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Abstract—We consider the problem of spatial channel covari-
ance matrix (CCM) estimation for intelligent reflecting surface
(IRS)-assisted millimeter wave (mmWave) communication sys-
tems. Spatial CCM is essential for two-timescale beamforming
in IRS-assisted systems; however, estimating the spatial CCM
is challenging due to the passive nature of reflecting elements
and the large size of the CCM resulting from massive reflecting
elements of the IRS. In this paper, we propose a CCM estimation
method by exploiting the low-rankness as well as the positive
semi-definite (PSD) 3-level Toeplitz structure of the CCM. Esti-
mation of the CCM is formulated as a semidefinite programming
(SDP) problem and an alternating direction method of multipliers
(ADMM) algorithm is developed. Our analysis shows that the
proposed method is theoretically guaranteed to attain a reliable
CCM estimate with a sample complexity much smaller than the
dimension of the CCM. Thus the proposed method can help
achieve a significant training overhead reduction. Simulation
results are presented to illustrate the effectiveness of our proposed
method and the performance of two-timescale beamforming
scheme based on the estimated CCM.

Index Terms—Intelligent reflecting surface, millimeter wave
communications, spatial channel covariance estimation.

I. INTRODUCTION
Millimeter Wave (mmWave) communication is considered

as a promising technology for future cellular networks due to
its potential to offer gigabits-per-second communication data
rates [1]. Nevertheless, due to the small wavelength, mmWave
signals have limited diffraction and scattering abilities. As a
result, mmWave communications are vulnerable to blockage
events, which can be frequent in indoor and dense urban envi-
ronments. Intelligent reflecting surface (IRS) has been recently
introduced as a cost-effective and energy-efficient solution to
address the blockage issue for mmWave communications [2].
The IRS, also referred to as reconfigurable intelligent sur-
face (RIS), is a planar array made of a newly developed
metamaterial. It comprises a large number of reconfigurable

Hongwei Wang, and Jun Fang are with the National Key Laboratory
of Science and Technology on Communications, University of Electronic
Science and Technology of China, Chengdu 611731, China, Email: Jun-
Fang@uestc.edu.cn
Huiping Duan is with the School of Information and Communications

Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China, Email: huipingduan@uestc.edu.cn
Hongbin Li is with the Department of Electrical and Computer Engineering,

Stevens Institute of Technology, Hoboken, NJ 07030, USA, E-mail: Hong-
bin.Li@stevens.edu
This work was supported in part by the National Science Foundation of

China under Grant 61829103. The work of H. Li was supported in part by
the National Science Foundation under Grants ECCS-1923739 and ECCS-
2212940.

passive elements, each of which can independently reflect the
incident signal with a reconfigurable phase shift. By properly
adjusting the phase shifts of the passive elements, IRS can help
realize a programmable and desirable wireless propagation
environment [3]–[5].
Channel state information (CSI) acquisition is a pre-

requisite to achieve the full potential of IRS-assisted mmWave
systems. There have been a plethora of studies on how to ac-
quire the instantaneous CSI (I-CSI) for IRS-assisted mmWave
systems. Specifically, to reduce the training overhead, some
works exploited the inherent sparsity of mmWave channels
and developed compressed sensing-based methods to estimate
the cascade channel [6]–[8]. Other works, e.g., [9]–[11], devel-
oped tensor decomposition-based channel estimation methods
by utilizing some intrinsic multi-dimensional structure of
cascade channels. Despite these efforts, system optimization
based on I-CSI is still considered as a formidable task due
to the following difficulties. First, the coherence time of
mmWave channels is drastically shorter than that of sub-6GHz
channels. This implies that channel estimation and system
optimization (i.e. joint active/passive beamforming) should be
performed more frequently, which entails a significant amount
of training overhead and tremendous computational resources.
Second, system optimization based on I-CSI requires frequent
transmissions of control signals from the base station (BS) to
the IRS, which involves a considerable amount of signalling
overhead.
To address the above difficulties, some attempts have been

made by exploiting channel statistics for joint active and
passive beamforming, e.g., [12]–[19]. Specifically, in [15], a
two-timescale beamforming protocol was proposed for IRS-
assisted systems, where the reflecting coefficients at the IRS
are designed according to the long-term (i.e., statistical) CSI,
and the transmit beamforming matrix is devised based on
the instantaneous equivalent channel in a short-term scale. In
addition, a model-driven particle swarm optimization scheme
was proposed in [19] for two timescale beamforming based
on the statistical CSI. Statistical CSI, usually characterized by
the spatial CCM, is essential for two-timescale beamforming
in IRS-assisted systems. Obtaining the spatial CCM, however,
is challenging due to the passive nature of reflecting elements
and the large size of the CCM resulting from massive reflecting
elements of the IRS. To our best knowledge, how to estimate
the spatial CCM for IRS-assisted mmWave systems has not
been reported before. Although there are some works on CCM
estimation for conventional mmWave systems, e.g., [20]–[22],
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these methods cannot be straightforwardly extended to the
IRS-aided systems.
In this paper, we propose a CCM estimation method for

IRS-assisted mmWave systems. The proposed method exploits
the low-rankness as well as the positive semi-definite (PSD)
3-level Toeplitz structure of the CCM, and is theoretically
guaranteed to attain a reliable CCM estimate with a sample
complexity much smaller than the dimension of the CCM.
Particularly, our work has the following contributions:

1) Due to the passive nature of the IRS, it is almost
impossible to obtain the CCM for the BS-IRS link and
the IRS-user link. The first contribution of this work is to
show that the knowledge of the cascade channel’s CCM
can be utilized to perform long-term beamforming (i.e.,
optimization of reflection coefficients) for both single-
user and multi-user scenarios.

2) The second contribution of this paper is to formulate the
CCM estimation problem as a semidefinite programming
(SDP) problem by exploiting the low-rank and Toeplitz
structures of the CCM. We also develop an alternating
direction method of multipliers (ADMM) algorithm for
CCM estimation. Although ADMM has a standard pro-
cedure, how to efficiently solve some of its subproblems
is non-trivial.

3) We provide a theoretical analysis of the proposed CCM
estimation method, which shows that a significant over-
head reduction can be achieved by exploiting the low-
rank structure of the CCM. Our analysis generalizes the
partial observation model [23] to an arbitrarily linear
compression model. The generalized result is more use-
ful for CCM estimation in practical mmWave systems,
where, due to the hybrid analog-and-digital structure,
direct access to the entries of the sample CCM is usually
unavailable.

The rest of the paper is organized as follows. Section II
discusses the system model, channel model, and the motivation
of the work. Details about the downlink training and the
received signal model are presented in Section III. Section
IV proposes an ADMM-based algorithm for CCM estimation.
Performance of the proposed CCM estimation method is
analyzed in Section V. Section VI discusses how to perform
two-timescale beamforming based on the estimated CCM.
Simulation results are provided in Section VII, followed by
concluding remarks in Section VIII.
Notations: Italic letters denote scalars. Boldface lowercase

and uppercase denote the vectors and matrices, respectively.
Superscripts (·)∗, (·)T and (·)H denote conjugate, transpose,
and conjugate transpose, respectively. E(·) is the expectation
operator and j =

√
−1. vec(·) is the vectorization operation,

which stacks the columns of a matrix on top of each other.
A < B means A − B is a positive semidefinite matrix.
The transposed Khatri-Rho, Hadamard and Kronecker product
are denoted by •, ◦, and ⊗ respectively. CN(µ, σ2) means
a circularly symmetric complex Gaussian distribution with
mean µ and variance σ2. N(µ, σ2) denotes a real Gaussian
distribution with mean µ and variance σ2. CN×M represents
the complex space with N ×M dimension.

II. MODELS AND MOTIVATIONS

A. System Model
We consider a point-to-point IRS-aided mmWave commu-

nication system, where an IRS is deployed to assist data
transmission from the base station (BS) to an omnidirectional-
antenna user. The BS is equipped with a uniform linear
array with N antennas. The IRS is a uniform planar array
consisting ofM = Mv×Mh passive reflecting elements. Each
element can independently reflect the incident signal with a
reconfigurable phase shift. Let Ψ = diag

(
ejψ1 , · · · , ejψM

)

denote the reflecting coefficient matrix of the IRS, where ψm

is the phase shift associated with the mth passive element.
For simplicity, we assume that the direct link between the

BS and the user is blocked due to poor propagation conditions,
and the transmitted signal arrives at the user via the BS-IRS-
user channel. Let G ∈ C

M×N and h ∈ C
M×1 denote the

BS-IRS channel and the IRS-user channel, respectively. The
effective channel between the BS and the user can thus be
expressed as

h̃
H

= hH
ΨG = ψT diag(hH)G , ψTH (1)

where ψ = diag(Ψ) and H , diag(hH)G is referred to as
the cascade channel.
We adopt a geometric mmWave channel model [24] to

characterize the channel. For notational convenience, we first
define

a(ν,D) , [1 · · · ej(D−1)ν ]T (2)

The BS-IRS channel G can be expressed as

G =

L∑

l=1

αlar(θv,l, θh,l)a
H
t (γl) (3)

where L is the number of paths between the BS and the
IRS, αl is the complex gain which is assumed to follow a
complex Gaussian distribution CN(0, ̟2

l ), {γl, θh,l, θv,l} are,
respectively, the angle of departure (AoD), the elevation and
azimuth angle of arrival (AoA) associated with the lth path;
and at(γl) and ar(θv,l, θh,l) are the transmit and receive array
response vectors. Specifically, we have

at(γl) = a(ν1,l, N) (4)

where ν1,l , 2πd
λ

sin(γl) with λ and d representing the
signal wavelength and the antenna spacing, respectively.
ar(θv,l, θh,l) has a form of a Kronecker product as

ar(θv,l, θh,l) = a(ν2,l,Mv)⊗ a(ν3,l,Mh) (5)

where ν2,l ,
2πd
λ

cos(θv,l) and ν3,l ,
2πd
λ

sin(θv,l) cos(θh,l).
Define α , [α1 · · · αL]

T , Σ , diag(α), F 1 ,
[ar(θv,1, θh,1)) · · · ar(θv,L, θh,L)], and F 2 , [a(ν1,1, N)
· · · a(ν1,L, N)], we can express G as

G = F 1ΣF
H
2 (6)

Similarly, the IRS-user channel is characterized as

h =

P∑

p=1

βpar(ψv,p, ψh,p) (7)
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Fig. 1: Two-timescale beamforming and spatial CCM training protocol.

where P is the number of paths between the IRS and the
user, βp is the complex channel gain which follows CN(0, χ2

p),
{ψv,p, ψh,p} denotes the elevation and azimuth AoD associ-
ated with the pth path, and ar(ψv,p, ψh,p) can be expressed
as

ar(ψv,p, ψh,p) = a(ν4,p,Mv)⊗ a(ν5,p,Mh) (8)

where ν4,p,
2πd
λ

cos(ψv,p) and ν5,p,
2πd
λ

sin(ψv,p) cos(ψh,p).
The IRS-user channel can be written as

h = F 3β (9)

where F 3 , [ar(ψv,1, ψh,1) · · · ar(ψv,P , ψh,P )] and β ,
[β1 · · · βP ]

T .

B. Motivations
Although I-CSI helps achieve optimal beamforming perfor-

mance, system optimization based on I-CSI is a challenging
task due to the following reasons. First, to conduct optimal
beamforming, the knowledge of a large-size N ×M cascade
channel matrix is required [6], whose estimation involves
a large amount of training overhead. Second, due to the
short coherence time of mmWave channels, estimation of I-
CSI needs to be frequently performed. In addition, optimal
beamforming requires the reflection coefficients to be updated
and configured to the IRS for each channel realization, which
entails a significant amount of signalling overhead from the
BS to the IRS.
A two-timescale beamforming scheme [15] is a promising

solution to address the above challenge. The key idea of two-
timescale beamforming is to perform beamforming on two
time scales, namely, a long-term timescale and a short-term
timescale (see Fig. 1). Specifically, the passive beamforming
is conducted in a long-term timescale, where the reflecting
coefficients at the IRS are devised according to the statistical
CSI which varies much more slowly than the I-CSI, whereas
the active beamforming is performed in a short-term timescale,
where the BS’s precoder is determined based on the instanta-
neous effective (or equivalent) channel that remains unaltered
over an interval of channel coherent time.
For the two-timescale beamforming scheme, at each small-

scale interval, we only need to estimate the I-CSI of the effec-
tive channel between the BS and the user, which has a much

smaller size than the cascade channel. Also, the reflection
coefficients are devised based on statistical CSI, which can
remain fixed over a large-scale interval that is much larger
than the channel coherence time. Therefore, compared with
beamforming based on I-CSI, two-timescale beamforming has
the potential to achieve a significant reduction in training and
signalling overhead.
A prerequisite for the two-timescale beamforming scheme

is to obtain the statistical CSI that is necessary for performing
the long-term passive beamforming. Due to the passive nature
of the IRS, it is almost impossible to obtain the statistical
CSI for each individual link. To address this challenge, in this
work the statistical CSI acquisition problem is formulated into
a cascade channel CCM estimation problem and we show that
long-term passive beamforming can be accomplished with the
knowledge of the cascade channel’s CCM.

III. DOWNLINK TRAINING

We consider a downlink training procedure, where the
downlink training process consists of T time frames, and each
time frame is further divided into J time slots (see Fig. 1). We
assume that each time frame has a short period of time so that
the channel remains unaltered. During the training process, the
BS sends a same pilot signal, i.e., st,j = 1, ∀j ∈ {1, · · · , J},
to the receiver. The pilot signal is precoded via a transmit
precoding vector f t,j that changes over different time frames
and different time slots. At the jth time slot of the tth time
frame, the signal received at the user can be expressed as

yt,j = h
H
t Ψt,jGtf t,j + nt,j

= wt,jvec (Ht) + nt,j (10)

where ht and Gt respectively represent the IRS-user channel
and the BS-IRS channel at the tth time frame, Ψt,j is the
phase shift matrix that is employed at the jth time slot of
the tth time frame, nt,j is the additive white Gaussian noise,
Ht , diag(hH

t )Gt is referred to as the cascade channel at the
tth frame, andwt,j , f

T
t,j⊗ψT

t,j , in which ψt,j = diag(Ψt,j).
Define yt , [yt,1 · · · yt,J ]T , nt , [nt,1 · · ·nt,J ]

T and
W t , [wT

t,1 · · · wT
t,J ]

T . To facilitate CCM estimation, we
employ the same W = W t, ∀t for each time frame. Thus
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the received signal at the tth frame can be written in a matrix
form as

yt =W vec (Ht) + nt =Wh̄t + nt (11)

where h̄t , vec (Ht).
As reported by previous studies [25], [26], an important fact

about mmWave channels is that the angle parameters such as
the AoA and AoD depend only on the relative positions of the
BS, the user, and the scatterers, which vary much more slowly
than I-CSI. Also, the statistics of the complex path gain keep
invariant over an interval that is much longer than the channel
coherent time. Hence it is reasonable to make the following
basic assumption:
A1 The angle parameters and the variances of the path gains,

remains unchanged over a long-term period.
Our objective is to obtain an estimate of Rh , E[h̄th̄

H

t ] from
the received signal {yt}Tt=1. Note that the CCM Rh has a
dimension of NM ×NM .

A. Discussions
Although this paper considers CCM estimation of the down-

link channel, the proposed method can be readily applied to
the uplink’s CCM estimation. Similar to the downlink training,
the uplink training contains T time frames and each time
frame consists of J time slots. During the training phase, the
user sends a same pilot signal st,j = 1 to the BS, where
the received signal is combined via a combing vector gt,j .
The channel in the same time frame is assumed to be time-
invariant. Therefore the signal received at the jth time slot of
the tth time frame is given as

yut,j = g
H
t,jG

H
t Ψt,jhtst,j + nu

t,j

= wu
t,jvec(H

u
t ) + nu

t,j (12)

whereGt and ht are, respectively, the IRS-BS channel and the
user-IRS channel, wu

t,j , ψ
T
t,j ⊗ gHt,j with ψt,j = diag(Ψt,j)

and Hu
t = GH

t diag(ht). Define yut , [yut,1 · · · yut,J ]
T , nu

t ,

[nu
t,1 · · · nu

t,J ]
T , and W u

t , [(wu
t,1)

T · · · (wu
t,J)

T ]. The
received signal at the BS can be expressed as

yut =W u
t vec(H

u
t ) + n

u
t (13)

If we set W u
t the same for different time frames, the signal

model for the uplink training has a same form as that for the
downlink scenario. For time division duplex (TDD) systems,
due to the channel reciprocity between opposite links (down-
link and uplink), the estimated uplink CCM can be used for
downlink precoding/beamforming.

IV. SPATIAL CHANNEL COVARIANCE MATRIX
ESTIMATION

According to (11), we have

Ry = E{yty
H
t } =WRhW

H + σ2I (14)

Generally the true covariance matrix Ry is unavailable. But it
can be estimated via the following sample covariance matrix

R̂y =
1

T

T∑

t=1

yty
H
t (15)

Intuitively, one can directly estimate Rh from R̂y via solving
the following least squares problem

vec(R̂y) = (W ∗ ⊗W ) vec(Rh) + vec(σ2I) (16)

provided that the dimension of R̂y (i.e. J × J) is larger than
the dimension of Rh (i.e. MN × MN ). Nevertheless, the
condition J ≥ NM is unlikely to be satisfied in practice since
the coherence time in mmWave systems is relatively small.
Therefore, estimating Rh from R̂y is in fact an underdeter-
mined problem, and in order to handle such an issue we have
to exploit the structure of Rh.

A. Exploiting The Structure of Rh

To exploit the structure of Rh, we first obtain a sparse
representation of the cascade channel Ht. For notational
convenience, in the following we will omit the subscript t in
Ht, ht and Gt. Utilizing the matrix properties, the cascade
channel H can be expressed as

H = diag(hH)G = h∗ •G
= (F ∗

3β
∗) • (F 1ΣF

H
2 )

= (F ∗
3 • F 1)

(
β∗ ⊗

(
ΣFH

2

))

= (F ∗
3 • F 1) (β

∗ ⊗Σ)FH
2

, F 4ΠF
H
2 (17)

where

F 4 ,F ∗
3 • F 1 (18)

Π ,β∗ ⊗Σ (19)

Note that the ςth (ς = (p− 1)L+ l) column of F 4 ∈ C
M×PL

is given by

a∗
r(ψv,p, ψh,p) ◦ ar(θv,l, θh,l)

(a)
= (a∗(ν4,p,Mv) ◦ a(ν2,l,Mv))⊗ (a∗(ν5,p,Mh) ◦ a(ν3,l,Mh))

, a(ν6,ς ,Mv)⊗ a(ν7,ς ,Mh) (20)

where ν6,ς , ν2,l − ν4,p, ν7,ς , ν3,l − ν5,p, and (a) follows
from the property: (A⊗B)◦ (C⊗D) = (A◦C)⊗ (B ◦D).
Vectorizing the cascade channel in (17) leads to

vec(H) = vec(F 4ΠF
H
2 ) , Fx (21)

where F , F ∗
2⊗F 4 ∈ C

MN×L2P and x , vec(Π) ∈ C
L2P .

F can be further expressed as

F = F ∗
2 ⊗ F 4

= [a∗(ν1,1, N) · · · a∗(ν1,L, N)]

⊗
[
a(ν6,1,Mv)⊗ a(ν7,1,Mh) · · ·

a(ν6,LP ,Mv)⊗ a(ν7,LP ,Mh)
]

(22)

Substituting (22) into (21), we have

h̄ = vec(H)

=

L∑

l=1

LP∑

ζ=1

x̺a
∗(ν1,l, N)⊗ a(ν6,ζ ,Mv)⊗ a(ν7,ζ ,Mh) (23)
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where x̺ with ̺ = ζ+(l−1)LP is the ̺th element of x. Due
to the fact that Π = β∗⊗Σ and Σ is a diagonal matrix, there
are at most LP non-zeros elements in x, and each element in
x is given by

x̺ =

{
αlβ

∗
p , ̺ ∈ O

0, otherwise (24)

where the set O is defined as{
(p− 1)L+ l + (l − 1)LP |l ∈ {1, · · · , L}; p ∈ {1, · · · , P}

}

Recall that αl ∼ CN(0, ̟2
l ) and βp ∼ CN(0, χ2

p), and αl

and βp are mutually uncorrelated. Therefore for x̺ = αlβ
∗
p ,

its mean and variance are given as

E[x̺] = 0

E[x̺x
∗
̺] = η2̺ , ̟2

l χ
2
p (25)

We see that h̄ can be characterized by a geometric channel
model. It has LP uncorrelated composite paths in total. The
complex gain of each composite path is a random variable
with zero mean and finite variance. The angular parameters
({ν1,l, ν6,ζ , ν7,ζ}) associated with each path are treated as
deterministic parameters as angle parameters vary slowly rel-
ative to the complex path gains. Hence the channel covariance
matrix Rh can be expressed as

Rh = E(h̄h̄
H
) = FE(xxH)FH

(a)
=

L2P∑

̺=1

E(x̺x
∗
̺)R̺

=
∑

̺∈O

η2̺R̺ (26)

where (a) follows from the fact that E(xxH) is a diagonal
matrix, and R̺ ∈ C

NM×NM is defined as

R̺ =
(
a∗(ν1,l, N)aT (ν1,l, N)

)
⊗
(
a(ν6,ζ ,Mv)a

H(ν6,ζ ,Mv)
)
⊗

(
a(ν7,ζ ,Mh)a

H(ν7,ζ ,Mh)
)

(27)
It can be easily verified that R̺ is a PSD 3-level Toeplitz
matrix. As a result, Rh ∈ C

NM×NM is also a PSD 3-level
Toeplitz matrix. Although there are N2M2 elements in Rh,
owing to the specific structure of PSD 3-level Toeplitz matrix,
Rh can be characterized by (2N − 1)(2Mv − 1)(2Mh − 1)
parameters which can be represented by a third-order tensor
V ∈ C

(2N−1)×(2Mv−1)×(2Mh−1), i.e. we can write Rh =
T3(V ). How to map a third-order tensor to a 3-level Toeplitz
matrix can be found in [27]. Furthermore, from (26), we
know that Rh can be represented by a summation of LP
rank-one matrices. Due to the sparse scattering characteristics
of mmWave channels, LP is usually much smaller than the
dimension of Rh (i.e., NM ), meaning that Rh has a low-rank
structure.
Utilizing the PSD 3-level Toeplitz structure and the low-

rank property of T3(V ), the estimation of Rh can be cast into
the following low-rank structured covariance reconstruction
problem:

R̂h =arg min
T3(V )

1

2

∥∥∥R̂y −WT3(V )WH
∥∥∥
2

F
+ λrank(T3(V ))

s.t. T3(V ) < 0 (28)

where λ is a regularization parameter to balance the tradeoff
between data fitting and low-rankness. Nonetheless, such a
problem is generally NP-hard due to the rank function. To
make it tractable, we resort to convex relaxation to replace
rank(T3(V )) with the nuclear-norm of T3(V ). Since T3(V )
is confined to be a PSD matrix, its nuclear norm is equivalent
to its trace. Consequently, the resulting optimization can be
given by

R̂h =arg min
T3(V )

1

2

∥∥∥R̂y −WT3(V )WH
∥∥∥
2

F
+ λtr(T3(V ))

s.t. T3(V ) < 0 (29)

The above optimization is a convex semidefinite programming
(SDP) problem which can be solved by many standard off-
the-shelf solvers, e.g., CVX. Unfortunately, these solvers are
usually computationally expensive. To reduce the computa-
tional complexity, we develop an alternating direction method
of multipliers (ADMM) algorithm for solving (29) in the next
section.

B. ADMM-Based Algorithm
To solve (29), we first introduce two auxiliary variables, A

and B, and reformulate (29) into the following optimization

{V̂ , Â, B̂} =arg min
V ,A,B

(1
2

∥∥∥R̂y −WAWH
∥∥∥
2

F
+ λtr(A) + I∞(B < 0)

s.t. A = T3(V ), B = A, (30)

where I∞(a) is an indicator function defined as

I∞(a) =

{
0, if a is true
∞, otherwise (31)

The augmented Lagrangian of the above optimization is read
as

L(V ,A,B,Υ,Λ)

=
1

2

∥∥∥R̂y −WAWH
∥∥∥
2

F
+ λtr(A)

+ 〈Υ,A− T3(V )〉+ η

2
‖A− T3(V )‖2F

+ 〈Λ,B −A〉+ ρ

2
‖B −A‖2F + I∞(B < 0) (32)

where 〈A,B〉 is defined as Re
(
Tr(BHA)

)
, Υ and Λ are

the dual parameters, and η, ρ > 0 are the penalty parameters.
According to the updating rule of the ADMM algorithm, it
consists of solving the following sub-problems:

Â
k+1

= argmin
A

L(V k,A,Bk,Υk,Λk) (33)

V̂
k+1

= argmin
V

L(V ,Ak+1,Bk,Υk,Λk) (34)

B̂
k+1

= argmin
B

L(V k+1,Ak+1,B,Υk,Λk) (35)

Υ
k+1 = Υ

k + η
(
Ak+1 − T3(V

k+1)
)

(36)
Λ

k+1 = Λ
k + ρ

(
Bk+1 −Ak+1

)
(37)

Update of A: We first solve the sub-problem (33). Calcu-
lating the derivative of L(V k,A,Bk,Υk,Λk) with respect to
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A, we have

∇AL = (WHW )A(WHW )H + (η − ρ)A− ηT3(V
k)

+ ρBk −WHR̂yW +Υ
k −Λ

k + λI (38)

By setting ∇AL to 0, we can update A via solving the
following linear equation

ΞAΞ
H + κA = C (39)

where C = ηT3(V
k)− ρBk +WHR̂yW − λI −Υ

k +Λ
k,

κ = η − ρ and Ξ =WHW . Clearly, A can be solved via

(Ξ∗ ⊗Ξ+ κI)vec(A) = vec(C) (40)

Nevertheless, this approach has a computational complexity of
O(N6M6). To reduce the computational complexity, we pro-
pose a more computationally-efficient approach to solve (39).
Since Ξ = WHW , Ξ can be diagonalized via the eigen-
decomposition (EVD), i.e.,

Ξ = A1A2A
H
1 (41)

where A2 is a diagonal matrix and A1 is a unitary matrix
(meaning AH

1 = A−1
1 ). Substituting (41) into (39) results in

A1A2A
H
1 A(A1A2A

H
1 )H + κA = C (42)

By defining A3 , AH
1 AA1 and C1 , AH

1 CA1, we can
express (42) as

A2A3A2 + κA3 = C1 (43)

Since A2 is a diagonal matrix, we can explicitly solve (43)
in an elementwise manner. Once A3 is obtained, A can be
simply reconstructed as

A = A1A3A
H
1 (44)

Update of V : Keeping the terms that only depend on V
in (34), we have

V̂
k+1

=argmin
V

η

2
Tr

(
T
H
3 (V )T3(V )

)
− Re

(
Tr
(
(Υk + ηAk+1)HT3(V )

))

(45)

Directly taking derivative with respect to V is difficult. Never-
theless, the elements in V can be optimized separately. To this
end, we reshape V ∈ C

(2N−1)×(2Mv−1)×(2Mh−1) to a vector
v ∈ C

(2N−1)(2Mv−1)(2Mh−1). Also, we define an index set Ivl

as

Ivl
= {(i, j)|T3(V )(i, j) ≡ vl} (46)

for all l ∈ {1, · · · , (2N − 1)(2Mv − 1)(2Mh − 1)}. The
cardinality of the set Ivl

is denoted by |Ivl
|. Based on this

definition, the terms that only depend on vl in the cost
function (45) can be rewritten as

v̂k+1
l = argmin

vl

η|Ivl
|

2
vlv

∗
l −

( ∑

(i,j)∈Ivl

Re (∆∗(i, j)vl)

)

(47)

where ∆ , Υ
k + ηAk+1. It is clear that v̂k+1

l is given by

v̂k+1
l =

1

η|Ivl
|

( ∑

(i,j)∈Ivl

∆(i, j)

)
(48)

Update of B: The optimization in (35) is equivalent to

B̂
k+1

= argmin
B

ρ

2
‖B − (Ak+1 −Λ

k/ρ)‖2F
s.t. B < 0 (49)

Apparently, the solution to the above optimization is obtained
by projecting B̃ , Ak+1 − Λ

k/ρ onto the positive semi-
definite cone, which is equivalent to setting all negative
eigenvalues of B̃ to zero.

Algorithm 1 Proposed ADMM Algorithm

Initialization: V 0,B0,Υ0,Λ0, η, ρ, k = 1.
repeat
1. Update Ak via (44);
2. Update each element in V k via (48);
3. Update Bk via solving (49);
4. Update Υ

k and Λ
k via (36) and (37) respectively;

5. k = k + 1
until Convergence

For clarity, the proposed ADMM algorithm is summa-
rized in Algorithm 1. Compared with the off-the-shelf CVX
solver, the proposed ADMM algorithm is more computation-
ally efficient. Specifically, for the CVX solver, since it is
based on the interior point method, the overall computational
complexity of solving the optimization problem (29) is at
the order of O((NM)3.5 log(1/ǫ)), where ǫ is the desired
recovery precision [28]. For the proposed ADMM algorithm,
its computational complexity is dominated by two eigenvalue
decompositions (EVD), i.e., the EVD of Ξ ∈ C

NM×NM

(i.e., (41)) and the EVD of B̃ ∈ C
NM×NM when projecting B̃

onto its semi-definite cone. The former EVD can be computed
offline since Ξ =WHW can be fixed over the entire training
process. The EVD of B̃ involves a complexity of O((NM)3).
Nevertheless, notice that B has a low-rank property. There-
fore, one can employ the truncated EVD to further reduce
the computational complexity. Generally, the truncated EVD
has a computational complexity of order 7NMk̄2, where k̄
is the number of the required eigenvectors which in general
can be set to 2 or 3 times of r (i.e., the rank of B). Hence,
the overall computational complexity of the proposed ADMM
algorithm at each iteration is O(NM), which is far less than
the complexity O((NM)3.5 log(1/ǫ)) required by the CVX
solver.

C. Extensions
The proposed method can be extended to scenarios where

there exists a direct link between the BS and the user. In
such a case, a two-step estimation scheme can be employed to
estimate the cascade CCM. Specifically, at the first step, we
turn off the IRS and calculate the sample covariance matrix of
the received signal, say R̂

(1)
. Clearly, R̂

(1)
is a compressed

form of the direct channel’s CCM. Then in the second step, we
turn on the IRS and calculate a new sample sample covariance
matrix, say R̂

(2)
. Due to the statistical independence between

the direct channel and the cascade channel, we have R̂
(2)

=
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R̂
(1)

+ R̂y , with R̂y denoting the sample covariance matrix
given by (14). Thus, the CCM of the cascade channel Rh can
be estimated from R̂

(2) − R̂(1)
via our proposed method.

V. PERFORMANCE ANALYSIS OF THE CCM ESTIMATOR

In this section, we analyze the estimation performance
of the CCM estimator (29). Specifically, we are interested
in quantifying the amount of training overhead required to
achieve a reliable estimate of the true CCM Rh. To facilitate
our analysis, we consider the noise-free case, i.e., σ2 = 0
and Ry = WRhW

H . In the following we use Rh and
T3(V ) interchangeably since these two essentially have the
same meaning.
Suppose T3(X)∈C

I1I2I3×I1I2I3 is a 3-level Toeplitz matrix
parameterized by a tensorX ∈ C

(2I1−1)×(2I2−1)×(2I3−1). For
any matrix M ∈ C

I×I1I2I3 , M̌ ∈ C
I2×(2I1−1)(2I2−1)(2I3−1)

is referred to as the transforming matrix of M if it satisfies

M̌x = vec(MT3(X)MH) (50)

where x is a vector by reshaping X into a vector. In addition,
define re(A) , Tr(A)

‖A‖2

as the effective rank of matrix A. Our
result is summarized as follows.
Theorem 1: Let V ∈ C

(2N−1)×(2Mv−1)×(2Mh−1) be the
ground truth and V̂ ∈ C

(2N−1)×(2Mv−1)×(2Mh−1) be the
solution of (29). Given observations {yt}Tt=1, and set

J ≥ u ,
√
(2N − 1)(2Mv − 1)(2Mh − 1) (51)

and

λ ≥ c‖W ‖2F ‖Ry‖2max{
√

δ̃, δ̃} (52)

where c is a constant and δ̃ is defined as

δ̃ ,
re(Ry) log(TJ)

T
(53)

then with probability at least 1− 4T−1, the average per-entry
root mean square error (RMSE) of the solution to (29) satisfies

1

u
‖V̂ − V ‖F ≤ 16λ

√
r

σ2
min(W̌ )

√
NM

u
(54)

where r is the rank of Rh, W̌ is the transforming matrix of
W , and σmin(W̌ ) denotes the smallest singular value of W̌ .

Proof: See Appendix I.
The above theorem is a generalization of Theorem 4 in [23].

Specifically, [23] analyzes the structured covariance estimation
performance under a partial observation framework where the
aim is to recover the complete CCM from a submatrix of the
sample CCM. Theorem 1 generalizes this partial observation
model to an arbitrarily linear compression model in which
we do not have direct access to the entries of the sample
CCM; instead, only the sample covariance matrix R̂y is
available. Also, the CCM in this work has a multi-level
Toeplitz structure, which is different from that of [23].
Recalling M = MvMh, the term

√
NM/u in (54) tends

to be a constant for sufficiently large values of M and N .
Therefore, the average per-entry RMSE is upper bounded by
λ
√
r times a scale factor. According to (52), we know that

λ
√
r ≥ ū , c

√
r‖W ‖2F ‖Ry‖2max{

√
δ̃, δ̃} (55)

Therefore, in our optimization problem (29), we set λ = ū/
√
r

such that the average pre-entry RMSE of V has the smallest
upper bound, i.e.,

1

u
‖V̂ − V ‖F ≤

√
NM

u

16ū

σ2
min(W̌ )

=

√
NM

u

16c‖W ‖2F ‖Ry‖2max{
√

rδ̃,
√
rδ̃}

σ2
min(W̌ )

(56)

From (56), we can see that the average pre-entry RMSE
vanishes as long as rδ̃ tends to 0. To this objective, it can
be verified that the number of time frames T should be in
the order of re(Ry)r log(J) or in the order of r2 log(J)
since the effective rank of a matrix is no greater than its true
rank, i.e. re(Ry) ≤ r [29]. To see why rδ̃ tends to 0 when
T ∼ O(r2 log(J)), let T = τr2 log(J), where τ is a constant.
In this case, we have

rδ̃ ≤ log(τr2 log(J))

τ log(J)
(57)

where the right-hand side of the above inequality decreases to
a small value as τ increases. In summary, when the number
of time frames T is in the order of r2 log(J), the average
per-entry RMSE can be upper bounded by an arbitrarily small
value, which means that we can obtain a reliable estimate of
the true CCM Rh. Note that our performance guarantee is
non-asymptotic and holds for a finite number of measurement
vectors. In other words, the result has accounted for the
covariance estimation error due to finite samples.
Recall that the proposed downlink training protocol consists

of T time frames, and each time frame comprises J time slots.
Thus the total amount of training overhead is TJ . Since the
number of time slots J has to satisfy (51), which means that
J is on the order of

√
NM . Therefore, the total amount of

training overhead is at the order of r2
√
NM log(NM). Note

that here r = PL is the rank of Rh. In mmWave systems,
due to sparse scattering characteristics, both P and L are
relatively small. Hence r is generally far less than NM . Based
on this, we can conclude that when the total number of training
symbols is in the order of

√
NM logNM , we can provide a

reliable estimate of the CCM Rh. Note that
√
NM logNM

is much smaller than the dimension of Rh (i.e., N2M2).

VI. TWO-TIMESCALE BEAMFORMING BASED ON
ESTIMATED CCM

We discuss how to perform two-timescale beamforming
based on the estimated CCM. In the following, we first
consider single-user scenarios and then discuss the extension
to the multi-user scenarios.

A. Single-User Scenarios
The received signal at the user can be expressed as

yt = h
H
ΨGfst + nt (58)

where st is the transmitted symbol satisfying E(|st|2) = 1,
f is the precoding vector, and nt ∼ CN(0, σ2) denotes the
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zero-mean complex Gaussian noise. From [15], we know that
the two-timescale beamforming problem can be formulated as

max
ψ

E{max
f

R}

s.t. |ψm| = 1 ∀m ∈ {1, · · · ,M}
‖f‖2 ≤ Pmax

R = log2(1 + |hH
ΨGf |2/σ2) (59)

where ψ = diag(Ψ) with ψm as its mth element and
Pmax is the total transmit power budget. The optimization
problem in (59) has two levels. The inner one is the rate-
maximization problem with respect to f . This is implemented
in each channel realization with the given phase shift matrix
Ψ. The outer one is an expectation maximization problem
with respect to the IRS phase shift coefficients, in which the
expectation of the achievable rate is taken over all possible
channel realizations.
When Ψ is given, the optimal precoding vector is the

maximum-ratio transmission (MRT). In this case, it can be
readily verified that the above optimization problem is sim-
plified into a problem concerning the optimization of the
reflection coefficients Ψ:

max
ψ

E

{
log2(1 + Pmax‖hH

ΨG‖2/σ2)
}

s.t. |ψm| = 1 ∀m ∈ {1, · · · ,M} (60)

Directly solving (60) is intractable. To handle this issue, we
resort to maximize its tight upper bound, which is given
by [15]

E{log2(1 + Pmax‖hH
ΨG‖2/σ2)}

≤ log2(1 + PmaxE{‖hH
ΨG‖2}/σ2) (61)

Note that the upper bound shown in (61) is sufficiently tight
and thus is a good approximation of the original objective
function, especially when Pmax/σ

2 is large [14], [15]. Maxi-
mizing the upper bound yields the following optimization:

max
ψ

E(‖hH
ΨG‖2)

s.t. |ψm| = 1 ∀m ∈ {1, · · · ,M} (62)

where E(‖hH
ΨG‖2) is given by

E(‖hH
ΨG‖2) = E(‖ψTH‖2)

= ψT
E(HHH)ψ∗

= ψT R̄hψ
∗ (63)

in which R̄h is the covariance matrix of the cascade
channel H . Note that R̄h = E(HHH) and Rh =
E(vec(H)vec(H)H). Therefore, R̄h can be directly obtained
from Rh. Thus optimization of passive reflection coefficients
can be done simply based on the estimated CCM of the
cascade channel. Note that the optimization problem (62) with
its cost function given in (63) is a nonconvex quadratically
constrained quadratic problem, which can be solved by being
relaxed as a semidefinite programming (SDP) problem and
then using the Gaussian randomization approximation solu-
tion [30].

B. Multi-User Scenarios
Since downlink transmission is considered, the extension of

the proposed CCM estimation method to multi-user scenarios
is straightforward. Specifically, each user receives signals
reflected from the IRS, and estimates its own downlink CCM
via our proposed method. This information is fed back to
the BS via a dedicated channel for subsequent two-timescale
beamforming, as detailed next.
Suppose there are K single-antenna users and denote the

channel between the IRS and the kth user by hk. The received
signal at the kth user can be written as:

yk = hH
k ΨGfksk + hH

k ΨG

K∑

j 6=k

f jsj + nk (64)

where fk (f j) and sk (sj)are, respectively, the transmit
precoding vector and the symbol of the kth (jth) user, and
nk ∼ CN(0, σ2

q ) denotes the zero-mean complex Gaussian
noise. The two-timescale beamforming problem for multi-user
scenarios can thus be formulated as [15]

max
ψ

E

{
max
{f

k
}

K∑

k=1

log2(1 + SINRk)

}

s.t. |ψm| = 1 ∀m ∈ {1, · · · ,M}
K∑

k=1

‖fk‖2 ≤ Pmax (65)

where SINRk is the signal-to-interference-noise ratio at the
kth user, given by

SINRk =
|hH

k ΨGfk|2∑K

j 6=k |hH
k ΨGf j |2 + σ2

k

(66)

When Ψ is given, the optimization problem (65) becomes
a traditional MIMO precoding problem that can be solved
via many iterative algorithms, e.g., the generalized MMSE
method. Nevertheless, for multi-user scenarios, {fk} cannot
be expressed analytically in terms of ψ. This poses a challenge
in obtaining an analytical expression of the ergodic rate as a
function of the long term variable ψ.
To address the above difficulty, the work [18] proposed to

formulate the long-term passive beamforming problem into
a problem maximizing the combined-effective-channel-gain
(CECG). The CECG characterizes the strength of the effective
channel and is defined as

K∑

k=1

E

(
‖hH

k ΨG‖
2
)
= ψT

K∑

k=1

E

(
HkH

H
k

)
ψ∗ (67)

where Hk , diag(hH
k )G is the cascade channel of the kth

user. Define R̄k

h = E(HkH
H
k ) and R̃h ,

∑K

k=1 R̄
k

h. The
long-term passive beamforming problem can be formulated
into a form similar to (62):

max
ψ

ψT R̃hψ
∗ (68)

s.t. |ψm| = 1 ∀m ∈ {1, · · · ,M} (69)

From our above discussion, we see that for multi-user scenar-
ios, long-term passive beamforming can also be accomplished
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with the knowledge of different users’ CCMs {R̄k

h}, which
can be estimated via the proposed method.

VII. SIMULATION RESULTS

In this section, we present simulation results to illustrate
the effectiveness of the proposed low-rank PSD Toeplitz-
structured CCM (LRT-CCM) estimation method. We compare
our method with the conventional CCM estimation approach
which estimates the channel at each time frame and then
reconstructs the CCM with these estimated channel samples.
Such an approach is referred to as the conventional CCM
estimation method. For this approach, we use the compressed
sensing-based method [6] to estimate the channel at each time
frame.
In our simulations, the BS employs a uniform linear array

(ULA) of N = 8 antennas and the IRS is a planar array
with Mv × Mh = 16 × 16 reflecting elements. The three-
dimensional coordinates of the BS, the IRS, and the user
are set to (5, 0, 10), (0, 50, 20) and (10, 60, 1.8), respectively.
The BS-IRS channel and the IRS-user channel are generated
according to (3) and (7), respectively. The number of the signal
paths is set to L = P = 3, and each channel comprises an
LOS path and two NLOS paths. The corresponding angles
(including AoAs and AoDs) of the LOS paths are determined
by the geometry configuration, and the associated complex
gains of the LOS paths are generated according to a complex
Gaussian distribution CN(0, 10−0.1κ), where κ = 61.4 +
29.2 log10(d)+ ǫ with d denoting the length of the path and ǫ
being a random variable following N(0, (8.7dB)2). The angles
associated with the NLOS paths are randomly selected from
the interval [−π, π]. The channel coefficients of these NLOS
paths follow a distribution CN(0, δ2), where δ is determined
by the Rician factor (i.e., the ratio of the energy of the LOS
path to that of all NLOS paths). We set the Rician factor to
10 dB and the transmitted power to Pmax = 30dBm. The
signal-to-noise ratio (SNR) is defined as

SNR = E
(
10 log10

(
ς2/σ2

))
(70)

where ς2 is the received signal power.
We evaluate the CCM estimation performance via the rela-

tive efficiency metric (REM), which is widely adopted [31]–
[33] and defined as

η =
tr(UH

1 RhU1)

tr(UH
2 RhU2)

(71)

where U1 and U2 are, respectively, the matrices constructed
by the eigenvectors of the estimated CCM R̂h and the
eigenvectors of the true CCM Rh. Clearly, a higher value
of η indicates a more accurate CCM estimate. The value
1− η means the lost of the signal power due to the mismatch
between the optimal beamformer and the estimated one. All
results are averaged over 200 independent Monte Carlo runs.
Fig. 2(a) plots the REMs of different methods as a function

of the SNR, where the number of time slots J is set to 120 and
the number of time frames T is set to 100. We see that our pro-
posed method presents a substantial performance improvement
over the conventional CCM estimation method, particularly in

the low SNR regime. In fact, our proposed method can still
provide a reliable CCM estimate even when the SNR is below
-10dB, whereas the conventional CCM estimation method
performs poorly in such a low SNR region. In Fig. 2(b),
we plot the achievable rate attained by the two-timescale
beamforming scheme based on the estimated CCM. To better
evaluate the performance, we also include the achievable rates
attained by the two-timescale beamforming scheme based on
the true CCM, the two-timescale beamforming scheme in
which the reflecting coefficients are randomly chosen from
a unit circle (referred to as random passive beamforming),
and the joint beamforming scheme [34] that utilizes the true
I-CSI. Note that the beamforming approach [34] that exploits
the I-CSI provides an upper bound on the performance that is
achievable by any two-timescale beamforming schemes.
Several points can be made from Fig. 2(b). First, our

proposed method incurs only a very mild performance loss as
compared with the two-timescale beamforming scheme based
on the true CCM. This result indicates that the proposed
method can yield a CCM estimate that is good enough for
subsequent beamforming. Second, the two-timescale beam-
forming scheme can achieve performance close to that of the
beamforming method that utilizes the I-CSI, which demon-
strates the effectiveness of the two-timescale beamforming
scheme. Lastly, all methods present a substantial performance
advantage over the random passive beamforming scheme.
Next, we examine the impact of the number of time frames

on the estimation and beamforming performance. Fig. 3 plots
the performance of respective methods as a function of T ,
where we set SNR to 0dB, and J is set to J = 60 and
J = 120, respectively. It can be observed from Fig. 3 that
a small value of T , say T = 20 is sufficient to achieve
a decent performance for our proposed method. Increasing
the number of time frames can lead to better performance
for both methods, but the performance improvement is very
limited. Since the total number of measurements required for
training is TJ , this result suggests that our proposed method
can provide a reliable CCM estimate using a training overhead
as small as TJ = 20 × 60 = 1200. Fig. 4 illustrates the
effect of the number of time slots on the estimation and
beamforming performance of respective methods, where we
set SNR = 0dB, and T is set to T = 40 and T = 100,
respectively. We see that increasing the number of time slots
leads to better performance. Nevertheless, a small value of
J , say, J = 60, is enough to provide a decent performance
for our proposed method. Again, this result demonstrates the
ability of the proposed method in providing an accurate CCM
using a small amount of training overhead.

VIII. CONCLUSIONS

In this paper, we considered the CCM estimation for IRS-
assisted mmWave communication systems. We exploited the
low-rank property and PSD 3-level Toeplitz structure of the
CCM and formulated the CCM estimation problem as a convex
SDP problem, which was further efficiently solved by an
ADMM algorithm. In addition, we analyzed the estimation
performance of the proposed solution, as well as the train-
ing overhead required to obtain a reliable estimate of the
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Fig. 2: REMs and achievable rates of respective methods, where we set T = 100 and J = 120.
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Fig. 3: REMs and achievable rates of respective methods, where we set SNR = 0dB, J = 60 and J = 120.
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Fig. 4: REMs and achievable rates of respective methods, where we set SNR = 0dB, T = 40 and T = 100.

CCM. Lastly, we discussed how to perform the two-timescale
beamforming based on the estimated CCM. Simulation results
showed that our proposed method can provide a reliable CCM
estimate using a small amount of training overhead.

APPENDIX I
PROOF OF THEOREM 1

Based on the definition, the trace of a PSD matrix is
equivalent to its nuclear norm. For simplicity, we consider
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the following equivalent form of (29):

R̂h = argmin
Rh

1

2

∥∥∥R̂y −WRhW
H
∥∥∥
2

F
+ λ‖Rh‖∗ (72)

where ‖ · ‖∗ denotes the nuclear norm.
In order to prove Theorem 1, we first introduce the follow-

ing theorem [29].
Theorem 2: For the convex optimization problem

Θ̂λn
∈ argmin

Θ

{L (Θ) + λnR(Θ)} (73)

where λn > 0 is a user-defined regularization parameter and
R(·) is a norm. Suppose that L is a convex and differen-
tiable function, and consider any optimal solution Θ̂ to the
aforementioned optimization problem with a strictly positive
regularization parameter satisfying

λn ≥ 2R∗(∇L (Θ∗)) (74)

where R∗(·) is the dual norm of R(·) and Θ
∗ is the unknown

true value. Denote M ⊆ M̄ as the subspace to capture the
constraints specified by the norm-based regularizer and M̄⊥

as the orthogonal complement of space M̄. Then for any pair(
M,M̄⊥

)
over which R is decomposable1, the error ∆ =

Θ̂λn
−Θ

∗ belongs to the set

C
(
M,M̄⊥;Θ∗

)

, {∆|R (∆M̄⊥) ≤ 3R (∆M̄) + 4R (Θ∗
M⊥)} (75)

where M⊥ is the orthogonal complement of the space M.
In (75) ∆M̄ denotes the projection of ∆ onto the subspace
M̄, which is defined as

∆M̄ = arg min
∆1∈M̄

‖∆−∆1‖2F (76)

∆M̄⊥ and Θ
∗
M⊥ can be similarly defined (and hence we omit

them here). Specifically, R (Θ∗
M⊥) = 0 when Θ ∈ M, and

under such a circumstance (75) turns to be

C
(
M,M̄⊥;Θ∗

)
, {∆|R (∆M̄⊥) ≤ 3R (∆M̄)} (77)

Proof: See [29].
Theorem 2 implies that with a proper regularization param-

eter and Θ ∈ M, the estimation error of the problem (73)
satisfies (77). We know that rank(Rh) = r and the SVD of
Rh is given as Rh = UΣV H . Let row(Rh) and col(Rh)
denote the row and column space of Rh respectively, and
meanwhile let U r and V r be the first r columns of U and
V . We now can define the subspace M and M̄⊥ as

M = M̄ , {R|row(R) = V r, col(R) = U r} (78)
M̄⊥ , {R|row(R) = (V r)

⊥
, col(R) = (U r)

⊥} (79)

Utilizing these defined subspaces, we can conclude that Rh ∈
M, and meanwhile the estimation error of Rh, i.e., ∆ ,
R̂h −Rh, can be decomposed into two parts, i.e.,

∆ = ∆1 +∆2 (80)

1A norm-based regularizer R is decomposable with respect to
(

M,M̄⊥
)

if

R(Θ+ Γ) = R(Θ) +R(Γ)

for all Θ ∈ M and Γ ∈ M̄⊥. Details can be found in [29].

with rank(∆1) = r, ∆1 ∈ M and ∆2 ∈ M̄⊥.
In our problem, L (Θ) = 1

2‖R̂y−WRhW
H‖2F . Therefore,

we have

∇L (Rh) =
1

2

[
WH(WRhW

H − R̂y)W
]T

(81)

In addition, it is clear that the dual norm of the nuclear norm
is the spectral norm. Therefore, if the regularization parameter
λ satisfies

λ ≥ 2R∗(∇L (Rh)) = ‖WH(R̂y −WRhW
H)W ‖2

= ‖WH(R̂y −Ry)W ‖2 (82)

then the estimation error, based on Theorem 2, belongs to the
set

∆ , R̂h −Rh = T3(V̂ )− T3(V ) = T3(V̂ − V )

∈ {∆|∆ = ∆1 +∆2, ‖∆2‖∗ ≤ 3‖∆1‖∗} (83)

From (82), we can see that the choice of λ depends on the
value of ‖WH(R̂y−Ry)W ‖2. The following lemma provides
an upper bound on ‖WH(R̂y −Ry)W ‖2.
Lemma 1: Given T observation samples {yt}Tt=1, R̂y is

obtained via 1
T

∑T

t=1 yty
H
t . Then with probability at least 1−

4T−1, we have

‖WH(R̂y −Ry)W ‖2
≤ δ , c‖W ‖2F ‖Ry‖2max{

√
δ̃, δ̃} (84)

where δ̃ is given in (53).
Proof: See Appendix II.

Since R̂h is the optimal solution to (72), we have

1

2

∥∥∥R̂y −WR̂hW
H
∥∥∥
2

F
+ λ‖R̂h‖∗

≤ 1

2

∥∥∥R̂y −WRhW
H
∥∥∥
2

F
+ λ‖Rh‖∗ (85)

which can be converted to
∥∥∥R̂y −WR̂hW

H
∥∥∥
2

F
−

∥∥∥R̂y −WRhW
H
∥∥∥
2

F
≤ 2λ

(
‖Rh‖∗ − ‖R̂h‖∗

)

(86)

Recalling ∆ = R̂h −Rh, the left side of (86) can be further
expressed as

∥∥∥R̂y −WR̂hW
H
∥∥∥
2

F
−

∥∥∥R̂y −WRhW
H
∥∥∥
2

F

=
∥∥∥R̂y −W (Rh +∆)WH

∥∥∥
2

F
−

∥∥∥R̂y −WRhW
H
∥∥∥
2

F

= 2〈−R̂y +WRhW
H ,W∆WH〉+

∥∥∥W∆WH
∥∥∥
2

F

= 2〈WH(−R̂y +WRhW
H)W ,∆〉+

∥∥∥W∆WH
∥∥∥
2

F

(87)
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Substituting (87) into (86), we have
∥∥∥W∆WH

∥∥∥
2

F

≤ 2〈WH(R̂y −WRhW
H)W ,∆〉+ 2λ

(
‖Rh‖∗ − ‖R̂h‖∗

)

(a)

≤ 2‖WH(R̂y −WRhW
H)W ‖‖∆‖∗ + 2λ

(
‖R̂h +∆‖∗ − ‖R̂h‖∗

)

(b)

≤ 2‖WH(R̂y −WRhW
H)W ‖‖∆‖∗ + 2λ‖∆‖∗

(c)

≤ 4λ ‖∆‖∗ (88)

where (a) follows from Holder’s inequality, (b) comes from
the triangle inequality, and (c) follows from the assumption
λ ≥ δ. Furthermore, we have

‖∆‖∗ = ‖∆1 +∆2‖∗ ≤ ‖∆1‖∗ + ‖∆2‖∗
(a)

≤ ‖∆1‖∗ + 3 ‖∆1‖∗
(b)

≤ 4
√
r‖∆1‖F

≤ 4
√
r ‖∆‖F = 4

√
r
∥∥∥T3(V̂ − V )

∥∥∥
F

≤ 4
√
rNM‖V̂ − V ‖F (89)

where (a) follows from (83), and (b) is a result of the
relationship between the nuclear norm and F-norm of a rank-r
matrix. Putting (88) and (89) together results in

∥∥∥W∆WH
∥∥∥
2

F
≤ 16λ

√
rNM‖V̂ − V ‖F (90)

Furthermore, we utilize the following lemma to find a lower
bound of

∥∥∥W∆WH
∥∥∥
2

F
.

Lemma 2: Consider a 3-level Toeplitz matrix T3(X) with
X ∈ C

(2I1−1)×(2I2−1)×(2I3−1) and the matrix W ∈
C

I2×I1I2I3 . If

I ≥
√
(2I1 − 1)(2I2 − 1)(2I3 − 1) (91)

then with high probability there exists a full-column rank
transforming matrix W̌ of W such that

‖WT3(X)WH‖2F ≥ σ2
min(W̌ )‖X‖2F (92)

where σmin(W̌ ) is the smallest singular value of W̌ .
Proof: See Appendix III.

Since we have

J ≥ u ,
√

(2N − 1)(2Mv − 1)(2Mh − 1) (93)

and meanwhile ∆ = T3(V̂ −V ) is a 3-level Toeplitz matrix,
based on Lemma 2, we know that, with high probability the
following holds

‖W∆WH‖2F ≥ σ2
min(W̌ )‖V̂ − V ‖2F (94)

where W̌ is the transforming matrix of W . Substituting (94)
into (90) leads to

‖V̂ − V ‖F ≤ 16λ
√
rNM

σ2
min(W̌ )

(95)

As a result, the average per-entry RMSE is given by
1

u
‖V̂ − V ‖F ≤ 16λ

√
r

σ2
min(W̌ )

√
NM

u
(96)

which completes the proof.

APPENDIX II
PROOF OF LEMMA 1

The received signal yt follows a complex Gaussian
CN(0,Ry). Therefore, according to Theorem 2.2 in [35] we
know that, with probability at least 1 − 4T−1, the following
inequality holds

‖R̂y −Ry‖2 ≤ c‖Ry‖2max{
√
δ̃, δ̃} (97)

where c is a constant. Furthermore, we have

‖WH(R̂y −Ry)W ‖2
(a)

≤ ‖WH(R̂y −Ry)W ‖F
(b)

≤ ‖W ‖2F ‖(R̂y −Ry)‖2
≤ c‖W ‖2F ‖Ry‖2max{

√
δ̃, δ̃} (98)

where (a) follows from the fact that ‖A‖2 ≤ ‖A‖F and (b)
follows from ‖AB‖F ≤ ‖A‖2‖B‖F .

APPENDIX III
PROOF OF LEMMA 2

According to the Kronecker product property, we have

vec(WT3(X)WH) = (W ∗ ⊗W )vec(T3(X)) (99)

Since T3(X) is a 3-level Toeplitz matrix, we can express (99)
as

(W ∗ ⊗W )vec(T3(X)) = W̌x (100)

where x = vec(X) and W̌ ∈ C
I2×(2I1−1)(2I2−1)(2I3−1) is

constructed by combining those columns in W ∗ ⊗W which
correspond to the same element in T3(X). Furthermore, W̌
is a full-column rank matrix with high probability due to the
fact that W is a random matrix and the condition (91) holds.
Since W̌ is a full-column rank matrix, we have

‖W̌x‖22 ≥ σ2
min(W̌ )‖x‖22 ≡ σ2

min(W̌ )‖X‖2F (101)

Due to that fact that ‖A‖2F = ‖vec(A)‖22 for an arbitrary
matrix A, we have

‖WT3(X)WH‖2F = ‖W̌x‖22 ≥ σ2
min(W̌ )‖X‖2F (102)

which completes the proof.
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