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1 Introduction

In recent years, it has become evident that certain gravitational theories in anti-de Sitter
(AdS) space are dual to ensemble averages, rather than to individual quantum field theories.
A general argument for requiring an ensemble to describe gravitational bulk theories is
based on the presence of bulk geometries with several disconnected boundaries [1], known
as “wormholes”. If the gravitational action of such configurations is non-trivial, then the
dual field theory will not factorize on disconnected manifolds, necessitating an ensemble
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interpretation. The first explicit example of such a duality arose in 2d JT gravity, which was
found to be dual to an average over an ensemble of quantum-mechanical systems [2]. In one
dimension higher, an intriguing example that motivated our study is provided by a theory
called “U(1) gravity”, which is formulated as a sum over handlebody geometries in the bulk,
and is dual to an average over the moduli space of Narain CFTs [3, 4] (see also [5–19] for
further developments). Yet the original example of a holographic correspondence, between the
N = 4 supersymmetric Yang-Mills theory and type IIB string theory on AdS5 × S5 [20], has
so far evaded an ensemble interpretation. This raises the question: when does an ensemble of
field theories admit a holographic interpretation? In particular, can a finite ensemble have a
gravitational dual, and which bulk geometries need to be summed over in this case?

In this paper, we address the latter question by studying finite ensembles of Narain
theories composed of “code CFTs”, which were introduced in [21–23]. We find that they are
dual to a (U(1)×U(1))n Chern-Simons theory of finite level, summed over a finite number
of inequivalent handlebody topologies.

The relation between error-correcting codes and CFTs goes back all the way to the
Golay code, which is associated with the Leech lattice, and which led to the discovery of the
Monster CFT [24], followed by other developments connecting codes and chiral CFTs [25–30].
Motivated by these developments, as well as by the emergence of quantum error correction in
the context of bulk reconstruction [31], two of us proposed a connection between quantum
codes and non-chiral CFTs in [21]. Our work led to further activity connecting codes and CFTs,
with applications to the modular bootstrap program and beyond [6, 22, 23, 32–47]. Ensembles
of code CFTs were found in [6, 23] to be self-averaging and to exhibit a large spectral gap,
suggesting a possible holographic interpretation and motivating the current study.

We first consider the holographic description of an individual Narain CFT with c = n

on a Riemann surface Σ. By explicitly evaluating the partition functions on both sides of
the duality for Σ of genus one, we show that it is dual to a pure level-1 (U(1)×U(1))n “AB”
Chern-Simons (CS) theory on a 3-manifold M with boundary ∂M = Σ (any such 3-manifold
can be chosen and gives the same results, there is no sum over 3-manifolds), and we establish
the precise holographic dictionary. We note that the two U(1)n gauge fields are coupled at
the level of large gauge transformations, and their boundary conditions determine the moduli
of the Narain theory. The level k = 1 Chern-Simons theory avoids the factorization puzzle
because it is trivial in the bulk — it has a unique wavefunction on any Σ, and in particular
the partition function on a “wormhole” geometry connecting two disjoint boundaries is the
same as that on the disconnected product of manifolds with the same boundaries.

For a (U(1) × U(1))n CS theory of level k > 1, the field theory dual is no longer an
individual Narain CFT. Rather, we find it to be dual to an ensemble average over a finite
set of c = n Narain CFTs based on the set of all even self-dual codes of length n over
the “alphabet” Zk × Zk. In this case the CS wavefunction depends on the topology of
the bulk manifold M, and we find that the averaged CFT partition function is precisely
reproduced by the corresponding Chern-Simons wavefunction, summed over a finite number of
equivalence classes of handlebody topologies. The boundary conditions of the CS theory map
to parameters of the Narain theories in the ensemble. Our main identity (4.17), valid for any
fixed n and prime k = p, gives an explicit relation between the average over the code-based
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ensemble and the “Poincaré series” representing a (finite) sum over bulk geometries. The
k = 1 duality of the previous paragraph may be viewed as a special case of this, where the
ensemble contains just a single CFT.

As p → ∞, for n > 2 we will argue that the ensemble of code theories densely covers the
whole of Narain moduli space with the canonical measure. We show explicitly how a similar
limit works in the case of n = 2, by expressing the average in terms of Hecke operators, and
applying a theorem [48] on the equidistribution of Hecke points. In the bulk, for n > 2 in the
p → ∞ limit we recover the full Poincaré sum over all handlebody topologies, reproducing
the “U(1)-gravity” of [3, 4]. Thus, our construction provides a microscopic bulk definition
for the latter, as a limit of CS theories.

Arguments of typicality suggest that for large ensembles of CFTs that are self-averaging
and possess a holographic description as a sum over geometries, random individual theories
should also admit an approximate holographic description as a sum over geometries. Motivated
by this, we propose a sum-over-geometries description for any individual Narain theory with
n > 2, that in general is non-local in the bulk, but that becomes approximately local for typical
(random) theories as n → ∞ (which is the limit in which the ensemble becomes self-averaging).

The plan of the paper is as follows. In section 2, we briefly review the relation between
additive codes, lattices, and Narain CFTs. In the course of this discussion, we generalize
previous constructions by introducing arbitrary additive codes in section 2.2. Section 3
reviews (U(1) × U(1))n Chern-Simons theories on handlebody geometries, and constructs
their wavefunctions for general boundary conditions. In section 4 we discuss the holographic
interpretation of Narain theories and their ensembles. First, in section 4.1 we show that the
wavefunction of level-1 (U(1)× U(1))n Chern-Simons theory, evaluated with given boundary
conditions, is equal to the partition function of a Narain CFT. The point in the Narain
moduli space is specified by the boundary conditions of the CS theory, establishing an explicit
holographic dictionary. We briefly discuss the idea of averaging over these boundary conditions
in section 4.2, and proceed to discuss level k > 1 CS theories summed over geometries in
section 4.3. This section establishes our main technical result, equation (4.17). We discuss
the k → ∞ limit and the emergence of “U(1)-gravity” in section 4.4. Section 4.5 is devoted
to a detailed analysis of the n = 1 and n = 2 cases. It also establishes connections with
Hecke operators, which we further discuss, together with related mathematical observations,
in section 4.6. Section 5 explores the holographic description of an individual Narain theory
as a sum over geometries. We conclude with a discussion in section 6. Several appendices
contain technical details.

2 Additive codes and Narain CFTs

2.1 Codes over Zk × Zk

A classical additive code over an Abelian group F is a collection of F -valued strings (codewords)
of length n closed under addition within F . Additive codes are naturally related to lattices [49],
and thus to lattice-based chiral CFTs [25]. Recently, codes of more general type have been
shown to be related to Narain CFTs, their orbifolds, and Abelian fermionic theories [21–
23, 32, 33, 37, 39–45].
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As an illustrative example, we briefly review the relation between additive even self-dual
codes over Zk × Zk and Narain theories [22, 23]. A code C over Zk × Zk can be thought
of as a linear space within Z2n

k where all algebra is defined mod k. The space is equipped
with the indefinite scalar product

η =
(

0 In×n

In×n 0

)
(2.1)

with respect to which all code vectors are “even”, cT η c = 0 (mod 2k) for all c ∈ C. Fur-
thermore, self-duality implies that any vector c′ ∈ Z2n orthogonal to C, in the sense that
cT η c′ = 0 (mod k) for any c ∈ C, also belongs to C. There are

N =
n−1∏
i=0

(pi + 1) (2.2)

distinct codes of this type when k = p is prime (the expression for composite k is more
involved). Starting from an even self-dual code C, we can define an even self-dual lattice
ΛC ⊂ Rn,n as follows:

ΛC ≡
{

v/
√

k | v ∈ Z2n, v mod k ∈ C ⊂ Z2n
k

}
. (2.3)

A lattice ΛC defines a Narain CFT. When k = p is prime, the CFT can be described, via
a T -duality transformation,1 as a compactification on an n-dimensional torus with metric
γ = I/

√
p and with B-field given by an antisymmetric integer-valued matrix Bij ∈ Z, such

that G = (I,BT ) with B = B mod p is the generator matrix of the code C brought into
canonical form,2

ΛC = OT

(
γ∗ γ∗B

0 γ

)
, γ∗ ≡ (γT)−1, OT ∈ O(n,R)× O(n,R). (2.4)

Here we use ΛC to denote both the lattice and the lattice-generating matrix.
An important object characterizing a code is the complete enumerator polynomial WC .

It counts the number of codewords of a code, that include a given “letter” with the specified
multiplicity. In the present case, with the “alphabet” Zk × Zk, we regard a codeword
c = (a1, . . . , an, b1, . . . , bn) as being composed of letters (ai, bi) ∈ Zk × Zk. Introducing k2

formal variables Xab with 0 ≤ a, b < k to represent the letters, one defines the complete
enumerator polynomial

WC(X) =
∑

(a⃗,⃗b)∈C

n∏
i=1

Xaibi
. (2.5)

1T-duality is commonly understood as the action of O(n, n,Z) on γ and B. From the lattice generator
matrix point of view, it is the action of O(n, n,Z) from the right, amended by the action of O(n,R) × O(n,R)
from the left to preserve the “left bottom block equal zero” structure as in (2.4). From the Narain lattice point
of view action of O(n, n,Z) from the right is trivial. Hence, in the context of Narain lattices, by T-duality we
mean the action of O(n,R) × O(n,R).

2The generator matrix G is a n × 2n matrix such that all codewords are given by c = GT q mod k, q ∈ Zn
k .

The form of G = (I, BT ) with some antisymmetric Bij ∈ Zk is called canonical. When k is prime, one can
always bring the generator matrix to the canonical form using so-called code equivalence transformations [23].
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For self-dual C, WC satisfies the so-called Mac-Williams identity

WC(X) = WC(X ′), where X ′
ab ≡

1
k

∑
a′,b′

Xa′b′e
−2πi(a′b+a b′)/k. (2.6)

To better illustrate the notation, we consider a simple example — length n = 1 even
self-dual codes over Zk × Zk. When k = 1 there is a unique code consisting of only one
codeword (0, 0) ∈ C. When k = p is prime, there are two codes, one with codewords of
the form (a, 0) ∈ C1 and the other with (0, b) ∈ C2, with arbitrary 0 ≤ a, b < p. Their
enumerator polynomials are

WC1(X) =
p−1∑
a=0

Xa0, WC2(X) =
p−1∑
b=0

X0b. (2.7)

When k > 1 is not prime, there are more codes. All length n = 2 codes for prime k = p

are listed in appendix C.1.
A defining feature of the code construction of Narain theories is that for a Narain theory

defined with the help of a code-based lattice (2.3), its torus partition function can be concisely
written in terms of WC . Indeed, the torus partition function of a Narain theory is defined in
terms of a Siegel theta series that sums over all lattice points. For ΛC as in (2.4), we can readily
see that the lattice points organize into sets, each associated with a given codeword (⃗a, b⃗) ∈ C:

S
a⃗,⃗b

= {v/
√

k ∈ ΛC | v = (⃗a, b⃗) mod k}. (2.8)

We can sum over these sets individually, yielding

Z(τ) = WC(Ψ), Ψab =
Θab

|η(τ)|2 ,

Θab ≡
∑
n,m

eiπτp2
L−iπτ̄p2

R , pL,R =

√
k

2 ((n + a/k)± (m + b/k)), n, m ∈ Z. (2.9)

It can be readily seen that by virtue of C being even, each combination
∏n

i=1Ψaibi
in WC

associated with an individual codeword (⃗a, b⃗) ∈ C will be invariant under τ → τ +1, although
individual factors

Ψab(τ + 1) = Ψab(τ) e2πiab/k (2.10)

are not. Furthermore, Z will be invariant under τ → −1/τ due to the Mac-Williams
identity (2.6) and the fact that Ψab(−1/τ) = Ψ′

ab(τ), where Ψ′ are defined as X ′ in (2.6).
The relation between the code’s enumerator polynomial and the associated CFT partition
function can be extended to higher genus [35, 37].

The relation between codes and CFTs at the level of the partition function has proved
to be a useful tool, which among other things provides an efficient way to solve modular
bootstrap constraints, construct inequivalent isospectral CFTs [32] and modular invariant
Z(τ) which are “fake” (i.e., not associated with any bona fide CFT) [38], construct “optimal”
CFTs maximizing the value of the spectral gap [23, 33], etc. One recent application was the
calculation of the spectral gap of U(1)n × U(1)n primaries for a typical code theory when
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k → ∞ while n is kept fixed [23]. The resulting gap, ∆ = n/(2πe), matches the value of the
spectral gap in “U(1)-gravity” [3, 6], a result we return to in section 5.

The results mentioned above mostly rely on a “rigid embedding” (2.3) or its analogues, in
which a code, understood as a subset of Z2n

k , is mapped to a lattice ΛC , which is a sublattice
of a cubic lattice of spacing 1/

√
k, (

√
k Z)2n ⊂ ΛC ⊂ (Z/

√
k)2n ⊂ Rn,n. This rigidity, which

allows only very special Narain lattices to be obtained from codes, suggests a picture in
which codes are related to a set of very special Narain theories, dubbed code CFTs. In this
picture, there is a close relation between the underlying code and the algebraic properties
of the CFT [34]. However, as we will see momentarily, these maps from codes to CFTs are
a particular instance of a much more general relation.

2.2 General case

Reference [23] provides a general construction of codes over an Abelian group G defined as
the quotient group of a self-orthogonal even “glue lattice” Λ,

G = Λ∗/Λ, Λ∗ ≡ η(ΛT)−1. (2.11)

In [23] the focus was on Λ ⊂ R1,1 and all such lattices were classified there. They are defined by

ΛT ηΛ = gΛ =
(
2 n k
k 2m

)
, n, m, k ∈ Z, k2 − 4nm > 0, (2.12)

with an arbitrary O+(1, 1) transformation acting on Λ. In particular, the case of Zk × Zk

codes discussed above corresponds to the glue matrix

Λ =
(
1/r 0
0 r

)
√

k (2.13)

with r = 1. A nontrivial “embedding” r in (2.13) changes pL,R in (2.9) to

pL,R =

√
k

2 ((n + a/k)/r ± (m + b/k)r), (2.14)

while changing neither the relation between Z(τ) and WC , nor the way in which Ψab(τ)
changes under modular transformations of τ . The group G is an “alphabet”, while codes
are collections of G-valued strings of length n closed under addition and equipped with the
scalar product inherited from η. Then, even self-dual codes C over G define even self-dual
(Narain) lattices ΛC in Rn,n via a straightforward generalization of (2.3),

Λ ⊂ ΛC ⊂ Λ∗ ⊂ Rn,n, Λ = Λ ⊕ · · · ⊕ Λ. (2.15)

If all n glue lattices Λ in (2.15) are the same, then the permutation of letters within the
codeword — a code equivalence — is also a symmetry (an element of the T-duality group) at
the level of the code CFT. But one can also choose n different parameters ri, in which case to
preserve the relation between Z and WC , the enumerator polynomial should depend on n k2

distinct auxiliary variables Xi
ab, WC =

∑
(a⃗,⃗b)∈C

∏
i Xi

aibi
. More generally, one can consider

O(n, n,R) transformations acting and mixing several or all Λ’s within Λ, or combinations
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of completely different even self-orthogonal matrices Λ of different dimensions (leading to
codes where different letters belong to different alphabets).

Thus, most generally one can consider a lattice Λ ⊂ Rn,n, even and self-orthogonal with
respect to the 2n-dimensional scalar product (2.1) within Rn,n, with the “codewords” being
elements of the Abelian quotient group c ∈ C ⊂ Λ∗/Λ = GΛ. This group defines a “dictionary,”
a set of all possible “words”. The “dictionary group” inherits the scalar product from (2.1).
An even self-dual code would additionally satisfy

cT η c ∈ 2Z for any c ∈ C, (2.16)
cT η c′ ∈ Z for all c, c′ ∈ C, (2.17)

while if c′ /∈ C then cT η c′ is not an integer for some c ∈ C.
Any even self-dual code then defines a Narain lattice, generalizing (2.3),

ΛC = {v | v ∈ Λ∗, (v modΛ) ∈ C} , Λ ⊂ ΛC ⊂ Λ∗ ⊂ Rn,n. (2.18)

Here we denote by (v modΛ) the equivalence class of v within Λ∗/Λ. In general, the relation
between the associated CFT partition function and the code enumerator polynomial remains
essentially the same. The complete enumerator polynomial

WC(X) =
∑
c∈C

Xc, (2.19)

is defined in term of formal auxiliary variables Xc for c ∈ GΛ, which are then promoted to
“(code)word blocks” Ψc with modular parameter τ and arbitrary fugacities ξ, ξ̄ ∈ Rn

Ψc(τ, ξ, ξ̄) = Θc

|η(τ)|2n
, Θc =

∑
ℓ

e
iπτp2

L−iπτ̄p2
R+2πi(pL·ξ−pR·ξ̄)+ π

2τ2
(ξ2+ξ̄2)

,(
pL + pR

pL − pR

)
=

√
2(Λ ℓ⃗ + c⃗), ℓ⃗ ∈ Z2n, c⃗ ∈ C ⊂ GΛ ≡ Λ∗/Λ. (2.20)

We emphasize that Ψc are defined for all c ∈ GΛ, and not all of them are even. The path
integral of the CFT is then given by

ZBP I = WC(Ψ), (2.21)

where “BPI” stands for bulk path integral. This name is justified in section 3. ZBP I is
equal to the CFT partition function up to a theory-independent factor, as explained in
appendix A; see also [50].

The functions Ψc change covariantly under modular transformations

Ψc(τ + 1, ξ, ξ̄) = Ψc(τ, ξ, ξ̄)eπicT ηc,

Ψc(−1/τ, ξ/τ, ξ̄/τ̄) = 1
|GΛ|1/2

∑
c′∈GΛ

Ψc′(τ, ξ, ξ̄)e−2πicT ηc′ . (2.22)

Modular invariance of ZPI follows from (2.22) and the algebraic properties of WC due
to the evenness and self-duality (Mac-Williams identity) of the underlying code. The
transformations (2.22) are defined solely in terms of the code and therefore can be defined
already at the level of the formal variables Xc.
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The same functions Ψc, with ξ = ξ̄ = 0, have been discussed in [12], where they appeared
in a different context — as the partition functions of non-modular-invariant CFTs. There,
an ensemble of such CFTs generated by the action of O(n, n,R) on a given Λ was discussed,
together with its holographic interpretation. The focus in this paper is different: we sum
over Ψc for all c belonging to a suitable even self-dual code such that the resulting partition
function corresponds to a modular-invariant Narain CFT.

We would like to emphasize that the action of O(n, n,R) on Λ does not affect the code,
its enumerator polynomial, nor the transformation laws (2.22). It changes the “embedding”
that maps the codes associated with a given Λ into the space of Narain CFTs. Explicitly,
this means we define Ψc exactly as in (2.20), but can introduce an arbitrary O ∈ O(n, n,R),(

pL + pR

pL − pR

)
= O

√
2(Λ ℓ⃗ + c⃗), ℓ⃗ ∈ Z2n, c⃗ ∈ C ⊂ GΛ ≡ Λ∗/Λ (2.23)

where the change of notation can be absorbed into the definition of Λ. Choosing different
“embeddings” O will change code theories, but the relation (2.21) between Z and WC will
remain the same. Thus, starting from any Λ, e.g. as given by (2.15) and (2.13) with r = 1,
and applying an appropriate O, we can represent any Narain lattice as a code lattice ΛC
associated with any C over any alphabet. This, first of all, makes the notion that only certain
Narain CFTs are associated with codes obsolete — any Narain theory can be thought of as a
code CFT associated with any even self-dual code of any type, i.e. with any G, C ⊂ Gn, or
more generally with any GΛ ⊃ C. One can even associate several arbitrary Narain CFTs with
several codes simultaneously, by making use of the n(2n − 1) parameters of O(n, n,R). Yet
the notion of a code CFT ensemble is still relevant, since as n increases there are generally
many more codes of a given type, see e.g. (2.2), than the number of adjustable parameters.

In the case of n = 1 codes with prime k = p discussed above, the construction based
on (2.13) gives two possible codes; the corresponding CFTs are compact scalar theories with
radii R = r

√
2p and R = r

√
2/p, respectively. Obviously, by taking different values of r,

each code covers the full space of c = 1 Narain CFTs.
Another way to think about the relation of codes to CFTs is that codes provide a simple

tool to represent the modular invariant partition function Z(τ) of any given Narain theory as
a sum of “codeword blocks” Ψc transforming in a particular representation of the modular
group specified by G (or more generally GΛ) equipped with the scalar product. At a more
technical level, the code — a collection of individual codewords — provides a division of a
code-based Narain lattice into subsets Sc. The sum over such a subset is Ψc, which exhibits
modular properties (2.22). Since all Narain lattices are related by the orthogonal group
O(n, n,R), any code can be used to decompose any Narain lattice into subsets, such that the
partial sums over the subsets will form a code-specified representation of the modular group.

3 (U(1) × U(1))n Chern-Simons theories on a solid torus

3.1 A review of Abelian Chern-Simons theories on handlebodies

In this paper we discuss Abelian Chern-Simons theories on handlebodies, starting from a
single Abelian factor, and then generalizing to many. Handlebodies are smooth 3-manifolds
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M whose boundary ∂M is a genus-g Riemann surface Σ. Topologically, they are characterized
by the set of one-cycles of Σ that are contractible in M, which form a Lagrangian sublattice
of H1(M,Z) with respect to the intersection form. We will focus on the g = 1 case, for which
two important examples of handlebodies are thermal global anti-de Sitter space and (related
to it by a modular transformation of the torus) the BTZ black hole. Since Chern-Simons
theories are topological, the bulk metric of M will not play any role, but its topology and
the metric on the boundary ∂M are important.

We begin with a U(1)k theory, whose Euclidean action is

S = ik

4π

∫
M

A ∧ dA (3.1)

for integer k. A natural way to study this theory on a handlebody is using radial quantization,
where we view the handlebody M as a fibration of the Riemann surface Σ over a “radial”
direction (which can be viewed as Euclidean time) running from the interior (where the
Riemann surface shrinks to zero volume) to the boundary. In the above examples of
asymptotically AdS3 spaces, the radial direction coincides with the usual radial coordinate
of AdS3. From this point of view, the quantum theory has a Hilbert space which is that of
Chern-Simons theory on the Riemann surface, and the path integral over the handlebody
evaluates Euclidean time evolution starting from some initial state |Ψinterior⟩ determined
by boundary conditions in the interior, to some final state |Ψboundary⟩ corresponding to the
boundary conditions on ∂M. This Hilbert space contains |k|g states of zero energy, and any
given state is a linear combination of these. The Euclidean time evolution is trivial, and
the path integral on M is simply the overlap between the initial and final states inside this
finite-dimensional Hilbert space, ⟨Ψboundary|Ψinterior⟩. Note that for |k| = 1 the Hilbert space
is one-dimensional, so all handlebodies give rise to the same interior wavefunction.

In this radial quantization picture the two “spatial” components of A along the Riemann
surface are canonically conjugate variables, so they cannot both be diagonalized at the same
time. One can choose to write the wavefunctions as functions of one or the other of these
variables. More precisely, we will express the wavefunctions in terms of holonomies of the
gauge fields along g nonintersecting one-cycles of the Riemann surface

∮
γ A; Wγ = exp(i

∮
γ A)

is gauge-invariant, so the holonomies can be viewed as gauge-invariant coordinates up to
shifts by 2π (which arise from large gauge transformations that preserve the wavefunction).
The holonomies for a basis of dual cycles of Σ form a set of canonically conjugate variables.
For any cycle γ that shrinks in the interior of the handlebody, the interior wavefunction
must obey Wγ |Ψinterior⟩ = |Ψinterior⟩ (while the Wilson lines on the conjugate cycles are
completely smeared).

In the presence of a boundary, having a consistent variational principle for the action (3.1)
requires that ∫

∂M
A ∧ δA = 0 (3.2)

(involving both components of the gauge field along the boundary, and their variations).
Equation (3.2) can be satisfied by setting one of the components of the gauge field to zero
at the boundary, or by setting to zero a complex combination of the two components, Az
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or Az̄, defined using an appropriate complex structure on ∂M. Setting a field to zero at
the boundary automatically sets its variation to be zero.

In order to obtain more interesting possibilities for boundary conditions, one can add
extra terms on the boundary. With an appropriate choice of a boundary term quadratic in
A, one can cancel the terms in (3.2) that involve a given component of δA (either a spatial
component or a complex combination), and then boundary conditions that set the other
component of A to any fixed value are also allowed. In particular, if (with an appropriate
choice of boundary terms) Az̄ is frozen to a specific value at the boundary while Az on the
boundary is allowed to fluctuate, then the Chern-Simons theory behaves as a chiral block of a
2d U(1)k CFT, with Az̄ interpreted as a source for a chiral U(1) current J(z) at level k [51].

3.2 The wavefunction of U(1)k theory on a torus

As a warm-up example we construct the wavefunctions of level-k U(1) Chern-Simons theory
on a torus, following the classic work of Bos and Nair [52]. Additional technical details can
be found in appendix B. We consider the CS theory (3.1) on a three-dimensional manifold
M with boundary ∂M, which in our case will be a torus with modular parameter τ . We
parametrize the boundary torus by the coordinate z, with identifications z ∼ z +1, z + τ . We
choose a gauge where the radial component of the gauge field vanishes, and its equation of
motion imposes Fzz̄ = 0. We can then further choose a gauge where the spatial components
of the gauge fields, Az and Az̄, are constant on the torus.

Following [52, 53] we will consider a holomorphic representation of the wavefunction
on the torus. This representation arises naturally if we deform the action (3.1) by adding
the boundary term

S′ = S − k

2π

∫
∂M

d2z|A|2, |A|2 ≡ AzAz̄, k > 0, (3.3)

so that the equation of motion δS′/δAz = 0 is trivially satisfied at the boundary. Then the
path integral can be evaluated with boundary conditions of fixed Az̄ and arbitrary Az.3 The
full path integral on the handlebody, including the boundary term, with a fixed value of
Az̄ at the boundary (which is equivalent to the overlap with a wavefunction that is a delta
function imposing the boundary value of Az̄) is then

Ψinterior(Az̄) =
∫

Az̄ |∂M fixed

DA e−S′
. (3.4)

This is a holomorphic function of Az̄.
Because of the extra factor in the path integral, the overlap between two wavefunctions

in the holomorphic representation is given by

⟨Ψ1|Ψ2⟩ =
∫

d2Az̄ (Ψ1(Az̄))∗Ψ2(Az̄)e−
k
π

∫
d2z|Az̄ |2 . (3.5)

This expression is schematic, since as we will discuss below one needs to remove degeneracies
due to large gauge transformations; see appendix B for details. The extra exponential factor

3Adding the term (3.3) with the opposite sign, which is natural for k < 0, allows one to fix Az instead.
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in the overlap (3.5) can also be understood in the following way. Understood as quantum
operators in radial quantization, the gauge field components on the torus with action (3.1)
obey the commutation relation [Az, Az̄] = π

kτ2
,4 so if we choose the wavefunctions to be

functions of only Az̄, Az acts on them by π
kτ2

∂
∂Az̄

. If we insert Az̄ into the overlap (3.5),
then on one hand it can act on Ψ2(Az̄) by just multiplying it by Az̄, but on the other hand
by integration by parts it can act on (Ψ1(Az̄))∗, which is a function of Az, as π

kτ2
∂

∂Az
, as

expected from the canonical commutation relations.
We will parameterize the value of Az̄ at the boundary by

Az̄ = iπ

τ2
ξ, (3.6)

where ξ is a complex number. As described above, we can write the wavefunctions on
the torus, in particular Ψinterior, as holomorphic functions of ξ. The normalization in (3.6)
has been chosen so that large gauge transformations in the bulk A → A + ω, which are
characterized by integer winding numbers n, m around the two basis cycles of the torus and
preserve the gauge of A being constant on the torus, shift ξ by

ξ → ξ + n + mτ. (3.7)

Any holomorphic wavefunction of Az̄ gives a ground state of the Hamiltonian, so the
only constraint on the wavefunctions comes from their required covariance under large gauge
transformations. Under these transformations, the interior wavefunction Ψinterior should
change as follows

Ψinterior → Ψinterior e

ik
4π

∫
∂M

ω∧A

e
kτ2
2π

(Azωz̄+Az̄ωz+|ωz |2)eiφ(ω), (3.8)

where we have introduced an additional cocycle φ to assure associativity of large gauge
transformations Ψinterior(A + (ω + ω′)) = Ψinterior((A + ω) + ω′). This condition requires

φ(ω + ω′) = φ(ω) + φ(ω′)− k

4π

∫
∂M

ω ∧ ω′, (3.9)

understood mod 2π. Note that the Az-dependent terms in (3.8) cancel, consistent with
Ψ being holomorphic in Az̄.

Written explicitly in terms of ξ, see appendix B for details,

Ψ(ξ + n + mτ) = Ψ(ξ) e
kπ
τ2

(n+mτ̄)ξ+ kπ
2τ2

|n+mτ |2+iφ
, φ = πknm + nϕ1 + mϕ2, (3.10)

which is consistent with the combination |Ψinterior|2e
− kπ

τ2
|ξ|2 being invariant under large gauge

transformations (3.8), as is expected from (3.5). For even k the CS theory does not require
a spin structure, and we have ϕ1 = ϕ2 = 0. For odd k the definition of the theory requires
a spin structure, and on the torus there are four possible spin structures, which give rise

4Note that this is not the same commutation relation that one obtains by starting at high energies in a
Maxwell-Chern-Simons theory [54], for which the phase space is labelled by Az, Az̄ and their (independent)
conjugate momenta. Here we describe wavefunctions on a different phase space, which is labeled only by Az

and its canonical conjugate Az̄. See also [55, 56].
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to the options ϕ1,2 = 0, π. This statement can be justified by considering transformations
of Ψ under modular transformations of τ .

For any choice of spin structure there are k distinct solutions for Ψr(ξ) (labeled by
r = 0, · · · , k − 1) since the space of level-k U(1) Chern-Simons wavefunctions on a torus is
k-dimensional. They can be written explicitly as

Ψr(ξ) =
1

η(τ)
∑

n

e
iπτp2+2πipu+πu2

2τ2
+ ξ(ϕ2−τ̄ϕ1)

2τ2
− |ϕ2−τϕ1|

2
8πkτ2 , (3.11)

p =
√

k

(
n + r

k

)
, u =

√
k

(
ξ + τϕ1 − ϕ2

2πk

)
.

Here the appearance of η(τ) in the denominator is due to small (topologically trivial)
fluctuations of the gauge field in the bulk [57]. It can be checked straightforwardly that Ψr

satisfies (3.10) and is canonically normalized, see appendix B.
In the holomorphic representation, the Wilson loop operator W (p, q) = exp (i

∮
p,q A)

defined along the cycle p + qτ acts on Ψr(ξ) as follows∮
p,q

A = (p + qτ)−i

k

∂

∂ξ
+ (p + qτ̄) iπ

τ2
ξ, (3.12)

W (p, q)Ψr(ξ) = ei(pϕ1+qϕ2)/k+2πipr/k+iπpq/kΨr+q(ξ). (3.13)

Note that the spin structure with ϕ1 = ϕ2 = π is one where the spinors are periodic along
both basic cycles of the torus; this odd spin structure is modular invariant by itself, but it does
not allow any of the cycles to shrink in the interior (so it does not appear for handlebodies).
This is consistent with the fact that for k = 1 with this choice, the unique wavefunction
Ψ0(ξ) has eigenvalues W (1, 0) = W (0, 1) = −1.

3.3 Wavefunction of the (U(1) × U(1))k theory

Our next step is to study the “AB” theory with the action

S = ik

4π

∫
(A ∧ dB + B ∧ dA), (3.14)

with invariance under all gauge transformations of A and B, that include the large gauge
transformations

A → A + ωA, B → B + ωB. (3.15)

This defines the theory in the bulk, which we will denote by (U(1)× U(1))k to emphasize
that this is not a direct product of two U(1)k Chern-Simons theories. As above, to describe
the theory on a handlebody we also need to choose boundary terms and boundary conditions.
Unlike the case of a single U(1) field, the U(1) × U(1) theory has a continuous family of
choices of which variables can be kept fixed at the boundary. For any r we can define gauge
fields A± = (A/r ± B r)

√
k/2 such that the action becomes

S = i

4π

∫
(A+ ∧ dA+ − A− ∧ dA−). (3.16)

This now becomes the action of two decoupled U(1) theories at levels 1 and (−1), but the
dynamical fields are connected at the level of the large gauge transformations (3.15), so the
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theory is not equivalent to a product of two decoupled theories. In any case, since A+ has
positive level and A− has negative level, we can now choose boundary terms and boundary
conditions as in the previous subsection such that we fix (A+)z̄ and (A−)z at the boundary to
arbitrary values. Analogously to (3.6), we introduce two independent holomorphic coordinates

ξ = τ2
iπ

(A+)z̄, ξ̄ = − τ2
iπ

(A−)z, (3.17)

and deform the action by the boundary term

S′ = S − 1
2π

∫
∂M

d2z
(
|A+|2 + |A−|2

)
, (3.18)

such that the equations of motion δS/δ(A+)z = δS/δ(A−)z̄ = 0 are trivially satisfied at
the boundary. The wavefunction Ψ(ξ, ξ̄) associated with this action is holomorphic in ξ,
and separately in ξ̄.

Next, we demand that under large gauge transformations with parameters (n, m) for
A, and (p, q) for B, which take

ξ → ξ + δξ, δξ =

√
k

2
(
(n + mτ)r−1 + (p + qτ)r

)
, (3.19)

ξ̄ → ξ̄ + δξ̄, δξ̄ =

√
k

2
(
(n + mτ̄)r−1 − (p + qτ̄)r

)
,

Ψ should change by

Ψ → Ψ e
π

2τ2
(2ξδξ∗+|δξ|2+2ξ̄δξ̄∗+|δξ̄|2)+iπk(mp−nq)

. (3.20)

In this case the cocycle factor is simply φ = πk(mp − nq), so there is no need to introduce
nontrivial phases ϕi. There are k2 wavefunctions given explicitly by

Ψa,b(ξ, ξ̄, τ) = 1
|η(τ)|2

∑
n,m

e
iπτp2

L−iπτ̄p2
R+2πi(pLξ−pRξ̄)+ π

2τ2
(ξ2+ξ̄2)

, 0 ≤ a, b < k, (3.21)

pL,R =

√
k

2
(
(n + a/k)r−1 ± (m + b/k)r

)
, n, m ∈ Z.

We would like to emphasize that (3.21) for different r are different representations of the same
k2 bulk wavefunctions, expressed as functions of different variables (corresponding to the
specific choice of boundary conditions we made). The result (3.21) resembles the partition
function of a free scalar CFT, and we will discuss the precise relation in the next section.

Wilson loops of A along the n + mτ cycle, WA(n, m) = exp (i
∮

n,m A), with a similar
definition for Wilson loops of B, act on (3.21) as follows

WA(n, m)Ψa,b = Ψa,b+m e2πian/k, (3.22)
WB(n, m)Ψa,b = Ψa+m,b e2πibn/k. (3.23)

In particular, Wilson lines of both A and B along the 1 cycle act on Ψ0,0 trivially, so Ψ0,0
is a consistent wavefunction on thermal AdS — the handlebody where this cycle shrinks
in the interior.
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3.4 General case

Before we proceed with the general (U(1) × U(1))n theory we would like to revisit the
U(1)×U(1) case, but instead of starting with the “AB” theory (3.14), we can start with (3.16)
and (3.17) and just impose large gauge transformations generalizing (3.19)

δ

(
ξ + ξ̄∗

ξ − ξ̄∗

)
=

√
2Λ(n⃗ + m⃗τ), n⃗, m⃗ ∈ Z2. (3.24)

Here Λ defines an even self-orthogonal lattice in R1,1 as in (2.12). The holomorphic functions
of ξ and ξ̄

Ψc⃗(ξ, ξ̄, τ) = 1
|η(τ)|2

∑
ℓ⃗

e
iπτp2

L−iπτ̄p2
R+2πi(pLξ−pRξ̄)+ π

2τ2
(ξ2+ξ̄2)

, (3.25)

(
pL + pR

pL − pR

)
=

√
2Λ(ℓ⃗ + g−1

Λ c⃗), ℓ⃗ ∈ Z2

are parametrized by elements of the Abelian group c⃗ ∈ Z2/gΛ = Λ∗/Λ = G, and under large
gauge transformations (3.24) they change as follows:

Ψc⃗(ξ + δξ, ξ̄ + δξ̄) = Ψc⃗(ξ, ξ̄) e
π

2τ2
(2ξδξ∗+|δξ|2+2ξ̄δξ̄∗+|δξ̄|2)

eiπnT gΛm. (3.26)

The generalization to the case of (U(1)×U(1))n is now straightforward. The main ingre-
dient is the even self-orthogonal lattice Λ ∈ Rn,n, which defines large gauge transformations
of U(1)n-valued gauge fields A± as follows,(

ξ + ξ̄∗

ξ − ξ̄∗

)
→
(

ξ + ξ̄∗

ξ − ξ̄∗

)
+
√
2Λ(n⃗ + m⃗τ), n⃗, m⃗ ∈ Z2n, (3.27)

while the relation between ξ, ξ̄ and A± is as in (3.17), generalized to vector-valued quantities.
The resulting wavefunction is parametrized by an element of the Abelian group c ∈ GΛ = Λ∗/Λ,

Ψc = Θc

|η(τ)|2n
,

Θc(ξ, ξ̄, τ) =
∑

ℓ⃗

e
iπτp2

L−iπτ̄p2
R+2πi(pL·ξ−pR·ξ̄)+ π

2τ2
(ξ2+ξ̄2)

, (3.28)

(
pL + pR

pL − pR

)
=

√
2Λ(ℓ⃗ + g−1

Λ c⃗), ℓ⃗ ∈ Z2n, gΛ = ΛT ηΛ.

The wavefunction Ψc coincides exactly with the “codeword blocks” (2.20). We will explore
the holographic interpretation of this result in section 4.

4 Holographic description of the ensemble of code CFTs

4.1 Level k = 1 CS theories and conventional holographic correspondence

As discussed above, for k = 1 the U(1)×U(1) CS theory has a unique wavefunction, which
can be written as Ψ00(τ, ξ, ξ̄). It is given by the CS path integral on any handlebody M
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with the appropriate boundary conditions on ∂M = Σ of genus one. Our starting point is
the observation that this unique wavefunction (3.21) with k = 1 is the same as the path
integral of the two-dimensional CFT, the compact scalar of radius R =

√
2r, coupled to an

external complex gauge field A parametrized by ξ, ξ̄

ZBP I(τ, ξ, ξ̄) = Ψ00(τ, ξ, ξ̄). (4.1)

We discuss the compact scalar in detail in appendix A. From the bulk point of view ξ, ξ̄

parametrize certain components of the fields A+, A− on the boundary of M, and the
holographic dictionary relates them to sources in the CFT by

iπ

τ2
ξ = Az̄ = (A+)z̄, − iπ

τ2
ξ̄ = Az = (A−)z, (4.2)

such that ZBP I is the CFT path integral with these sources (as discussed in appendix A).
In the CFT the complex field A is a combination of two real fields A and B coupled to the
two conserved U(1) currents, see (A.19), and we have chosen notation such that the CFT
source fields A, B are exactly the boundary values of the bulk gauge fields A, B introduced in
subsection 3.3. At the same time we emphasize that the Chern-Simons theory is quantized with
the boundary condition that fixes the fields (A+)z̄, (A−)z at the boundary, while (A+)z, (A−)z̄

vary freely. This condition looks cumbersome when expressed in terms of A and B.
While preserving the same boundary conditions, we can add an additional boundary

term πξξ̄
τ2

to the bulk action (3.18) and obtain, after an integration by parts,

S1 =
i

2π

∫
M

B ∧ dA − r2

π

∫
∂M

d2z |B|2. (4.3)

The new action still satisfies δS1/δ(A+)z = δS1/δ(A−)z̄ = 0 at the boundary, because the
added boundary term does not include fluctuating fields. It leads to a holomorphic bulk
wavefunction which equals the first path integral introduced in appendix A

ZPI(τ, ξ, ξ̄) =
∫

DADB e−S1 . (4.4)

Note that unlike the bulk path integral discussed in the previous section (related to it by
ZP I(τ, ξ, ξ̄) = ZBP I(τ, ξ, ξ̄)e−

π
τ2

ξξ̄), ZPI is manifestly invariant under large gauge transforma-
tions of A. Similarly, subtracting πξξ̄

τ2
from the bulk action leads to

S2 =
i

2π

∫
M

A ∧ dB − r−2

π

∫
∂M

d2z |A|2, (4.5)

and
Z ′
PI(τ, ξ, ξ̄) =

∫
DADB e−S2 , (4.6)

which is manifestly invariant under large gauge transformations of B. To be precise, these
bulk theories are actually complexifications of the path integrals considered in appendix A, as
ξ, ξ̄ are treated here as two independent complex variables. To reduce precisely to the CFTs
described by the actions (A.7) and (A.14), one would need to impose additional restrictions
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on the boundary conditions in (4.4) and (4.6), that respectively set B = 0 and A = 0 at
the boundary, by choosing ξ∗ = ±ξ̄.

It is important to point out that the parameter r from the bulk point of view is a
parameter changing the representation of the Chern-Simons wavefunction |Ψ⟩. It defines
the boundary conditions, but it does not affect the action in the bulk. Hence, for all r

the quantum state |Ψ⟩ remains the same, which is already clear from the fact that the
Hilbert space of level-1 Chern-Simons theory is 1-dimensional. From the boundary point
of view, the parameter r — the radius of the compact circle — changes the CFT. This
situation is not conceptually different from more conventional instances of the holographic
correspondence, such as gauge/gravity duality, in which the path integral of the same bulk
action with different boundary conditions describes different field theories. For example,
exactly marginal deformations of a CFT correspond to changing the boundary conditions
for massless scalars in anti-de Sitter space. Another even more direct analogy is with the
dS/CFT correspondence [58], where the same quantum Hartle-Hawking wavefunction in
the bulk is dual to different field theories, depending on the overlap of the unique bulk
wavefunction with the wavefunction at the boundary.

The generalization of the above considerations to (U(1)×U(1))n is straightforward. The
general level k = 1 theory is (U(1)×U(1))n Chern-Simons theory, quantized with large gauge
transformations corresponding to points in an even self-dual lattice Λ (3.27). In this case
GΛ = Λ∗/Λ consists of a single element, and the unique wavefunction (3.28) is identified with
the path integral of the Narain theory associated with Λ

ZBP I(τ, ξ, ξ̄,Λ) = Ψ0⃗(τ, ξ, ξ̄). (4.7)

Similarly to the n = 1 case, there are many possible definitions of path integrals, general-
izing (4.4) and (4.6); here we use the T -duality invariant definition of (3.28).

One can rewrite the (U(1)×U(1))n fields A± in terms of the gauge fields A, B and the
lattice Λ, which we parametrize by γ and B as in (2.4) with trivial OT ,

A± = (γ ± γ∗B)A ± γ∗B√
2

. (4.8)

In terms of these fields, the action of large gauge transformations are canonical, A → A+ ωA,
B → B + ωB, but the boundary conditions in the path integral become Λ-dependent. This
description provides the holographic dictionary for a general Narain CFT: the path integral
of a Narain theory is equivalent to the path integral of level-1 (U(1)×U(1))n Chern-Simons
theory with boundary conditions (wavefunction representation) specified by Λ.

The construction above is an explicit realization of the AdS3/CFT2 correspondence for
Narain theories in terms of pure Chern-Simons theory in the bulk. The original treatment
in [54], recently revisited in [12], was in terms of Maxwell-Chern-Simons theory in the limit
of infinite Maxwell coupling. We have shown here that inclusion of the Maxwell term is not
necessary, provided a more explicit treatment by evaluating the path integral on both sides
of the duality, and established a holographic dictionary. Our approach is also related to the
recent work [16], which constructs a bulk description for a Narain theory with decomposable
Λ = ΛL ⊕ ΛR in terms of level k = 1 CS theory, obtained from k > 1 Chern-Simons theory
by gauging all discrete symmetries.
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It is important to note that the holographic description above does not include a sum
over bulk geometries or topologies. Rather, all handlebodies yield the same wavefunction,
obeying (4.7). This is analogous to the case of AdS3 with k = 1 units of NS-NS flux (the
“tensionless string”) [59, 60], where fluctuations in the bulk on a fixed background geometry
are believed to account for the full partition function.

Codes, and code ensembles, play a rather trivial role in the holographic description of
Narain CFTs in terms of level k = 1 Chern-Simons theory. Indeed, the k = 1 U(1)×U(1)
theory is associated with the unique length n = 1 code over the alphabet Z1 × Z1, consisting
of the unique codeword c = (0, 0). The parameter r, the radius of the compact scalar on
the CFT side, does not affect the code, but controls the embedding of the code into the
space of n = 1 Narain CFTs. Similarly, whenever the lattice Λ is self-dual, the group GΛ
is trivial, consisting of a single element, and there is a unique code consisting of a single
codeword c = 0⃗. As we saw above, this trivial code can be mapped to an arbitrary Narain
theory by choosing an appropriate embedding. To summarize, we see that the conventional
holographic correspondence emerges when the code ensemble consist of only one element,
a unique code associated with a given Narain CFT.

4.2 Averaging over Narain CFTs

The holographic duality described above maps Narain theories to three dimensional bulk
theories which are non-gravitational Chern-Simons theories living on a fixed space-time,
with no sum over geometries. This is consistent with the fact that in these CFTs the
energy-momentum tensor is a product of U(1) currents, so we do not expect an independent
graviton field in the bulk

Motivated by [3, 4] will now consider an average over a finite ensemble of Narain theories,
or over the whole moduli space of Narain theories with some c = n. A priori, it is not clear if
such an ensemble average would have a simple description in the bulk. The duality between
Narain theories and level-1 CS theories on a fixed handlebody provides one way to evaluate it

— by averaging over all possible boundary terms and boundary conditions, corresponding to
all Narain CFTs. For n = 1 this is just an average over the values of r. One way to implement
this is to write down the boundary terms as a function of γ and B using (4.8), and then
to make these variables dynamical and to integrate over them with an O(n, n,R)-invariant
measure. These variables live just on the boundary, but since they are constant on ∂M,
integrating over them gives a non-local theory. This non-local theory (on a given handlebody)
is, by construction, equivalent to the ensemble average over Narain theories, but this is
not very satisfactory, and certainly more complicated than the dual description suggested
in [3, 4]. In the rest of this section we explore an alternative way to obtain the ensemble
average over Narain theories, which will lead to bulk sums over geometries similar to those
of [3, 4], but described by a fully consistent Chern-Simons theory with compact gauge group.
“U(1)-gravity” theory will then emerge as a limit.

4.3 Level k > 1 CS theory and ensemble averaging

Our next step is to consider codes over alphabets with more than one element. As we
have seen in full generality in section 3.4, the “codeword blocks” Ψc (2.20) appearing in
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the context of codes have a simple bulk interpretation. They are precisely the same as
the wavefunctions of the (U(1) × U(1))n Chern-Simons theory on a spatial torus. Indeed,
the theory quantized with large gauge transformations specified by a lattice Λ has exactly
GΛ = Λ∗/Λ independent wavefunctions, in one to one correspondence with the codewords.
As was emphasized in section 2, any given code C of length n can be associated with any
Narain CFT of central charge n, by choosing an appropriate embedding. As a result we
have the following expression for the CFT path integral

ZC = WC(Ψ) =
∑
c∈C

Ψc. (4.9)

This expression, though suggestive, has no apparent holographic interpretation. Indeed, the
sum of wavefunctions on the right-hand side of (4.9) does not allow for a simple interpretation
as the bulk path integral evaluated on a simple 3d geometry, or as a sum of such path integrals.
This is because in general, path integrals on simple geometries such as solid tori with different
shrinking cycles would lead to a subclass of Ψc not nearly exhausting all possibilities. This
is easiest to see in the case of codes over Zk × Zk and (U(1)×U(1))n

k Chern-Simons theory.
The path integral over the solid torus with a shrinkable n + mτ cycle will lead to the unique
combination of Ψa1,b1 . . .Ψanbn invariant under (3.22), (3.23) for those values of n and m. For
k > 1, combinations of these with integer coefficients can not in general lead to (4.9).

Although associating individual CFTs with codes does not lead to a simple holographic
interpretation, we note that codes — and hence also the associated CFTs — naturally appear
in the context of ensembles. There is always an ensemble of all codes (CFTs) of a particular
type (e.g. over a particular alphabet) and of given length (corresponding to CFT central
charge n). It was initially suggested in [21] that such an ensemble of code CFTs should admit
a holographic interpretation. A crucial observation building towards such an interpretation
was made recently in [36]. There the authors considered an ensemble consisting of all length-n
Z2 × Z2 codes with the glue matrix

Λ =
(
1 1
1 −1

)
(4.10)

in the notation of section 2 (the original paper used a different but equivalent description). It
was conjectured, and then verified explicitly for small n, that the enumerator polynomial,
averaged over the ensemble of all such codes, is proportional to the “Poincaré series” of
all possible modular transformations acting on the auxiliary variable associated with the
trivial codeword,

W ({X}) ≡ 1
N
∑
C

WC({X}) ∝
∑

g∈Γ∗\SL(2,Z)
g(Xn

00). (4.11)

We emphasize that the action of the modular group on the variables Xab, generated by (2.22),
along with the equality (4.11), are defined and satisfied at the level of codes, before the
map to CFTs and Chern-Simons theory. The variables Xab provide (for k = 2) a four-
dimensional representation of the modular group SL(2,Z); hence the sum on the right-hand
side of (4.11) over Γ∗\SL(2,Z), where Γ∗ is the stabilizer of X00, includes a finite number
of terms. Alternatively, one can sum over the whole modular group, with the infinite size
of Γ∗ absorbed into the overall proportionality coefficient.
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While we leave a systematic justification of (4.11) and its generalizations to future
work [61], we point out that the equality between the weighted average over codes and the
Poincaré sum over the modular group will apply to other code constructions as well, and will
extend to higher genus boundaries. To be explicit, in what follows we focus our attention
on Zk × Zk codes with the glue matrix (2.13) and prime k = p, for which we establish the
analogue of (4.11) for arbitrary n. We consider codes of length n, which define an ensemble
of size (2.2). For prime p all codes should be averaged with equal weight. In this case, the
average is straightforward — see footnote on page 31.

Next we consider the sum over the modular group in (4.11). We introduce p2 variables
Xab forming a representation of the modular group generated by (2.10) and by obtaining X ′

of (2.6) when taking τ → −1/τ . The full set of (p2)n variables X
a⃗,⃗b

associated with codes
of length n transform in the tensor product of n such representations. The explicit action
of the T and S generators of SL(2,Z) is, using (2.22),

T (X
a⃗,⃗b

) = X
a⃗,⃗b

e
2πi a⃗·⃗b

p , (4.12)

S(X
a⃗,⃗b

) = 1
pn

∑
a⃗′ ,⃗b′

X
a⃗′ ,⃗b′ e

−2πi a⃗·⃗b′+a⃗′ ·⃗b
p .

Our goal is to sum over Γ∗\SL(2,Z), where Γ∗ is the stabilizer group of X0⃗,⃗0. The sum can be
performed in two steps: we first define a subgroup Γ ⊂ SL(2,Z) which leaves all X

a⃗,⃗b
invariant,

and then additionally factorize over the stabilizer of X0⃗,⃗0 within Γ\SL(2,Z). The group Γ in
the general case is known to be a congruence subgroup of SL(2,Z) [12, 62]; for prime p it
is the principal congruence subgroup Γ = Γ(p). The stabilizer of X0⃗,⃗0 in Γ\SL(2,Z) is the
cyclic group Z2 × Zp generated by S2 (which takes Xa,b to X−a,−b) and by powers of T , so

Γ∗\SL(2,Z) = (Z2 × Zp)\SL(2,Z)/Γ(p). (4.13)

This quotient consists of (p2 − 1)/2 elements, which can be parametrized by integer pairs
(c, d) ∼ (−c,−d), corresponding to the modular transformation

g =
(

a b

c d

)
∈ SL(2,Zp) ∼= Γ1(p)\PSL(2,Z), (4.14)

which has the following action on X0⃗,⃗0:

g(X0⃗,⃗0) =
1
pn

∑
a⃗,⃗b

X
a⃗,⃗b

e
−2πi a⃗·⃗b

p
r
, r = d/c mod p. (4.15)

The equation above applies when c ̸= 0; otherwise g(X0⃗,⃗0) = X0⃗,⃗0. One can readily see
that the (p2 − 1)/2 terms in the Poincaré sum split into p + 1 terms labeled by elements
of Γ0(p)\SL(2,Z) = {1, ST l} with 0 ≤ l < p, each appearing (p − 1)/2 times. Combining
everything, we find the averaged enumerator polynomial for codes over Zp × Zp,

W (X
a⃗,⃗b

) = 1
N
∑
C

WC(Xa⃗,⃗b
) =

∑
g∈Γ0(p)\SL(2,Z) g(X0⃗,⃗0)

1 + p1−n
=

X0⃗,⃗0 +
1

pn

p−1∑
r=0

∑
a⃗,⃗b

X
a⃗,⃗b

e
−2πi a⃗·⃗b

p
r

1 + p1−n
.

(4.16)
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Here N is given by (2.2), and the coefficient 1 + p1−n in the denominator of the right-hand
side is chosen such that the coefficient in front of X0⃗,⃗0 associated with the trivial codeword
is equal to one.

The identity (4.16) for code CFTs acquires a straightforward holographic interpretation
which has been envisioned in [36]. We consider ((U(1)×U(1))n

k Chern-Simons theory, placed
on an arbitrary handlebody geometry, and identify Ψ0⃗,⃗0(τ, ξ, ξ̄) to be the wavefunction of
this theory on thermal AdS, the solid torus with shrinkable a-cycle. Indeed, Wilson loops
of both A and B fields over this shrinkable cycle should act on the boundary wavefunction
trivially, which singles out Ψ0⃗,⃗0, as follows from (3.22), (3.23). Hence, the sum in (4.16) can
be interpreted as a sum over all possible handlebody topologies, or more accurately, as a sum
over equivalence classes of topologies yielding the same boundary wavefunction,

ZBP I(τ, ξ, ξ̄) = 1
1 + p1−n

∑
g∈Γ1(p)\SL(2,Z)

Ψ0⃗,⃗0(g τ, g ξ, g ξ̄) = (4.17)

1
1 + p1−n

Ψ0⃗,⃗0(τ, ξ, ξ̄) + p−n
p−1∑
r=0

∑
a⃗,⃗b∈Zn

p

Ψ
a⃗,⃗b

(τ, ξ, ξ̄) e
−2πi a⃗·⃗b

p
r

 .

This equality between ensemble averaging over code CFTs on the field theory side, and
summing over topologies on the bulk side, is preserved under the action of O(n, n,R), which
changes the embedding of the codes in the space of Narain CFTs and the representation
of the wavefunction of the dual Chern-Simons theory.

We expect an equality analogous to (4.17) to apply more broadly, to codes defined as
even self-dual linear subspaces of the group GΛ defined by an even self-orthogonal lattice
Λ and corresponding code CFTs/ Chern-Simons theories, although the averaging weights
and the details of the “Poincaré sum” will be different. The equality will also extend to
higher genus boundary geometries.

To summarize, we have obtained an infinite series of explicit examples of “holographic
duality,” in which an ensemble of CFTs is dual to a Chern-Simons theory coupled to topological
gravity, and the bulk partition function is given by a sum over topologies. This sum is akin
to a sum over saddle point configurations in conventional gravity, implementing the ideas
of [63–65]. In spirit, our examples are similar to the original work [66] representing the
Ising model partition function as a sum “over geometries,” but crucially we explicitly outline
the dual theory in the bulk.

Our code-based construction allows for many generalizations, to additive codes of other
types, and potentially going beyond additive codes and Abelian CFTs. We expect that this
approach may lead to many more explicit examples, potentially reformulating the results
of [10, 11, 15] in terms of codes.

Although in this paper we only consider the CFTs living on a torus, we expect that
the holographic duality will generalize to higher genera [61]. The ensembles we consider
contain a finite number of CFTs, hence the ensemble is parameterized by a finite number
of moments. This will imply that the dual Chern-Simons theory on M, with ∂M being a
Riemann surface of sufficiently high genus, would be completely determined in terms of path
integrals over lower genus boundary surfaces. This will require various factorization rules
in the bulk, which deserves a better understanding.
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4.4 Holographic correspondence in the k → ∞ limit

In the previous section we saw that the size of the ensemble is related to the number of
classes of topologies appearing in the bulk sum. Bigger ensembles correspond to “more
gravitational” theories in the bulk, distinguishing more topological features and thus leading
to a sum over more classes of topologies. It is thus natural to ask, what would happen with
the duality as the size of the code CFT ensemble becomes infinitely large. In what follows
we take k = p to be prime for simplicity. To evaluate the right-hand side of (4.16) in the
p → ∞ limit we go back to definition of Ψ0⃗,⃗0 (3.28),

Ψ0⃗,⃗0(τ
′, ξ′, ξ̄′) =

Θ0⃗,⃗0(τ
′, ξ′, ξ̄′)

|cτ + d|n|η(τ)|2n
, g =

(
a b

c d

)
∈ SL(2,Z), (4.18)

τ ′ = aτ + b

cτ + d
, ξ′ = ξ

cτ + d
, ξ̄′ = ξ̄

cτ̄ + d
.

From (4.15) we know that we do not need to consider all possible co-prime pairs c, d, but
only c = 0, d = 1, and p additional pairs yielding all possible values for dc−1 mod p. A
crucial observation is that one can always pick a set of such pairs with positive c satisfying
c, |d| ≤ √

p. While we could not prove this in full generality, we have numerically checked
it for the first hundred primes.

We first consider the case when c, |d| ≪ √
p with p ≫ 1. In this regime all vectors p⃗L, p⃗R

summed over in Θ0⃗,⃗0, except for p⃗L, p⃗R = 0, are of order |p⃗L|, |p⃗R| ∼ O(p1/2). This is in
fact a general result for any embedding, in the limit where the embedding is fixed while
p → ∞. So for c, |d| ≪ √

p, the factor

e−πτ ′
2(|p⃗L|2+|p⃗R|2) (4.19)

in (3.28) suppresses all other terms, and hence the only contribution is from p⃗L, p⃗R = 0,

Θ0⃗,⃗0(τ
′, ξ′, ξ̄′) = e

π
2τ ′

2
(ξ′2+ξ̄′2)

+ e−O(p). (4.20)

Outside of the c, |d| ≪ √
p regime, but provided c, |d| ≤ √

p is still satisfied, we notice that
the combination τ ′

2(|p⃗L|2 + |p⃗R|2) is at least of order one, and |pL · ξ|, |pR · ξ̄| are at most of
order one, O(p0). This means that Θ0⃗,⃗0(τ

′, ξ′, ξ̄′) ≲ O(p0) for p ≫ 1. Now, going back to the
sum over p + 1 pairs c, d, we split the sum into two groups, for c, |d| satisfying c, |d| ≤ pα

for any 1/3 < α < 1/2, and the rest. The first group will yield

ZBP I ≈ 1
1 + p1−n

∑
(c,d)=1,
c,|d|≤pα

e
πξ2
2τ2

cτ̄+d
cτ+d

+πξ̄2
2τ2

cτ+d
cτ̄+d

|cτ + d|n|η(τ)|2n
, p ≫ 1, (4.21)

while the second group, which has at most p terms, will give a contribution bounded by∑
|c|+|d|≥pα

Θ0⃗,⃗0
|cτ + d|n|η(τ)|2n

≲ O(p1−nα). (4.22)

For n α > 1 this second term is negligible in the limit p → ∞. To conclude, for n ≥ 3, in the
p → ∞ limit we recover the following expression for the averaged partition function

Z(τ, ξ, ξ̄) = 1
|η(τ)|2n

∑
(c,d)=1

e−iπ cξ2
cτ+d

+iπ cξ̄2
cτ̄+d

|cτ + d|n
, (4.23)
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matching the result of [7], which reduces to the partition function of [3, 4] for ξ = ξ̄ = 0.
The special cases of n = 1, 2 are considered below.

Our final expression (4.23) is manifestly independent of the embedding. From [3, 4, 7]
we know this expression is equal to the Narain CFT path integral averaged with the Haar
measure over the whole Narain moduli space. It is thus natural to speculate that for n > 2
in the p → ∞ limit, independently of the embedding, the ensemble of code CFTs densely
covers the whole moduli space with the canonical measure. We will first discuss how this
works in the n = 2 case in next section, and then provide additional arguments and formulate
an underlying hypothesis in section 5.

The original works [3, 4] identified the sum in the right-hand-side of (4.23) as a sum
over handlebody topologies of the “perturbative sector of Chern-Simons,” an Abelian Chern-
Simons theory with only small (topologically trivial) fluctuations of gauge fields contributing
to the path integral. This theory was dubbed “U(1)-gravity” [3], but apparently it has
no well-defined microscopic description. As was pointed out in [4], genuine Chern-Simons
theories with either non-compact or compact gauge groups would lead to different results.
We are now ready to clarify this point. U(1)-gravity does not have a proper microscopic
description in the bulk because it emerges as a limit of well-defined theories, namely the
k → ∞ limit of level-k (U(1)×U(1))n Chern-Simons theory, coupled to topological gravity
(to give the sum over handlebodies).

4.5 Ensembles of n = 1 and n = 2 theories in the large p limit

The cases n = 1 and n = 2 are special. As discussed above, for n = 1 and k > 1 the ensemble
consists of just two codes, one with the codewords of the form (a, 0) ∈ C1 and the other with
(0, b) ∈ C2, with arbitrary 0 ≤ a, b < p. When translated to CFTs, each of them maps to a
single compact scalar, with radii R± =

√
2 r p±1/2, respectively. The relation between the

ensemble-averaged enumerator polynomial and the Poincaré series (4.16) is valid for all n;
hence this ensemble can be represented “holographically” as follows

ZBP I(τ, ξ, ξ̄, R+) + ZBP I(τ, ξ, ξ̄, R−) =
∑

g∈Γ0(p)\SL(2,Z)
Ψ00(g τ, g ξ, g ξ̄, r), (4.24)

where the sum is over p+1 classes of three-dimensional topologies and Ψ00 is given by (3.21).
We have explicitly specified the embedding parameter r, which is arbitrary and can scale
with p. This relation holds for any prime p, but in the limit p → ∞ it diverges. The sum in
the right-hand side of (4.24) becomes the divergent real Eisenstein series of weight 1. The
left-hand side of (4.24) also diverges, as at least one of the scalars decompactifies. Using
the representation (A.10) of the partition function and T-duality, we find the limit for fixed
r to be (for simplicity we consider vanishing fugacities ξ = ξ̄ = 0)

ZR+ + ZR− = p
(
r + r−1)

√
τ2|η(τ)|2

+ e−O(p), p → ∞. (4.25)

One can also consider the p → ∞ limit when R− = R remains fixed, while R+ scales
with p, in which case

ZR + ZRp = (p + 1)R√
2τ2|η(τ)|2

+
∑

(c,d)=1
R

θ3
(

iR2

2τ ′
2

)
− 1

√
2τ2|η(τ)|2

+ e−O(p), τ ′
2 =

τ2
|cτ + d|2

. (4.26)
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This is essentially the “modular sum” representation for the given compact scalar partition
function ZR, except for the constant term R/

√
2τ2|η(τ)|2. In this way it is similar to the

representation (3.14) of [9]. In any case, the interpretation of the divergent equations that
arise in these cases is not clear.

The case of n = 2 codes is similar but much richer. Narain lattices in R2,2 are con-
ventionally parametrized by two modular parameters t = t1 + it2 and b = b1 + ib2, related
to γ and the B-field by

γ =
√

b2
t2

(
1 t1
0 t2

)
, B = b1

(
0 1
−1 0

)
. (4.27)

T-duality acts on (t, b) as SL(2,Z)× SL(2,Z) with an additional Z2 exchanging t ↔ b. We
denote the partition function of a c = 2 Narain theory by Zc=2(τ, t, b). It is modular invariant
with respect to all three variables. One can also introduce the partition function of primaries,
Ẑ(τ, t, b) = τ2|η(τ)|4Zc=2(τ, t, b), where here and in what follows we assume the fugacities
vanish ξ = ξ̄ = 0. The partition function of primaries remains modular invariant under τ ,
and exhibits triality — full symmetry under permutation of its three arguments [9, 67].

There are 2(p+1) n = 2 codes, see appendix C.1 for a detailed discussion. If we choose an
embedding, an orthogonal matrix from O(2, 2,R) introduced in the end of section 2, in the form(

γ∗ γ∗B

0 γ

)
∈ O(2, 2,R), (4.28)

parametrized by two modular parameters t = −1/t0, b = b0, then the 2(p+1) self-dual lattices
of the code theories (after appropriate T-dualities) are explicitly given by

{t = k + t0
p

or t = p t0} with b = b0, (4.29)

and
{b = k + b0

p
or b = p b0} with t = t0, (4.30)

where 0 ≤ k < p. It is convenient to represent the average over code theories in terms of
Hecke operators Tp, defined as follows [68]. For a modular form f(τ) of weight k and prime p

Tpf(τ) ≡ pk−1f(pτ) + 1
p

p−1∑
r=0

f

(
τ + r

p

)
. (4.31)

Then, the average over codes is simply
p

2(p + 1)
(
T t

p Zc=2(τ, t, b) + T b
p Zc=2(τ, t, b)

)
, (4.32)

where we introduced an upper index to indicate the variable that each Hecke operator is
acting on.

The “sum over topologies” in the right-hand side of (4.16)

Ψ0⃗,⃗0(τ) + p−n∑p−1
r=0

∑
a,b Ψa⃗,⃗b

(τ) e
2πir a⃗·⃗b

p

1 + p1−n
(4.33)
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can also be simplified for general n. Starting from an O(n, n,R) matrix O specifying a Narain
lattice, the partition function of the corresponding Narain theory can be written as (2.20)

ZO = Θ(τ)
|η(τ)|2n

, Θ(τ) =
∑

ℓ⃗

eiπτp2
L−iπτ̄p2

R , (4.34)

(
pL + pR

pL − pR

)
= O

√
2 ℓ⃗, ℓ⃗ ∈ Z2n.

Now, going back to (4.33), we notice that it can be rewritten as

Θ(pτ) + p−n∑p−1
r=0 Θ((τ + r)/p)

(1 + p1−n)|η(τ)|2n
= Tp Θ

(pn−1 + 1)|η(τ)|2n
, (4.35)

where Θ is defined with the same O as the embedding matrix of codes, introduced at the end
of section 2. The last step in (4.35) is justified because Θ(τ) is a modular form of weight
n. Using the definition (4.31) we can express Tp acting on a modular form f of weight n

in terms of its action on the modular invariant τ
n/2
2 f ,

τ
n/2
2 Tp f = pn/2 Tp(τn/2

2 f). (4.36)

Going back to the n = 2 case and noting that τ2Θ = Ẑ(τ, t, b) is exactly the partition function
of primaries, we can now rewrite the identity (4.17) as follows:

p (T t
p Ẑ + T b

p Ẑ)
2(p + 1)τ2|η(τ)|4

=
p T τ

p Ẑ

(p + 1)τ2|η(τ)|4
. (4.37)

In fact a stronger identity holds. As we show in appendix C, for any prime p (see [69] for any p),

T τ
p Ẑ = T t

p Ẑ = T b
p Ẑ, (4.38)

which extends the triality — permutation symmetry of Ẑ with respect to its arguments.
In the limit p → ∞, the points t = k+t0

p form a dense line close to t2 = 0, that crosses
infinitely many copies of the fundamental domain. Once these p points are mapped back
to the standard keyhole domain of SL(2,Z), they will cover it densely with the standard
covariant measure d2t/t22. The contribution of the point t = p t0 in the full average will be
1/p suppressed, and can be neglected. Thus, the average over code theories when p → ∞, at
least at leading order, would plausibly approach the average over the fundamental domain of
t with the SL(2,Z) covariant measure, plus the same average over b (note that this is not the
same as averaging over all Narain theories). Similarly, thanks to (4.35), the “bulk” sum in
the p → ∞ limit will be proportional to the average of Ẑ over the fundamental domain of τ

with the measure d2τ/τ2
2 . The same conclusion is supported by the general result of [48, 70],

that in the limit p → ∞, for any square-integrable modular function f , Tp(f) approaches the
integral of f over the fundamental domain F with the canonical measure∣∣∣∣∣∣∣∣Tp(f)−

∫
F

f dµ

∣∣∣∣∣∣∣∣ < ||f ||O(p−9/28+ϵ) → 0, (4.39)

for large p, where ϵ is any real number > 0, and ||f || is the Weil-Petersson norm of f [70].
The caveat here is that in our case Ẑ is not square-integrable, and the integral over the
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fundamental domain diverges. We therefore conjecture that in the p → ∞ limit, T x
p (Ẑ) for

x = τ , t or b would be given by the regularized average over the fundamental domain of x,
plus an x-dependent term, which will not be dependent on other variables. The regularized
average of Ẑ over τ has been carried out in [71]. We discuss averaging over t, related to it
by triality, in appendix C. Using this result we conjecture

T τ
p (Ẑ(τ)) = 3

π
ln(p/p0)−

3
π
ln(t2|η(t)|4)−

3
π
ln(b2|η(b)|4) + f(τ) + O(1/p) (4.40)

for some unknown f(τ). Since both (4.37) and (4.38) hold for any finite prime p, to preserve
triality we must conclude f(τ) = − 3

π ln(τ2|η(τ)|4) and

Z = 3
π

ln(p/p0)− ln(τ2|η(τ)|4)− ln(t2|η(t)|4)− ln(b2|η(b)|4)
τ2|η(τ)|4

∣∣∣∣∣
t=t0, b=b0

+ O(1/p),

where p0 is some constant.

4.6 Extensions and generalizations

The equality between averaging over length-n Zp×Zp codes (with n ≥ 3) and “Poincaré series,”
which can be understood as sums over handlebody topologies, begs a deeper understanding.
First, we expect it to hold for arbitrary genus g,

1
N
∑
C

WC(Ψ(c1,...,cg)(Ω)) ∝
∑

g∈Sp(2g,Z)
Ψ(0,...,0)(g Ω), (4.41)

WC({X(c1,...,cg)}) =
∑

c1,...,cg∈C
X(c1,...,cg), (4.42)

where Xc1,...,cg are formal variables associated with the g-tuples of codewords [35, 37, 72]. We
promote them to wavefunctions Ψc1,...,cg of Chern-Simons theory on a genus-g Riemann surface,
hence their dependence on the period matrix Ω. Ψ(0,...,0), associated with the zero codeword
taken g times, is the wavefunction of the Chern-Simons theory computed on a 3d manifold
M with all a-cycles of ∂M contractible in the interior, which is an analog of thermal AdS.

As in section 4.3, the Poincaré sum in (4.41) can be reformulated as a sum over a coset
Γ∗\Sp(2g,Z), where Γ∗ is a congruence subgroup of the modular group Sp(2g,Z) leaving
Ψ(0,...,0)(Ω) invariant. Extending the result of the g = 1 case, we conjecture this subgroup to
be ΓSp(2g)

0 (p) ⊂ Sp(2g,Z), which we define to be the group of matrices(
A B

C D

)
∈ Sp(2g,Z), C = 0 mod p. (4.43)

For prime p the coset ΓSp(2g)
0 (p)\Sp(2g,Z) consists of

Nsp(g, p) =
g∏

j=1
(pj + 1) (4.44)

elements (we obtained this expression by generalizing [73, 74]), which matches the result
NSp(2, 2) = 15 found in [36].
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In a somewhat similar fashion, the sum over codes on the left-hand-side of (4.41) can also
be represented as a coset. We recall that all even self-dual codes over Zk × Zk of the kind we
are considering can be understood as a set of even self-dual lattices ΛC satisfying, see (2.15),

(
√

kZ)2n ⊂ ΛC ⊂ (Z/
√

k)2n. (4.45)

This defines the action of O(n, n,Z) ⊂ O(n, n,R) on codes. For prime k = p this action is
transitive.5 Indeed, one can bring any code to canonical form with a generator matrix of the
form (I,B),where B is antisymmetric mod p [23], and then use O(n, n,Z) to make B vanish.
In other words, for prime p the set of all codes can be described as a coset

O(n, n,Z)
ΓO(n,n)
0 (p)

, (4.46)

where ΓO(n,n)
0 (p), the subgroup of O(n, n,Z) which leaves the code with B = 0 invariant,

is defined to be the group of matrices(
A B

C D

)
∈ O(n, n,Z), C = 0 mod p. (4.47)

The coset description (4.46) is a generalization to arbitrary prime p of the coset construction
for p = 2 outlined in [21]. The size of the coset is given by (2.2).

To summarize, the equality (4.41) between the average over codes and the Poincaré series
over topologies can be rewritten as a sum over similar cosets∑

C∈ΓO(n,n)
0 (p)\O(n,n,Z)

WC({Ψ(c1,...,cg)}) ∝
∑

g∈ΓSp(2g)
0 (p)\Sp(2g,Z)

g(Ψ(0,...,0)). (4.48)

The number of terms on both sides, N (n, p) (2.2) and NSp(g, p) (4.44), and the overall
similarity of the cosets, can be seen as an extension of the worldsheet/target space duality
of the c = 2 case [67].

We have seen in the previous section that the Poincaré sum for genus one can be
represented in terms of a Hecke operator. In general the Hecke operator Tk is defined to
act on functions f(Λ) on lattices Λ. Then (Tk f)(Λ) is a sum f(Λ′) over all sublattices
Λ′ ⊂ Λ of index k. A modular form f(τ) can be understood as a function on two-dimensional
lattices generated by 1 and τ . Then Tk can be written as a sum over equivalence classes
of 2 × 2 integer matrices of determinant k,(

a b

c d

)
∈ Mk, a, b, c, d ∈ Z, ad − bc = k, (4.49)

modulo right multiplication by any element of SL(2,Z). For prime k = p this sum includes p+1
terms and Tp is given by (4.31). The equivalence of Γ0(p)\SL(2,Z) and Mp/SL(2,Z), together

5The action of O(n, n,Z) is also transitive on all even non-zero codewords. This is sufficient to obtain the
averaged enumerator polynomial W for arbitrary n, p for genus 1, thus completing the mathematical proof
of (4.16).
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with the relation between the Poincaré series and the Hecke operator representation [68],
leads to equality (4.35), which we rewrite as

1
(1 + p1−n)τn/2

2 |η(τ)|2n

∑
g∈Γ0(p)\SL(2,Z)

Ẑ0⃗,⃗0(g τ) = p−n/2

(1 + p1−n)τn/2
2 |η(τ)|2n

∑
g∈Mp/SL(2,Z)

Ẑ(g τ).

(4.50)

Here we introduced the modular invariant partition function of primaries Ẑ(τ) = τ
n/2
2 Θ(τ),

which is related to Ẑ0⃗,⃗0(τ) = τ
n/2
2 Θ0⃗,⃗0(τ) as follows

Ẑ0⃗,⃗0(τ) = p−n/2Ẑ(p τ). (4.51)

It is tempting to speculate that an analogous representation is also possible for higher-genus
Poincaré series, in which the Hecke operator would be defined to act on modular forms
f(Ω) of Sp(2g,Z).

The left-hand-side of (4.48), the sum over codes, is also very reminiscent of Hecke
operators. While the standard Hecke operator includes the sum over all sublattices of index p,
the sum over even self-dual codes can be readily rewritten as a sum over all even sublattices
of (Z/

√
p)2n of index pn. The Hecke form of code averaging, through a suitable generalization

of (4.39), could potentially lead to a more straightforward and general proof that in the limit
that the size of the code ensemble becomes infinite, the code average computes the average
over the whole Narain moduli space with the Haar measure. We should note that formally
the same logic can be applied to the Poincaré series, which would naively suggest that when
p → ∞, the right-hand-side of (4.50) and hence (4.17) would be given by an integral over the
fundamental domain of τ . This is not so because the corresponding modular form Ẑ is not
square-integrable on the fundamental domain. As a result, in order to apply (4.39) the integral
has to be covariantly regularized, eventually leading to the conclusion of section 4.4: in the
p → ∞ limit the Poincaré series in (4.17) approaches the real Eisenstein series of weight n.

5 Ensemble averaging, typicality and holography

In section 4.4 we saw that averaging partition functions over the ensemble of code CFTs in the
k → ∞ limit leads (for n > 2) to “U(1)-gravity,” the sum over CS theories on all handlebody
topologies. In particular, the answer does not depend on the embedding of the codes, and
is equal to the average of the whole Narain moduli space with the Haar measure, as was
outlined in [3, 4]. This suggests that code CFTs in the k → ∞ limit, when the ensemble
becomes infinitely large, densely cover the entire Narain moduli space with the canonical
measure. This is in agreement with an earlier observation that the averaged code theory,
in the k → ∞ limit, has the same spectral gap as the averaged Narain theory [6]. If we
additionally take the large central charge limit, c ≫ 1, then averaging over the whole moduli
space would be well approximated by a random Narain theory, because the ensemble of all
Narain theories, as well as the ensemble of code CFTs in the c → ∞ limit, are self-averaging
at large c, namely the variance is exponentially small e−O(c) [6, 13, 36].

To support the conclusion that the k → ∞ ensemble densely covers the entire moduli
space, we first note that there are two code ensembles, but for large k they are similar. The
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first ensemble, which we used in our discussions above, is the ensemble of all N =
∏n−1

i=0 (pi+1)
codes of length n (here we assume k = p is prime). The second ensemble is the ensemble
of all N ′ = pn(n−1)/2 codes in the canonical form, also called the B-form [21]. Each code
in the canonical form is parametrized by an antisymmetric matrix B defined mod p, which
can be interpreted as an adjacency matrix of a graph with edges carrying an element of
Zp. Every code from the first ensemble has an equivalent code in the canonical form, in
the sense of code equivalences. It is a non-trivial question to determine the number of
codes equivalent to the canonical one with a given B (noting that certain canonical form
codes are equivalent to each other). At the level of CFTs, code equivalence is the same as
T-duality only for the most symmetric “rigid” embedding, when the code with the matrix
B is associated with the Narain lattice specified by γ = I/

√
p and B = B/p. When p → ∞

we expect averaging over both ensembles with each code entering with equal weight to be
physically equivalent, which is reflected by N ′/N → 1 and by the equivalence of the resulting
Gilbert-Varshamov bounds (averaged spectral gap).

The ensemble of all codes in the canonical form, independently of the embedding, leads to
the ensemble of CFTs with γ → 0 and with the B-field homogeneously covering the “T-duality
cube” Bij ∼ Bij + 1. We conjecture that the region in the moduli space

γ → 0, 0 ≤ Bij < 1, (5.1)

with the conventional flat measure for dBij on the cube, covers (via T-duality) the whole
Narain moduli space, with the canonical O(n, n,R)-invariant measure. By γ → 0 we mean
that all singular values of γ approach zero. This is analogous to the observation in section 4.5
that the t2 → 0, 0 ≤ t1 < 1 region is T-dual to the entire fundamental domain of t with
the canonical measure. Similarly here, it is straightforward to see that starting from an
arbitrary pair (γ, B), via T-duality one can move it into the region (5.1). A non-trivial
point, which we leave for the future, is whether the Haar measure on the Narain moduli
space indeed results in the homogeneous measure for Bij . With this assumption, we would
find that the ensemble of all canonical codes densely covers the entire Narain moduli space
with the Haar measure. In particular, this would explain why the averaged spectral gap
matches the one of the whole Narain ensemble [6].

The representation of the Narain moduli space via (5.1) provides a new easy way to
obtain the original result of [3, 4] and [7]. Starting from the conventional representation
of the CFT path integral (3.28) with self-dual Λ parametrized by γ, B, and by performing
Poisson resummation over half of the variables, we obtain

Zγ,B
BP I(τ, ξ, ξ̄) = det (γ)

τ
n/2
2 |η(τ)|2n

∑
n⃗,m⃗∈Zn

e
− π

τ2
|v⃗|2−2πi mT Bn− 2π√

2τ2
(ξ·v∗−ξ̄·v)+ π

τ2
ξξ̄

, (5.2)

v⃗ = γ(n⃗τ + m⃗).

Now we are ready to average Zγ,B over the region (5.1). Integration over Bij forces the
vectors n⃗, m⃗ to be collinear. We thus can parametrize n⃗ = c ℓ⃗, m⃗ = d ℓ⃗ with ℓ⃗ ∈ Zn and with
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a co-prime pair (c, d) = 1. Using the explicit modular invariance of (5.2),

τ → τ ′ = aτ + b

cτ + d
, ξ → ξ′ = ξ

cτ + d
, ξ̄ → ξ̄′ = ξ̄

cτ̄ + d
, (5.3)

(n⃗ m⃗) → (n⃗ m⃗)
(

a b

c d

)
,

we find

ZBP I =
∑

(c,d)=1

det (γ)
τ

n/2
2 |η(τ)|2n

∑
ℓ⃗∈Zn

e
− π

τ ′
2
|v⃗|2− 2π√

2τ ′
2
(ξ′−ξ̄′)·v⃗+ π

τ2
ξξ̄

, v⃗ = γℓ⃗. (5.4)

In the limit γ → 0, the summation over ℓ can be replaced by an integration, giving

ZBP I =
∑

(c,d)=1

1
|η(τ ′)|2n

e
π

2τ ′
2
(ξ′2+ξ̄′2)

, (5.5)

matching (4.23).
The calculation above hints towards a possible “holographic dual” for an individual

Narain theory, understood as a “Poincaré sum” over all co-prime pairs (c, d) = 1, enumerating
all handlebodies. The representation (5.2), valid for any γ, B, geometrizes the action of the
modular group SL(2,Z) as an action on a lattice of vectors (n⃗, m⃗) ∈ Z2n. There is a trivial
orbit of SL(2,Z), consisting of the origin n⃗ = m⃗ = 0, with a non-trivial action on all other
elements (trivial stabilizer). Thus, only the contribution of the origin does not admit the
Poincaré sum form, but we can make it as small as we want by using chains of T-dualities to
render det(γ) arbitrarily small. The remaining contributions of Z2n\⃗0 may be conveniently
split into “one-vector orbits”, with collinear n⃗ = c ℓ⃗, m⃗ = d ℓ⃗, and “two-vector orbits”, when
n⃗, m⃗ are not collinear. The contribution of the one-vector orbits leads naturally to a sum
over co-prime pairs (c, d), as in (5.4). We can choose a representative in each orbit with
n⃗ = 0, m⃗ = ℓ⃗, leading to a concise expression for v⃗ = γℓ⃗. Averaging over γ, even without
assuming γ → 0, would lead to “U(1)-gravity” — the real Eisenstein series.6

The contribution of the two-vector orbits can also be represented as a sum over co-prime
(c, d) = 1, but here the choice of “gauge” — the choice of a representative in the orbit of
SL(2,Z) — is less clear. There is no obvious choice admitting an apparent bulk interpretation.
For a typical Narain theory with large central charge, when B can be considered random, the
contribution of two-vector orbits will be exponentially small: for small γ the term −π|v|2/τ2
in the exponent can be neglected, while many different pairs (n, m) will lead to random
phases e−2πimT Bn canceling each other.

To summarize, we outlined a possible holographic “Poincaré sum” representation for
an individual Narain theory, which fits the picture proposed in [6]. A typical theory (when
c ≫ 1) will be described by U(1)-gravity with exponentially small corrections. There is a
natural ambiguity of assigning these corrections to individual handlebodies, rooted in the
ambiguity of choosing representatives among the two-vector orbits. This, together with

6As was shown in [3], averaging over γ with det (γ) fixed is equivalent to replacing the sum over ℓ⃗ ∈ Zn by
an integral over Rn.
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the need to consider a limit of T-duality transformations yielding det(γ) → 0, precludes a
simple microscopic local bulk interpretation.

The resulting picture is qualitatively similar to the one in JT gravity [75, 76]. An
attempt to extend a holographic duality based on a sum over topologies to describe an
individual Narain theory leads to potentially non-local interactions in the bulk, responsible
for “half-wormholes.” After averaging over all theories these interactions vanish. The crucial
difference with the JT gravity case is that in our case there is also a bona fide holographic
description for an individual theory, described in section 4.1 above, though it does not involve
a sum over topologies. It would be very interesting to make an explicit link between the two
holographic descriptions for a given theory, by starting from CS theory on a given handlebody
and deforming it into a sum over topologies with some non-local action.

6 Discussion

In this paper we considered Narain CFTs on Σ, and found that they are described by pure
level-1 (U(1)× U(1))n Chern-Simons theory on a 3d manifold M with ∂M = Σ. The details
of M do not matter; all manifolds with ∂M = Σ lead to the same partition function because
the Hilbert space of k = 1 CS theory is one-dimensional. The two U(1)n gauge fields are
linked at the level of large gauge transformations. The choice of large gauge transformations,
or, equivalently, the choice of boundary conditions changing the representation of the unique
CS wavefunction, specifies the dual Narain theory. This provides a holographic duality, with
the holographic dictionary as outlined in section 4.1. Our considerations were limited to
genus one Σ, but it should be straightforward to extend the duality to arbitrary genus.

We then proceeded to consider an ensemble of Narain CFTs defined in terms of an
ensemble of codes. We considered an ensemble of all even self-dual codes of length n over
Zp × Zp for prime p, and then embedded (mapped) these codes into the c = n Narain moduli
space. The embedding is specified by an arbitrary O ∈ O(n, n,R), thus any given code can
be mapped to any given Narain theory. As n or p grows, the size of the ensemble given
by (2.2) grows much faster than the dimension of O(n, n,R). Hypothetically, in the p → ∞
limit, the ensemble of code theories densely covers the whole Narain moduli space with the
canonical measure. For fixed n and p we find that the CFT partition function averaged
over this ensemble is given by the level-p (U(1) × U(1))n Chern-Simons theory summed
over all classes of handlebody topologies that are distinguished by that theory. The main
identity (4.17), valid for any fixed n, p and fixed embedding, establishes an explicit relation
between averaging over the code-based ensemble and the “Poincaré series” representing the
sum over topologies. Again, our explicit consideration was focused on genus one.

One of the questions our construction answers is why the “U(1)-gravity” of [3, 4], though
suggestive, has no well-defined microscopic bulk description. In section 4.4 we found that
U(1)-gravity emerges as the p → ∞ limit of our construction, hence it is an infinite limit of a
family of level-p pure Chern-Simons theories, which are all well-defined in the bulk. In our
formalism the sum over bulk manifolds originates from a sum over SL(2,Z) transformations
of a specific solid torus, and it is thus natural that we get a sum over just handlebodies
and not other manifolds. Taking a leap to the holographic CFTs of [77], presumably dual
to 3d quantum gravity with additional light matter, and the failure to find a dual to pure
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gravity due to intrinsic inconsistencies [64, 65, 78–81], we can speculate that pure 3d quantum
gravity might not be well defined by itself, but could emerge as an infinite limit of a family
of well-defined theories.

From the mathematical point of view, our main technical result, equation (4.16), deserves
a better understanding. It would be interesting to extend it to higher genus [61] and to
disconnected manifolds. More generally, rewriting this equation in terms of sums over cosets
or in terms of Hecke operators as was done in section 4.6 hints at a deeper mathematical
structure. Beyond the Zk × Zk codes considered in this paper, the general code construction
of [23] described in section 2.2 opens up possibilities for considering other types of code
ensembles. Consideration of a variety of ensemble types could help answer a crucial question:
when is an ensemble holographic, in the sense of admitting a bulk description in terms of
a sum over geometries.

When the central charge is large c ≫ 1, ensembles of code CFTs or the ensemble of all
Narain theories are self-averaging: a random theory faithfully captures the ensemble average
up to exponentially small (in c) corrections. This suggests that individual theories, at least
the sufficiently typical ones, should admit a bulk description in terms of a sum over topologies.
We outline such a description in section 5, but notice that it suffers from ambiguities and
possibly non-local interactions in the bulk. It would be very interesting to explicitly relate
this bulk description, which includes the sum over topologies, to the conventional holographic
description in terms of level-1 CS theory on a fixed topology, discussed in section 4.1.

Our work clarifies the role codes play in relation to CFTs and their holographic duals.
We saw that all possible “words” label all possible wavefunctions in the bulk. We also saw
that an ensemble of codes plays a crucial role in holography, although the reason why remains
obscure. We emphasize that this is only one aspect of a more comprehensive story. We
recall that the theory dual to the c = 1 compact scalar, the “AB” Chern-Simons theory, also
emerges as a low energy limit of a 2+1 dimensional system describing Kitaev’s toric code [82].
Is there a relation between the codes of this paper and the quantum codes underlying the
“AB” theory? A first step connecting these two pictures was taken in [34] for the Z2×Z2 case,
where classical additive codes can be understood as quantum codes. More progress followed
recently, relating quantum codes (connected to Zp × Zp classical codes in our nomenclature)
to CFTs and Chern-Simons theories [39, 41, 45], but a complete picture is yet to emerge.

The codes considered in this work are of additive type; consequently the corresponding
CFTs are Abelian. There is a natural generalization of our story to non-Abelian codes, WZW
theories and dual non-Abelian Chern-Simons theory. Going in the direction of gradually
generalizing the type of CFTs under consideration, one hopes to eventually arrive at codes
associated with the conventional “Virasoro” CFTs, dual to quantum gravity. We can only
speculate that at this point a direct link may emerge between the code structure on the CFT
side and the holographic codes responsible for the locality in the bulk [31, 83].
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A The compact scalar CFT

The compact scalar CFT of radius R is a two-dimensional theory of a real scalar field X,
subject to the identification X ∼ X + 2πR, coupled to external gauge fields. The free scalar
theory has a U(1)L ×U(1)R global symmetry, and we call the corresponding charges Q and
Q̄. We consider the Euclidean theory placed on a spacetime torus with modular parameter
τ . The CFT partition function with fugacities (background gauge fields) ξ and ξ̄ is defined
as a sum over the Hilbert space of the theory on a circle

Z = Tr
[
qL0−1/24q̄L̄0−1/24e2πi(ξQ−ξ̄Q̄)

]
, q = e2πiτ . (A.1)

It can be readily evaluated [84]

Z(τ, ξ, ξ̄, R) =
∑

n,m eiπτp2
L−iπτ̄p2

R+2πi(pLξ−pRξ̄)

|η(τ)|2 , pL,R = n

R
± mR

2 . (A.2)

The simultaneous reflection pR → −pR, ξ̄ → −ξ̄ is a symmetry of Z, which is the T-duality
exchanging R and 2/R,

Z(τ, ξ, ξ̄, R) = Z(τ, ξ,−ξ̄, 2/R). (A.3)

We would like to obtain the partition function (A.2) from the path integral formulation.
We parametrize the spacetime torus by a complex coordinate z,

z ∼ z + 1, z ∼ z + τ, τ = τ1 + iτ2, (A.4)

with the notation ∫
d2z = τ2,

∫
dz ∧ dz̄ = −2iτ, (A.5)

where the integrals are over the torus. The scalar field X(z, z̄) is periodic up to identifications,

X(z + 1) = X(z)− 2πRn2, X(z + τ) = X(z) + 2πRn1. (A.6)

The sign of n2 is chosen for convenience.
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One way of coupling the theory to a background gauge field is by the action

S[X, A] = 1
2π

∫
d2z |∂zX|2 − i

2πR

∫
dX ∧ A, (A.7)

where A is an external U(1) gauge field coupling to a specific combination of the global
symmetries and satisfying dA = 0. Using the background field gauge freedom we can choose

ξ = τ2
iπR

Az̄, ξ̄ = − τ2
iπR

Az (A.8)

to be constant on the torus. For a real background field A, ξ and ξ̄ are complex conjugate to
each other, ξ∗ = ξ̄. The theory is free (quadratic), so the partition function can be computed
straightforwardly. We should sum over on-shell configurations satisfying (A.6),

X = 2πR
(n1 + n2τ̄)z − (n1 + n2τ)z̄

2iτ2
, (A.9)

and the small fluctuations around the classical solutions contribute a multiplicative factor,
that includes the Dedekind eta-function [84]. The full expression for the path integral is then

ZPI(τ, R, ξ, ξ̄) =
∫

DX e−S[X,A]

= R√
2τ2|η(τ)|2

∑
n1,n2

e
−πR2

2τ2
|n1+n2τ |2−πR

τ2
(ξ(n1+n2τ̄)−ξ̄(n1+n2τ)). (A.10)

Under large background gauge transformations A → A+dϕA, where ϕA = π (n+mτ̄)z−(n+mτ)z̄
iτ2

,
we have from (A.8)

ξ → ξ + n + mτ

R
, ξ̄ → ξ + n + mτ̄

R
, (A.11)

and the action (A.7) is shifted by an integer multiplied by 2πi. Hence, the Euclidean path
integral is invariant under (A.11), which can be verified explicitly from (A.10). Similarly, ZPI
is invariant under modular transformations generated by the two transformations

τ → τ + 1, ξ → ξ, ξ̄ → ξ̄, (A.12)
τ → −1/τ, ξ → ξ/τ, ξ̄ → ξ̄/τ̄ ,

which is just the relabeling of spacetime coordinates, amended by a dilatation (which acts
trivially since the theory is conformal).

To find the relation between the path integral (A.10) and the partition function (A.1),
we perform a Poisson resummation in (A.2) over n, which readily yields

Z = ZPIe
− π

2τ2
(ξ−ξ̄)2

. (A.13)

Alternatively we can couple a background gauge field B to a different combination of
the U(1) global symmetries by

S′[X, B] = 1
2π

∫
d2z |(∂z + R Bz)X|2. (A.14)
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We assume dB = 0 and use the background gauge symmetry to parametrize the background
gauge field by

ξ = τ2
iπ

R

2 Bz̄, ξ̄ = τ2
iπ

R

2 Bz. (A.15)

In this case for real B we have ξ∗ = −ξ̄, and large gauge transformations take B → B + dϕB ,
where ϕB = π (p+qτ̄)z−(p+qτ)z̄

iτ2
, and act as

ξ → ξ + (p + qτ)R
2 , ξ̄ → ξ̄ − (p + qτ̄)R

2 . (A.16)

Clearly, the path integral

Z ′
PI(τ,R,ξ, ξ̄)=

∫
DX e−S′[X,B]

= R√
2τ2|η(τ)|2

∑
n1,n2

e
−πR2

2τ2
|n1+n2τ |2−πR

τ2
(ξ(n1+n2τ̄)−ξ̄(n1+n2τ))+ 2πξξ̄

τ2 (A.17)

is invariant under large gauge transformations (A.16), and is also modular invariant. A
comparison with ZPI yields ZPI = ZPI′ e

2π
τ2

ξξ̄, and

Z = ZPI′e
− π

2τ2
(ξ+ξ̄)2

, (A.18)

in agreement with appendix A of [50].
The two path integrals above are particular sections ξ∗ = ±ξ̄ of a more general theory

coupled to two gauge fields, A and B, combined into one complex combination

S = 1
2π

∫
d2z|∂X|2 − i

2π

∫
dX ∧ A+ κ

π

∫
d2z A2, (A.19)

A = A

R
+ i ∗ B

R

2 , A2 ≡ AzAz̄.

Taking κ = 0 or 2 gives complexifications of the two path integrals with the actions (A.7)
and (A.14) above. As follows from (A.3) and (A.13), (A.18) these two values are T-dual
to each other

ZPI(τ, ξ, ξ̄, R) = Z ′
PI(τ, ξ,−ξ̄, 2/R), (A.20)

and each is invariant under one group of large gauge transformations, (A.11) or (A.16).
The “symmetric” choice κ = 1 corresponds to the bulk path integral discussed in the bulk
of the paper

ZBP I(τ, ξ, ξ̄) = Z(τ, ξ, ξ̄) e
π

2τ2
(ξ2+ξ̄2)

. (A.21)

It is both modular-invariant and T-duality-invariant, and it changes covariantly (but is not
invariant) under large gauge transformations of the form

ξ = τ2
iπ

(
Az̄

R
+ Bz̄R

2

)
, ξ̄ = − τ2

iπ

(
Az

R
− BzR

2

)
, (A.22)

ξ → ξ + n + mτ

R
+ (p + qτ)R

2 , ξ̄ → ξ + n + mτ̄

R
− (p + qτ̄)R

2 . (A.23)
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B Chern-Simons theory: technical details

In this section we provide additional details accompanying section 3. Our starting point is
the U(1) gauge field A living on a three-manifold M as in subsection 3.2. We focus on the
case when ∂M is a two-dimensional torus, with the same notation as in appendix A above.
The bulk theory is invariant under large gauge transformations A → A + ω in (3.8) when ω

is a canonically normalized cohomology on ∂M, namely ω = dϕ where ϕ is a multi-valued
function winding along the cycles of ∂M. When ∂M is a two-dimensional torus as above,
we have explicitly ϕ = 2π (n+mτ̄)z−(n+mτ)z̄

2iτ2
, from where (3.7) follows. Taking Az̄ = 0 at the

boundary for simplicity, two consecutive large gauge transformations ω and ω′ change the
Chern-Simons action (3.1) by

− ik

4π

∫
∂M

ω ∧ ω′ = −iπk(nm′ − n′m). (B.1)

Thus the bulk theory is gauge-invariant for even k, while pure sign phase factors appear for
odd k, related to the need to choose a spin structure.

In the U(1) × U(1) case of subsection 3.3, there are two gauge fields A, B subject to
large gauge transformations A → A + ωA, B → B + ωB, where ωA,B = dϕA,B are defined
in appendix A above.

One can imagine splitting M into two parts by a hypersurface. Imposing boundary
conditions on the surface, and then integrating over them, should remove the split. This leads
to the scalar product ⟨Ψ|Ψ′⟩ discussed in the main text [53], and the wave functions (3.11)
discussed there form an orthogonal basis,

⟨Ψr|Ψr′⟩ =
∫

d2ξ

τ2
(Ψr(ξ))∗e

− kπ
τ2

|ξ|2Ψr′(ξ) =
√

1
2kτ2

δr,r′

|η(τ)|2 . (B.2)

The integral here is over the torus of possible boundary conditions, defined by the large gauge
transformations (3.7), ξ ∼ ξ + n + mτ . In the case of (U(1)×U(1))n discussed in section 3.4
above, the wavefunctions (3.28) also satisfy an orthogonality condition∫

d2nξ d2nξ̄

τ2n
2

(Ψc(ξ, ξ̄))∗e−
π
τ2

(|ξ|2+|ξ̄|2)Ψc′(ξ, ξ̄) = δc,c′
1(

2|GΛ|1/2)n 1
τn
2 |η(τ)|4n

, (B.3)

where the integral is over the torus in the space of ξ, ξ̄ variables defined by (3.27).
To obtain the explicit form of the Wilson loop operators acting on the wavefunction

in the holomorphic representation (3.12), we take into account that Az̄ (understood as a
quantum operator) acts on ket vectors by multiplication, Az̄|Ψ⟩ = iπξ

τ2
Ψ(ξ), and hence Az

acts on bra vectors analogously ⟨Ψ|Az = (Ψ(ξ) iπ
τ2

ξ)∗. From here and by integrating by
parts in (B.2) we find

Az|Ψ⟩ = −i

k

∂

∂ξ
Ψ(ξ), (B.4)

which is used in (3.12). As we explained in the main text, this is in agreement with Az being
canonically conjugate to Az̄, as follows from the Chern-Simons equations of motion [52].
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C Narain c = 2 theories

The partition function Zc=2(τ, t, b) of a central charge c = 2 Narain theory depends on
three modular parameters, τ and t, b introduced in (4.27). It can be written explicitly using
the representation (5.2):

Zc=2(τ, t, b) = b2
τ2|η(τ)|4

∑
n⃗,m⃗∈Z2

e
− π

τ2
|γ(n⃗τ+m⃗)|2−2πi b1n⃗∧m⃗

. (C.1)

The moduli space of c = 2 Narain theories is a product of two fundamental domains of t

and b, with the canonical SL(2,Z)-invariant measure, modulo Z2 exchange symmetry. It
is convenient to introduce

Θc=2(τ, t, b) = |η(τ)|4Zc=2(τ, t, b), (C.2)

which is modular invariant under t, b and is a weight 2 modular form with respect to τ .
The modular invariant combination Ẑ = τ2Θc=2 is the partition function of primaries; it
exhibits triality — full permutation symmetry under its arguments τ, t, b [9] — which is
not manifest in the representation (C.1).

C.1 All even self-dual n = 2 codes over Zp × Zp

There are 2(p + 1) even self-dual codes over Zp × Zp with prime p, which can be split into
2 families. The first p codes are generated through

C ∋ c = (⃗a, b⃗) = GT q, q ∈ Z2
p, (C.3)

by the following matrix

G = (I,BT ), B = r

(
0 1
−1 0

)
mod p, 0 ≤ r < p. (C.4)

One more code is generated by the matrix G = (0, I). Another p + 1 codes are obtained
from the previous ones by exchanging a2 and b2.

C.2 Hecke operators and triality

The 2(p + 1) codes described above, once promoted to code CFTs, can be described as two
families of p + 1 theories, specified by modular parameters t = r+t0

p and t = p t0 with fixed
b = b0, and b = r+b0

p and b = p b0 with fixed t = t0, where 0 ≤ r < p. The sum over the
latter (fixed t = t0) series is easy to reformulate using the representation of the partition
function (C.1). We start with

1
p

p−1∑
k=0

Θc=2

(
τ, t0,

b0 + k

p

)
(C.5)

and immediately conclude from (C.1) that the role of the sum over k is to impose n ∧ m =
0mod p. This constraint means that the vectors nmod p and mmod p, understood as vectors
in Z2

p, are collinear. Thus, when p is prime, we can write

m = r n + pm̃, m̃ ∈ Z2, (C.6)
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for some integer 0 ≤ r < p, unless n = 0mod p, in which case n = p ñ for arbitrary ñ, m ∈ Z2.
First we consider the latter case, and find

b2
p τ2

∑
ñ,m∈Z2

e
− π

τ2
|p−1/2γ(pñτ+m)|2−2πi

b1
p

p ñ∧m = Θc=2(p τ, t, b). (C.7)

Next, we consider the case (C.6),

p−1∑
r=0

b2
pτ2

 ∑
n,m̃∈Z2

e
− π

τ2
|p−1/2γ(nτ+rn+pm̃)|2−2πi

b1
p

pn∧m̃−
∑

ñ,m̃∈Z2

e
− π

τ2
|p1/2γ(ñτ+rn)|2−2πi

b1
p

p2 ñ∧m̃

 ,

where we explicitly subtracted the terms when both n, m = 0mod p, which were already
covered in (C.7). We can easily recognize these terms to be

p−1∑
r=0

1
p2

Θc=2

(
τ + r

p
, t, b

)
− 1

p
Θc=2(τ, t, p b). (C.8)

Combining (C.5), (C.7), (C.8) we find, in terms of the Hecke operator (4.31),

1
p

T τ
p Θc=2 = T b

p Θc=2. (C.9)

We label each Hecke operator by the variable it acts on; since Θc=2 is a modular form
of weight 2 with respect to τ and weight 0 with respect to b, T τ

p and T b
p act differently.

The left-hand-side of (C.9) is manifestly invariant under the exchange of t and b, thus
T τ

p Θc=2 = p T t
p Θc=2 = p T b

p Θc=2. This relation implies that the Hecke operators for τ , b,
and t act on Ẑ in a triality-symmetric way

T τ
p Ẑ = T t

p Ẑ = T b
p Ẑ. (C.10)

This identity, first appeared in [69], follows directly from the representation given by equa-
tion (3.34) of [9], which makes the triality explicit, if one takes into account that the Eisenstein
series Ek and the Maas cusp forms are eigenfunctions of Tp, and Tp acts on the pseudo-modular
form E2 by shifting it by a constant, TpE2 = (p + 1)E2 + const.

C.3 Averaging over the moduli space

The average of Zc=2(τ, t, b) over the moduli space was considered in [71], where the integral
over the fundamental domain of τ was regularized and evaluated to be

⟨Ẑ⟩τ = 3
π

∫
d2τ

τ2
2
(τ2Θc=2) =

3
π

(
ln
(

Nτ

N0

)
− ln(t2|η(t)|4)− ln(b2|η(b)|4)

)
, (C.11)

where Nτ → ∞ is a regulator and N0 is some constant. Here the integral over τ is over the
“keyhole” fundamental domain, which has volume π/3.

To compare with the code ensemble in the p → ∞ limit, we are interested in a different
average, over the fundamental domains of t or b,

⟨Zc=2⟩t =
3
π

∫
d2t

t22
Zc=2(τ, t, b). (C.12)
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It is in principle related to (C.11) by triality. Since the latter is not manifest in (C.1), we
perform this calculation below. Many of the technical steps will mirror similar steps in [71],
in particular the splitting of the sum in (C.1) into three different contributions coming from
the origin n⃗ = m⃗ = 0, the “single-vector” points n⃗ ∥ m⃗, and the “two-vector” points n⃗ ∦ m⃗.

The origin. The contribution of the origin is simply

b2
τ2|η(τ)|4

. (C.13)

It is t-independent. Obviously, it remains the same after averaging over t.

Contribution of the single vector orbits. The starting point is to parametrize collinear
n⃗ = c ℓ⃗ and m⃗ = d ℓ⃗ using a co-prime pair (c, d) = 1 and an arbitrary non-zero vector
ℓ⃗ ∈ Z2. The resulting sum is

∑
(c,d)=1

b2
τ2|η(τ)|4

∑
ℓ⃗∈Z2

e
− π

τ ′
2
|γℓ|2

, τ ′
2(c, d) = τ2

|cτ + d|2
. (C.14)

Next, we parametrize a non-zero ℓ⃗ = (d̃, c̃)k with co-prime (c̃, d̃) = 1 and an arbitrary
non-zero integer k to find

∑
ℓ⃗∈Z2

e
− π

τ ′
2
|γℓ|2

=
∑

(c̃,d̃)=1

∑
k ̸=0

e
−πb2k2

τ ′
2t2

|c̃t+d̃|2
. (C.15)

Here we readily recognize t′2(c̃, d̃) = t2/|c̃t+d̃|2 as being generated by a modular transformation
of t. Though originally t belonged to the fundamental “keyhole domain”, the sum over co-
prime pairs (c̃, d̃) = 1 extends the range of t′ to the entire strip |t1| ≤ 1/2, t2 ≥ 0. Averaging
over t thus gives〈∑

ℓ⃗∈Z2

e
− π

τ ′
2
|γℓ|2

〉
t

= 3
π

∫ 1/2

−1/2
dt′1

∫ ∞

0

dt′2
(t′2)2

∑
k ̸=0

e
− πb2

τ ′
2t′2

k2

= τ ′
2

b2
. (C.16)

Going back to (C.14), we find the single-vector contribution, averaged over the fundamental
domain of t, to be

∑
(c,d)=1

1
|η(τ)|4|cτ + d|2

. (C.17)

Of course this is merely a formal expression as it is divergent. Following [71] we can regularize
it by multiplying (C.15) by (1 − e−Nt/t′2) where Nt → ∞ is a regulator. As a result we
have instead of (C.17)

3
π2|η(τ)|4

∑
(c,d)=1

∑
k ̸=0

(
1

k2|cτ + d|2
− 1

k2|cτ + d|2 + Ntτ2
πb2

)
(C.18)

= 3
πτ2|η(τ)|4

(
− ln(τ2|η(τ)|4)− ln(b2) + 2γ + ln

(
Nt

4π

))
.
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It is interesting to note that the finite part in (C.18), which is essentially the Eisenstein
series (C.17) regularized with help of a Pauli-Villars-like approach, matches with the one
obtained from the Kronecker limit formula,∑

(c,d) ̸=(0,0)

τ s
2

|cτ + d|2s
= π

s − 1 + 2π(γ − ln(2))− π ln(τ2|η(τ)|4) + o(s − 1), (C.19)

which is akin to dimensional regularization.

Contribution of the two vector orbits. Our final step is the two-vector contribution with
non-collinear n⃗ and m⃗. We can start with the same parametrization as above, n⃗ = (d̃, c̃)k with
co-prime (c̃, d̃) = 1 and nonzero k. Then by applying a (non-unique) SL(2,Z) transformation
parametrized by (c̃, d̃) acting on the vectors n⃗ and m⃗ we can bring the first vector to the
form n⃗ = (k, 0): ∑

(c̃,d̃)=1

∑
k ̸=0

∑
m⃗

e
− π

τ2
|γ′(n⃗τ+m⃗)|2−2πib1n∧m

. (C.20)

Here the matrix γ′ is defined the same way as in (4.27), but with t transformed by an SL(2,Z)
matrix parametrized by (c̃, d̃). As in the previous subsection, the sum over (c̃, d̃) extends
the domain of t from the “keyhole” region to the strip |t1| ≤ 1/2, t2 > 0. Let us now write
m⃗ = (d′, c′). Then the two-vector contribution averaged over the fundamental region of t is

3
π

∫ 1/2

−1/2
dt′1

∫ ∞

0

dt′2
(t′2)2

b2
τ2|η(τ)|4

∑
k ̸=0

∑
c′ ̸=0, d′

e
− πb2

τ2t′2
(|kτ+c′t′1+d′|2+(c′t′2)2)−2πi b1kc′

. (C.21)

In the sum above we must keep c′ ̸= 0 lest the vectors n⃗, m⃗ become collinear. The sum over
d′ is not restricted. We can represent it as d′ = c′r + d′′ where r ∈ Z and d′′ is an integer
between 0 and c′ − 1. We can now combine

c′t′1 + d′ = c′(t′1 + r) + d′′, (C.22)

and the sum over r plus the integral over the strip |t1| ≤ 1/2, t2 > 0 become an integral
over the whole upper half-plane of t′. The dependence on d′′ disappears and the sum over
d′′ simply gives a factor of |c′|,

3
π

∫ ∞

0

dt′2
(t′2)2

√
b2t′2

√
τ2|η(τ)|4

∑
k ̸=0

∑
c′ ̸=0

e
− πb2

τ2t′2
((kτ2)2+(c′t′2)2)−2πi b1kc′

. (C.23)

At this point we can integrate over t2,

3
π

1
τ2|η(τ)|4

∑
k ̸=0

∑
c′ ̸=0

e−2πb2|kc′|−2πi b1kc′ 1
|k|

. (C.24)

There are four “branches” with positive and negative k and c′, which we combine into a
sum of the form

6
πτ2|η(τ)|4

∑
k>0

∑
c′>0

e2πi b kc′ + e2πi b̄ kc′

k
. (C.25)
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Now we introduce qb = e2πib and sum over k using

∑
c′,k>0

qkc′
b

k
+ c.c = − ln

∞∏
c′=1

(1− qc′
b ) + c.c = iπ

12b − ln(η(b)) + c.c (C.26)

Finally, we find for the two-vector contribution, averaged over t,

1
τ2|η(τ)|4

(
−b2 −

3
π
ln |η(b)|4

)
. (C.27)

Combining everything together, we find that the first term in (C.27) exactly cancels
the “origin” contribution (C.13). Hence, Zc=2 averaged over the modular parameter t and
covariantly regularized is

⟨Zc=2(τ, t, b)⟩t =
3

πτ2|η(τ)|4
(
ln
(

Nt

N0

)
− ln(τ2|η(τ)|4)− ln(b2|η(b)|4)

)
, (C.28)

where Nt → ∞ is a regulator and N0 = 4πe−2γ . The final expression is in full agreement
with (C.11).

C.4 Large-p limit

To evaluate the large-p limit of TpẐ we first approximate it by the regularized integral over
the fundamental domain

T τ
p (Ẑ) ≈ 3

π

∫
F

d2τ ′

(τ ′
2)2

Ẑ(τ ′)
(
1− e−N/τ ′

2
)

. (C.29)

The value of N can be fixed as follows. Modular transformations mapping (τ + k)/p back
to the fundamental keywhole domain F will be more dense in the region of small τ ′

2, with
only one point reaching the maximal value of τ ′

2 = p/τ2. Thus we can take N ∝ p/τ2,
leading to, cf. (C.11),

3
π

(
ln(p/p0)− ln(τ2)− ln(t2|η(t)|4)− ln(b2|η(b)|4)

)
+ . . . (C.30)

This expression is not modular invariant with respect to τ , although the left-hand side of (C.29)
is, which suggests there might be additional τ -dependent finite terms. We therefore conjecture

T τ
p (Ẑ(τ)) = 3

π
ln(p/p0)−

3
π
ln(t2|η(t)|4)−

3
π
ln(b2|η(b)|4) + f(τ) + O(1/p), (C.31)

where the crucial assumption is that f(τ) does not depend on t and b. The rest follows
from the extension of triality (C.9),

g(τ) = − 3
π
ln(τ2|η(τ)|4). (C.32)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 40 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
5
(
2
0
2
4
)
3
4
3

References

[1] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

[2] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[3] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

[4] A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

[5] A. Pérez and R. Troncoso, Gravitational dual of averaged free CFT’s over the Narain lattice,
arXiv:2006.08216 [DOI:10.1007/JHEP11(2020)015].

[6] A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories,
JHEP 10 (2021) 197 [arXiv:2012.15830] [INSPIRE].

[7] S. Datta et al., Adding flavor to the Narain ensemble, JHEP 05 (2022) 090 [arXiv:2102.12509]
[INSPIRE].

[8] N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, Commun. Math. Phys.
390 (2022) 425 [arXiv:2103.15826] [INSPIRE].

[9] N. Benjamin et al., Harmonic analysis of 2d CFT partition functions, JHEP 09 (2021) 174
[arXiv:2107.10744] [INSPIRE].

[10] V. Meruliya and S. Mukhi, AdS3 gravity and RCFT ensembles with multiple invariants, JHEP
08 (2021) 098 [arXiv:2104.10178] [INSPIRE].

[11] J. Dong, T. Hartman and Y. Jiang, Averaging over moduli in deformed WZW models, JHEP 09
(2021) 185 [arXiv:2105.12594] [INSPIRE].

[12] M. Ashwinkumar et al., Chern-Simons invariants from ensemble averages, JHEP 08 (2021) 044
[arXiv:2104.14710] [INSPIRE].

[13] S. Collier and A. Maloney, Wormholes and spectral statistics in the Narain ensemble, JHEP 03
(2022) 004 [arXiv:2106.12760] [INSPIRE].

[14] S. Chakraborty and A. Hashimoto, Weighted average over the Narain moduli space as a T T̄

deformation of the CFT target space, Phys. Rev. D 105 (2022) 086018 [arXiv:2109.10382]
[INSPIRE].

[15] J. Raeymaekers, A note on ensemble holography for rational tori, JHEP 12 (2021) 177
[arXiv:2110.08833] [INSPIRE].

[16] F. Benini, C. Copetti and L. Di Pietro, Factorization and global symmetries in holography,
SciPost Phys. 14 (2023) 019 [arXiv:2203.09537] [INSPIRE].

[17] J. Kames-King, A. Kanargias, B. Knighton and M. Usatyuk, The Lion, the Witch, and the
Wormhole: Ensemble averaging the symmetric product orbifold, arXiv:2306.07321 [INSPIRE].

[18] M. Ashwinkumar, J.M. Leedom and M. Yamazaki, Duality Origami: Emergent Ensemble
Symmetries in Holography and Swampland, arXiv:2305.10224 [INSPIRE].

[19] M. Ashwinkumar, A. Kidambi, J.M. Leedom and M. Yamazaki, Generalized Narain Theories
Decoded: Discussions on Eisenstein series, Characteristics, Orbifolds, Discriminants and
Ensembles in any Dimension, arXiv:2311.00699 [INSPIRE].

– 41 –

https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/literature/642216
https://arxiv.org/abs/1903.11115
https://inspirehep.net/literature/1726905
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/literature/1800406
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/literature/1800422
https://arxiv.org/abs/2006.08216
https://doi.org/10.1007/JHEP11(2020)015
https://doi.org/10.1007/JHEP10(2021)197
https://arxiv.org/abs/2012.15830
https://inspirehep.net/literature/1838943
https://doi.org/10.1007/JHEP05(2022)090
https://arxiv.org/abs/2102.12509
https://inspirehep.net/literature/1848465
https://doi.org/10.1007/s00220-021-04211-x
https://doi.org/10.1007/s00220-021-04211-x
https://arxiv.org/abs/2103.15826
https://inspirehep.net/literature/1854494
https://doi.org/10.1007/JHEP09(2021)174
https://arxiv.org/abs/2107.10744
https://inspirehep.net/literature/1890443
https://doi.org/10.1007/JHEP08(2021)098
https://doi.org/10.1007/JHEP08(2021)098
https://arxiv.org/abs/2104.10178
https://inspirehep.net/literature/1859522
https://doi.org/10.1007/JHEP09(2021)185
https://doi.org/10.1007/JHEP09(2021)185
https://arxiv.org/abs/2105.12594
https://inspirehep.net/literature/1865661
https://doi.org/10.1007/JHEP08(2021)044
https://arxiv.org/abs/2104.14710
https://inspirehep.net/literature/1861574
https://doi.org/10.1007/JHEP03(2022)004
https://doi.org/10.1007/JHEP03(2022)004
https://arxiv.org/abs/2106.12760
https://inspirehep.net/literature/1870189
https://doi.org/10.1103/PhysRevD.105.086018
https://arxiv.org/abs/2109.10382
https://inspirehep.net/literature/1925647
https://doi.org/10.1007/JHEP12(2021)177
https://arxiv.org/abs/2110.08833
https://inspirehep.net/literature/1946504
https://doi.org/10.21468/SciPostPhys.14.2.019
https://arxiv.org/abs/2203.09537
https://inspirehep.net/literature/2054716
https://arxiv.org/abs/2306.07321
https://inspirehep.net/literature/2668381
https://arxiv.org/abs/2305.10224
https://inspirehep.net/literature/2660563
https://arxiv.org/abs/2311.00699
https://inspirehep.net/literature/2716291


J
H
E
P
0
5
(
2
0
2
4
)
3
4
3

[20] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor.
Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[21] A. Dymarsky and A. Shapere, Quantum stabilizer codes, lattices, and CFTs, JHEP 03 (2020)
160 [arXiv:2009.01244] [INSPIRE].

[22] S. Yahagi, Narain CFTs and error-correcting codes on finite fields, JHEP 08 (2022) 058
[arXiv:2203.10848] [INSPIRE].

[23] N. Angelinos, D. Chakraborty and A. Dymarsky, Optimal Narain CFTs from codes, JHEP 11
(2022) 118 [arXiv:2206.14825] [INSPIRE].

[24] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic
Press (1989) [ISBN: 9780080874548].

[25] L. Dolan, P. Goddard and P. Montague, Conformal field theories, representations and lattice
constructions, Commun. Math. Phys. 179 (1996) 61 [hep-th/9410029] [INSPIRE].

[26] M. Miyamoto, Binary codes and vertex operator (super) algebras, J. Algebra 181 (1996) 207.

[27] C. Dong, R.L. Griess Jr. and G. Hoehn, Framed vertex operator algebras, codes and the
moonshine module, Commun. Math. Phys. 193 (1998) 407 [q-alg/9707008] [INSPIRE].

[28] C.H. Lam and H. Yamada, Z2 × Z2 Codes and Vertex Operator Algebras, J. Algebra 224 (2000)
268.

[29] D. Gaiotto and T. Johnson-Freyd, Holomorphic SCFTs with small index, Can. J. Math. 74
(2022) 573 [arXiv:1811.00589] [INSPIRE].

[30] Y. Moriwaki, Code conformal field theory and framed algebra, arXiv:2104.10094 [INSPIRE].

[31] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT,
JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[32] A. Dymarsky and A. Shapere, Solutions of modular bootstrap constraints from quantum codes,
Phys. Rev. Lett. 126 (2021) 161602 [arXiv:2009.01236] [INSPIRE].

[33] A. Dymarsky and A. Sharon, Non-rational Narain CFTs from codes over F4, JHEP 11 (2021)
016 [arXiv:2107.02816] [INSPIRE].

[34] M. Buican, A. Dymarsky and R. Radhakrishnan, Quantum codes, CFTs, and defects, JHEP 03
(2023) 017 [arXiv:2112.12162] [INSPIRE].

[35] J. Henriksson, A. Kakkar and B. McPeak, Classical codes and chiral CFTs at higher genus,
JHEP 05 (2022) 159 [arXiv:2112.05168] [INSPIRE].

[36] J. Henriksson and B. McPeak, Averaging over codes and an SU(2) modular bootstrap, JHEP 11
(2023) 035 [arXiv:2208.14457] [INSPIRE].

[37] J. Henriksson, A. Kakkar and B. McPeak, Narain CFTs and quantum codes at higher genus,
JHEP 04 (2023) 011 [arXiv:2205.00025] [INSPIRE].

[38] A. Dymarsky and R.R. Kalloor, Fake Z, JHEP 06 (2023) 043 [arXiv:2211.15699] [INSPIRE].

[39] K. Kawabata, T. Nishioka and T. Okuda, Narain CFTs from qudit stabilizer codes, SciPost Phys.
Core 6 (2023) 035 [arXiv:2212.07089] [INSPIRE].

[40] Y. Furuta, On the Rationality and the Code Structure of a Narain CFT, and the Simple Current
Orbifold, arXiv:2307.04190 [INSPIRE].

[41] Y.F. Alam et al., Narain CFTs from nonbinary stabilizer codes, JHEP 12 (2023) 127
[arXiv:2307.10581] [INSPIRE].

– 42 –

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1007/JHEP03(2021)160
https://doi.org/10.1007/JHEP03(2021)160
https://arxiv.org/abs/2009.01244
https://inspirehep.net/literature/1814799
https://doi.org/10.1007/JHEP08(2022)058
https://arxiv.org/abs/2203.10848
https://inspirehep.net/literature/2055722
https://doi.org/10.1007/JHEP11(2022)118
https://doi.org/10.1007/JHEP11(2022)118
https://arxiv.org/abs/2206.14825
https://inspirehep.net/literature/2103962
https://doi.org/10.1007/BF02103716
https://arxiv.org/abs/hep-th/9410029
https://inspirehep.net/literature/377966
https://doi.org/10.1006/jabr.1996.0116
https://doi.org/10.1007/s002200050335
https://arxiv.org/abs/q-alg/9707008
https://inspirehep.net/literature/457479
https://doi.org/10.1006/jabr.1999.8048
https://doi.org/10.1006/jabr.1999.8048
https://doi.org/10.4153/S0008414X2100002X
https://doi.org/10.4153/S0008414X2100002X
https://arxiv.org/abs/1811.00589
https://inspirehep.net/literature/1701652
https://arxiv.org/abs/2104.10094
https://inspirehep.net/literature/1859342
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/literature/1330275
https://doi.org/10.1103/PhysRevLett.126.161602
https://arxiv.org/abs/2009.01236
https://inspirehep.net/literature/1814797
https://doi.org/10.1007/JHEP11(2021)016
https://doi.org/10.1007/JHEP11(2021)016
https://arxiv.org/abs/2107.02816
https://inspirehep.net/literature/1878444
https://doi.org/10.1007/JHEP03(2023)017
https://doi.org/10.1007/JHEP03(2023)017
https://arxiv.org/abs/2112.12162
https://inspirehep.net/literature/1996612
https://doi.org/10.1007/JHEP05(2022)159
https://arxiv.org/abs/2112.05168
https://inspirehep.net/literature/1987835
https://doi.org/10.1007/JHEP11(2023)035
https://doi.org/10.1007/JHEP11(2023)035
https://arxiv.org/abs/2208.14457
https://inspirehep.net/literature/2144142
https://doi.org/10.1007/JHEP04(2023)011
https://arxiv.org/abs/2205.00025
https://inspirehep.net/literature/2075765
https://doi.org/10.1007/JHEP06(2023)043
https://arxiv.org/abs/2211.15699
https://inspirehep.net/literature/2605192
https://doi.org/10.21468/SciPostPhysCore.6.2.035
https://doi.org/10.21468/SciPostPhysCore.6.2.035
https://arxiv.org/abs/2212.07089
https://inspirehep.net/literature/2614255
https://arxiv.org/abs/2307.04190
https://inspirehep.net/literature/2675622
https://doi.org/10.1007/JHEP12(2023)127
https://arxiv.org/abs/2307.10581
https://inspirehep.net/literature/2678805


J
H
E
P
0
5
(
2
0
2
4
)
3
4
3

[42] K. Kawabata, T. Nishioka and T. Okuda, Supersymmetric conformal field theories from quantum
stabilizer codes, Phys. Rev. D 108 (2023) L081901 [arXiv:2307.14602] [INSPIRE].

[43] K. Kawabata and S. Yahagi, Fermionic CFTs from classical codes over finite fields, JHEP 05
(2023) 096 [arXiv:2303.11613] [INSPIRE].

[44] K. Kawabata and S. Yahagi, Elliptic genera from classical error-correcting codes, JHEP 01
(2024) 130 [arXiv:2308.12592] [INSPIRE].

[45] K. Kawabata, T. Nishioka and T. Okuda, Narain CFTs from quantum codes and their Z2
gauging, JHEP 05 (2024) 133 [arXiv:2308.01579] [INSPIRE].

[46] M. Buican and R. Radhakrishnan, Invertibility of Condensation Defects and Symmetries of
2 + 1d QFTs, arXiv:2309.15181 [INSPIRE].

[47] M. Buican and R. Radhakrishnan, Qudit Stabilizer Codes, CFTs, and Topological Surfaces,
arXiv:2311.13680 [INSPIRE].

[48] L. Clozel, H. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent.
Math. 144 (2001) 327.

[49] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer Science &
Business Media (2013) [DOI:10.1007/978-1-4757-2249-9].

[50] P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01
(2007) 002 [hep-th/0607138] [INSPIRE].

[51] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989)
351 [INSPIRE].

[52] M. Bos and V.P. Nair, U(1) Chern-Simons theory and c = 1 conformal blocks, Phys. Lett. B 223
(1989) 61 [INSPIRE].

[53] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization
of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

[54] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the
AdS3/CFT2 correspondence, in the proceedings of the From Fields to Strings: Circumnavigating
Theoretical Physics: A Conference in Tribute to Ian Kogan, Oxford, U.K., January 8–10 (2004)
[DOI:10.1142/9789812775344_0036] [hep-th/0403225] [INSPIRE].

[55] L.D. Faddeev and R. Jackiw, Hamiltonian Reduction of Unconstrained and Constrained Systems,
Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].

[56] R. Jackiw, (Constrained) quantization without tears, in the proceedings of the 2nd Workshop on
Constraint Theory and Quantization Methods, Montepulciano, Italy, June 28 – July 01 (1993)
[hep-th/9306075] [INSPIRE].

[57] M. Porrati and C. Yu, Partition functions of Chern-Simons theory on handlebodies by radial
quantization, JHEP 07 (2021) 194 [arXiv:2104.12799] [INSPIRE].

[58] A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

[59] L. Eberhardt, Partition functions of the tensionless string, JHEP 03 (2021) 176
[arXiv:2008.07533] [INSPIRE].

[60] L. Eberhardt, Summing over Geometries in String Theory, JHEP 05 (2021) 233
[arXiv:2102.12355] [INSPIRE].

[61] A. Dymarsky, J. Henriksson and B. McPeak, in progress.

– 43 –

https://doi.org/10.1103/PhysRevD.108.L081901
https://arxiv.org/abs/2307.14602
https://inspirehep.net/literature/2682378
https://doi.org/10.1007/JHEP05(2023)096
https://doi.org/10.1007/JHEP05(2023)096
https://arxiv.org/abs/2303.11613
https://inspirehep.net/literature/2644530
https://doi.org/10.1007/JHEP01(2024)130
https://doi.org/10.1007/JHEP01(2024)130
https://arxiv.org/abs/2308.12592
https://inspirehep.net/literature/2690651
https://doi.org/10.1007/JHEP05(2024)133
https://arxiv.org/abs/2308.01579
https://inspirehep.net/literature/2685070
https://arxiv.org/abs/2309.15181
https://inspirehep.net/literature/2703487
https://arxiv.org/abs/2311.13680
https://inspirehep.net/literature/2725971
https://doi.org/10.1007/s002220100126
https://doi.org/10.1007/s002220100126
https://doi.org/10.1007/978-1-4757-2249-9
https://doi.org/10.1088/1126-6708/2007/01/002
https://doi.org/10.1088/1126-6708/2007/01/002
https://arxiv.org/abs/hep-th/0607138
https://inspirehep.net/literature/722056
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://inspirehep.net/literature/264818
https://doi.org/10.1016/0370-2693(89)90920-9
https://doi.org/10.1016/0370-2693(89)90920-9
https://inspirehep.net/literature/276682
https://doi.org/10.1016/0550-3213(89)90436-7
https://inspirehep.net/literature/277426
https://doi.org/10.1142/9789812775344_0036
https://arxiv.org/abs/hep-th/0403225
https://inspirehep.net/literature/646914
https://doi.org/10.1103/PhysRevLett.60.1692
https://inspirehep.net/literature/260748
https://arxiv.org/abs/hep-th/9306075
https://inspirehep.net/literature/355345
https://doi.org/10.1007/JHEP07(2021)194
https://arxiv.org/abs/2104.12799
https://inspirehep.net/literature/1861001
https://doi.org/10.1088/1126-6708/2001/10/034
https://arxiv.org/abs/hep-th/0106113
https://inspirehep.net/literature/558426
https://doi.org/10.1007/JHEP03(2021)176
https://arxiv.org/abs/2008.07533
https://inspirehep.net/literature/1812099
https://doi.org/10.1007/JHEP05(2021)233
https://arxiv.org/abs/2102.12355
https://inspirehep.net/literature/1848253


J
H
E
P
0
5
(
2
0
2
4
)
3
4
3

[62] B. Schoeneberg, Elliptic modular functions: an introduction, Springer Science & Business Media,
(2012) [DOI:10.1007/978-3-642-65663-7].

[63] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail,
hep-th/0005003 [INSPIRE].

[64] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP
02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[65] C.A. Keller and A. Maloney, Poincaré Series, 3D Gravity and CFT Spectroscopy, JHEP 02
(2015) 080 [arXiv:1407.6008] [INSPIRE].

[66] A. Castro et al., The Gravity Dual of the Ising Model, Phys. Rev. D 85 (2012) 024032
[arXiv:1111.1987] [INSPIRE].

[67] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On moduli spaces of conformal field theories with
c ≥ 1, in Perspectives in String Theory, P. Di Vecchia and JL Petersen eds., World Scientific
(1988).

[68] N.I. Koblitz, Introduction to elliptic curves and modular forms, Springer Science & Business
Media (2012), p. 175 [DOI:10.1007/978-1-4612-0909-6].

[69] N. Benjamin et al., S-duality in TT -deformed CFT, JHEP 05 (2023) 140 [arXiv:2302.09677]
[INSPIRE].

[70] D. Goldstein and A. Mayer, On the equidistribution of Hecke points, Forum Math. 15 (2003) 165.

[71] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge
coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

[72] B. Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996) 175.

[73] B. Runge, On Siegel modular forms, part I, J. Reine Angew. Math. (Crelles Journal) 1993
(1993) 57.

[74] G. Bossard, C. Cosnier-Horeau and B. Pioline, Exact effective interactions and 1/4-BPS dyons
in heterotic CHL orbifolds, SciPost Phys. 7 (2019) 028 [arXiv:1806.03330] [INSPIRE].

[75] A. Blommaert, L.V. Iliesiu and J. Kruthoff, Gravity factorized, JHEP 09 (2022) 080
[arXiv:2111.07863] [INSPIRE].

[76] A. Blommaert, L.V. Iliesiu and J. Kruthoff, Alpha states demystified — towards microscopic
models of AdS2 holography, JHEP 08 (2022) 071 [arXiv:2203.07384] [INSPIRE].

[77] T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the
Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

[78] E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE].

[79] N. Benjamin, H. Ooguri, S.-H. Shao and Y. Wang, Light-cone modular bootstrap and pure
gravity, Phys. Rev. D 100 (2019) 066029 [arXiv:1906.04184] [INSPIRE].

[80] L.F. Alday and J.-B. Bae, Rademacher Expansions and the Spectrum of 2d CFT, JHEP 11
(2020) 134 [arXiv:2001.00022] [INSPIRE].

[81] N. Benjamin, S. Collier and A. Maloney, Pure Gravity and Conical Defects, JHEP 09 (2020) 034
[arXiv:2004.14428] [INSPIRE].

[82] C. Nayak et al., Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80
(2008) 1083 [arXiv:0707.1889] [INSPIRE].

– 44 –

https://doi.org/10.1007/978-3-642-65663-7
https://arxiv.org/abs/hep-th/0005003
https://inspirehep.net/literature/526744
https://doi.org/10.1007/JHEP02(2010)029
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/literature/769256
https://doi.org/10.1007/JHEP02(2015)080
https://doi.org/10.1007/JHEP02(2015)080
https://arxiv.org/abs/1407.6008
https://inspirehep.net/literature/1307433
https://doi.org/10.1103/PhysRevD.85.024032
https://arxiv.org/abs/1111.1987
https://inspirehep.net/literature/945076
https://doi.org/10.1007/978-1-4612-0909-6
https://doi.org/10.1007/JHEP05(2023)140
https://arxiv.org/abs/2302.09677
https://inspirehep.net/literature/2634768
https://doi.org/10.1515/form.2003.009
https://doi.org/10.1016/0550-3213(91)90490-O
https://inspirehep.net/literature/296734
https://doi.org/10.1016/0012-365x(94)00271-j
https://doi.org/10.1515/crll.1993.436.57
https://doi.org/10.1515/crll.1993.436.57
https://doi.org/10.21468/SciPostPhys.7.3.028
https://arxiv.org/abs/1806.03330
https://inspirehep.net/literature/1677323
https://doi.org/10.1007/JHEP09(2022)080
https://arxiv.org/abs/2111.07863
https://inspirehep.net/literature/1968909
https://doi.org/10.1007/JHEP08(2022)071
https://arxiv.org/abs/2203.07384
https://inspirehep.net/literature/2052390
https://doi.org/10.1007/JHEP09(2014)118
https://arxiv.org/abs/1405.5137
https://inspirehep.net/literature/1297258
https://arxiv.org/abs/0706.3359
https://inspirehep.net/literature/753914
https://doi.org/10.1103/PhysRevD.100.066029
https://arxiv.org/abs/1906.04184
https://inspirehep.net/literature/1739350
https://doi.org/10.1007/JHEP11(2020)134
https://doi.org/10.1007/JHEP11(2020)134
https://arxiv.org/abs/2001.00022
https://inspirehep.net/literature/1773839
https://doi.org/10.1007/JHEP09(2020)034
https://arxiv.org/abs/2004.14428
https://inspirehep.net/literature/1793595
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://arxiv.org/abs/0707.1889
https://inspirehep.net/literature/804600


J
H
E
P
0
5
(
2
0
2
4
)
3
4
3

[83] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes:
Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237]
[INSPIRE].

[84] P. Di Francesco and P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science &
Business Media (2012) [DOI:10.1007/978-1-4612-2256-9].

– 45 –

https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/1503.06237
https://inspirehep.net/literature/1355240
https://doi.org/10.1007/978-1-4612-2256-9

	Introduction
	Additive codes and Narain CFTs
	Codes over Z(k) x Z(k)
	General case

	(U(1) x U(1))**(n) Chern-Simons theories on a solid torus
	A review of Abelian Chern-Simons theories on handlebodies
	The wavefunction of U(1)(k) theory on a torus
	Wavefunction of the (U(1) x U(1))(k) theory
	General case

	Holographic description of the ensemble of code CFTs
	Level k = 1 CS theories and conventional holographic correspondence
	Averaging over Narain CFTs
	Level k > 1 CS theory and ensemble averaging
	Holographic correspondence in the k –> infty limit
	Ensembles of n = 1 and n = 2 theories in the large p limit
	Extensions and generalizations

	Ensemble averaging, typicality and holography
	Discussion
	The compact scalar CFT
	Chern-Simons theory: technical details
	Narain c = 2 theories
	All even self-dual n = 2 codes over Z(p) x Z(p)
	Hecke operators and triality
	Averaging over the moduli space
	Large-p limit


