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Analog circuit optimization and design presents a unique set of challenges in the IC design process. Many

applications require the designer to optimize for multiple competing objectives, which poses a crucial

challenge. Motivated by these practical aspects, we propose a novel method to tackle multi-objective

optimization for analog circuit design in continuous action spaces. In particular, we propose to (i) extrapolate

current techniques in Multi-Objective Reinforcement Learning to continuous state and action spaces and

(ii) provide for a dynamically tunable trained model to query user defined preferences in multi-objective

optimization in the analog circuit design context.
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1 INTRODUCTION

In recent years, innovations in the field of circuit design and embedded systems have led to
rapid development of analog and digital IC design. With growing demand, it is the need of the
hour to employ automated design technologies for the optimization of analog ICs in particular.
In traditional IC design, human experts tune circuit parameters to ensure optimal functionality.
However, the sheer number of design parameters coupled with complex device characteristics
makes human design very laborious and time intensive. Additionally, in practical scenarios,
where multiple objectives need to be optimized, the problem becomes even more challenging as
the optimization process needs to be aware of the tradeoffs in the objectives.
In this work, we focus on analog design while optimizing the circuit performance for not just

a single objective but for multiple objectives that may often have competing relationships. Due to
the nature of complementary relations among different objectives in complex circuits, it becomes
challenging to apply simple black-box optimization techniques. Although analytical methods
exist, it becomes intractable to solve them for high-dimensional systems like analog circuits.
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Motivated by the increased relevance of applying data-driven models to solve analog design, we
propose a reinforcement learning– (RL) based reusable agent as a solution to optimize for
multiple objectives in higher dimensions. We demonstrate the effectiveness of using RL over other
methods in multi-objective optimization (MOO). In MOO, due to the presence of tradeoffs
between multiple objectives, there exists no single, unique optimal solution. However, a set of
optimal design points exists as a solution. This set of optimal solutions is called the Pareto set.
The aim is therefore to find the Pareto set as quickly as possible through the optimization process.

2 RELATEDWORK

2.1 Evolutionary Algorithms

In the past, some works have studied the methods of generating the Pareto set by both analytical
and data-driven methods. Analytical methods, [4], use line search approaches that depend
on gradient information to find the Pareto set. However, increasing the dimensionality of the
objective space limits an analytically solvable solution to the line search. Another popular method
used is NSGA-II [3], which utilizes a genetic algorithm approach. This algorithm introduces a
fast approach to find the dominance depth of each sample point in the population. After sampling
an initial population of the design space, the genetic algorithm searches the design space using
crossover and mutations. There is a fixed budget on the number of function evaluations, and the
algorithm ends as this budget is reached. By carefully adjusting the crossover and mutations, the
algorithm is able to achieve exploration of the state space.

2.2 Bayesian Optimization

Reference [15] utilizes Gaussian Processes and the Bayesian framework to query for points in
the design space. Here, Pareto set generation is accomplished by iterative search and dominance
depth assignment to the points sampled. The work in Reference [9] employs search over the
objective space by using a combination of genetic algorithm and Bayesian optimization. The
Gaussian process regression framework is used to provide a surrogate model that is then used for
pre-selecting Pareto dominant points using genetic algorithms. However, Reference [6] proposes
analog circuit sizing in two phases, alternating between Bayesian optimization and evolutionary
Pareto front search using similar approaches to Reference [9] while introducing constraints on
performance specifications and parasitics. Yet another work that uses Bayesian optimization for
multi-objective optimization is Reference [14]. The authors of Reference [14] propose to reduce
the time complexity of matrix inversion from O(n3) to O(n2) using an incremental learning
technique and uses a modified acquisition function matrix suited for multi-objective optimization.
Reference [13] use similar self-adaptive incremental learning techniques to Reference [14] to use
surrogate approximators for pre-selection of valid Pareto optima; design points for evolutionary
algorithms to simulate. Reference [7] also use Bayesian optimization for LDE aware analog circuit
sizing. Our proposed method is based on complete neural network implementations. The time
complexity of operation of our method is independent of the number of samples collected unlike
any of the Bayesian optimization-based approaches, which makes our method a lightweight
optimization engine. Second, the predictive ability of the proposed method to generate new
Pareto optimal points along a user specified preference direction during inference time makes our
method tunable to specific user preferences during test time.

2.3 Reinforcement Learning

Reinforcement learning recently has been used in single-objective optimization or composite
multi-objective optimization in circuit design in References [2, 8, 10, 11]. These works pre-
dominantly use off-policy RL algorithms under continuous action spaces. However, they do
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not consider different tradeoffs in design objectives to form a Pareto set. Another work that
closely resembles our work is Reference [5]. Reference [5] proposes to perform single-objective
optimization using a set of static weights to weight each objective and use this as a reward
function in the reinforcement learning framework. However, this approach does not explicitly
capture tradeoffs between different objectives in the optimization process. Thus our work is
different from Reference [5] on three main algorithmic fronts.
(i) We use vectorized rewards instead of scalar rewards to specify the exact values of the objec-

tives being optimized (rewards are not scalarized—for example α1.Gain + α2.UGF ). (ii) We have a
dynamically changing preference direction to weight the objectives. This is unlike fixed weights
that Reference [5] uses. This dynamically changing preference direction G is used to find the Pareto
optimal points on the Pareto front, which is a capability not explored by Reference [5]. (iii) We
propose a vectorized version of the DDPG algorithm where the Q-function is itself vectorized to
perform multi-objective optimization. This is unlike Reference [5] whereQ values are scalars and
do not consider tradeoffs between multiple objectives.
In the field of multi-objective RL (MORL) in general, the work in Reference [12] introduces

methods to query for the Pareto set. But these approaches in MORL, deal with scenarios where
the actions are discrete and countably few. For analog circuit sizing, although sizing solutions
are typically on a grid, the number of possible values on the grid might be many in number and
can be thought of as continuous. While using MORL for such problems, it calls for designing RL
algorithms that operate with continuous actions instead of just discrete ones.

3 OUR CONTRIBUTIONS

In our work, we extend RL to optimize for multiple objectives in cases where actions(incremental
sizing changes) are continuous valued and build a tradeoff-aware RL agent. We also demonstrate
why RL-based approaches to Pareto optimization of analog circuits in particular, can have potential
benefits over other data-driven methods like genetic algorithms and Bayesian Optimization. The
key contributions of this work are as follows:

(1) We propose a sample-efficient and easy-to-train MORL algorithm to form a well-
approximated Pareto set of the analog circuit, where the actions of the RL agent (fine-tuned
sizing solutions) are continuous valued.

(2) Next, we use the predictive power of the trained RL agent to demonstrate that the RL agent
supports querying the analog circuit for user-defined/custom preferences among objectives
for which to optimize. Our work presents a model to query for unseen design points in the
training process, based on the designer’s choice, and helps augment the current Pareto set.

(3) We demonstrate, through extensive experiments, the effectiveness of using the proposed
RL algorithm for black-box multi-objective analog circuit optimization. We illustrate
the performance improvements of our algorithm over previous methods like NSGA-II,
Bayesian Optimization (BO), and Monte Carlo sampling. We provide a schematic flow of
the proposed algorithm in Figure 1.

4 MULTI-OBJECTIVE OPTIMIZATION VIA REINFORCEMENT LEARNING

4.1 Problem Formulation

The goal in multi-objective optimization is to find a set of optimal solutions—the Pareto set. The
solutions of the Pareto set do not dominate any other solution in the same set. A point s1 dominates
another point s2 if ∀i ∈ {1, 2, . . .m}, fi (s1) ≥ fi (s2), and ∃j ∈ {1, 2, . . . ,m} such that fj (s1) > fi (s2).
Thus, we say (s1 � s2). With the notion of dominance established, we want to find all the points
{s} that are not dominated by any other point. The set of these points is called the Pareto set S.
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Fig. 1. Flow Diagram illustrating our algorithm for Multi-objective Optimization using reinforcement

learning.

Let us say that we are optimizing for multiple objectives given as

F (s) = [f1(s), f2(s), . . . , fm(s)]
T, (1)

where s ∈ S ⊂ RD andm is the number of objectives to be optimized and D is the dimensionality
of the design space. Considering a maximization objective, our aim is to find

max
s⊂RD

F (s). (2)

The set of solutions s ∈ S, for the above equation belongs to the Pareto set and the resulting
metric or figure of merit (FOM) values F , constitutes the Pareto front P.
Next we briefly introduce some important concepts used in this work.

4.2 Goal Vector and Multi-Goal Reinforcement Learning Setup

To apply reinforcement learning to solvemulti-objective optimization problems, we need to specify
the internals of the RL agent. Keeping in mind the necessity to optimize form objectives, we define
the concept of a goal vector defined as

G = [д1,д2,д3, . . . ,дm]
T, (3)

where [дi ]
m
i=1 is the preference or the weight associated with each objective to be optimized. The

realization of the goal vector G ∈ G, is such that G ⊆ {0, 1}m and

m∑
i=1

дi = 1, (4)

where i = [1, 2, . . .m].
Thus, the goal vector specifies the designer’s intent to trade off among multiple competing

objective values and specifies the direction of the search in the m-dimensional objective space.
We next look at how the goal vector is included in the reinforcement learning flow. We first
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define the notion of the state vector s, which specifies the sizing solutions for the analog
circuit,

s =
[
. . . ,Wi , . . . ,Lj , . . .

]T
, (5)

whereW and L stand for the width and length of transistors respectively. We enforce the state
space to be bounded within a certain normalized range, i.e., constrain each entry of the state vector
a < si < b to adhere to the operating technology. We illustrate this in Figure 1 in the constraint-
checker module.
To integrate the goal vector into the RL state, we simply concatenate the goal vector with the s

and define it as the goal-state of the system sG ,

sG =
[
. . . ,Wi , . . . ,Lj , . . . ,G

]T
. (6)

The goal-state of the system specifies the current sizing solution in addition to also giving in-
formation about the designer’s intent or preference G. The goal-state can be thought of as an
extension to the state space. The same sizing solution s could differ, based on the specified goal
state G, in the state space according to designer’s preference.
We define the action a, taken by the policy network of the RL agent, as the incremental change

in the sizing solutions of the state vector s. Actions are sampled from the set of actions A that
consist of continuous values. Although sizing in analog circuits is on a grid, the precision change
in the sizing (δLi ,δWi - lengths and widths) can be thought of as continuous valued. This is also
similar to the modelling choice chosen by Reference [2] for the definition of actions,

a = [. . . ,δWi , . . . ,δLi , . . .]
T . (7)

Unlike the traditional RL framework, the reward in our work also targets at multi-objective op-
timization and thus is alsom-dimensional. The reward vector has the same dimensionality as the
number of objectives being maximized. The reward can be any of the FOM of the circuit perfor-
mance that are competing. These FOMs are normalized between certain ranges, usually between
0 and +1,

r (s,a) ∈ {0, 1}m . (8)

4.3 The Bellman Operator for Multi Objective Reinforcement Learning

In Q-learning, the Q value is a measure of goodness of a given state–action pair (s,a). The agent
updates its estimate of this goodness through the Bellman equation given as

Q(s,a) = r (s,a) + max
a′ ∈A

γ .Q(s′,a′), (9)

where r (.) is the reward and s
′ and a′ indicate the next state and action seen in the RL trajectory.

As indicated in the work in Reference [12], we see that the Q function, in the multi-objective
setting, unlike single-objective optimization, is alsom dimensional. The Q value is a measure of
goodness of a given goal-state–action pair (sG ,a). The inputs to the Q network are the goal-state
sG and the action a. The Bellman operator in the multi-objective setting is given by

TQ(s,G,a) = r (s,a) + γEs′∼P (. |s,a)[H[Q(s′,G)]], (10)

where the filterH is called the Bellman optimality filter and P(· | s,a) is the transition probability
and s

′ is the next state seen in the RL trajectory,

H[Q(s′,G)] = arg
Q

sup
G′ ∈G,a∈A

G
T ·Q(s,G ′,a). (11)

The optimality filter provides (argQ ), theQ value that maximizes the dot productGT ·Q(s,G ′,a).
In other words, it finds theQ value in alignment with the preferenceG. In the single-objective case,
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Fig. 2. Starting at sizing solution s1, and for each preference G1, the Q value update happens such that we

search for a vector Q at the next sizing solution s
′, action a′ = μ(s′,G), and preference G′ = Ω(s′,G) that

maximizes the dot product in Equation (12). The figure above shows all possible values of a′ and G
′. Each

circle represents Q value for the action specified by the arrow and the goal-state specified within the circle.

this just reduces to finding the Q value for the best action, i.e., maxa′ ∈AQ(s,a
′). Thus, Equation

(11) is a general form of the single-objective case. The authors of Reference [12] elucidate that
the optimality operator T is a γ -contraction under a certain distance metric. The authors prove
through the Banach fixed point theorem that the operator T has a fixed point, meaning that
repeated application of the operator on the multi-objective Q function leads to convergence of
the Q function. Figure 2 gives a visual intuition of the Q updates.

5 MULTI-OBJECTIVE REINFORCEMENT LEARNING FOR CONTINUOUS SIZING

SOLUTIONS IN ANALOG CIRCUITS

With the background of the multi-dimensional Bellman update explained, let us consider that
we plan to optimize form objectives in a black-box system, allm of which may have competing
relations. This means that optimizing for a set of objectives automatically compromises others.
Each of them dimensions of the Q network ascertain the goodness of taking an action a for the
respective objective being maximized.
To find the Pareto front P for the analog circuit, we need to find the preferenceG′ and the action

a, which maximize (11). In a discrete action setting, we know that, the optimality filter is given as
in Equation (11). However, in the case where we have continuous actions, it makes Equation (11)
intractable and we cannot manually search for all these sizing solutions and preferences.
We propose to solve this by using two different policy networks that approximate the optimal

Q value update as follows:

H[Q(s′,G)] ≈ arg
Q

G
T ·Q[s,Ω(s,G,ω), μ(s,G,ϕ)]. (12)

The two different networks we use for the purpose of multi-objective optimization are the actor
policy network μ(.) and the preference policy network Ω(.).
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5.1 Actor Policy

We propose an actor network that is a parameterized network that approximates the best action
to take, given the current sizing solution s and the designer’s preference G. In other words, the
actor policy actively tries to push the next query sizing solution s

′ in the direction of optimizing
the objectives according to the designer’s preference G. The actor policy is parameterized by ϕ,

Policyactor = μ(.|s,G,ϕ). (13)

5.2 Preference Policy

For a given preference levelG specified by the user, the preference policy suggests themost optimal
goal-state that needs to be prescribed to maximize the dot productQ network output and the user
preference G. Both the preference policy and the actor policy are part of the optimality filter H .
The preference policy is parameterized by ω,

Policypref erence = Ω(.|s,G,ω). (14)

The preference policy and the actor policy networks suggest the optimal search direction and
the incremental change in sizing so that the Q value vector is aligned with the user preference G.
Next, we look at how the RL agent is trained.

5.3 Training Phase

The training phase entails the convergence of the critic, actor, and the preference networks in
accordance with the Bellman optimality filter. The estimated value that the current critic needs to
converge to, for a goal-state–action pair (sG ,a), is as follows:

Qest(s,G,a) = r (s,a) + γQ[s
′,Ω(s′,G,ω), μ(s′,G,ϕ)]. (15)

We define the critic loss as a distanceminimization on a distance operatorD between the current
Q vector and the estimated Qest vector,

Losscr it ic = D[Q(s,G,a),Qest(s,G,a)]. (16)

We used D as a L2 norm of the Q vector value difference, i.e., D(Q,Qest ) = | |Q − Qest | |
2
2 . The

policy to drive the right actions and preferences is trained by maximizing the critic’s output for a
given preference level G as shown in Equation (12),

Losspolicy = G
T ·Q[s,Ω(s,G,ω), μ(s,G,ϕ)]. (17)

The policy loss can be seen as driving the actor and preference policies to output values that
drive the Q function to align with the given preference G. The samples collected through the
training process reflect the RL agent’s ability to intelligently explore different regions of the design
space (space of sizing solutions), while being aware of the tradeoffs in the objectives it tries to
optimize for. When new objective values are received through training, we collect them and pass
them through a Pareto front identifying filter function, which takes all data points (composed of
objective values) F = { f1, f2, . . . , fm} and outputs a Pareto front. The resulting Pareto Front is the
result of training the agent and comprises a certain number of points in it. Note that the set of
these Pareto front points is static, meaning that they are a fixed set of points that are identified
during the training phase,

P = PF
(
{Ft }

T
t=0

)
, (18)

where T is the number of training steps. We show the training procedure for continuous Pareto
optimization for analog circuits in Algorithm 1.
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ALGORITHM 1: Pareto Optimization in Analog Circuits Using Reinforcement Learning: Training

Phase

Input :Objectives to optimize for { f1, f2 . . . fm }

Output :Pareto Front P; Pareto Set S; Trained Model M(θ ,ϕ,ω).
1 Initialize Pareto Front P = Ø and Pareto Set S = Ø or use hybrid approach to initialize.

2 Initialize Critic Qθ , Actor μϕ , Preference network Ωω

3 for k ← 1 to N do

4 Sample s0 randomly or from S

5 Sample preference Gk ∈ G.

6 for t ← 1 to L do

7 Select action at ← μ(st ,Gk ,ϕ);

8 Observe the new state st+1 ← st + at ;

9 Collect vector reward rt = r (st ,at ) ⊆ R
m ;

10 Store transition (st ,at , rt , st+1) in replay buffer R;

11 Update P = PF(P, {rt});

12 Update S with states in P;

13 Sample a batch of B transitions (si ,ai , ri , si+1) from replay buffer R;

14 Assign preference for transition i as {Gz }
Z
z=1;

15 Compute critic loss Losscr it ic =
1
B .

1
Z

∑
i
∑
z D[Q(si ,Gz ,ai ),Qest(si ,Gz ,ai )];

16 Compute Policy Loss Losspolicy =
1
B .

1
Z

∑
i
∑
z G

T
z .Q[si ,Ω(si ,Gz ,ω), μ(si ,Gz ,ϕ)];

17 Update network parameters:

18 Critic:- θ : θ − ∇θ Losscr it ic
19 Actor:- ϕ : ϕ − ∇ϕLosspolicy
20 Preference:- ω : ω − ∇ωLosspolicy
21 end

22 end

23 return P, S,M(θ ,ϕ,ω)

5.4 Inference Phase

The RL approach to Pareto optimization uses neural networks as function approximators to predict
the next action to take given a sizing solution. This way, the trained RL agent has an in-built
knowledge of the state transition from one sizing solution to the next, in the circuit simulator. We
can thereby exploit the trained agent to query for different user preferences GU and augment the
points on the Pareto front P generated during training. This has the benefit of adding additional
points on the Pareto front that are not seen during training.
We know that the actor policy network takes into account the designer’s preference G along

with the state s, i.e., μ(s,G,ϕ). The trick here is to initialize any random state s along with the
designer’s particular preference GU and let the trained RL agent act according to its actor policy
for a few steps. The policy forces the RL agent to take steps in the direction of the preference
vector GU. Thus, this trained model approach can dynamically output design points according to
the designer’s preference by exploiting the predictive power of the RL agent. We demonstrate this
in Algorithm 2.

5.5 Mini-Batch Optimization

To update the critic, actor and the preference losses, we use mini-batch optimization. The mini-
batch is sampled from the replay buffer. The batch size is set as B. Also, for each entry in the batch,
we randomly sample Z preference directionsGZ . The losses are averaged over the preferencesGZ
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ALGORITHM 2: Pareto Optimization in Analog Circuits Using Reinforcement Learning: Inference

Phase.

Input :Pareto Front P ; Pareto Set S ; Trained Model M(θ ,ϕ,ω).
Output :Updated Pareto Front Pupdated

1 Set Designer’s custom linear preference GU

2 Pupdated = P

3 for sk in S do

4 Initialize sk,0
5 for t ← 1 to L do

6 Select action at ← μ(sk,t ,GU,ϕ);

7 Observe the new state sk,t+1 ← sk,t + ak,t ;

8 Collect reward rk,t = r (sk,t ,ak,t );

9 Update Pupdated = PF(Pupdated, {rk, t});

10 end

11 end

12 return Pupdated

first, for each entry in the batch and then over all B entries. We show the RL algorithm flow in
Figure 1.

6 EXPERIMENTAL RESULTS

Having explained our method in the previous sections, we now look at how we demonstrate the
effectiveness of our results. We experiment with three circuits. The circuit simulator used was
the Synopsys HSpice Circuit simulator. The circuits were designed under a commercial 90-nm
technology. We run our experiments on two different nodes. The circuit simulator was run on
an Intel Core i5-6500 CPU with a clock speed of 3.2 GHz. The tensor computations to update
the RL agent networks were run on a Nvidia GeForce RTX 3090 GPU to speed up computations
with a 24-GB RAM. We primarily concern ourselves with optimizing the gain and the bandwidth.
These two metrics are competing in the sense that trying to maximize the gain automatically
compromises the maximization of bandwidth and vice versa. These metrics are normalized
in the range of [0,1]. The metrics that we use to compare the quality of Pareto fronts are the
hypervolume and the fractional contribution, both of which are explained in the next subsection.
We used the Python package PyGMO [1] to calculate the hypervolumes.

6.1 Metrics Used

• The hypervolume HV , a metric used in works like Reference [9], is the discretized volume
between the finite number of points on the approximated Pareto Front and a reference
point in m-dimensional space. Since, we are interested in maximizing the objectives, the
best Pareto front is the Pareto front for which the hypervolume is minimum. We abbreviate
the hypervolume as HV . We provide a brief explanation of why the proposed algorithm
helps in decreasing theHV . Consider, for a two-objective problem, the scalarized objective
of the form of α f1 + (1 − α)f2. This scalarized objective is maximized when the preference
vector [α , 1 − α] is in perfect alignment with the multi-objective reward [f1, f2]. Next,
we note that any [f ′1 , f

′
2 ] that aligns with [α , 1 − α] maximizes the scalarized objective

α f ′1 + (1 − α)f ′2 better if f ′1 > f1; f
′
2 > f2, i.e., when [f ′1 , f

′
2 ] dominates [f1, f2]. Since

we know that hypervolume calculated with Pareto dominant points will be the least, the
scalarized objective approach that we propose still tends to increase the hypervolume by
actively searching for Pareto dominant design points.
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Fig. 3. The two-stage differential amplifier schematic.

Fig. 4. The generated Pareto Fronts. The gain and the bandwidth are maximized (they form a competing

pair of objectives).

• The fractional contribution FC, is a we propose. It gives the fraction of points contributed
by the Pareto front A, to the final Pareto front formed by combining the two Pareto fronts
A and B. Thus, we have the relation that FC(A,B) = 1 − FC(B,A). If FC(A,B) > 0.5,
then it means that the Pareto front A is the major contributor to the resultant front of A
and B. This metric serves to also quantify the quality of the front A in comparison with B.

Two-stage Differential Amplifier

The two-stage differential amplifier is shown in Figure 3. The circuit consists of a 14-parameter
search space, which includes sizing solutions of the circuits along with the resistor and capacitor
values.

As can be seen in Figure 4(a), our RL method during training (RL-train), visually generates a
Pareto front of a superior quality in comparison with NSGA-II, BO, and Monte Carlo sampling.
Table 1, enlists the hypervolume along with the number of samples and the runtime for each
algorithm. First, we see that RL-train shows the least hypervolume and thus performs better than
all the three reference methods. Next, we see that Monte Carlo and BO take almost 6× the data
consumed by RL-train but produce a Pareto front with a larger hypervolume that can also be
visually inspected in Figure 4(a). Furthermore, due to the sample efficiency, simulation time is
greatly reduced. A drawback of BO is that it has a complexity of O(N 3) and is thus very slow. We
believe that our RL-train method performs better than NSGA-II due to the fact that the RL agent
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Table 1. Hypervolume Comparison of the Pareto Fronts for the

Differential Amplifier

Method HV No. of samples Simulation Time

Monte Carlo 0.83 15,000 ∼4 hr
NSGA-II 0.67 2,500 ∼1 hr

BO 0.64 15,000 ∼10 hr
RL-train 0.62 2,500 ∼1 hr

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Table 2. The Fractional Contribution between All Pairs of

Methods for the Differential Amplifier

FC RL-train NSGA-II BO Monte Carlo

RL-train — 0.6 0.76 1.0

NSGA-II 0.4 — 0.81 0.98
BO 0.24 0.19 — 1.0

Monte Carlo 0.0 0.02 0.0 —

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Fig. 5. The folded-cascode amplifier schematic.

understands how sizing affects both the gain and the bandwidth due to the predictive power of
the Q network.
In Table 2, the first row demonstrates the fraction of points contributed by the Pareto front

A = RL-train when combined with Pareto fronts B = NSGA-II, BO, and Monte Carlo. As can be
seen RL-train has FC values greater than 0.5 for all the three comparison methods, which means
that RL-train is the dominant contributor to the combination Pareto front.

Folded Cascode Amplifier

We next experiment with the folded cascode amplifier. The amplifier has 18 parameters in its
search space. As seen in Table 3 the RL-train has the least hypervolume among all three methods
and thus has a better quality Pareto front. It also consumes the least amount of data and has the
least simulation time. Table 4 indicates again that the RL-train is a dominant contributor to the
combination Pareto fronts.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 2, Article 37. Publication date: February 2024.



37:12 K. S. NS and P. Li

Table 3. Hypervolume Comparison of the Pareto Fronts for the

Folded Cascode Amplifier

Method HV No. of samples Simulation Time

Monte Carlo 0.30 15,000 ∼4 hr
NSGA-II 0.25 2,500 ∼1 hr

BO 0.32 15,000 ∼10 hr
RL-train 0.26 2,500 ∼1 hr

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Table 4. The Fractional Contribution between All Pairs of

Methods for the Folded Cascode Amplifier

FC RL-train NSGA-II BO Monte Carlo

RL-train — 0.55 0.79 0.97

NSGA-II 0.45 — 0.71 0.94
BO 0.21 0.29 — 0.7

Monte Carlo 0.03 0.06 0.3 —

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Fig. 6. The hysteresis comparator schematic.

Hysteresis Comparator

The hysteresis comparator has a 12-parameter design space and presents a more complex Pareto
front. However, it can be seen that the RL-train method we propose is able to find a better Pareto
front. As in the other circuits, we see the best hypervolume and also a best fractional contribution
by RL-train.

6.2 Inference Phase

As mentioned before, we can use the predictive power of the trained RL agent to verify if more
points can be populated on the Pareto front. To do so, we sweep through the possible values of
user preferences GU monotonically for some random state initialization near the current Pareto
front P. We record the number of time steps required to reach a solution point that dominates
points in the current Pareto front P. We do this over N state initializations and note how efficient
the search process is, in finding the dominating Pareto front point. We limit the number of steps in
each RL run (as in Algorithm 2) in inference to L = 10. We define xU ,i to be the minimum number
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Table 5. Hypervolume Comparison of the Pareto Fronts for the

Hysteresis Comparator

Method HV No. of samples Simulation Time

Monte Carlo 1.91 15,000 ∼4 hr
NSGA-II 1.76 5,000 ∼2 hr

BO 1.66 15,000 ∼10 hr
RL-train 1.60 5,000 ∼2 hr

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Table 6. The Fractional Contribution between All Pairs of

Methods for the Hysteresis Comparator

FC RL-train NSGA-II BO Monte Carlo

RL-train — 0.61 0.9 1.0

NSGA-II 0.39 — 0.83 1.0
BO 0.1 0.17 — 0.91

Monte Carlo 0.0 0.0 0.09 —

Bold text in the tables indicates the best performance metrics across

different methods for multi-objective optimization.

Table 7. The Efficiency

Comparison of the Trained Models

for Different Circuits

Circuit η
Two-stage Diff Amp. 100%
Folded Cascode Amp. 98%
Hysteresis Comp. 91%

of steps taken to reach a Pareto-dominant point over all sweeps GU for a given state initialization
i . The new Pareto point prediction capability of the trained agent is high if xU ,i → 0. In short we
define the efficiency of the trained agent as

η =
1

N

N∑
i=1

[
1 −

xU ,i

L

]
. (19)

From Table 7, all the trained models exhibit good prediction capabilities for the dynamic user
preference GU , which demonstrates that the trained RL agent can be saved to query for Pareto
front points not seen during training.

7 CONCLUSION AND DISCUSSIONS

In our work, we propose a RL algorithm for Pareto optimization tailored for analog circuit design.
Our method is (1) sample efficient and (2) shows competing performances with standard reference
genetic algorithms like NSGA-II and also with BO. (3) Furthermore, the saved RL agent can be
used for augmenting the Pareto front obtained during training. Our experimental results illustrate
the efficiency of the proposed methods that outperform all the reference methods and suggest a
promising direction for Pareto optimization in analog circuits.
By leveraging the capabilities of reinforcement learning in combination with deep neural

networks, we anticipate that our approach can effectively adapt to circuits with an expanded
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set of design parameters. However, our method involves the utilization of preference direction
sampling to construct the Pareto front. As the number of objectives increases, covering all
potential preference directions may prove to be challenging. We plan to address such questions
as part of our future research efforts.
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