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Automatic dispensers of alcohol-based handrub (ABHR) have been widely adopted in healthcare facilities to
maintain hand hygiene (HH). A proper supply of energy and refill is crucial to ensure uninterrupted access to
hand sanitizing and minimize workflow disruption and inefficiencies. Various energy design and refill replen-
ishment technologies have emerged with promising potential to eliminate HH disruptions. However, there is a
lack of quantitative studies assessing the design impact on hand hygiene performance in healthcare settings. In
this paper, we employ data-driven discrete-event simulation (DES) to evaluate the long-term performance of
various energy designs of automatic dispensers in healthcare facilities. We analyze 7 years of historical usage
data from 4 US hospitals and identify the usage patterns, which serve as the input traffic for our simulation
model. We then estimate the workflow disruption caused by different types of dispensers over a 6-year period, in
terms of the number of missed HH opportunities, battery replacements, and duration of downtime. The simu-
lation results suggest that the differences in performance are significant among dispenser types. In high usage,
the number of missed HH opportunities caused by refill depletion ranges from 403.1 to 1232.4, and total
downtime ranges from O to 96.3 h. Implementing proactive maintenance measures, such as service refill alerts,
can greatly reduce the chances of ABHR depletion, resulting an 81.6 % decrease in HH disruptions for a single
dispenser in high usage. Therefore, healthcare facilities should consider the variations in dispenser design,
including the energy management system. They should also carefully study dispenser usage patterns to imple-
ment optimized policies and practices for ABHR refill maintenance to minimize overall missed HH opportunities.

Gaussian mixture model

1. Introduction

Automatic alcohol-based hand rub (ABHR) dispensers are widely
adopted for hand hygiene (HH) in healthcare facilities due to their easy
access, ability to eliminate direct contact, and their association with
reduced transmission of pathogens and lower hospital-acquired infec-
tion rates (Jefferson et al., 2023). Maintaining the stable operation of
ABHR dispensers is crucial to maximizing these benefits, but often faces
challenges related to the energy and refill supply of the dispensing
system. In a hospital with hundreds or thousands of dispensers exhib-
iting varying usage patterns, maintaining proper energy and refill levels
for all of them can be challenging. Inoperable dispensers, resulting from
dead batteries and depleted refills, create pain points that lead to

workflow disruption and inefficiencies in healthcare facilities. When
healthcare workers cannot access ABHR at their first-choice dispenser,
they may spend more time searching for another one or even skip
sanitizing, increasing the risk of pathogen transmission. The unavail-
ability of ABHR dispensers can also negatively impact visitors’ experi-
ences at a facility, fostering frustration and a perception that the hospital
is not adequately prioritizing health and safety. Therefore, ensuring
proper energy design and refill maintenance is crucial to guarantee
uninterrupted access to hand sanitizing and sustain optimal hand hy-
giene performance in hospitals.

To this end, various energy and refill replenishment technologies
have emerged, aiming to ensure reliable and consistent performance of
automatic ABHR dispensers. Many design the supply power by using
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large batteries, intending to last for the expected dispenser lifespan
(typically over 5 years). However, over a dispenser’s lifetime, batteries
may wear down faster than anticipated for various reasons. A newer
power supply solution, Energy-On-the-Refill (EOR), involves attaching a
relatively small battery to the refill bottle, ensuring the primary power
supply of a dispenser is replenished when a refill is replaced. Regarding
ABHR refill maintenance, many designs include a warning line or a
warning indicator on the refill bottle to alert when the liquid is near
depletion. However, due to inefficient and poor management of some
facilities, it can take housekeeping personnels days or weeks to discover.
To avoid service disruption due to a lack of maintenance, real-time
service alerts have been proposed to notify housekeepers for replen-
ishment when ABHR level is low. Although these technologies show a
promising potential to eliminate hand hygiene disruptions, little quan-
titative evidence is available on the consequences of using these
different designs.

The objective of this study is to assess the impact of dispenser designs
on HH performance. We evaluate various designs by estimating the
number of missed HH opportunities and downtime caused by dead
batteries and empty refills. Observing dispensers’ failures throughout
their lifespan is impractical given the relatively long duration and
extensive scope of the system. Therefore, we employ discrete-event
simulation (Kelton et al., 2015) to compare dispensers of various de-
signs. To the best of our knowledge, no simulation studies have been
conducted to evaluate the performance of automated ABHR dispensers
with real-world usage patterns in healthcare settings. The research aims
are formalized into 1) building mathematical models to capture the daily
operation of automated ABHR dispensers under uncertain demand, 2)
identifying factors affecting dispenser reliability, and 3) studying and
comparing the reliability of different dispenser designs in various
healthcare facilities.

Our study contributes to the literature of hand hygiene research from
multiple aspects. First, ABHR dispensers are recommended globally as
the standard for hand hygiene practices in healthcare environments
(Boyce & Pittet, 2002; Glowicz et al., 2023; World Health Organization,
2009; World Health Organization, 2022). They are also vital for public
health in other settings. For instance, installing ABHR dispensers in
schools can reduce absenteeism by up to 59 % (Bloomfield et al., 2007;
Priest et al., 2014). Besides, the use of ABHR has been shown to lower
the risk of germ transmission and infection rates in military (Mott et al.,
2007), office buildings (Arbogast et al., 2016; Kurgat et al., 2019), and
athletic training environments (Labelle et al., 2020).

Second, this study provides, for the first time, a holistic evaluation at
the hospital scale, based on real-world traffic, of the HH performance of
different dispenser designs with varying energy/refill configurations.
We employ inventory models to keep track of the battery energy and the
refill volume and capture the operation of different dispenser designs
using discrete-event simulation. We analyze the usage patterns of the
dispensers in four different types of hospitals from real-world data,
which are then used as input traffic to drive our simulation. We evaluate
the duration of downtime and the number of missed hand hygiene op-
portunities due to dead batteries, and that due to empty refills, and
compare the performance of different designs. Our results suggest that
healthcare facilities should carefully compare alternative dispenser de-
signs and technologies to ensure uninterrupted hand hygiene service.

Third, we also study the effectiveness of the refill service alert, a new
form of proactive maintenance for dispenser refills, and evaluate the
trade-off between hand hygiene performance and refill waste. Our re-
sults indicate that implementing such maintenance alerts helps reduce
missed hand hygiene opportunities due to empty refills, and the optimal
trigger threshold for the alert depends on the usage pattern of the
dispenser. Additionally, exogenous factors such as dispenser usage
patterns should also be considered to develop optimal policies for bat-
tery placement and refill maintenance.

The remainder of this paper is organized as follows. In Section 2, we
provide a brief review of previous research on ABHR dispensers, battery
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models, and the application of discrete-event simulation in healthcare.
Section 3 details our research methodology. First, we overview
dispenser usage data from hospitals and technical specifications of
various dispenser designs. Then, we introduce the mathematical models
for dispenser daily operation and usage patterns, followed by our
discrete-event simulation models. Verification and validation proced-
ures are also discussed in this section. In Section 4, we present the
simulation results, which include a comparison of dispenser designs in
terms of HH misses, and an evaluation of the efficiencies and trade-offs
associated with different refill maintenance policies. Section 5 discusses
the importance and limitations of this work. Finally, concluding remarks
are made in Section 6.

2. Literature review

Our research intersects with several streams of literature, encom-
passing ABHR dispenser and hand hygiene research, battery modeling,
inventory models, and discrete-event simulation. Below, we offer a
concise overview of each stream, drawing upon representative examples
from existing literature and contextualize our research within the
broader landscape of these streams.

2.1. ABHR dispenser and HH compliance

Studies on the performance of ABHR dispersers have predominantly
been conducted in laboratory settings. One study has shown that touch-
free dispensers significantly increase hand hygiene compliance
compared to manual dispensers in two units of a large pediatric hospital
(Larson et al., 2005). Other studies suggest that utilizing touch-free hand
hygiene dispensers contributes to improved hand hygiene performance
and facilitates compliance monitoring measurement (Boyce et al., 2019;
Arbogast et al., 2023). In addition, research underscores the importance
of ABHR dispenser design in ensuring reliable and consistent perfor-
mance, delivering the right amount of ABHR when needed, which not
only influences the effectiveness of ABHR (Macinga et al., 2013; Price
et al., 2022) but also affects healthcare workers’ hand hygiene compli-
ance (Greenaway et al., 2018). A recent Cochrane Review highlights
hand hygiene as one of the most important interventions for preventing
pathogen transmission and reducing the risk of respiratory viruses
(Jefferson et al., 2023).

2.2. Battery models

The state of charge (SOC) of a battery, representing the level of
charge relative to its capacity, is highly nonlinear due to its complex
internal electrochemical dynamics, and susceptibility to factors such as
temperature, cycle times, aging, etc. Numerous battery models have
been developed, see, e.g., (Zhou et al., 2021) and references therein. The
survey categorizes the models into three main types: electrochemical
mechanism models, equivalent circuit models, and data-driven models.
Electrochemical mechanism models attempt to fully capture a battery’s
internal physical and chemical processes with electrochemical power
and transmission equations, see, e.g., (Doyle et al., 1993; Zhang et al.,
2000). Equivalent circuit models simulate the dynamic characteristics of
a battery with circuit networks, see, e.g., (Johnson, 2002; Li et al.,
2021). Data-driven models, including the machine learning approach,
avoid directly modeling the actual battery system and utilize external
characteristic parameters for SOC estimation, see, e.g., (Li, 2020). This
approach can capture the non-linearity of battery SOC and can be
generalized to different battery types, but it also requires a large amount
of battery testing data. The most used data-driven method is the direct
measurement method, where the goal is to estimate battery SOC using
measured parameter variables correlated with the battery, such as
voltage and current. Machine learning models, such as neural networks,
support vector machines, and deep learning, are often employed for SOC
estimation (Wei et al., 2018; Yang et al., 2018). In our research, we
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adopt the data-driven approach to model
consumption.

dispenser battery

2.3. Discrete-event simulation and inventory models in healthcare

Discrete-event simulation has found widespread application in the
study of healthcare systems, with various uses in emergency de-
partments, inpatient facilities, outpatient clinics, and other hospital
units, including intensive care units, pharmacies, operating rooms, and
therapy. A comprehensive survey by Giinal and Pidd (2010) provides
insights into the diverse applications of discrete-event simulation in
healthcare, with numerous references therein. Many studies in this
domain aim to improve the operational performance of a system in
healthcare facilities by facilitating better-decision making and planning.
Common applications include the scheduling of healthcare workers and
the sizing and planning of resources such as beds, rooms, and staff. For
example, discrete-event simulation has been employed to evaluate
emergency medical location models (Unhiyurt and Tuncer, 2016) and to
model patient flows in an orthopedic clinic (Baril et al., 2014; Bean et al.,
2019). To the best of our knowledge, this is the first study using discrete-
event simulation to capture the design impact on hand hygiene perfor-
mance in healthcare settings.

Our model is also related to inventory management research, as seen
in works such as Zipkin (2000). We model the ABHR inventory of a
dispenser as a nonperishable good that is only consumed by usage, while
the battery energy of a dispenser is treated as a perishable good that
decreases with both usage and deterioration (due to idling and self-
discharging). A recent survey can be found in Karaesmen et al. (2011),
which categorizes the literature into periodic and continuous review
inventory control. The traditional manual check for battery function-
ality and ABHR refill emptiness can be viewed as a periodic review,
whereas the real-time service alert represents a continuous review
approach. In this work, since determining the optimal review and
maintenance policy for each device is not our goal, we simply set the
inspection interval based on what is used in practice and focus on
comparing the design impact of different devices using discrete-event
simulation.

3. Research methodology

We now describe our methodology for evaluating the HH perfor-
mance of ABHR dispensers. Our approach is based on data-driven
discrete-event simulation, which consists of the collection and analysis
of dispenser usage data, the development and simulation of dispenser
models, and the implementation of maintenance policies for batteries
and refills. We perform input analysis with statistical software R (version
4.2.0) and build dispenser models within simulation software Arena
(Rockwell Automation, version 16.2).

3.1. Data: Usage log history and dispenser parameters

Seven years of usage data (November 2014 — June 2021) is pulled
from the AHHMS (Automated Hand Hygiene Monitoring System)
installed in four US hospitals equipped with automatic sanitizer dis-
pensers from GOJO' Industries. Table 1 summarizes information of the
test facilities including hospital types, number of monitored dispensers
and dispensing events, obtained from the AHHMS data. Note that the
AHHMS data we use does not cover all the dispensers because only a
subset is attached to the monitoring system. The AHHMS data also
contains activities of soap dispensers, but in this study, we only use the

! GOJO Industries, Inc., is a privately held manufacturer of hand hygiene and
skin care products based in Akron, Ohio, USA. One of its most well-known
products is Purell hand sanitizer. It offers electronic hand hygiene dispensing
and monitoring systems for medical institutions.
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part of ABHR dispensers.

Seven automatic dispensers from different manufacturers are
considered in this study. Technical specifications of these dispensers
related to dispensing are measured using laboratory testing by experi-
enced electrical engineers at GOJO, with calibrated equipment and
validated test methods. The energy measurements are completed on
three replicates and the average values are reported in Table 2.

3.2. Simulation models

There are three interdependent components in the modeling of a
dispensing system: 1) the dispenser, 2) the usage pattern, and 3) the
maintenance policies. The arrival of a usage request triggers the con-
sumption of battery energy and ABHR, and the maintenance policies
determine the timing of replenishment for the batteries and refills.

3.2.1. The dispenser: An inventory model

We model a dispenser’s battery energy and ABHR volume as its in-
ventories consumed by users over time. The status of a dispenser at time
t is represented by a pair (E(t), L(t)), where E(t) and L(t) denote
respectively the energy and sanitizer liquid inventory levels at time t.
The dispenser stops working if either of the inventories goes empty (or
below certain thresholds). A user arriving at a non-functioning dispenser
has no access to hand sanitizing. Such a failed dispensing event will be
recorded as a hand hygiene miss. Next, we describe the inventory dy-
namics using time-dependent differential equations.

Each time there is a successful dispense, the ABHR inventory L(t) will
decrease by an amount l;, which is the dispenser’s default dispense vol-
ume per actuation. We assume that the dispense volume is independent of
time, the environment, and the user. A refill maintenance will replace
the current bottle (possibly incurs wastage) with a new one of full vol-
ume Ly. The refill volume L and the dispense volume per actuation l; for
different dispenser types are provided in Table 2.

The evolution of the ABHR inventory L(t) in one refill cycle,
assuming a refill replacement just occurred at time ¢, and the dispenser
has sufficient power, can be described as follows:

OLT(tQ = —lua(t)

L(to) = Lo

€8]

where a(t) denotes the user arrival rate at time t. Based on our analysis of
the usage data, the arrival process {a(t),t > 0} of dispensing events is
typically nonstationary. Note that we model ABHR as a nonperishable
good, whose inventory is only reduced by usage.

The evolution of the energy inventory E(t) is a more complex process.
The total energy consumption of a dispenser is categorized into three
components: dispense energy, idle energy, and self-discharge energy. The
dispense energy represents the energy used during each dispensing
operation. Idle energy is the energy consumed to maintain a dispenser in
standby/idle mode when not in use. This is determined by multiplying
the idle power by the duration the dispenser remains in idle mode. Self-
discharging is a natural battery aging process that diminishes the stored
battery charge through internal chemical reactions. To quantify the
energy consumption of these activities, we utilize joule (J) as the unit of
energy. It is important to note that 1 J of energy is consumed when 1 W
of power is sustained for 1 s. In other words, power is the rate of
consuming energy.

Let E, denote the initial battery capacity of a dispenser, e; the energy
consumed per dispense, e; the idle power (idle energy consumed per
second), and e; the self-discharge energy per second. We can describe
the evolution of the energy inventory E(t) in a battery’s lifetime as
follows:
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Table 1

Summary of facility information and dispense event details to inform modeling.
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Facility Hospital type Patient Total # of # of ABHR Data time range Total ABHR Average daily ABHR
code rooms dispensers' dispensers dispenses” dispenses®
1 Adult, Academic medical 536 2,456 685 11/11/2014—06/ 31.6 million 13,141
center 10/2021
2 Adult, Veterans 118 794 275 01/31/2017—06/ 10.1 million 6,379
10/2021
3 Pediatric, Academic 106 943 273 01/12/2015—06/ 9.2 million 3,947
medical center 10/2021
4 Adult, Community 66 354 161 12/06/2016—06/ 6.9 million 4,215
10/2021

! This total includes soap dispensers used for hand washing and ABHR dispensers that are equipped with automated monitoring.

2 Total dispenses for all ABHR dispensers during the entire time range.

3 This is the average number of ABHR dispenses daily for the facility for all dispensers.

Table 2
Dispenser testing data related to dispensing.

Device Code Manufacturer, Model Refill Volume (mL)

Total Battery Joules (J)

Energy per Dispense (J) Average Dispense (mL) Idle Power (uW)

1 GP, EnMotion 1,000 267,370 1.44 1.08 358.4

2 Medline, Spectrum 1,000 120,800 2.02 0.78 1255.8

3 SCJ, Ultra 1,000 264,640 2.15 0.75 480.0

4 Scotts, Essential 1,200 101,630 1.11 0.67 699.2

5 Ecolab, NEXA 1,200 190,300 1.71 0.96 693.1

6 GOJO ES-10 1,200 38,210 (APS) + 11,841(EOR)" 2.22 1.25 267.5

7 GOJO, LTX 1,200 231,900 2.50 1.24 885.3

8 Device 7 equipped with refill service alert technology

! For GOJO ES-10, 38,210 J comes from the auxiliary power supply (APS) in the device and 11,841 J comes from the battery on the refill bottle (EOR, or Energy On

the Refill).
OE(t) The EOR energy design ensures that the major power supply is replen-

o e eqa(t) — eE(t) @

E(0) = E,

There are other factors that affect energy consumption, for instance,
operating temperature, aging of batteries and wear of the dispensing
system, etc. For simplicity, we focus on the major factors and believe
that our energy model is sufficient as an initial attempt to this simulation
study. From the perspectives of inventory modeling, equation (2) cor-
responds to the evolution of a perishable good since the battery energy
incurs losses not only due to usage but also deterioration (idling and self-
discharging), see, e.g., Macias-Lopez et al. (2021).

It is worth mentioning that the battery capacity and the refill level
affect the quality of a dispense interdependently. When the battery energy
is plentiful but the refill level L(t) is near depletion, the user will get an
“empty” dispense — meaning a dispense without sanitizer. In this sce-
nario, we assume that the decrease in battery energy is the same as that
in a complete dispense, while there is no decrease in the refill volume.
When the batteries are depleted, no dispense will occur regardless of the
liquid inventory status. The dynamics of L(t) and E(t) will be further
complicated by the implementation of battery replacement and refill
maintenance policies. Solving the above equations, if not impossible,
poses a considerable challenge. This is exacerbated by the necessity to
solve them for hundreds or even thousands of dispensers, each subject to
a distinct stochastic user arrival process. In such a complex scenario,
discrete-event simulation emerges as an ideal tool. This method can
effectively capture the complexity and uncertainty of real-world sys-
tems, and incorporate randomness, variability, dependencies, and in-
teractions among system components (Banks et al., 2009).

Among the seven devices in this study, 6 of them are considered as
traditional dispensers, which have a single power supply, which is a
battery pack inside of the dispenser. One device (Device 6 in Table 2)
employs the Energy-On-the-Refill (EOR) design and has two separate
power sources, an AA alkaline battery embedded in the refill bottle,
which is the so-called EOR, and a pack of four AA alkaline batteries
within the dispenser housing, which is the auxiliary power supply (APS).

ished every time a new refill bottle is loaded into the dispenser. In such a
setting, a dispenser’s EOR serves as the primary power supply until its
depletion, then its APS takes over. Our simulation model will capture
these features in the EOR model.

Most coefficients in the ordinary differential equation system (1) and
(2) are determined by measuring the various dispensers in the delivery
system engineering electronics test lab at GOJO Industries (Table 2).
Besides, the effect of aging on alkaline batteries has been estimated to be
a loss of 2-3 % of the total capacity per year (Buchmann, 2001). We
notice that traditional dispensers are more susceptible to battery aging
than the EOR design. This is because the main battery of an EOR
dispenser is renewed at each refill replacement, while in a traditional
dispenser, the same batteries are used until depletion. We decide to use
2 % as the yearly aging rate for all dispensers (hence, e; = 2 %/number
of seconds in a year) because it slightly favors the traditional dispenser,
and we want to show that the EOR design still outperforms. In Littau
et al. (2013), similar power consumption data has been utilized to
develop a mathematical model to estimate dispenser battery life over
time.

3.2.2. The usage patterns

Statistical analysis has been conducted to study the usage pattern of
the dispensers in four hospitals and develop an input (traffic) model for
simulation. As illustrated in Table 1, the usage data contains up to 30
million dispensing events from touch-free ABHR dispensers in various
hospitals. It is important to acknowledge that the actual number of
dispensers used at each facility might surpass the reported figure, as only
a subset of dispensers is connected to the AHHMS monitoring system.

Our analyses of the usage data indicate that the usage patterns are
nonstationary. Fluctuations in usage are observed across various time
scales, including hours, days, weeks, and months. However, the most
significant variability in time occurs at the hourly level. This observation
aligns with findings from (Boyce et al., 2019), which analyzes a similar
dataset in healthcare settings and points out that “the biggest fluctua-
tions in median HH rates are across hours in a day, not across days in a



N. Chen et al.

week or months in a year”. Consequently, we model user arrivals at a
dispenser as a nonstationary Poisson process with hourly arrival rates.
The rate at each hour is calculated by first aggregating the total usage
during that hour and then averaging it over the total number of days.
Using this approach, each dispenser is associated with a vector in 24
dimensions, representing the average hourly rates for each of the 24 h in
a day.

As shown in Table 1, the number of dispensers in a hospital is in the
hundreds to thousands. To obtain generalized results that facilitate
decision-making for the stakeholders, we utilize clustering analysis to
identify a few representative profiles of usage patterns. The procedure
takes two steps, prescreening and dedicated clustering.

In the prescreening step, we observe that nearly half of the dispensers
in each hospital have few dispenses per day. We classify those dispensers
as minimal usage dispensers. To obtain the minimal usage profile, we
pool the usage patterns from all four hospitals and calculate the average
below the median. Usage patterns that are above the median are used for
the dedicated clustering.

In the dedicated clustering step, we employ the Gaussian mixture
model (GMM) to cluster the non-minimal usage patterns. GMMs are
commonly used as a parametric model to estimate the probability den-
sity of the representative clusters of high dimensional data (Peel and
MacLahlan, 2000). The model assumes p(x), the distribution of n inde-
pendent and identically distributed samples x = {x;,x2, -, X,} can be
represented by a finite mixture of Gaussian (normal) distributions:

plx) = Z TN (X, Zee)

k=1

where C is the size of the multivariate Gaussian distributions, N(x|u;, Zx)
is the k-th component with vector mean g, and covariance matrix X;
and ry is the corresponding mixing weight.

We use the package mclust (Scrucca et al., 2016 version 5.4.10) in R
to perform the GMM classification and inside the package, the expect-
ation-maximization (EM) algorithm is used to train the GMM models.
The optimal number of the clusters and their geometry can be identified
using the Bayesian information criterion or BIC (Fraley & Raftery, 1998;
Schwarz, 1978):

BIC = log(L) — mlog(n)

where log(L) is the log-likelihood for the model, n is the sample size, and
m is the number of estimated parameters.

The two-step procedure has resulted in four usage profiles, which are
named respectively “minimal”, “low”, “moderate”, and “high” according
to the intensity of the arrival rates. The resulting usage patterns are then
used as the arrival rates of the nonstationary Poisson processes in our

Arena simulation models.

3.2.3. Maintenance policies

We consider two refill maintenance policies 1) regular manual
checks and replacement, and 2) real-time monitoring and replacement
in advance. The first approach, which is widely adopted, involves
determining when to replenish and estimating the duration of the
replenishment process. We assume a 12-hour inspection interval for the
refill, and replacement is immediate once an empty bottle is identified.
In practice, housekeeping personals will periodically visit each location
at scheduled intervals to inspect and refill the dispensers as needed. To
determine this interval, GOJO conducts a survey on the inspection fre-
quency for refills in the hospitals under study. Due to privacy concerns,
the data is not shared with us. However, we are informed that the best
scenario is that refills are checked every 12 h. This practice is imple-
mented in ICU, where maintaining the highest hand hygiene standards
for health care workers and visitors is critical. In other units, the in-
spection frequency may be significantly lower. We have set a 12-hour
refill inspection interval in the simulation for the manual checks,
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which allows us to compare the best-case scenario of the traditional
approach with the more advanced approach.

The second approach employs the Internet of Things (IoT), utilizing
smart devices connected to the dispensing system for real-time moni-
toring, data collection, and provision of recommendations or alerts to
ensure the system’s effective operation. For instance, IoT is applied to
implement service alerts for refill monitoring. When a dispenser’s refill
level falls below a specified threshold, an alert is generated and sent to
notify the maintenance personnels that a refill replacement is needed.
While alerts can be triggered instantly, still there is a delay (lead time)
between alerts and the refill replacement, which could take up to 12 h
(assuming being taken care within the same shift). We set the delay time
as 12 h in the simulation, aiming to compare the best-case scenario of
the traditional approach with the worst-case scenario with service alerts.

Regarding battery replacement, we assume that the lead time (i.e.,
the duration to replace dead batteries) is a random variable with a
discrete probability distribution. The distribution for battery mainte-
nance lead time is determined based on a survey involving 74 acute care
environment services employees across various healthcare facilities
(refer to Table 3).

In both the refill and battery maintenance, it is possible to formulate
an optimization problem to determine the optimal inspection intervals.
We expect that distinct devices and various usage profiles will yield
different optimal inspection intervals. For instance, the time it takes for
a dispenser to deplete its ABHR depends on factors like its initial ca-
pacity, per dispense volume, and usage intensity. Consequently, the
optimal solutions are likely to be device and usage pattern specific.
However, such optimization is beyond the scope of our study. In our
simulation model, we establish the inspection interval based on practical
usage, guided by expert opinions. Our primary focus is on comparing the
design impact of different devices.

3.2.4. The discrete-event simulation model

Discrete-event simulation models are developed by integrating the
three components described above. Our model consists of three inter-
dependent parts that capture the dispensing, refill maintenance, and
battery replacement process respectively. These components share the
same set of global variables to keep track of the remaining ABHR level
and battery energy level(s). ABHR demand traffic is generated according
to the non-stationary arrival profiles defined earlier, which triggers the
consumption of ABHR and battery energy.

Fig. 1 depicts the operational logic of the two different dispensers
and the maintenance for batteries and refills. The flowchart in Fig. 1(a)
illustrates the traditional approach employed by Devices 1-5 and 7,
where the dispenser relies on a single source of power supply built into
the dispenser housing to operate. Fig. 1(b) displays a flowchart of the
Energy-On-the-Refill design utilized by Device 6. Fig. 1(c) illustrates the
operation of battery maintenance while Fig. 1(d) shows the house-
keeping process of checking and changing ABHR refills.

In a typical simulation run, users are initially generated as entities
based on a predefined usage profile, characterized by a non-stationary
Poisson process with specified hourly arrival rates. Upon arrival, a
user will initiate a dispense event by attempting to use the dispenser.
The outcome of this dispense event depends on the current energy and
liquid inventory status of the dispenser (E(t),L(t)), resulting in either a

Table 3

Lead time of battery maintenance.
Lead Time Frequency Percentage
Within 12 h 10 14 %
Within 16 h 36 49 %
Within 24 h 17 22%
Within 32 h 5 7 %
Within 48 h 5 7 %
More than 48 h 1 1%
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Fig. 1. Flowcharts of the simulation model of (a) dispense model for traditional design; (b) dispense model for EOR design; (c) battery maintenance and (d) ABHR

refill maintenance.

successful dispense or a failure (which could manifest as an “empty”
dispense or no dispense at all). Regardless of the outcome, users leave
immediately after their dispense attempt. Meanwhile, regular refill
status checks are conducted by housekeepers every 12 h. If the refill
level falls below 5 mL,? the refill is considered empty and promptly
replaced with a new bottle. Requests for battery maintenance are
assumed to be automatically generated when a dispenser’s batteries are
dead, with the lead time for replacement drawn from a discrete proba-
bility distribution introduced earlier. We run simulations for the seven
devices, using four distinct clustered arrival profiles with varying total
arrivals within a day. The simulation run spans a duration of 6 years
(2160 days), reflecting a typical lifespan for automated ABHR dis-
pensers. To assess the reliability of each dispenser type under a specific
arrival profile, we record HH misses separately for cases involving dead
batteries and those due to ABHR depletion. Each scenario, comprising a
device type and an arrival profile, is simulated for 25 replications.

3.3. Verification and validation

Verification and validation help determine the correctness and ac-
curacy of simulation models. More specifically, verification ensures a
model’s developing and implementation are correct and validation
checks if the model’s output is consistent with the actual system within
an acceptable range of accuracy (Banks et al., 2009). Both verification
and validation are performed using procedures suggested by Sargent,
(2020) throughout the model development process.

3.3.1. Conceptual model validation
The conceptual model of both the traditional dispensers and EOR

2 Due to air pressure and sanitizer sticking to the inner surface of a refill
bottle, a dispense residual exists. 5 mL was recommended by field experts as a
generalized estimate for the dispensers in this study.

dispensers are verified with the hardware engineers and product man-
agers of GOJO through multiple meetings and discussions. In a field trip
to the company’s electrical testing laboratory, GOJO’s engineers explain
the designs and working mechanisms of both types of automatic dis-
pensers and provide actual devices for the modelers to study. The model
developers present flow diagrams of the models and associated math
equations on battery and refill level evolutions for close examination.
Assumptions on the maintenance policies of batteries and refills are also
discussed and verified during these meetings.

3.3.2. Computerized model verification

We also verify that the implementation of the conceptual model is
correct, and the models is executed properly. The computerized models
are run in Arena with dynamic animations of the battery level and refill
level in front of the collaborators of GOJO. Sensitivity analyses are
performed to access the robustness of the models. We vary usage pat-
terns, refill capacities of the dispensers during simulation, and discuss
with GOJO engineers whether the changes in the output parameters are
consistent with the behavior of actual automatic sanitizer dispensers.

3.3.3. Operational validation

Validation is more difficult, mostly due to the lack of output data
from the real system. For example, the Automated Hand Hygiene
Monitoring System (AHHMS) installed in the hospitals could not detect
nor record hand hygiene misses, the output metric that we are interested
in. AHHMS only records the attempts to use a dispenser, and it does not
differentiate successful dispenses from hand hygiene misses, let alone
whether a failure is caused by dead batteries or empty refills. Never-
theless, we manage to validate our model on the average number of
sanitizer refills per dispenser each year. Based on information provided
by GOJO, a single sanitizer dispenser consumes around five bottles of
refill in a year on average in hospital 3. Our validation test focuses on
comparing the system response, namely, the observed average number
of sanitizer refills at hospital 3 with y, = 5 bottles to the model response
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Ys. Formally, a statistical test of the null hypothesis:

Hy : E(Y3) = 5 bottles.
versus.
Hy : E(Y3) # 5 bottles.

is conducted at the significance level a = 0.05. In order to determine
the sample size n, a power analysis for a one-sample, two-sided t-test
(Banks et al., 2009; Hines et al., 2008) is first carried out with targeted
power 1 —f = 0.90 and difference threshold 1 bottle. That is, we would
like to control the false negative rate f to be less than 0.10, hence the null
Hy (model validity) will be rejected with probability at least 0.90 if the
true mean number of refills of the model, E(Y3), differed from p, = 5
bottles by 1 bottle. Our initial pilot run indicates that the standard de-
viation of Y3 is S = 0.6845, which yields:
E(Y3) — ol 1

~ | _ B
0= S T 0.6845 1461

Based on the Operating-characteristic (OC) curves (Table A.10 in Banks
et al., 2009), we have chosen a sample size n = 5 so that () < 0.10. By
collecting the corresponding output values from simulation withn =5
replications, we have derived the test statistics t, = 0.936. Since to =
0.936< to 0254 = 2.78, we conclude that we do not have sufficient evi-
dence to say that the simulation model is invalid. This also corresponds
to a 95 % confidence interval for average number of refills per year as
[4.437,6.136]. Since the historical average number of refills, five bottles
per year, falls into the confidence interval, we are 95 % confident that
the model output is consistent with the reality. The comparison of
output behaviors between the simulation model and the actual system is
also shown in Fig. 2.

4. Results
4.1. Usage profiles

The usage profiles are trained on the pooled data from the four
hospitals. Using the two-step procedure, we derive four distinct usage

.

profiles: “minimal”, “low”, “moderate”, and “high”, based on arrival rate
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intensity. The “minimal” cluster is identified during the prescreening
process, while the other three clusters are determined using Gaussian
mixture models. Fig. 3 shows the Bayesian Information Criterion (BIC)
plot fitted to the “non-minimal” pooled usage data. In the mclust
package, 14 possible models with different geometric characteristics are
specified with three-letter identifiers, such as EII and EVV. The BIC
scores are presented as a function of the number of components. The
VEE model with seven components maximizes BIC at 27333.08 and is
selected by default. However, to simplify simulation and explanation,
we specify three components to obtain a smaller number of clusters. The
BIC for VEE with three components is 25678.88, which is nearly
optimal. The resulting clusters are labeled “low”, “moderate”, and
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Fig. 3. BIC scores for GMM models with various component sizes and clus-
ter geometries.
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Fig. 2. Average Refill per Year in hospital 3.
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“high” based on the average daily usage they represent.

Fig. 4 depicts the hourly usage rates of a dispenser under the four
profiles. It is noteworthy that these profiles exhibit similar fluctuations
throughout a day, with peak usage hours typically observed in the
morning, around 7-9 am, and off-peak hours occurring around
midnight. When summing up the hourly rates over a day, the average
daily usages for the four profiles are 3.81, 13.38, 38.31, and 56.71,
respectively.

Table 4° presents the number of dispensers belonging to each clus-
ter/profile based on the clustering analysis. The proportions of the
profiles at each hospital are illustrated in Fig. 5. It is evident that the four
hospitals exhibit both differences and similarities in their dispenser
usage patterns. Significant variations are observed in the percentage of
dispensers categorized under the high usage profile. For example, only
0.4 % of dispensers in hospital 3 are characterized as having a high usage
pattern, while 21.8 % of dispensers in hospital 2 demonstrate high
usage. These disparities can be attributed to the differences in hospital
types, dispenser quantities, and locations. Across all four hospitals, the
“minimal” profile takes up approximately 50 % of the dispensers, indi-
cating that nearly half of the monitored dispensers in the hospitals are
rarely used.

4.2. Hand hygiene misses due to dead batteries

We categorize hand hygiene misses into two groups, HH misses due to
dead batteries, and HH misses due to ABHR depletion. The former measures
the energy efficiency of a dispenser, while the latter reflects the effi-
ciency of a refill maintenance schedule.

Fig. 6 illustrates the resulting HH misses due to dead batteries for one
dispenser over six years of operation under the four usage patterns
estimated by our simulation model. Observe that under minimal or low
usage profiles, most dispensers generate very few HH misses. However,
HH misses become more substantial under moderate and high usage
profiles. Among the seven devices, Device 1 and Device 6 stand out,
showing no hand hygiene misses caused by dead batteries in six years
under all usage patterns, while Device 2 generates the most HH misses
due to dead batteries. The reasons are straightforward. Device 1's

—o— Minimal
49 —— Low
—&— Moderate
—&— High

Arrival Rate
N
N

Fig. 4. Usage patterns of a dispenser over 24 h derived via the GMM clus-
tering method.

3 Note that the sum of the dispensers from hospitals 2 and 3 in Table 4 are
slightly less than those shown in Table 1, because a few dispensers have
incomplete data thus cannot be classified.
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Fig. 6. HH misses due to dead batteries.

exceptional performance is attributed to its highly efficient energy
design, particularly its low energy consumption in dispensing and idling.
For Device 6, its unique EOR (Energy On the Refill) design ensures that
the battery is replenished each time a new refill is added.

During the simulation, we observe that there is consistently ample
energy remaining in the EOR battery when the refill bottle is replaced.
Furthermore, even if the EOR battery is depleted, the auxiliary battery
will seamlessly activate to power the system.

4.3. Hand hygiene misses due to ABHR depletion

When the refill is depleted, users will experience an empty dispense if
a dispenser still has sufficient power supply. This event is referred to as a
HH miss due to ABHR depletion. Through simulation, our aim is to
compare HH misses under the traditional maintenance approach with
those under the real-time service alert approach.

In the traditional approach, the refill bottle is manually checked
every 12 h, and it is replaced immediately once found empty. In the
service alert approach, the dispenser is connected to a real-time moni-
toring system, and a service alert (e.g., text message) is sent to the
housekeeping team once the ABHR volume falls below a prespecified
threshold. In comparing the two maintenance approaches, the threshold
is set at 5 % of the full capacity. Later in Section 4.5, we further explore
the tradeoff between fewer HH misses and more ABHR liquid waste by
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varying this threshold.

Fig. 7 demonstrates HH misses due to ABHR depletion in a six-year
operation estimated by our model. Devices 1-7 are all maintained
under the traditional manual-check approach, while Device 8 adopts the
real-time monitoring approach. In fact, Device 8 is identical to Device 7
but enhanced with service alert technology from its manufacturer.

From Fig. 7, it is evident that under minimal and low usage patterns,
very few HH misses occurred across all device types, and the traditional
maintenance policy (checking every 12 h) is sufficient to maintain good
performance. However, when the usage pattern shifts to moderate and
high, all dispensers (Devices 1-7) under the traditional manual check
maintenance policy begin to generate a significant amount of HH misses
due to ABHR depletion. The number of HH misses due to ABHR deple-
tion appears to be inversely proportional to the capacity of the
dispenser. For instance, Device 4 exhibits the lowest HH misses among
all dispensers because it has the largest refill capacity and the smallest
dispense volume.

In the high usage scenario, a notable 81.6 % reduction in HH misses
is observed when comparing Device 7 and Device 8. Furthermore, De-
vice 8 achieves the lowest hand hygiene misses among all device types in
various arrival profiles. The introduction of the refill service alert has
made Device 7 the most robust dispenser in terms of HH misses due to
ABHR depletion.

4.4. Hospital-scale performance comparison

After obtaining the performance metrics for a single dispenser, we
extend the results to hospital scales by multiplying the performance
metrics of a single dispenser by its quantity in the hospital. The number
of dispensers under each usage profile at the four hospitals is provided in
Table 4. As mentioned before, not all dispensers are connected to the
AHHMS monitoring system, the source of the data for analysis and
simulation. Even though we do not have information about the un-
monitored dispensers in the hospitals, we are informed that these
monitored dispensers can represent the majority of the hospital-level
operation, so we simply use them in the comparison. Fig. 8 summa-
rizes the simulated hand hygiene performance in each hospital. The
performance metrics of interest include total HH misses due to dead
batteries, total HH misses due to ABHR depletion, total dispenser
downtime due to dead batteries, and the number of battery packs used
over six years of operation.

Fig. 8(a) shows the total HH misses due to dead batteries in each
hospital. Notably, Device 2 generates the highest number of HH misses,
followed by Device 4. In contrast, Device 1 and Device 6 achieve 0 HH
misses over six years of operation.
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Fig. 7. HH misses due to ABHR depletion.
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Table 4
Number of ABHR dispensers from each usage profile.
Hospital 1 Hospital 2 Hospital 3 Hospital 4
Minimal 323 153 139 79
Low 154 5 75 18
Moderate 190 54 57 55
High 18 59 1 9

Fig. 8(b) shows the total HH misses due to ABHR depletion in each
hospital, where Device 1-7 implement the traditional refill maintenance
policy, and Device 8 is Device 7 equipped with the refill service alert.
Under the traditional maintenance policy, Device 4 has the lowest HH
misses at each hospital, primarily due to its relatively low dispense
volume per actuation. The results show that the HH misses for Device 7
reduce significantly, moving from the second highest to the lowest after
implementing the refill service alert (as in Device 8). While the total
number of ABHR dispensers and the proportions of dispensers per usage
profile may differ in each hospital, the results at the hospital level align
with the single dispenser results provided in Fig. 7. Moreover, by
comparing Fig. 8(a) and 8(b), it can be concluded that the major cause of
hand hygiene disruption is ABHR depletion.

In Fig. 8(c), we compare the dispenser’s cumulative downtime hours
caused by battery failures in each hospital. It is unsurprising to observe
that the cumulative downtime shares the same pattern as that of HH
misses due to dead batteries in Fig. 8(a).

Fig. 8(d) shows the total number of battery change-out events that
would occur during a six-year simulation if a hospital were to exclu-
sively adopt a specific dispenser. Device 2 receives the highest number
of battery maintenance events, while Device 1 and Device 6 have the
lowest in each hospital. Additionally, it is noteworthy that a dispenser’s
ranking of battery change-out events is consistent with the HH misses
and downtime due to dead batteries.

4.5. Trade-off between hand hygiene misses and ABHR waste

In our simulation model, a tunable parameter is the refill alert
threshold. This threshold determines the ABHR volume at which the
maintenance team should be alerted to perform a refill replacement. The
choice of the threshold value inherently involves a trade-off between HH
misses due to ABHR depletion and the volume of sanitizer discarded due
to preventive maintenance. Simply put, setting a conservative threshold
that triggers service alerts when the refill is still ample reduces hand
hygiene misses but increases sanitizer waste.

Fig. 9 illustrates the trade-offs on Device 7 under “minimal”, “low”,
“moderate”, and “high” usage intensity. We set the thresholds to 1 %, 2
%, 4 %, 6 %, and 8 % of Device 7’s full refill capacity and run simulations
for the four different usage profiles. It is notable that the “sweet spot” in
the trade-off varies across different profiles. As depicted in Fig. 9, the
“valley” that results in acceptably low HH misses and low ABHR wastage
occurs at different thresholds depending on the usage intensity. When
the usage profile is minimal or low, 2 % seems a good choice for the
ABHR threshold. Under moderate and high usage, raising the alert when
the refill level is below 4 % tends to be better. It is important to note that
in such considerations, we prioritize HH misses slightly more than ABHR
wastage.

5. Discussion

In this study, we estimate the performance of automatic hand sani-
tizer dispenser with different designs and maintenance policies in hos-
pitals. This is useful for choosing proper dispensers and maintenance
schedules to optimize hand hygiene compliance in healthcare settings.
The simulation results suggest that a dispenser’s performance is highly
affected by its energy design and the facility’s maintenance policy. To
reduce the hand hygiene misses, novel technologies such as Energy On
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Fig. 8. Dispenser performance in each hospital.

the Refill and refill service alert are shown to be effective.

We also find that HH misses vary significantly under different usage
patterns. In general, higher usage rates will result in more dispense
events, leading to a faster depletion of ABHR in dispensers. Conse-
quently, dispensers will experience more breakdowns, generating more
HH misses in hospital locations with higher foot traffic (e.g., entrance,
hallways), or with stricter HH compliance requirements for healthcare
workers (e.g., ICU unit). Since high-usage areas are typically associated
with more patients/visitors, inoperable dispensers in these areas could
negatively impact the patient satisfaction scores of a hospital.

Our findings yield several implications for reducing HH misses and
improving workflow efficiency in healthcare facilities. For traditional
single-battery dispensers, a design with low dispense energy, low idle
power, and large batteries is effective enough to mitigate downtime and
HH misses caused by battery failures. However, the double-battery EOR
configuration outperforms most traditional dispensers, suggesting its
potential consideration as the next-generation automatic dispenser for
better performance and less maintenance cost. To reduce HH misses due
to ABHR depletion, we recommend implementing an add-on detection
system with a refill service alert. If this is not an option due to the cost or
other considerations, simply increasing inspections frequency would
help. Our analyses also underscore the importance of analyzing foot
traffic and usage patterns in potential locations before installing ABHR
dispensers. Notably, our examination of usage data reveals that the
current placement of ABHR dispensers in the four hospitals is subopti-
mal, with many dispensers in various locations experiencing very low
usage even during the COVID-19 pandemic.
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The limitations of this study center around assumptions that could
impact the model accuracy. The aging of the systems is not accounted
for, potentially affecting variables such as the amount of ABHR per
dispense, the energy consumption, and the speed of dispense. Instead,
we adopt a simplification for the battery energy consumed during
dispensing and idling. In practice, a dispenser’s energy consumption
from the battery could be affected by numerous factors, including but
not limited to, the number of dispenses, battery aging, operating tem-
perature, and the duration between dispenses, especially in low-usage
scenarios. To better capture the nonlinearity of battery drain, addi-
tional knowledge of the system and advanced modeling techniques are
necessary. For instance, employing ordinary differential equation (ODE)
models to describe electrochemical reaction dynamics within batteries
could be beneficial. Additionally, one might consider applying data-
driven machine learning to predict the remaining capacity of batteries
(Ng et al., 2020). We leave this as a task for future investigation and
development. One may also want to incorporate the total cost of
ownership for each device, which can aid facility managers in making
more informed decisions regarding the purchase and maintenance in the
long run.

6. Conclusion

In this paper, we propose a data-driven DES framework to assess the
hand hygiene performance of automatic ABHR dispensers in healthcare
settings. We model seven different dispensers, conduct simulations using
real-world data, and compare their long-term performance under
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Fig. 9. Trade-offs between HH misses due to ABHR depletion and liquid waste by dispenser usage profile.

various maintenance policies. The results suggest that the energy design
of a dispenser can significantly affect the number of hand hygiene misses
it generates, and a facility’s maintenance policies are crucial for miti-
gating workflow disruption caused by ABHR depletion and battery
failures of the dispensers. Furthermore, novel technologies such as En-
ergy On the Refill and refill service alert, which facilitate preventive
maintenance of batteries and refills, prove highly effective in reducing
hand hygiene misses.

In conclusion, our methodology, encompassing the analysis of
dispenser usage data, building simulation models, interpreting results,
and making recommendations, offers a convenient solution for evalu-
ating the performance of automatic sanitizer dispensers under uncertain
usage conditions. We have developed a generalizable and customizable
approach to estimate the performance of automatic sanitizer dispensers,
which can be applied across different dispenser types, environmental
settings, and maintenance policies. The inherent trade-off between cost
and performance always exists in optimizing a system’s operation. While
our approach provides a practical means to find such a balance, it is
essential to remember that learning the optimal strategy for operating a
complex system usually involves solving optimization problems with
multiple objectives. The practical optimal solution depends on the ex-
pectations of how the system should function and the tolerance for the
associated costs to maintain such performance.

Discrete-event simulation is an inherently cost-effective and time-
saving approach that aids decision-making. When combined with clus-
tering analysis on the usage data, we identify the representative usage
profiles with high fidelity and easy interpretability, simplifying the

modeling and simulation process. The case study of automatic ABHR
dispensers in hospitals demonstrates the benefit of this data-driven DES
framework. The application of machine learning techniques to assist
input modeling not only enhances the accuracy of parameter estimation
but also expedites the simulation process. In the era of big data,
leveraging machine learning and data analytics will make discrete-event
simulation more efficient and powerful.
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