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A B S T R A C T   

Automatic dispensers of alcohol-based handrub (ABHR) have been widely adopted in healthcare facilities to 
maintain hand hygiene (HH). A proper supply of energy and refill is crucial to ensure uninterrupted access to 
hand sanitizing and minimize workflow disruption and inefficiencies. Various energy design and refill replen
ishment technologies have emerged with promising potential to eliminate HH disruptions. However, there is a 
lack of quantitative studies assessing the design impact on hand hygiene performance in healthcare settings. In 
this paper, we employ data-driven discrete-event simulation (DES) to evaluate the long-term performance of 
various energy designs of automatic dispensers in healthcare facilities. We analyze 7 years of historical usage 
data from 4 US hospitals and identify the usage patterns, which serve as the input traffic for our simulation 
model. We then estimate the workflow disruption caused by different types of dispensers over a 6-year period, in 
terms of the number of missed HH opportunities, battery replacements, and duration of downtime. The simu
lation results suggest that the differences in performance are significant among dispenser types. In high usage, 
the number of missed HH opportunities caused by refill depletion ranges from 403.1 to 1232.4, and total 
downtime ranges from 0 to 96.3 h. Implementing proactive maintenance measures, such as service refill alerts, 
can greatly reduce the chances of ABHR depletion, resulting an 81.6 % decrease in HH disruptions for a single 
dispenser in high usage. Therefore, healthcare facilities should consider the variations in dispenser design, 
including the energy management system. They should also carefully study dispenser usage patterns to imple
ment optimized policies and practices for ABHR refill maintenance to minimize overall missed HH opportunities.   

1. Introduction 

Automatic alcohol-based hand rub (ABHR) dispensers are widely 
adopted for hand hygiene (HH) in healthcare facilities due to their easy 
access, ability to eliminate direct contact, and their association with 
reduced transmission of pathogens and lower hospital-acquired infec
tion rates (Jefferson et al., 2023). Maintaining the stable operation of 
ABHR dispensers is crucial to maximizing these benefits, but often faces 
challenges related to the energy and refill supply of the dispensing 
system. In a hospital with hundreds or thousands of dispensers exhib
iting varying usage patterns, maintaining proper energy and refill levels 
for all of them can be challenging. Inoperable dispensers, resulting from 
dead batteries and depleted refills, create pain points that lead to 

workflow disruption and inefficiencies in healthcare facilities. When 
healthcare workers cannot access ABHR at their first-choice dispenser, 
they may spend more time searching for another one or even skip 
sanitizing, increasing the risk of pathogen transmission. The unavail
ability of ABHR dispensers can also negatively impact visitors’ experi
ences at a facility, fostering frustration and a perception that the hospital 
is not adequately prioritizing health and safety. Therefore, ensuring 
proper energy design and refill maintenance is crucial to guarantee 
uninterrupted access to hand sanitizing and sustain optimal hand hy
giene performance in hospitals. 

To this end, various energy and refill replenishment technologies 
have emerged, aiming to ensure reliable and consistent performance of 
automatic ABHR dispensers. Many design the supply power by using 
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large batteries, intending to last for the expected dispenser lifespan 
(typically over 5 years). However, over a dispenser’s lifetime, batteries 
may wear down faster than anticipated for various reasons. A newer 
power supply solution, Energy-On-the-Refill (EOR), involves attaching a 
relatively small battery to the refill bottle, ensuring the primary power 
supply of a dispenser is replenished when a refill is replaced. Regarding 
ABHR refill maintenance, many designs include a warning line or a 
warning indicator on the refill bottle to alert when the liquid is near 
depletion. However, due to inefficient and poor management of some 
facilities, it can take housekeeping personnels days or weeks to discover. 
To avoid service disruption due to a lack of maintenance, real-time 
service alerts have been proposed to notify housekeepers for replen
ishment when ABHR level is low. Although these technologies show a 
promising potential to eliminate hand hygiene disruptions, little quan
titative evidence is available on the consequences of using these 
different designs. 

The objective of this study is to assess the impact of dispenser designs 
on HH performance. We evaluate various designs by estimating the 
number of missed HH opportunities and downtime caused by dead 
batteries and empty refills. Observing dispensers’ failures throughout 
their lifespan is impractical given the relatively long duration and 
extensive scope of the system. Therefore, we employ discrete-event 
simulation (Kelton et al., 2015) to compare dispensers of various de
signs. To the best of our knowledge, no simulation studies have been 
conducted to evaluate the performance of automated ABHR dispensers 
with real-world usage patterns in healthcare settings. The research aims 
are formalized into 1) building mathematical models to capture the daily 
operation of automated ABHR dispensers under uncertain demand, 2) 
identifying factors affecting dispenser reliability, and 3) studying and 
comparing the reliability of different dispenser designs in various 
healthcare facilities. 

Our study contributes to the literature of hand hygiene research from 
multiple aspects. First, ABHR dispensers are recommended globally as 
the standard for hand hygiene practices in healthcare environments 
(Boyce & Pittet, 2002; Glowicz et al., 2023; World Health Organization, 
2009; World Health Organization, 2022). They are also vital for public 
health in other settings. For instance, installing ABHR dispensers in 
schools can reduce absenteeism by up to 59 % (Bloomfield et al., 2007; 
Priest et al., 2014). Besides, the use of ABHR has been shown to lower 
the risk of germ transmission and infection rates in military (Mott et al., 
2007), office buildings (Arbogast et al., 2016; Kurgat et al., 2019), and 
athletic training environments (Labelle et al., 2020). 

Second, this study provides, for the first time, a holistic evaluation at 
the hospital scale, based on real-world traffic, of the HH performance of 
different dispenser designs with varying energy/refill configurations. 
We employ inventory models to keep track of the battery energy and the 
refill volume and capture the operation of different dispenser designs 
using discrete-event simulation. We analyze the usage patterns of the 
dispensers in four different types of hospitals from real-world data, 
which are then used as input traffic to drive our simulation. We evaluate 
the duration of downtime and the number of missed hand hygiene op
portunities due to dead batteries, and that due to empty refills, and 
compare the performance of different designs. Our results suggest that 
healthcare facilities should carefully compare alternative dispenser de
signs and technologies to ensure uninterrupted hand hygiene service. 

Third, we also study the effectiveness of the refill service alert, a new 
form of proactive maintenance for dispenser refills, and evaluate the 
trade-off between hand hygiene performance and refill waste. Our re
sults indicate that implementing such maintenance alerts helps reduce 
missed hand hygiene opportunities due to empty refills, and the optimal 
trigger threshold for the alert depends on the usage pattern of the 
dispenser. Additionally, exogenous factors such as dispenser usage 
patterns should also be considered to develop optimal policies for bat
tery placement and refill maintenance. 

The remainder of this paper is organized as follows. In Section 2, we 
provide a brief review of previous research on ABHR dispensers, battery 

models, and the application of discrete-event simulation in healthcare. 
Section 3 details our research methodology. First, we overview 
dispenser usage data from hospitals and technical specifications of 
various dispenser designs. Then, we introduce the mathematical models 
for dispenser daily operation and usage patterns, followed by our 
discrete-event simulation models. Verification and validation proced
ures are also discussed in this section. In Section 4, we present the 
simulation results, which include a comparison of dispenser designs in 
terms of HH misses, and an evaluation of the efficiencies and trade-offs 
associated with different refill maintenance policies. Section 5 discusses 
the importance and limitations of this work. Finally, concluding remarks 
are made in Section 6. 

2. Literature review 

Our research intersects with several streams of literature, encom
passing ABHR dispenser and hand hygiene research, battery modeling, 
inventory models, and discrete-event simulation. Below, we offer a 
concise overview of each stream, drawing upon representative examples 
from existing literature and contextualize our research within the 
broader landscape of these streams. 

2.1. ABHR dispenser and HH compliance 

Studies on the performance of ABHR dispersers have predominantly 
been conducted in laboratory settings. One study has shown that touch- 
free dispensers significantly increase hand hygiene compliance 
compared to manual dispensers in two units of a large pediatric hospital 
(Larson et al., 2005). Other studies suggest that utilizing touch-free hand 
hygiene dispensers contributes to improved hand hygiene performance 
and facilitates compliance monitoring measurement (Boyce et al., 2019; 
Arbogast et al., 2023). In addition, research underscores the importance 
of ABHR dispenser design in ensuring reliable and consistent perfor
mance, delivering the right amount of ABHR when needed, which not 
only influences the effectiveness of ABHR (Macinga et al., 2013; Price 
et al., 2022) but also affects healthcare workers’ hand hygiene compli
ance (Greenaway et al., 2018). A recent Cochrane Review highlights 
hand hygiene as one of the most important interventions for preventing 
pathogen transmission and reducing the risk of respiratory viruses 
(Jefferson et al., 2023). 

2.2. Battery models 

The state of charge (SOC) of a battery, representing the level of 
charge relative to its capacity, is highly nonlinear due to its complex 
internal electrochemical dynamics, and susceptibility to factors such as 
temperature, cycle times, aging, etc. Numerous battery models have 
been developed, see, e.g., (Zhou et al., 2021) and references therein. The 
survey categorizes the models into three main types: electrochemical 
mechanism models, equivalent circuit models, and data-driven models. 
Electrochemical mechanism models attempt to fully capture a battery’s 
internal physical and chemical processes with electrochemical power 
and transmission equations, see, e.g., (Doyle et al., 1993; Zhang et al., 
2000). Equivalent circuit models simulate the dynamic characteristics of 
a battery with circuit networks, see, e.g., (Johnson, 2002; Li et al., 
2021). Data-driven models, including the machine learning approach, 
avoid directly modeling the actual battery system and utilize external 
characteristic parameters for SOC estimation, see, e.g., (Li, 2020). This 
approach can capture the non-linearity of battery SOC and can be 
generalized to different battery types, but it also requires a large amount 
of battery testing data. The most used data-driven method is the direct 
measurement method, where the goal is to estimate battery SOC using 
measured parameter variables correlated with the battery, such as 
voltage and current. Machine learning models, such as neural networks, 
support vector machines, and deep learning, are often employed for SOC 
estimation (Wei et al., 2018; Yang et al., 2018). In our research, we 
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adopt the data-driven approach to model dispenser battery 
consumption. 

2.3. Discrete-event simulation and inventory models in healthcare 

Discrete-event simulation has found widespread application in the 
study of healthcare systems, with various uses in emergency de
partments, inpatient facilities, outpatient clinics, and other hospital 
units, including intensive care units, pharmacies, operating rooms, and 
therapy. A comprehensive survey by Günal and Pidd (2010) provides 
insights into the diverse applications of discrete-event simulation in 
healthcare, with numerous references therein. Many studies in this 
domain aim to improve the operational performance of a system in 
healthcare facilities by facilitating better-decision making and planning. 
Common applications include the scheduling of healthcare workers and 
the sizing and planning of resources such as beds, rooms, and staff. For 
example, discrete-event simulation has been employed to evaluate 
emergency medical location models (Ünlüyurt and Tunçer, 2016) and to 
model patient flows in an orthopedic clinic (Baril et al., 2014; Bean et al., 
2019). To the best of our knowledge, this is the first study using discrete- 
event simulation to capture the design impact on hand hygiene perfor
mance in healthcare settings. 

Our model is also related to inventory management research, as seen 
in works such as Zipkin (2000). We model the ABHR inventory of a 
dispenser as a nonperishable good that is only consumed by usage, while 
the battery energy of a dispenser is treated as a perishable good that 
decreases with both usage and deterioration (due to idling and self- 
discharging). A recent survey can be found in Karaesmen et al. (2011), 
which categorizes the literature into periodic and continuous review 
inventory control. The traditional manual check for battery function
ality and ABHR refill emptiness can be viewed as a periodic review, 
whereas the real-time service alert represents a continuous review 
approach. In this work, since determining the optimal review and 
maintenance policy for each device is not our goal, we simply set the 
inspection interval based on what is used in practice and focus on 
comparing the design impact of different devices using discrete-event 
simulation. 

3. Research methodology 

We now describe our methodology for evaluating the HH perfor
mance of ABHR dispensers. Our approach is based on data-driven 
discrete-event simulation, which consists of the collection and analysis 
of dispenser usage data, the development and simulation of dispenser 
models, and the implementation of maintenance policies for batteries 
and refills. We perform input analysis with statistical software R (version 
4.2.0) and build dispenser models within simulation software Arena 
(Rockwell Automation, version 16.2). 

3.1. Data: Usage log history and dispenser parameters 

Seven years of usage data (November 2014 – June 2021) is pulled 
from the AHHMS (Automated Hand Hygiene Monitoring System) 
installed in four US hospitals equipped with automatic sanitizer dis
pensers from GOJO1 Industries. Table 1 summarizes information of the 
test facilities including hospital types, number of monitored dispensers 
and dispensing events, obtained from the AHHMS data. Note that the 
AHHMS data we use does not cover all the dispensers because only a 
subset is attached to the monitoring system. The AHHMS data also 
contains activities of soap dispensers, but in this study, we only use the 

part of ABHR dispensers. 
Seven automatic dispensers from different manufacturers are 

considered in this study. Technical specifications of these dispensers 
related to dispensing are measured using laboratory testing by experi
enced electrical engineers at GOJO, with calibrated equipment and 
validated test methods. The energy measurements are completed on 
three replicates and the average values are reported in Table 2. 

3.2. Simulation models 

There are three interdependent components in the modeling of a 
dispensing system: 1) the dispenser, 2) the usage pattern, and 3) the 
maintenance policies. The arrival of a usage request triggers the con
sumption of battery energy and ABHR, and the maintenance policies 
determine the timing of replenishment for the batteries and refills. 

3.2.1. The dispenser: An inventory model 
We model a dispenser’s battery energy and ABHR volume as its in

ventories consumed by users over time. The status of a dispenser at time 
t is represented by a pair (E(t), L(t)), where E(t) and L(t) denote 
respectively the energy and sanitizer liquid inventory levels at time t. 
The dispenser stops working if either of the inventories goes empty (or 
below certain thresholds). A user arriving at a non-functioning dispenser 
has no access to hand sanitizing. Such a failed dispensing event will be 
recorded as a hand hygiene miss. Next, we describe the inventory dy
namics using time-dependent differential equations. 

Each time there is a successful dispense, the ABHR inventory L(t) will 
decrease by an amount ld, which is the dispenser’s default dispense vol
ume per actuation. We assume that the dispense volume is independent of 
time, the environment, and the user. A refill maintenance will replace 
the current bottle (possibly incurs wastage) with a new one of full vol
ume L0. The refill volume L0 and the dispense volume per actuation ld for 
different dispenser types are provided in Table 2. 

The evolution of the ABHR inventory L(t) in one refill cycle, 
assuming a refill replacement just occurred at time t0, and the dispenser 
has sufficient power, can be described as follows: 
⎧
⎪⎨

⎪⎩

∂L(t)
∂t

= −lda(t)

L(t0) = L0

(1)  

where a(t) denotes the user arrival rate at time t. Based on our analysis of 
the usage data, the arrival process {a(t), t ≥ 0} of dispensing events is 
typically nonstationary. Note that we model ABHR as a nonperishable 
good, whose inventory is only reduced by usage. 

The evolution of the energy inventory E(t) is a more complex process. 
The total energy consumption of a dispenser is categorized into three 
components: dispense energy, idle energy, and self-discharge energy. The 
dispense energy represents the energy used during each dispensing 
operation. Idle energy is the energy consumed to maintain a dispenser in 
standby/idle mode when not in use. This is determined by multiplying 
the idle power by the duration the dispenser remains in idle mode. Self- 
discharging is a natural battery aging process that diminishes the stored 
battery charge through internal chemical reactions. To quantify the 
energy consumption of these activities, we utilize joule (J) as the unit of 
energy. It is important to note that 1 J of energy is consumed when 1 W 
of power is sustained for 1 s. In other words, power is the rate of 
consuming energy. 

Let E0 denote the initial battery capacity of a dispenser, ed the energy 
consumed per dispense, ei the idle power (idle energy consumed per 
second), and es the self-discharge energy per second. We can describe 
the evolution of the energy inventory E(t) in a battery’s lifetime as 
follows: 1 GOJO Industries, Inc., is a privately held manufacturer of hand hygiene and 

skin care products based in Akron, Ohio, USA. One of its most well-known 
products is Purell hand sanitizer. It offers electronic hand hygiene dispensing 
and monitoring systems for medical institutions. 
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⎧
⎪⎨

⎪⎩

∂E(t)
∂t

= −ei − eda(t) − esE(t)

E(0) = E0

(2)  

There are other factors that affect energy consumption, for instance, 
operating temperature, aging of batteries and wear of the dispensing 
system, etc. For simplicity, we focus on the major factors and believe 
that our energy model is sufficient as an initial attempt to this simulation 
study. From the perspectives of inventory modeling, equation (2) cor
responds to the evolution of a perishable good since the battery energy 
incurs losses not only due to usage but also deterioration (idling and self- 
discharging), see, e.g., Macías-López et al. (2021). 

It is worth mentioning that the battery capacity and the refill level 
affect the quality of a dispense interdependently. When the battery energy 
is plentiful but the refill level L(t) is near depletion, the user will get an 
“empty” dispense – meaning a dispense without sanitizer. In this sce
nario, we assume that the decrease in battery energy is the same as that 
in a complete dispense, while there is no decrease in the refill volume. 
When the batteries are depleted, no dispense will occur regardless of the 
liquid inventory status. The dynamics of L(t) and E(t) will be further 
complicated by the implementation of battery replacement and refill 
maintenance policies. Solving the above equations, if not impossible, 
poses a considerable challenge. This is exacerbated by the necessity to 
solve them for hundreds or even thousands of dispensers, each subject to 
a distinct stochastic user arrival process. In such a complex scenario, 
discrete-event simulation emerges as an ideal tool. This method can 
effectively capture the complexity and uncertainty of real-world sys
tems, and incorporate randomness, variability, dependencies, and in
teractions among system components (Banks et al., 2009). 

Among the seven devices in this study, 6 of them are considered as 
traditional dispensers, which have a single power supply, which is a 
battery pack inside of the dispenser. One device (Device 6 in Table 2) 
employs the Energy-On-the-Refill (EOR) design and has two separate 
power sources, an AA alkaline battery embedded in the refill bottle, 
which is the so-called EOR, and a pack of four AA alkaline batteries 
within the dispenser housing, which is the auxiliary power supply (APS). 

The EOR energy design ensures that the major power supply is replen
ished every time a new refill bottle is loaded into the dispenser. In such a 
setting, a dispenser’s EOR serves as the primary power supply until its 
depletion, then its APS takes over. Our simulation model will capture 
these features in the EOR model. 

Most coefficients in the ordinary differential equation system (1) and 
(2) are determined by measuring the various dispensers in the delivery 
system engineering electronics test lab at GOJO Industries (Table 2). 
Besides, the effect of aging on alkaline batteries has been estimated to be 
a loss of 2–3 % of the total capacity per year (Buchmann, 2001). We 
notice that traditional dispensers are more susceptible to battery aging 
than the EOR design. This is because the main battery of an EOR 
dispenser is renewed at each refill replacement, while in a traditional 
dispenser, the same batteries are used until depletion. We decide to use 
2 % as the yearly aging rate for all dispensers (hence, es = 2 %/number 
of seconds in a year) because it slightly favors the traditional dispenser, 
and we want to show that the EOR design still outperforms. In Littau 
et al. (2013), similar power consumption data has been utilized to 
develop a mathematical model to estimate dispenser battery life over 
time. 

3.2.2. The usage patterns 
Statistical analysis has been conducted to study the usage pattern of 

the dispensers in four hospitals and develop an input (traffic) model for 
simulation. As illustrated in Table 1, the usage data contains up to 30 
million dispensing events from touch-free ABHR dispensers in various 
hospitals. It is important to acknowledge that the actual number of 
dispensers used at each facility might surpass the reported figure, as only 
a subset of dispensers is connected to the AHHMS monitoring system. 

Our analyses of the usage data indicate that the usage patterns are 
nonstationary. Fluctuations in usage are observed across various time 
scales, including hours, days, weeks, and months. However, the most 
significant variability in time occurs at the hourly level. This observation 
aligns with findings from (Boyce et al., 2019), which analyzes a similar 
dataset in healthcare settings and points out that “the biggest fluctua
tions in median HH rates are across hours in a day, not across days in a 

Table 1 
Summary of facility information and dispense event details to inform modeling.  

Facility 
code 

Hospital type Patient 
rooms 

Total # of 
dispensers1 

# of ABHR 
dispensers 

Data time range Total ABHR 
dispenses2 

Average daily ABHR 
dispenses3 

1 Adult, Academic medical 
center 

536 2,456 685 11/11/2014–––06/ 
10/2021 

31.6 million 13,141 

2 Adult, Veterans 118 794 275 01/31/2017–––06/ 
10/2021 

10.1 million 6,379 

3 Pediatric, Academic 
medical center 

106 943 273 01/12/2015–––06/ 
10/2021 

9.2 million 3,947 

4 Adult, Community 66 354 161 12/06/2016–––06/ 
10/2021 

6.9 million 4,215  

1 This total includes soap dispensers used for hand washing and ABHR dispensers that are equipped with automated monitoring. 
2 Total dispenses for all ABHR dispensers during the entire time range. 
3 This is the average number of ABHR dispenses daily for the facility for all dispensers. 

Table 2 
Dispenser testing data related to dispensing.  

Device Code Manufacturer, Model Refill Volume (mL) Total Battery Joules (J) Energy per Dispense (J) Average Dispense (mL) Idle Power (uW) 

1 GP, EnMotion 1,000 267,370  1.44  1.08  358.4 
2 Medline, Spectrum 1,000 120,800  2.02  0.78  1255.8 
3 SCJ, Ultra 1,000 264,640  2.15  0.75  480.0 
4 Scotts, Essential 1,200 101,630  1.11  0.67  699.2 
5 Ecolab, NEXA 1,200 190,300  1.71  0.96  693.1 
6 GOJO ES-10 1,200 38,210 (APS) + 11,841(EOR)1  2.22  1.25  267.5 
7 GOJO, LTX 1,200 231,900  2.50  1.24  885.3 
8 Device 7 equipped with refill service alert technology  

1 For GOJO ES-10, 38,210 J comes from the auxiliary power supply (APS) in the device and 11,841 J comes from the battery on the refill bottle (EOR, or Energy On 
the Refill). 
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week or months in a year”. Consequently, we model user arrivals at a 
dispenser as a nonstationary Poisson process with hourly arrival rates. 
The rate at each hour is calculated by first aggregating the total usage 
during that hour and then averaging it over the total number of days. 
Using this approach, each dispenser is associated with a vector in 24 
dimensions, representing the average hourly rates for each of the 24 h in 
a day. 

As shown in Table 1, the number of dispensers in a hospital is in the 
hundreds to thousands. To obtain generalized results that facilitate 
decision-making for the stakeholders, we utilize clustering analysis to 
identify a few representative profiles of usage patterns. The procedure 
takes two steps, prescreening and dedicated clustering. 

In the prescreening step, we observe that nearly half of the dispensers 
in each hospital have few dispenses per day. We classify those dispensers 
as minimal usage dispensers. To obtain the minimal usage profile, we 
pool the usage patterns from all four hospitals and calculate the average 
below the median. Usage patterns that are above the median are used for 
the dedicated clustering. 

In the dedicated clustering step, we employ the Gaussian mixture 
model (GMM) to cluster the non-minimal usage patterns. GMMs are 
commonly used as a parametric model to estimate the probability den
sity of the representative clusters of high dimensional data (Peel and 
MacLahlan, 2000). The model assumes p(x), the distribution of n inde
pendent and identically distributed samples x = {x1, x2, ⋯, xn} can be 
represented by a finite mixture of Gaussian (normal) distributions: 

p(x) =
∑C

k=1
πkN(x|μk, Σk)

where C is the size of the multivariate Gaussian distributions, N(x|μk, Σk)

is the k-th component with vector mean μk and covariance matrix Σk; 
and πk is the corresponding mixing weight. 

We use the package mclust (Scrucca et al., 2016 version 5.4.10) in R 
to perform the GMM classification and inside the package, the expect
ation–maximization (EM) algorithm is used to train the GMM models. 
The optimal number of the clusters and their geometry can be identified 
using the Bayesian information criterion or BIC (Fraley & Raftery, 1998; 
Schwarz, 1978): 

BIC = log(L) − mlog(n)

where log(L) is the log-likelihood for the model, n is the sample size, and 
m is the number of estimated parameters. 

The two-step procedure has resulted in four usage profiles, which are 
named respectively “minimal”, “low”, “moderate”, and “high” according 
to the intensity of the arrival rates. The resulting usage patterns are then 
used as the arrival rates of the nonstationary Poisson processes in our 
Arena simulation models. 

3.2.3. Maintenance policies 
We consider two refill maintenance policies 1) regular manual 

checks and replacement, and 2) real-time monitoring and replacement 
in advance. The first approach, which is widely adopted, involves 
determining when to replenish and estimating the duration of the 
replenishment process. We assume a 12-hour inspection interval for the 
refill, and replacement is immediate once an empty bottle is identified. 
In practice, housekeeping personals will periodically visit each location 
at scheduled intervals to inspect and refill the dispensers as needed. To 
determine this interval, GOJO conducts a survey on the inspection fre
quency for refills in the hospitals under study. Due to privacy concerns, 
the data is not shared with us. However, we are informed that the best 
scenario is that refills are checked every 12 h. This practice is imple
mented in ICU, where maintaining the highest hand hygiene standards 
for health care workers and visitors is critical. In other units, the in
spection frequency may be significantly lower. We have set a 12-hour 
refill inspection interval in the simulation for the manual checks, 

which allows us to compare the best-case scenario of the traditional 
approach with the more advanced approach. 

The second approach employs the Internet of Things (IoT), utilizing 
smart devices connected to the dispensing system for real-time moni
toring, data collection, and provision of recommendations or alerts to 
ensure the system’s effective operation. For instance, IoT is applied to 
implement service alerts for refill monitoring. When a dispenser’s refill 
level falls below a specified threshold, an alert is generated and sent to 
notify the maintenance personnels that a refill replacement is needed. 
While alerts can be triggered instantly, still there is a delay (lead time) 
between alerts and the refill replacement, which could take up to 12 h 
(assuming being taken care within the same shift). We set the delay time 
as 12 h in the simulation, aiming to compare the best-case scenario of 
the traditional approach with the worst-case scenario with service alerts. 

Regarding battery replacement, we assume that the lead time (i.e., 
the duration to replace dead batteries) is a random variable with a 
discrete probability distribution. The distribution for battery mainte
nance lead time is determined based on a survey involving 74 acute care 
environment services employees across various healthcare facilities 
(refer to Table 3). 

In both the refill and battery maintenance, it is possible to formulate 
an optimization problem to determine the optimal inspection intervals. 
We expect that distinct devices and various usage profiles will yield 
different optimal inspection intervals. For instance, the time it takes for 
a dispenser to deplete its ABHR depends on factors like its initial ca
pacity, per dispense volume, and usage intensity. Consequently, the 
optimal solutions are likely to be device and usage pattern specific. 
However, such optimization is beyond the scope of our study. In our 
simulation model, we establish the inspection interval based on practical 
usage, guided by expert opinions. Our primary focus is on comparing the 
design impact of different devices. 

3.2.4. The discrete-event simulation model 
Discrete-event simulation models are developed by integrating the 

three components described above. Our model consists of three inter
dependent parts that capture the dispensing, refill maintenance, and 
battery replacement process respectively. These components share the 
same set of global variables to keep track of the remaining ABHR level 
and battery energy level(s). ABHR demand traffic is generated according 
to the non-stationary arrival profiles defined earlier, which triggers the 
consumption of ABHR and battery energy. 

Fig. 1 depicts the operational logic of the two different dispensers 
and the maintenance for batteries and refills. The flowchart in Fig. 1(a) 
illustrates the traditional approach employed by Devices 1–5 and 7, 
where the dispenser relies on a single source of power supply built into 
the dispenser housing to operate. Fig. 1(b) displays a flowchart of the 
Energy-On-the-Refill design utilized by Device 6. Fig. 1(c) illustrates the 
operation of battery maintenance while Fig. 1(d) shows the house
keeping process of checking and changing ABHR refills. 

In a typical simulation run, users are initially generated as entities 
based on a predefined usage profile, characterized by a non-stationary 
Poisson process with specified hourly arrival rates. Upon arrival, a 
user will initiate a dispense event by attempting to use the dispenser. 
The outcome of this dispense event depends on the current energy and 
liquid inventory status of the dispenser (E(t), L(t)), resulting in either a 

Table 3 
Lead time of battery maintenance.  

Lead Time Frequency Percentage 

Within 12 h 10 14 % 
Within 16 h 36 49 % 
Within 24 h 17 22 % 
Within 32 h 5 7 % 
Within 48 h 5 7 % 
More than 48 h 1 1 %  
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successful dispense or a failure (which could manifest as an “empty” 
dispense or no dispense at all). Regardless of the outcome, users leave 
immediately after their dispense attempt. Meanwhile, regular refill 
status checks are conducted by housekeepers every 12 h. If the refill 
level falls below 5 mL,2 the refill is considered empty and promptly 
replaced with a new bottle. Requests for battery maintenance are 
assumed to be automatically generated when a dispenser’s batteries are 
dead, with the lead time for replacement drawn from a discrete proba
bility distribution introduced earlier. We run simulations for the seven 
devices, using four distinct clustered arrival profiles with varying total 
arrivals within a day. The simulation run spans a duration of 6 years 
(2160 days), reflecting a typical lifespan for automated ABHR dis
pensers. To assess the reliability of each dispenser type under a specific 
arrival profile, we record HH misses separately for cases involving dead 
batteries and those due to ABHR depletion. Each scenario, comprising a 
device type and an arrival profile, is simulated for 25 replications. 

3.3. Verification and validation 

Verification and validation help determine the correctness and ac
curacy of simulation models. More specifically, verification ensures a 
model’s developing and implementation are correct and validation 
checks if the model’s output is consistent with the actual system within 
an acceptable range of accuracy (Banks et al., 2009). Both verification 
and validation are performed using procedures suggested by Sargent, 
(2020) throughout the model development process. 

3.3.1. Conceptual model validation 
The conceptual model of both the traditional dispensers and EOR 

dispensers are verified with the hardware engineers and product man
agers of GOJO through multiple meetings and discussions. In a field trip 
to the company’s electrical testing laboratory, GOJO’s engineers explain 
the designs and working mechanisms of both types of automatic dis
pensers and provide actual devices for the modelers to study. The model 
developers present flow diagrams of the models and associated math 
equations on battery and refill level evolutions for close examination. 
Assumptions on the maintenance policies of batteries and refills are also 
discussed and verified during these meetings. 

3.3.2. Computerized model verification 
We also verify that the implementation of the conceptual model is 

correct, and the models is executed properly. The computerized models 
are run in Arena with dynamic animations of the battery level and refill 
level in front of the collaborators of GOJO. Sensitivity analyses are 
performed to access the robustness of the models. We vary usage pat
terns, refill capacities of the dispensers during simulation, and discuss 
with GOJO engineers whether the changes in the output parameters are 
consistent with the behavior of actual automatic sanitizer dispensers. 

3.3.3. Operational validation 
Validation is more difficult, mostly due to the lack of output data 

from the real system. For example, the Automated Hand Hygiene 
Monitoring System (AHHMS) installed in the hospitals could not detect 
nor record hand hygiene misses, the output metric that we are interested 
in. AHHMS only records the attempts to use a dispenser, and it does not 
differentiate successful dispenses from hand hygiene misses, let alone 
whether a failure is caused by dead batteries or empty refills. Never
theless, we manage to validate our model on the average number of 
sanitizer refills per dispenser each year. Based on information provided 
by GOJO, a single sanitizer dispenser consumes around five bottles of 
refill in a year on average in hospital 3. Our validation test focuses on 
comparing the system response, namely, the observed average number 
of sanitizer refills at hospital 3 with μ0 = 5 bottles to the model response 

Fig. 1. Flowcharts of the simulation model of (a) dispense model for traditional design; (b) dispense model for EOR design; (c) battery maintenance and (d) ABHR 
refill maintenance. 

2 Due to air pressure and sanitizer sticking to the inner surface of a refill 
bottle, a dispense residual exists. 5 mL was recommended by field experts as a 
generalized estimate for the dispensers in this study. 
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Y3. Formally, a statistical test of the null hypothesis: 

H0 : E(Y3) = 5 bottles. 
versus. 
H1 : E(Y3) ∕= 5 bottles. 

is conducted at the significance level α = 0.05. In order to determine 
the sample size n, a power analysis for a one-sample, two-sided t-test 
(Banks et al., 2009; Hines et al., 2008) is first carried out with targeted 
power 1 −β = 0.90 and difference threshold 1 bottle. That is, we would 
like to control the false negative rate β to be less than 0.10, hence the null 
H0 (model validity) will be rejected with probability at least 0.90 if the 
true mean number of refills of the model, E(Y3), differed from μ0 = 5 
bottles by 1 bottle. Our initial pilot run indicates that the standard de
viation of Y3 is S = 0.6845, which yields: 

δ̂ =
|E(Y3) − μ0|

S
=

1
0.6845

= 1.461  

Based on the Operating-characteristic (OC) curves (Table A.10 in Banks 
et al., 2009), we have chosen a sample size n = 5 so that β(δ̂) ≤ 0.10. By 
collecting the corresponding output values from simulation with n = 5 
replications, we have derived the test statistics t0 = 0.936. Since t0 =

0.936< t0.025,4 = 2.78, we conclude that we do not have sufficient evi
dence to say that the simulation model is invalid. This also corresponds 
to a 95 % confidence interval for average number of refills per year as 
[4.437, 6.136]. Since the historical average number of refills, five bottles 
per year, falls into the confidence interval, we are 95 % confident that 
the model output is consistent with the reality. The comparison of 
output behaviors between the simulation model and the actual system is 
also shown in Fig. 2. 

4. Results 

4.1. Usage profiles 

The usage profiles are trained on the pooled data from the four 
hospitals. Using the two-step procedure, we derive four distinct usage 
profiles: “minimal”, “low”, “moderate”, and “high”, based on arrival rate 

intensity. The “minimal” cluster is identified during the prescreening 
process, while the other three clusters are determined using Gaussian 
mixture models. Fig. 3 shows the Bayesian Information Criterion (BIC) 
plot fitted to the “non-minimal” pooled usage data. In the mclust 
package, 14 possible models with different geometric characteristics are 
specified with three-letter identifiers, such as EII and EVV. The BIC 
scores are presented as a function of the number of components. The 
VEE model with seven components maximizes BIC at 27333.08 and is 
selected by default. However, to simplify simulation and explanation, 
we specify three components to obtain a smaller number of clusters. The 
BIC for VEE with three components is 25678.88, which is nearly 
optimal. The resulting clusters are labeled “low”, “moderate”, and 

Fig. 2. Average Refill per Year in hospital 3.  

Fig. 3. BIC scores for GMM models with various component sizes and clus
ter geometries. 
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“high” based on the average daily usage they represent. 
Fig. 4 depicts the hourly usage rates of a dispenser under the four 

profiles. It is noteworthy that these profiles exhibit similar fluctuations 
throughout a day, with peak usage hours typically observed in the 
morning, around 7–9 am, and off-peak hours occurring around 
midnight. When summing up the hourly rates over a day, the average 
daily usages for the four profiles are 3.81, 13.38, 38.31, and 56.71, 
respectively. 

Table 43 presents the number of dispensers belonging to each clus
ter/profile based on the clustering analysis. The proportions of the 
profiles at each hospital are illustrated in Fig. 5. It is evident that the four 
hospitals exhibit both differences and similarities in their dispenser 
usage patterns. Significant variations are observed in the percentage of 
dispensers categorized under the high usage profile. For example, only 
0.4 % of dispensers in hospital 3 are characterized as having a high usage 
pattern, while 21.8 % of dispensers in hospital 2 demonstrate high 
usage. These disparities can be attributed to the differences in hospital 
types, dispenser quantities, and locations. Across all four hospitals, the 
“minimal” profile takes up approximately 50 % of the dispensers, indi
cating that nearly half of the monitored dispensers in the hospitals are 
rarely used. 

4.2. Hand hygiene misses due to dead batteries 

We categorize hand hygiene misses into two groups, HH misses due to 
dead batteries, and HH misses due to ABHR depletion. The former measures 
the energy efficiency of a dispenser, while the latter reflects the effi
ciency of a refill maintenance schedule. 

Fig. 6 illustrates the resulting HH misses due to dead batteries for one 
dispenser over six years of operation under the four usage patterns 
estimated by our simulation model. Observe that under minimal or low 
usage profiles, most dispensers generate very few HH misses. However, 
HH misses become more substantial under moderate and high usage 
profiles. Among the seven devices, Device 1 and Device 6 stand out, 
showing no hand hygiene misses caused by dead batteries in six years 
under all usage patterns, while Device 2 generates the most HH misses 
due to dead batteries. The reasons are straightforward. Device 1′s 

exceptional performance is attributed to its highly efficient energy 
design, particularly its low energy consumption in dispensing and idling. 
For Device 6, its unique EOR (Energy On the Refill) design ensures that 
the battery is replenished each time a new refill is added. 

During the simulation, we observe that there is consistently ample 
energy remaining in the EOR battery when the refill bottle is replaced. 
Furthermore, even if the EOR battery is depleted, the auxiliary battery 
will seamlessly activate to power the system. 

4.3. Hand hygiene misses due to ABHR depletion 

When the refill is depleted, users will experience an empty dispense if 
a dispenser still has sufficient power supply. This event is referred to as a 
HH miss due to ABHR depletion. Through simulation, our aim is to 
compare HH misses under the traditional maintenance approach with 
those under the real-time service alert approach. 

In the traditional approach, the refill bottle is manually checked 
every 12 h, and it is replaced immediately once found empty. In the 
service alert approach, the dispenser is connected to a real-time moni
toring system, and a service alert (e.g., text message) is sent to the 
housekeeping team once the ABHR volume falls below a prespecified 
threshold. In comparing the two maintenance approaches, the threshold 
is set at 5 % of the full capacity. Later in Section 4.5, we further explore 
the tradeoff between fewer HH misses and more ABHR liquid waste by 

Fig. 4. Usage patterns of a dispenser over 24 h derived via the GMM clus
tering method. 

Fig. 5. Proportions of clustered profiles in each hospital.  

Fig. 6. HH misses due to dead batteries.  

3 Note that the sum of the dispensers from hospitals 2 and 3 in Table 4 are 
slightly less than those shown in Table 1, because a few dispensers have 
incomplete data thus cannot be classified. 
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varying this threshold. 
Fig. 7 demonstrates HH misses due to ABHR depletion in a six-year 

operation estimated by our model. Devices 1–7 are all maintained 
under the traditional manual-check approach, while Device 8 adopts the 
real-time monitoring approach. In fact, Device 8 is identical to Device 7 
but enhanced with service alert technology from its manufacturer. 

From Fig. 7, it is evident that under minimal and low usage patterns, 
very few HH misses occurred across all device types, and the traditional 
maintenance policy (checking every 12 h) is sufficient to maintain good 
performance. However, when the usage pattern shifts to moderate and 
high, all dispensers (Devices 1–7) under the traditional manual check 
maintenance policy begin to generate a significant amount of HH misses 
due to ABHR depletion. The number of HH misses due to ABHR deple
tion appears to be inversely proportional to the capacity of the 
dispenser. For instance, Device 4 exhibits the lowest HH misses among 
all dispensers because it has the largest refill capacity and the smallest 
dispense volume. 

In the high usage scenario, a notable 81.6 % reduction in HH misses 
is observed when comparing Device 7 and Device 8. Furthermore, De
vice 8 achieves the lowest hand hygiene misses among all device types in 
various arrival profiles. The introduction of the refill service alert has 
made Device 7 the most robust dispenser in terms of HH misses due to 
ABHR depletion. 

4.4. Hospital-scale performance comparison 

After obtaining the performance metrics for a single dispenser, we 
extend the results to hospital scales by multiplying the performance 
metrics of a single dispenser by its quantity in the hospital. The number 
of dispensers under each usage profile at the four hospitals is provided in 
Table 4. As mentioned before, not all dispensers are connected to the 
AHHMS monitoring system, the source of the data for analysis and 
simulation. Even though we do not have information about the un
monitored dispensers in the hospitals, we are informed that these 
monitored dispensers can represent the majority of the hospital-level 
operation, so we simply use them in the comparison. Fig. 8 summa
rizes the simulated hand hygiene performance in each hospital. The 
performance metrics of interest include total HH misses due to dead 
batteries, total HH misses due to ABHR depletion, total dispenser 
downtime due to dead batteries, and the number of battery packs used 
over six years of operation. 

Fig. 8(a) shows the total HH misses due to dead batteries in each 
hospital. Notably, Device 2 generates the highest number of HH misses, 
followed by Device 4. In contrast, Device 1 and Device 6 achieve 0 HH 
misses over six years of operation. 

Fig. 8(b) shows the total HH misses due to ABHR depletion in each 
hospital, where Device 1–7 implement the traditional refill maintenance 
policy, and Device 8 is Device 7 equipped with the refill service alert. 
Under the traditional maintenance policy, Device 4 has the lowest HH 
misses at each hospital, primarily due to its relatively low dispense 
volume per actuation. The results show that the HH misses for Device 7 
reduce significantly, moving from the second highest to the lowest after 
implementing the refill service alert (as in Device 8). While the total 
number of ABHR dispensers and the proportions of dispensers per usage 
profile may differ in each hospital, the results at the hospital level align 
with the single dispenser results provided in Fig. 7. Moreover, by 
comparing Fig. 8(a) and 8(b), it can be concluded that the major cause of 
hand hygiene disruption is ABHR depletion. 

In Fig. 8(c), we compare the dispenser’s cumulative downtime hours 
caused by battery failures in each hospital. It is unsurprising to observe 
that the cumulative downtime shares the same pattern as that of HH 
misses due to dead batteries in Fig. 8(a). 

Fig. 8(d) shows the total number of battery change-out events that 
would occur during a six-year simulation if a hospital were to exclu
sively adopt a specific dispenser. Device 2 receives the highest number 
of battery maintenance events, while Device 1 and Device 6 have the 
lowest in each hospital. Additionally, it is noteworthy that a dispenser’s 
ranking of battery change-out events is consistent with the HH misses 
and downtime due to dead batteries. 

4.5. Trade-off between hand hygiene misses and ABHR waste 

In our simulation model, a tunable parameter is the refill alert 
threshold. This threshold determines the ABHR volume at which the 
maintenance team should be alerted to perform a refill replacement. The 
choice of the threshold value inherently involves a trade-off between HH 
misses due to ABHR depletion and the volume of sanitizer discarded due 
to preventive maintenance. Simply put, setting a conservative threshold 
that triggers service alerts when the refill is still ample reduces hand 
hygiene misses but increases sanitizer waste. 

Fig. 9 illustrates the trade-offs on Device 7 under “minimal”, “low”, 
“moderate”, and “high” usage intensity. We set the thresholds to 1 %, 2 
%, 4 %, 6 %, and 8 % of Device 7’s full refill capacity and run simulations 
for the four different usage profiles. It is notable that the “sweet spot” in 
the trade-off varies across different profiles. As depicted in Fig. 9, the 
“valley” that results in acceptably low HH misses and low ABHR wastage 
occurs at different thresholds depending on the usage intensity. When 
the usage profile is minimal or low, 2 % seems a good choice for the 
ABHR threshold. Under moderate and high usage, raising the alert when 
the refill level is below 4 % tends to be better. It is important to note that 
in such considerations, we prioritize HH misses slightly more than ABHR 
wastage. 

5. Discussion 

In this study, we estimate the performance of automatic hand sani
tizer dispenser with different designs and maintenance policies in hos
pitals. This is useful for choosing proper dispensers and maintenance 
schedules to optimize hand hygiene compliance in healthcare settings. 
The simulation results suggest that a dispenser’s performance is highly 
affected by its energy design and the facility’s maintenance policy. To 
reduce the hand hygiene misses, novel technologies such as Energy On Fig. 7. HH misses due to ABHR depletion.  

Table 4 
Number of ABHR dispensers from each usage profile.   

Hospital 1 Hospital 2 Hospital 3 Hospital 4 

Minimal 323 153 139 79 
Low 154 5 75 18 
Moderate 190 54 57 55 
High 18 59 1 9  
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the Refill and refill service alert are shown to be effective. 
We also find that HH misses vary significantly under different usage 

patterns. In general, higher usage rates will result in more dispense 
events, leading to a faster depletion of ABHR in dispensers. Conse
quently, dispensers will experience more breakdowns, generating more 
HH misses in hospital locations with higher foot traffic (e.g., entrance, 
hallways), or with stricter HH compliance requirements for healthcare 
workers (e.g., ICU unit). Since high-usage areas are typically associated 
with more patients/visitors, inoperable dispensers in these areas could 
negatively impact the patient satisfaction scores of a hospital. 

Our findings yield several implications for reducing HH misses and 
improving workflow efficiency in healthcare facilities. For traditional 
single-battery dispensers, a design with low dispense energy, low idle 
power, and large batteries is effective enough to mitigate downtime and 
HH misses caused by battery failures. However, the double-battery EOR 
configuration outperforms most traditional dispensers, suggesting its 
potential consideration as the next-generation automatic dispenser for 
better performance and less maintenance cost. To reduce HH misses due 
to ABHR depletion, we recommend implementing an add-on detection 
system with a refill service alert. If this is not an option due to the cost or 
other considerations, simply increasing inspections frequency would 
help. Our analyses also underscore the importance of analyzing foot 
traffic and usage patterns in potential locations before installing ABHR 
dispensers. Notably, our examination of usage data reveals that the 
current placement of ABHR dispensers in the four hospitals is subopti
mal, with many dispensers in various locations experiencing very low 
usage even during the COVID-19 pandemic. 

The limitations of this study center around assumptions that could 
impact the model accuracy. The aging of the systems is not accounted 
for, potentially affecting variables such as the amount of ABHR per 
dispense, the energy consumption, and the speed of dispense. Instead, 
we adopt a simplification for the battery energy consumed during 
dispensing and idling. In practice, a dispenser’s energy consumption 
from the battery could be affected by numerous factors, including but 
not limited to, the number of dispenses, battery aging, operating tem
perature, and the duration between dispenses, especially in low-usage 
scenarios. To better capture the nonlinearity of battery drain, addi
tional knowledge of the system and advanced modeling techniques are 
necessary. For instance, employing ordinary differential equation (ODE) 
models to describe electrochemical reaction dynamics within batteries 
could be beneficial. Additionally, one might consider applying data- 
driven machine learning to predict the remaining capacity of batteries 
(Ng et al., 2020). We leave this as a task for future investigation and 
development. One may also want to incorporate the total cost of 
ownership for each device, which can aid facility managers in making 
more informed decisions regarding the purchase and maintenance in the 
long run. 

6. Conclusion 

In this paper, we propose a data-driven DES framework to assess the 
hand hygiene performance of automatic ABHR dispensers in healthcare 
settings. We model seven different dispensers, conduct simulations using 
real-world data, and compare their long-term performance under 

Fig. 8. Dispenser performance in each hospital.  
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various maintenance policies. The results suggest that the energy design 
of a dispenser can significantly affect the number of hand hygiene misses 
it generates, and a facility’s maintenance policies are crucial for miti
gating workflow disruption caused by ABHR depletion and battery 
failures of the dispensers. Furthermore, novel technologies such as En
ergy On the Refill and refill service alert, which facilitate preventive 
maintenance of batteries and refills, prove highly effective in reducing 
hand hygiene misses. 

In conclusion, our methodology, encompassing the analysis of 
dispenser usage data, building simulation models, interpreting results, 
and making recommendations, offers a convenient solution for evalu
ating the performance of automatic sanitizer dispensers under uncertain 
usage conditions. We have developed a generalizable and customizable 
approach to estimate the performance of automatic sanitizer dispensers, 
which can be applied across different dispenser types, environmental 
settings, and maintenance policies. The inherent trade-off between cost 
and performance always exists in optimizing a system’s operation. While 
our approach provides a practical means to find such a balance, it is 
essential to remember that learning the optimal strategy for operating a 
complex system usually involves solving optimization problems with 
multiple objectives. The practical optimal solution depends on the ex
pectations of how the system should function and the tolerance for the 
associated costs to maintain such performance. 

Discrete-event simulation is an inherently cost-effective and time- 
saving approach that aids decision-making. When combined with clus
tering analysis on the usage data, we identify the representative usage 
profiles with high fidelity and easy interpretability, simplifying the 

modeling and simulation process. The case study of automatic ABHR 
dispensers in hospitals demonstrates the benefit of this data-driven DES 
framework. The application of machine learning techniques to assist 
input modeling not only enhances the accuracy of parameter estimation 
but also expedites the simulation process. In the era of big data, 
leveraging machine learning and data analytics will make discrete-event 
simulation more efficient and powerful. 
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