a feasible
schedule of minimum latency.

In the design of the TULIP-PE shown in Fig. 1(b), there are
four clusters, each with five neurons and each with a 16-bit
register. Consequently, the number of resources will be 320,
for each timestamp ¢. The maximum number of timesteps in
the extended resource graph would be the number of levels in
the compute graph.

The formulation of the TGS problem presented above is
the same as the well-studied problem of mapping a DFG of
computations onto a CGRA. There is an extensive body of
literature on CGRA architectures and scheduling computations
onto them that spans more than two decades. A precise
formulation of the CGRA scheduling problem, similar to the
TGS problem, first appeared in [39] and was shown to be NP-
complete. This was subsequently extended to register-aware
mapping in [46], followed by several extensions [47], [48],
[49], [50], [51].

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

WAGLE et al.: ASIC ACCELERATOR FOR QNN WITH VARIABLE PRECISION AND TUNABLE ENERGY EFFICIENCY

G
" ° ° (A’,Rlﬂb) @ Compute graph node
Tuple:
o o o (or1a) {Node, re:guerce, time}
o o Q Maximum Clique nodes
P Edges of maximum clique
OO, D D) N
comgpeastibTe“r’\oZr;s
(@) (b) (©)
Fig. 14. Scheduling threshold function graphs on binary neurons.

(a) Compute graph Gy,. (b) Equivalent transformed graph Gj,. (A’ and A”
indicate buffer functions). (c) Compatibility graph of G;h and Gg .

Mapping the computations within the innermost loop
involves small computation graphs, in the order of tens of
nodes. In addition, with the target architecture being a CGRA,
the resulting resource graph is also of the same order. This
allows the various heuristic algorithms for finding a feasible
mapping to enumerate the possibilities by transforming the
compute graph [Fig. 14(b)], constructing a compatibility graph
[Fig. 14(c)] and then finding a maximal clique of that graph,
at each time step. The size of the compatibility graph is the
product of the sizes of the computation and resource graphs.
Such an approach is not possible for the TGS problem because
the size of the compatibility graph would be in the tens of
thousands for which a maximal clique has to be computed. For
this reason, an alternate approach is presented in Section V.

Note that traditional high-level scheduling algorithms (used
for task allocation to CPUs [40], [52]) do not apply when
performing scheduling on TULIP-PE. This is because, unlike
high-level scheduling algorithms, routing-aware scheduling
algorithms used for CGRAs generate a valid schedule while
also honoring the routing constraints that arise due to the
physical limitations (bandwidth, connectivity, etc.) of the
hardware.

REFERENCES

[11 W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” J. Mach.
Learn. Res., vol. 23, no. 120, pp. 1-39, 2022.

[2] S. Kim, J. Lee, S. Kang, J. Lee, and H.-J. Yoo, “A power-efficient
CNN accelerator with similar feature skipping for face recognition in
mobile devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 4,
pp. 1181-1193, Apr. 2020.

[3] Z. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina, “S2TA: Exploiting
structured sparsity for energy-efficient mobile CNN acceleration,” in
Proc. IEEE Int. Symp. High Perform. Comput. Architect. (HPCA).
Los Alamitos, CA, USA, 2022, pp. 573-586.

[4] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of FPGA,
CPU, GPU, and ASIC,” in Proc., Int. Conf. Field Program. Technol.
(FPT), 2016, pp. 77-84.

[51 A. Boutros, B. Grady, M. Abbas, and P. Chow, “Build fast, trade fast:
FPGA-based high-frequency trading using high-level synthesis,” in Proc.
Int. Conf. Reconfigurable Comput. FPGAs (ReConFig), 2017, pp. 1-6.

[6] Y. Ma, Y. Cao, S. Vrudhula, N. Suda, and J. Sun Seo, “ALAMO:
FPGA acceleration of deep learning algorithms with a modularized RTL
compiler,” Integr, VLSI J., vol. 62, pp. 14-23, Jun. 2018.

[71 Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on FPGA,” IEEE Trans.
VLSI, vol. 26, no. 7, pp. 1354-1367, Jul. 2018.

[8] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Automatic compilation of
diverse CNNs onto high-performance FPGA accelerators,” IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. TCAD, vol. 39, no. 2,
pp. 424437, Feb. 2020.

2069

[91 Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Performance modeling
for CNN inference accelerators on FPGA,” IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. TCAD, vol. 39, no. 4, pp. 843-856,
Apr. 2020.

[10] H.-S. Suh, J. Meng, T. Nguyen, V. Kumar, Y. Cao, and J.-S. Seo,
“Algorithm-hardware co-optimization for energy-efficient drone detec-
tion on resource-constrained FPGA,” ACM Trans. Reconfig. Technol.
Syst., vol. 16, no. 2, pp. 1-25, May 2023.

[11] X. Sun, X. Peng, P. Chen, R. Liu, J. Seo, and S. Yu, “Fully parallel
RRAM synaptic array for implementing binary neural network with (+1,
—1) weights and (41, 0) neurons,” in Proc. 23rd Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2018, pp. 574-579.

[12] D. Fan and S. Angizi, “Energy efficient in-memory binary deep neural
network accelerator with dual-mode SOT-MRAM,” in Proc. IEEE Int.
Conf. Comput. Design (ICCD), 2017, pp. 609-612.

[13] X. Guo et al., “Fast, energy-efficient, robust, and reproducible mixed-
signal neuromorphic classifier based on embedded NOR flash memory
technology,” in Proc. IEEE Int. Electron Devices Meet. (IEDM), 2017,
pp. 6.5.1-6.5.4.

[14] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An architec-
ture for ultralow power binary-weight CNN acceleration,” IEEE Trans.
Comput. Aided Design Integr. Circuits Syst., vol. 37, no. 1, pp. 48-60,
Jan. 2018.

[15] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295-2329, Dec. 2017.

[16] A. Al Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini,
“XNORBIN: A 95 TOp/s/W hardware accelerator for binary convolu-
tional neural networks,” in Proc. IEEE Symp. Low Power High Speed
Chips, 2018, pp. 1-3.

[17] P. C. Knag et al., “A 617 TOPS/W all digital binary neural network
accelerator in 10nm FinFET CMOS,” in Proc. IEEE Symp. VLSI
Circuits, 2020, pp. 1-2.

[18] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst,
“BinarEye: An always-on energy-accuracy-scalable binary CNN proces-
sor with all memory on chip in 28nm CMOS,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), 2018, pp. 1-4.

[19] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid State Circuits, vol. 54, no. 1,
pp. 173-185, Jan. 2019.

[20] S. Ryu et al., “BitBlade: Energy-efficient variable bit-precision hardware
accelerator for quantized neural networks,” IEEE J. Solid State Circuits,
vol. 57, no. 6, pp. 1924-1935, Jun. 2022.

[21] Z. Wang, M. Agung, R. Egawa, R. Suda, and H. Takizawa, “Automatic
hyperparameter tuning of machine learning models under time con-
straints,” in Proc. IEEE Int. Conf. Big Data, 2018, pp. 4967-4973.

[22] Y. Wang, Y. Wang, H. Li, Z. Cai, X. Tang, and Y. Yang, “CNN
hyperparameter optimization based on CNN visualization and perception
hash algorithm,” in Proc. 19th Int. Symp. Distrib. Comput. Appl. Bus.
Eng. Sci. (DCABES), 2020, pp. 78-82.

[23] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), 2017, pp. 5068-5076.

[24] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 6071-6079.

[25] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2016, pp. 4820—4828.

[26] Y. Wang, H. Shen, and D. Duan, “On stabilization of quantized sampled-
data neural-network-based control systems,” [EEE Trans. Cybern.,
vol. 47, no. 10, pp. 3124-3135, Oct. 2017.

[27] J. Yue et al, “143 a 65nm computing-in-memory-based CNN
processor with 2.9-t0-35.8TOPS/W system energy efficiency using
dynamic-sparsity performance-scaling architecture and energy-efficient
inter/intra-macro data reuse,” in Proc. IEEE Int. Solid State Circuits
Conf. (ISSCC), 2020, pp. 234-236.

[28] C. Luo, J. Diao, and C. Chen, “FullReuse: A novel ReRAM-based CNN
accelerator reusing data in multiple levels,” in Proc. IEEE 5th Int. Conf.
Integr. Circuits Microsyst. (ICICM), 2020, pp. 177-183.

[29] E. Ahanonu, M. Marcellin, and A. Bilgin, “Lossless image compression
using reversible integer wavelet transforms and convolutional neural
networks,” in Proc. Data Compress. Conf., 2018, p. 395.

[30] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126-136,
Jan. 2018.

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

2070

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

A. Trusov, E. Limonova, D. Slugin, D. Nikolaev, and V. V. Arlazarov,
“Fast implementation of 4-bit convolutional neural networks for mobile
devices,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), 2020,
pp. 9897-9903.

M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
2021, arXiv:2106.08295.

H. Nakahara, H. Yonekawa, T. Sasao, H. Iwamoto, and M. Motomura,
“A memory-based realization of a binarized deep convolutional neural
network,” in Proc. Int. Conf. Field Program. Technol. (FPT), 2016,
pp. 277-280.

A. Wagle, G. Singh, S. Khatri, and S. Vrudhula, “A novel ASIC
design flow using weight-tunable binary neurons as standard cells,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 7, pp. 2968-2981,
Jul. 2022.

A. Wagle, S. Khatri, and S. Vrudhula, “A configurable BNN ASIC
using a network of programmable threshold logic standard cells,”
in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), 2020,
pp. 433-440.

S. Muroga, Threshold Logic and Its Applications. New York, NY, USA:
Wiley, Inc., 1971.

J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula, “Integration of threshold
logic gate circuit with RROM devices for low power, and robust
operation,” in Proc. IEEE/ACM Int. Symp. Nanoscale Archit., Paris,
France, 2014, pp. 39-44.

N. Kulkarni, J. Yang, J.-S. Seo, and S. Vrudhula, “Reducing power,
leakage and area of standard cell ASICs using threshold logic flipflops,”
IEEE Trans. VLSI, vol. 24, no. 9, pp. 2873-2886, Sep. 2016.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: Using epimor-
phism to map applications on CGRAs,” in Proc. 49th Design Autom.
Conf. (DAC), San Diego, CA, USA, 2012, pp. 1280-1287.

B. Landwehr, P. Marwedel, and R. Domer, OSCAR: Optimum
Simultaneous Scheduling, Allocation and Resource Binding Based on
Integer Programming, Univ. Dortmund, Dortmund, Germany, Sep. 1994,
pp- 90-95.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1-9.

Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid State Circuits (JSSC), vol. 52, no. 1, pp. 127-138,
Jan. 2017.

S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava,
“DMazeRunner: Executing perfectly nested loops on dataflow acceler-
ators,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5, pp. 1-27,
Oct. 2019.

J. Garland and D. Gregg, “Low complexity multiply—accumulate units
for convolutional neural networks with weight-sharing,” ACM Trans.
Archit. Code Optim., vol. 15, no. 3, pp. 1-24, Sep. 2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 525-542.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: Register-
aware application mapping on coarse-grained reconfigurable
architectures (CGRAs),” in Proc. 50st ACM/EDAC/IEEE Design Autom.
Conf. (DAC), 2013, pp. 1-10.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-aware loop
mapping on CGRAS,” in Proc. 51st ACM/EDAC/IEEE Design Autom.
Conf. (DAC), 2014, pp. 1-6.

Y. Chen, Z. Zhao, J. Jiang, G. He, Z. Mao, and W. Sheng, “Reducing
memory access conflicts with loop transformation and data reuse on
coarse-grained reconfigurable architecture,” in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), 2021, pp. 124-129.

M. Canesche et al., “TRAVERSAL: A fast and adaptive graph-based
placement and routing for CGRAs,” IEEE Trans. Comput. Aided Design
Integr. Circuits Syst., vol. 40, no. 8, pp. 1600-1612, Aug. 2021.

M. Balasubramanian and A. Shrivastava, “CRIMSON: Compute-
intensive loop acceleration by randomized iterative modulo scheduling
and optimized mapping on CGRAs,” IEEE Trans. Comput. Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 3300-3310, Nov. 2020.

M. Balasubramanian, S. Dave, A. Shrivastava, and R. Jeyapaul,
“LASER: A hardware/software approach to accelerate complicated loops
on CGRAS,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
2018, pp. 1069-1074.

D. Ku and G. De Micheli, “Relative scheduling under timing con-
straints,” in Proc. 27th ACM/IEEE Design Autom. Conf., New York,
NY, USA, 1991, pp. 59-64. [Online]. Available: https://doi.org/10.1145/
123186.123227

Ankit Wagle (Member, IEEE) received the B.S.
degree in electronics and telecommunication from
the University of Pune, Pune, India, in 2013, and the
M.S. degree in VLSI design from Vellore Institute
of Technology, Vellore, India, in 2015. He is cur-
rently pursuing the Ph.D. degree with Arizona State
University, Tempe, AZ, USA.

He did graduate research internships with Intel,
Bengaluru, India, and Maxlinear, Carlsbad, CA,
USA, in 2015 and 2017, respectively. He worked
with Open-Silicon, Bengaluru, from 2015 to 2016.
His research focuses on creating energy-efficient digital circuits using
threshold-logic gates and designing neural network accelerators.

Gian Singh (Member, IEEE) received the B.Tech.
degree in electronics and communication engi-
neering from the National Institute of Technology
Hamirpur (NIT-H), Hamirpur, India, in 2017. He
is currently pursuing the Ph.D. degree in computer
engineering with Arizona State University, Tempe,
AZ, USA.

He has interned with Maxlinear, Carlsbad, CA,
USA; Qualcomm, San Jose, CA, USA; and Micron,
Boise, ID, USA. He was a Project Associate with
NIT-H for the Government of India’s SMDP-C2SD
Project from 2017 to 2018. His current research focuses on energy-efficient,
high-throughput systems for data-intensive applications using artificial neu-
rons and in-memory architectures.

Sunil Khatri (Senior Member, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Kanpur, Kanpur,
India, in 1987, the M.S. degree in electronics and
communication engineering from The University
of Texas at Austin, Austin, TX, USA, in 1989,
and the Ph.D. degree in electrical engineering
and computer sciences from the University of
California at Berkeley, Berkeley, CA, USA, in
1999.

He is currently a Professor of Electronics and
Communication Engineering with Texas A&M University at College Station,
College Station, TX, USA. He has authored or coauthored more than 250
peer-reviewed publications. Among these papers, five received a best paper
award, while six others received best paper nominations. He has coauthored
nine research monographs and one edited research monograph, three book
chapters, and 13 invited conference papers or workshop papers. He was invited
to serve as a Panelist at a conference seven times and have presented two
conference tutorials. He holds six U.S. patents. His current research interests
include VLSI IC/system-on-a-chip design [including energy-efficient design
of custom ICs and field-programmable gate arrays (FPGAs), radiation- and
variation-tolerant design, and clocking], algorithm acceleration using hardware
(FPGA as well as custom IC based) and software (uniprocessor and GPU
based), and interdisciplinary extensions of these topics to other areas.

Sarma Vrudhula (Life Fellow, IEEE) received the
B.Math. degree from the University of Waterloo,
Waterloo, ON, Canada, in 1976, and the M.S.E.E.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Southern California,
Los Angeles, CA, USA, in 1980 and 1985, respec-
tively.

He is a Professor with the School of Computing
and Al, Arizona State University, Tempe, AZ, USA,
and the Director of the NSF I/UCRC for Intelligent,
Distributed, Embedded Applications and Systems
which was established in 2023. His work spans several areas in design
automation and computer-aided design for digital integrated circuit and
systems, focusing on low-power circuit design, and energy management
of circuits and systems. His specific topics include energy optimization of
battery-powered computing systems, including smartphones, wireless sensor
networks and IoT systems that rely on energy harvesting; system-level
dynamic power and thermal management of multicore processors and system
on chip; statistical methods for the analysis of process variations; statistical
optimization of performance, power, and leakage; new circuit architectures
of threshold-logic circuits for the design of ASICs and FPGAs, and HW
accelerators for AI/ML applications.

Authorized licensed use limited to: Arizona State University. Downloaded on July 07,2024 at 20:52:11 UTC from IEEE Xplore. Restrictions apply.

