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1 Introduction

Dynamics in Krylov space, and the associated K(rylov) complexity, have recently emerged as
a new probe of the chaotic dynamics of quantum systems. Starting from an autocorrelation
function C(t) of a sufficiently simple, e.g. local operator A, via recursion method one can define
Lanczos coefficients bn, which control and characterize the operator growth in the Krylov
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subspace. The original work [1] proposed the universal operator growth hypothesis, which
connects the asymptotic behavior of bn with the type of dynamics exhibited by the underline
system. Namely, for a generic physical systems without apparent or hidden symmetries bn

will exhibit maximal possible growth consistent with locality, bn ∝ n for spatially extended
systems in D > 1. This hypothesis is essentially the quantum version of an earlier observation,
that relates the high-frequency tail of the power spectrum f2(ω) — the Fourier of C(t) —
with presence or lack of integrability in classical spin models [2]. Similarly, the hypothesis
can be understood as a statement that in typical non-integrable lattice systems the norm
of nested commutators [H, [H, . . . A]], or equivalently the norm of A subject to Euclidean
time evolution, grows with the maximal speed allowed by universal geometric constraints [3].
There is non-trivial evidence supporting the connection between the behavior of bn and
integrability/chaos, yet it does not seem to be universal. In particular a possible stronger
formulation, relating the linear growth of bn specifically to chaotic behavior of the underlying
systems is apparently wrong [4, 5]. We observe that for continuous systems and local operator
A, Lanczos coefficients always exhibit linear growth. The situation is changed if a UV-cutoff is
introduced, in which case we propose the asymptotic behavior of bn would probe integrability
or lack thereof in the lattice model underlying the UV regime.

Besides being a probe of chaos, the Krylov complexity has a very intriguing and non-
trivial connection with the exponent controlling the growth of the Out of Time Ordered
Correlator (OTOC). Namely, the original work [1] conjectured (and proved for the case of
infinite temperature) that the exponent of Krylov complexity bounds the exponent of OTOC,
λOTOC ≤ λK. We further propose this inequality being a part of a stronger relation, which
generalizes the Maldacena-Shenker-Stanford bound on chaos [6],

λOTOC ≤ λK ≤ 2π
β
. (1.1)

In most cases considered so far, the first inequality in (1.1) is non-trivial, while the second
one trivially becomes an equality [3]. A proof of (1.1) in such a scenario was recently given
in [7]. Below we give examples of free massive bosons and fermions, when the first inequality
is trivial (we assign λOTOC = 0 for theories not exhibiting the exponential growth of OTOC),
while the second inequality becomes non-trivial. We numerically show that in this case
λK ≤ 2π

β is satisfied, thus providing further evidence for (1.1).
The third virtue of Krylov complexity is its potential connection to other measures

of complexity in quantum systems, in particular, holographic complexity [8–14]. Earlier
studies of K complexity, specifically, in the SYK model [15], suggested its qualitative behavior
matches that of holographic complexity. In particular, complexity grows linearly in earlier
times and then saturates at the exponential values [8, 13]. We analyze K-complexity for
fields compactified on spheres and show its behavior is different from the one described above.
Hence, we concluded that K complexity, despite its name, in field theories can be qualitatively
very different from its computational or holographic “cousins”.1

1Krylov complexity draws its name from the fact that its definition matches certain axioms of complexity [1],
but there was no strong reason to expect it would match computational or holographic complexities, which
characterize the whole quantum state of the system, not merely an operator growth in Krylov space. An
attempt to reconcile these discrepancies is recently taken in [16].
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The connection between K complexity and open questions of quantum dynamics make it
a popular subject of study [4, 5, 17–50], though with a few exceptions most of the literature is
focusing on discrete models. In this paper we continue the study of K complexity in quantum
field theory, initiated in [4]. There we considered only conformal field theories in flat space.
Now we consider models with mass, compact spatial support and/or UV-cutoff and find
rich behavior, supporting main conclusions outlined above. Interestingly, each deformation
we considered — mass, compact space or UV-cutoff have their own imprint on Lanczos
coefficients bn, though universality of these imprints is unclear. Our paper sheds light on
temperature dependence of bn as well as the role of locality. It frames QFT as an IR limit of
some discrete system, connecting the behavior of bn between different limiting cases.

This paper is organized as follows. In section 2.2 we give preliminaries of Lanczos
coefficients and Krylov complexity. We proceed in section 3 to consider free massive scalar
and fermions to observe the effect of mass, which causes the exponent of Krylov complexity
to decrease. In section 4 we compactify CFTs on a sphere to notice that this results in a
capped Krylov complexity, at least in certain scenarios. Section 5 continues with the role of
temperature and UV cutoff. We conclude with a discussion in section 6.

2 Dynamics in Krylov space and chaos

2.1 Preliminaries

The starting point to define Lanczos coefficients is a two-point function C(t) = ⟨A(t)A⟩ of
an operator A. Once C(t) is given, Lanczos coefficients bn are related to derivatives C(k)(0)
as explained in e.g. [17]. Assuming C(t) is even,

b2
0 = C ′′(0)/C(0), b2

1 = C4(0)/C ′′(0)− C ′′(0)/C(0), . . . (2.1)

The tri-diagonal symmetric matrix Ln,n = 0, Ln,n+1 = bn is the Liouvillian, it represents
adjoint action of the Hamiltonian H in Krylov space

Lnm ≡ ⟨n|adH |m⟩, (2.2)

where |n⟩ is the n-th normalized basis element in Krylov space. Krylov complexity is defined as

K(t) =
∞∑

n=0
n|⟨0|eiLt|n⟩|2. (2.3)

Mathematically, it is only a function of Lanczos coefficients bn. While it is fully determined
by C(t), the relation between C(t) and K(t) is non-trivial.

2.2 Lanczos coefficients and chaos

All three formulations of the “signature of chaos” mentioned in the introduction: through
the high-frequency behavior of the power spectrum [2]

f2(ω) = 1
2π

∫
dt eiωtC(t), (2.4)
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through the growth of |A(it)| [3], and through the asymptotic behavior of bn [1], are essen-
tially mathematically equivalent, but there are some important subtleties. The exponential
asymptotic

f2(ω) ∼ e−ω/ω0 (2.5)

is equivalent to a pole of C(t) at t = i/ω0, which is the same as the divergence of the Frobenius
norm of e−βH/4A(t)e−βH/4 at t = i/(2ω0), as follows from the definition

C(t) ∝ Tr(e−βH/2A(t)e−βH/2A(0)). (2.6)

This is equivalent to asymptotic linear growth

bn ∼ π

2ω0
n (2.7)

assuming asymptotically bn is a smooth function of n. Thus (2.7) implies (2.5), but the other
way around may not be true provided bn exhibits some complicated behavior, for example
bn split into two branches for even and odd n. The reference [3] provided a mathematical
example of this kind,2 when bn asymptotically split into two branches,

b2
n ∼

{
n2, n is even,
n, n is odd,

(2.8)

while corresponding power spectrum exhibits asymptotic behavior f2 ∝ ω−ω, which is an
analog of (2.5) for 1D systems.3

For any field theory and a local operator A(t) (or a local operator integrated over
some region), singularity of the two-point function when the operators collide immediately
implies (2.5) with ω0 = 2/β. Hence, trivially, the asymptotic behavior of f2(ω) can not be
used as a probe of chaos. This prompts the question if perhaps in field theory bn may exhibit
some complex behavior such that asymptotic behavior of bn may distinguish integrability
from chaos, while (2.5) would always be satisfied. A study of conformal field theories in
flat space in [4] revealed that nothing of the sort happens and bn demonstrate a “vanilla”
asymptotic behavior fixed by the singularity of C(t) at t = iβ/2,

bn = π

β
(n+∆+ 1/2) + o(n), n≫ 1, (2.9)

where ∆ is the dimension of the operator A controlling the pole singularity at t = iβ/2,

C(t) ∼ 1
(t− iβ/2)2∆ . (2.10)

Now we ask if this is perhaps a feature of conformal models in flat space that bn always
grow as bn ∝ n, while for more complicated QFTs Lanczos coefficients may exhibit more
complex behavior. And indeed, as we see below, once scale is introduced through a mass or
space volume, coefficients bn may split into even and odd branches, with different asymptotic
behavior, while (2.5) with ω0 = 2/β is always satisfied.

2An example of a physical system exhibiting different power law behavior of even and odd branches of bn is
possibly given by the large-q SYK model [48].

3For 1D systems, the two-point function C(t) is analytic in the entire complex plane [51]. Accordingly,
the slowest possible decay of the power spectrum for large ω is, schematically, f2 ∝ ω−ω. This corresponds
to maximal possible growth of the norm of nested commutators |[H, [H, . . . A]]| allowed by 1D geometry [3].
Corresponding maximal growth of Lanczos coefficients is bn ∝ n/ ln(n) [1].
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3 Free massive fields in flat space

In this section we consider free massive scalar4 and Dirac fermion in d spacetime dimensions,
for which the correlation functions are given by, see appendix A,

C(t) = Tr(e−βH/2ϕ(t, x)e−βH/2ϕ(0, x)) ∝
∫ ∞

m̃
(y2 − m̃2)

d−3
2

cosh(y τ)
sinh(y/2)dy

and

C(t) = Tr(e−βH/2ψ†(t, x)e−βH/2ψ(0, x)) ∝
∫ ∞

m̃
dy (y2 − m̃2)

d−3
2
y cosh(yτ)± m̃ sinh(yτ)

cosh
(
y/2

) ,

where τ ≡ it/β, and m̃ = βm. In the first case Lanczos coefficients split into even and odd
branches, both growing linearly with n albeit with different intercepts, as shown for d = 4
in the left panel of figure 1. We call this behavior “persistent staggering”: bn grow linearly,
with the universal slope πn/β, but even and odd branches have different finite terms:

bn =
{

π
β (n+ ce) + o(n), evenn.
π
β (n+ co) + o(n), oddn,

n≫ 1. (3.1)

In the second case of free massless fermions C(t) is not an even function, hence besides bn,
Lanczos coefficients also include an, see appendix B. In this particular case coefficients an =
±(−1)nm̃ can be expressed analytically, while bn exhibit standard “vanilla” asymptotic (2.9)
βbn = πn, see the right panel of figure 1.

Both the persistent staggering and oscillating an have similar effects on Krylov complexity,
which we calculate in both cases numerically, see figure 2. Namely, lnK(t) continues to
grow linearly, but with the slope λK smaller than 2π/β. This provides a non-trivial test of
the second inequality in (1.1). The first inequality is satisfied trivially because we assign
λOTOC = 0 in free field theories.

From the mathematical point of view, it is not entirely clear which property of C(t) is a
cause for persistent staggering. (We are focusing on the case of even C(t) here, when an ≡ 0.)
Based on a handful of examples reference [52] claims, apparently erroneously, this is due to
periodicity of C(t). We propose that persistent staggering is a reflection of the “mass gap” of
f2(ω), that it is zero for |ω| smaller than some finite value ωm. Proving this statement or
ruling it wrong, is an interesting mathematical question. In the appendix E.5 we argue that
staggering, i.e. the difference between ce and co in (3.1), can not be deduced from the structure
of the singularity of C(t) on the complex plane, unlike the mean value (ce + co)/2, which is
directly related to the pole structure of C(t) at t = iβ/2, i.e. the dimension of the operator ϕ.

For free fields, non-zero particle mass automatically translates into “mass gap” at the
level of f2. When particles are massive but interact, f2(ω → 0) will not be zero, although
will be exponentially small.5 It is an interesting question to understand if this behavior will
have any obvious imprint on bn, and consequently on Krylov complexity.

4Also see [49], which similarly considered free massive scalar field and found “persistent staggering” co ̸= ce.
The original version of [49] also reported different values of slopes for odd and even branches of bn, both
smaller than π/β. We regard this as a numerical artifact — we show in appendix E that in case of two different
slopes, in full generality one slope is always larger than, and the other is always smaller than π/β, see (E.33).

5We thank Luca Delacretaz for bringing this point to our attention.
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Figure 1. Lanczos coefficients for free massive scalar (left) and fermion (right) in d = 4 dimensions.
Values for the conformal (massless) cases we discussed in [4]. For the scalar, introduction of m̃ = βm

results in “persistent staggering” of bn around the conformal values (larger m̃ causes larger staggering
amplitude) but does not change the slope πn/β. Lanczos coefficients split into two branches, see
eq. (3.1). For fermions, asymptotically, bn grow linearly with the slope πn/β and the m-dependent
intercept. The main effect of mass is non-vanishing an = m̃(−1)n.
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Figure 2. Krylov complexity for the free massive scalar (left) and fermion (right) in d = 4 dimensions.
For the massless scalar K = 1 + 2 sinh2(πt/β) is known analytically. The main effect of mass is the
decrease of Krylov exponent λK .

In the case of persistent staggering exponential growth of K(t) was verified numerically.
We leave it as another open question to develop an analytic approximation to evaluate
λK in terms of β, c1, c2.

4 CFTs on a sphere

In this section we consider a CFT placed on a sphere and calculate Lanczos coefficients and
Krylov complexity associated with the Wightman-ordered thermal two-point function. We
consider two cases, 4d free massless scalar on S3 and holographic theories.

4.1 Free scalar on S3 × S1

We first consider a 4d free massless scalar compacted on a three-sphere. Because we are
considering a finite-temerature correlation function, the 4d compactification manifold is
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S3 × S1. Corresponding thermal two-point function is given by, see appendix C,

C(τ,R) ∝
∑

n,ℓ∈Z

(τ + 1/2 + n)2 − (Rℓ)2

((τ + 1/2 + n)2 + (Rℓ)2)2 (4.1)

=
∑
ℓ∈Z

π2

2

(
1

cosh2(ℓπR+ iπτ)
+ 1

cosh2(ℓπR− iπτ)

)
− 2π
R

(4.2)

=
∑
n∈Z

π2

R2
1

sinh2((n+ 1/2 + τ)π/R)
. (4.3)

Here R is the radius of S3 measured in the units of β, which is the radius of S1. In other
words, without loss of generality, we can take β = 1. Euclidean time τ is defined as τ = it/β.
As expected, the function is periodic in Euclidean time τ → τ + 1, but it is also periodic
in Lorentzian time under t → t + R, which follows e.g. from (4.3).

For any finite R, Lanczos coefficients split into even and odd branches, which grow
linearly with n but with different slopes, see figure 3. This can be seen analytically in the
limit R → 0 when C(τ) is exponentially small (unless |τ | = 1/2) and Lanczos coefficients,
at leading order, are given by

b2
n =

(2π
R

)2


(n+ 1)2/4, n = 1, 3, 5, . . .
4n(n+ 1)2

n+ 2 e−π/R, n = 2, 4, 6, . . .
(4.4)

Numerically, this approximation is good already for R ≲ 1.
In the opposite limit of large S3 the correlation function approaches that one of flat space,

plus a correction −2π/R, plus the exponentially suppressed terms

C ∝ π2

cos2(πτ) −
2π
R

+ π2

cosh2(πR− iπτ)
+ π2

cosh2(πR+ iπτ)
+ . . . (4.5)

The exponentially suppressed terms are important for the asymptotic behavior of bn. Ne-
glecting them, i.e. keeping only first two terms in (4.5) yields the following expression for
Lanczos coefficients, which we denote b0

n,

(b0
n)2 = π2n(n+ 1)− (−1)n c2

n

cnR+ dn
, n ≥ 1, (4.6)

cn = π (2n+ 1− (−1)n) , dn = 4
⌊
n+ 1
2

⌋(
ψ(0)

(3
2

)
− ψ(0)

(⌊
n+ 1
2

⌋
+ 1

2

)
− 2

)
.

Here ψ0 is a polygamma function. This expression has incorrect asymptotic behavior for
large n. Taking into account two more terms in (4.5) leads to

b2
n = (b0

n)2 + 8π2(−1)nn(n+ 1)(2n+ 1)e−2πR +O(e−πR/R), n ≥ 1, (4.7)

which still has incorrect the asymptotic. We thus conclude that to reproduce “two slopes”
behavior

bn =
{
αodd(n+ c1) + o(n), oddn.
αeven(n+ c2) + o(n), evenn,

n≫ 1, (4.8)
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Figure 3. Left: Lanczos coefficients for free massless scalar compactified on S3 of radius R = 1. Right:
Krylov complexity K(t) for radii R = 1, flat space K = 1 + 2 sinh2(πt/β), and R = 3/2. Because of
the periodicity of C(t), it is periodic with the period T = R.

would require taking into account an infinite series of ever more exponentially suppressed terms
into account. For all finite R, αodd > αeven; the opposite would contradict C(t→ ∞) → 0.6

The ratio αodd/αeven grows with R−1, when radius is large two slopes are almost equal to
each other and π/β, see section E.4, but for small R they are significantly different, with αeven
quickly approaching zero. We also show in full generality in the appendix E.2, that in case of
two-slopes behavior (4.8), the inequality αodd ≥ π/β ≥ αeven always holds, see (E.33).7

Now we discuss Krylov complexity, which we calculate numerically. We find that K(t)
first increases, but then reaches its maximum and starts oscillating periodically, with the
same period T = R as C(t), see the right panel of figure 3. This behavior is more pronounced
for small R, while for a large radius the behavior of K(t) initially follows the flat space
counterpart K(t) = 1 + 2 sinh2(πt), before peaking at some finite value of order eaR/β , where
a is a numerical coefficient of order one.

The two slopes behavior of bn is a novel phenomenon, not observed for physical systems
previously. This goes beyond the universal operator growth hypothesis of [1], which assumes
a smooth asymptote of bn. Similarly, capped Krylov complexity with the maximal value
dependent on R (the ratio of S3 and S1 radii), but independent of the UV-cutoff is in
tension with the proposal that qualitatively K(t) is similar to holographic and computational
complexities [27, 29, 30]. In the latter case, for a QFT on compact space, complexity would
grow up to exponentially large values, controlled by the volume of S3 measured in the units
of the UV cutoff. In case of K(t) this growth was presumably supposed to come from the
region of bn which is controlled by UV physics (and where bn are approximately constant
while K(t) grows linearly, see sections 5.2, 5.3 and figures 5 and 6). But the example above
shows that the operator can be confined at the beginning of “Krylov chain,” in which case
the values of bn for large n do not matter.

6This follows from the existence of a normalized zero mode of the Liouvillian, provided asymptotically, for
odd n, bn/bn+1 < 1.

7In appendix, we show for two slopes behavior, that α1 ≥ π/β ≥ α2, where α1 = max(αeven, αodd) and
α2 = min(αeven, αodd). The condition αodd ≥ αeven follows separately from C(t → ∞) → 0, as mentioned
above.
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Physically, it is tempting to relate the two slopes behavior of bn and bounded K(t) to
the finite volume of the space QFT is placed on, but we will see in the next section this
is not true in full generality.

Mathematically, the two slopes behavior of bn is probably due to periodicity of C(t)
in Lorentzian time, or more broadly due to f2(ω) being a sum of delta-functions for a not
necessary periodic grid of values of ω. We leave a proper investigation of this question for the
future, together with the question of quantitatively relating αeven, αodd to properties of C(t).
Here we only make one step in this direction and use the integral over Dyck paths developed
in [3] to relate a particular combination of αeven, αodd to the location of the singularity of C(t)
in the complex plane, see appendix E. Another question, which we also leave for the future,
is to analytically relate maximal or time-averaged value of K(t) to values of αeven, αodd.

4.2 Holographic theories

Next we consider a holographic theory with the two-point function of heavy operators given by
the sum over geodesic lengths in thermal AdS space, or black hole background, below and above
the Hawking-Page transition correspondingly. In the former case the two-point function is8

C(t) ∝
∑

n

1
(cosh((τ + 1/2 + n)β)− 1)∆ (4.9)

where the radius of the boundary sphere is taken to be one. This expression is valid for all
∆, not necessarily large, see e.g. [53]. This expression is valid in all dimensions d ≥ 3. We
notice that, again, besides periodicity in Euclidean time τ → τ + 1, this function is periodic
in Lorentzian time t→ t+2π. This is presumably the reason why bn behave qualitatively the
same as in the previous subsection — they split into two branches for even and odd n, with
both exhibiting asymptotic linear growth (4.8). The behavior of Krylov complexity also follows
the pattern of free scalar on S3, it first grows but then oscillates periodically, see figure 4.
We thus conclude that in holographic theories Krylov complexity can be UV-independent,
thus making it qualitatively different from the holographic complexity [8–14].

The discussion above applies to temperatures small enough, below the Hawking-Page
transition. As the temperature increases the dual geometry is given by the BTZ background,
assuming we focus specifically on the case of 2d theories. The two-point function in this
background is given by [54, 55]

C(t) ∝
∑

n

1
(cos(2πτ) + cosh(4π2n/β))∆ . (4.10)

This function is, of course, periodic under τ → τ +1, but there is no periodicity in Lorentzian
time. As a result Lanczos coefficients have the “vanilla” behavior, growing linearly with the
asymptote (2.9). In fact, the leading contribution comes from the n = 0 term in (4.10), which is
the same as the flat-space expression, with other terms for β < 2π giving very small corrections.
We find numerically b2

n to be very close to the flat space result, π2(n+ 1)(n+ 2∆)/β2 [4].
Accordingly, Krylov complexity grows exponentially with λK = 2π/β.

The calculation in the BTZ background shows that two slopes behavior and capped
K(t) are not universal features of QFT on compact spaces, and the unbounded exponential

8We thank Matthew Dodelson for the collaboration that laid the foundation for results of this section.
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Figure 4. Left: Lanczos coefficients for thermal AdS background (4.9) with β = 2π and ∆ = 1.
Right: Krylov complexity for these parameters (blue) superimposed with the flat space 2d CFT
behavior K = 1 + 2 sinh2(πt/β) (orange). Because of periodicity of C(t), blue curve is also periodic
with K(t) = K(t+ 2π).

growth of K(t) is possible in the holographic settings. This prompts the question of how the
inequality (1.1) fairs in different holographic scenarios. We see that above the Hawking-Page
transition Krylov exponent λK is well defined and equal to 2π/β. This means the second
inequality in (1.1) is saturated and reduces to the Maldacena-Shenker-Stanford bound, which
is also saturated by holographic theories. Below the transition, Krylov complexity is bounded,
hence λK is not well-defined, or we can formally take it equal to zero. Exactly in the
same scenario the OTOC correlator exhibits periodic recurrences [56]. As we mentioned
in the introduction, in this case we assign λOTOC = 0. In other words, (1.1) remains valid
in both cases.

5 Temperature and UV-cutoff dependence of Lanczos coefficients

We have seen in the previous sections that giving particles mass or placing a CFT on a compact
background both have an explicit imprint on Lanczos coefficients and Krylov complexity. One
feature, which nevertheless seems to be lost in the QFT case is the sensitivity of bn to chaos.
Indeed, in all cases above bn exhibit linear growth (albeit sometimes by splitting into two
branches), even though many considered theories are not chaotic. This mirrors the behavior
we previously observed for CFTs in flat space [4] and complements recent observation that
non-chaotic systems with saddle-dominated scrambling also exhibit linear growth of bn [5].

This could be our final conclusion — that asymptotic of Lanczos coefficients is not a
proper probe of chaos, but apparent success of this approach in case of discrete systems with
finite local Hilbert space, in particular spin chains, hints this conclusion could be premature.
As we mentioned above, for 1D lattice systems the slowest possible decay of f2(ω) is not
exponential but super-exponential f2(ω) ∼ ω−ω [3]. Yet for integrable spin chains f2(ω)
decays faster, as a Gaussian (which correspond to asymptotic growth bn ∝ n1/2) or even
becomes zero for ω exceeding certain size-independent threshold. This is the case in all known
examples, including preliminary numerical evidence for the XXZ model [57]. On the contrary
for the non-integrable 1d Ising model in traverse field it was recently proved in [58] that
f2 will decay with the slowest possible asymptotic, f2(ω) ∝ ω−ω. These results constitute
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non-trivial evidence for the “asymptotic of bn as a probe of chaos” stronger version of the
universal operator growth hypothesis.9 We should mention, there is an additional evidence
for this hypothesis for D>1 lattice models: an analytic proof of f2 ∝ e−ω/ω0 asymptotic for a
non-integrable 2D lattice model [59], and for the limit of SYK model [1].

Apparent success with the spin chains and other discrete models and failure in field
theoretic models suggest the issue could be related to the continuous nature of the latter.
We elaborate on this in the next section.

5.1 Asymptotic of f2(ω) and locality

While for spin chains high frequency asymptotic of f2 apparently contains some dynamical
information, for continuous systems it is completely universal. Let’s consider the power
spectrum, the Fourier transform of two-point correlation function in field theory. The power
spectrum f2(ω) has a simple interpretation as the sum of transition amplitudes between
the one-particle states with energies Ei and energies Ef = Ei + ω. Its high-frequency
asymptotic can be deduced from the following consideration. Let us consider a free quantum-
mechanical particle propagating in 1D. Assuming the particle is fully localized, the Heisenberg
uncertainly principle implies the transition amplitude to a state with arbitrarily high energy
is not suppressed (the Fourier transform of the delta-function is a constant). After restoring
β-dependent factors this means f2(ω) will be proportional to e−βω/2. Here locality of the
initial state was crucial for the transition amplitude to states with large final energy to be
unsuppressed. Going back to the two-point function C(t), this translates into locality of
the operator A. To see this in more detail, let us consider a simple example, free quantum-
mechanical particle with the Hamiltonian H = p2

2m , and an operator in the Heisenberg picture

A = e−x2/a. (5.1)

We would like to evaluate (2.6) and find

f2(ω) = K0

(√
β(β + 4am)ω/2

)
. (5.2)

It’s clear that when a is large, which corresponds to a de-localized wave-packet, the decay
of f2 is faster then the kinematically fixed value f2 ∝ e−βω/2 associated with the point-like
operator a → 0.

Provided the logic above is correct we may expect that in the case of translationally-
invariant lattice models similar behavior will emerge in the continuous (long wave) approx-
imation, emerging in the low energy (low temperature) limit. We test this below in case
of bosonic and fermionic lattice models. For the fixed value of coupling constants, effective
wavelength is specified by inverse temperature β. Thus we expect that for large β an ap-
proximate continuous description will emerge, leading to universal high frequency tail of
f and universality of bn behavior. On the contrary, for small β we expect to recover the
diversity of bn behaviors previously observed in the literature, and in particular connection
between the asymptotic of bn and chaos.

9The original hypothesis claimed that a generic system would feature maximal possible growth of bn.
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Figure 5. Both panels: Lanczos coefficients for the isotropic XY model (5.5).

5.2 Integrable XY model at finite temperature

The integrable periodic XY spin chain

H =
N∑

i=1
(1 + γ)Sx

i S
x
i+1 + (1− γ)Sy

i S
y
i+1 − hSz

i (5.3)

is solvable through the Jordan-Wigner transform and the two-point function at finite tem-
perature

C(t) = ⟨Sz(t)Sz(0)⟩W
β = Tr(e−βH/2Sz(t)e−βH/2Sz) (5.4)

is known explicitly, see appendix D. We are interested in the thermodynamic limit of infinite
N and start with the case of isotropic XY model with γ = h = 0, in which case

C(τ) = 1
4π2

(∫ 1

−1

dc√
1− c2

cosh(c τ)
cosh(c β/2)

)2
. (5.5)

Calculating bn numerically, for different values of β reveals the following behavior. Initially
Lanczos coefficients grow linearly as bn ≈ πn/β, and then saturate at some universal value
bn ≈ 1, see figure 5. Clearly, initial region of linear growth increases for larger β. This has
the following interpretation, at small temperatures the isotropic XY model becomes the free
fermion CFT, hence Lanczos coefficients exhibit universal vanilla CFT behavior (2.9). For
large n, when bn (which have dimension of energy) become of the order of UV-cutoff (which
is of order one in our case), the universal QFT behavior is substituted by the true asymptotic
behavior reflecting the dynamics of the lattice model. Since the isotropic XY model is free,
Lanczos coefficients saturate at a fixed value, in full agreement with the previous observations
that the asymptotic of bn is a probe of chaos (or lack thereof).

The main takeaway here is that to probe chaos of the underlying lattice model, one
should consider true asymptotic behavior of bn which is controlled by UV-cutoff physics. In
the QFT models with an infinite cutoff, such as conformal field theories, the true asymptote
is not accessible, giving way to essentially universal vanilla behavior (of one or two linearly
growing branches of bn).
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5.3 Free bosons on the lattice

Next we consider free oscillators on the 1D lattice with periodic boundary conditions,10

H = 1
4

N∑
i=1

π2
i + (ϕi+1 − ϕi)2 + 4µ2ϕ2

i , (5.6)

which becomes 1D free massive scalar theory in the continuous limit. We can think of
this model as the 1+1 free scalar QFT with a UV cutoff. In the thermodynamic limit
N → ∞, when the mass µ and temperature β−1 are chosen to be much smaller than the
cutoff, β ≫ 1 ≫ µ, we expect the CFT in flat space behavior with f2 ∝ e−βω/2 and linearly
growing Lanczos coefficients bn ∼ πn/β. At high energies we are dealing with the discrete
integrable model of non-interacting particles with the energies belonging to a finite width
zone. Accordingly f2(ω) vanishes for ω exceeding certain value ω∗. Thus, similarly to
the isotropic XY model considered above, Lanczos coefficients are expected to approach a
constant, signaling lack of chaos.

If N is finite, in the long-wave limit the system is described by free massive QFT placed
on S1. In other words, the model (5.6) includes all three deformations we discuss in the
paper: the mass, compact spatial manifold and the UV-cutoff. Accordingly, depending on
the interplay between β, µ and N , at the level of bn we expect to see the combinations of
some or all three features: persistent staggering, two-slopes behavior (since the theory is
free, and the spectrum of excitations is equally-spaced), and field theory behavior below and
saturation of bn near the UV-cutoff. An explicit calculation of (2.6) yields

C(τ) ∝ 1
N

N∑
k=1

1
ϵk

cosh(ϵkτ)
sinh(ϵkβ/2)

, ϵk =
√
sin2(k) + µ2, k = πk/N, (5.7)

and the behavior of Lanczos coefficients for different β, N and µ≪ 1 is shown in figure 6.
As expected, for essentially infinite N and large β initially bn grow linearly, as bn ≈ πn/β,

but once the value of bn becomes the order of the cutoff (which is of order one in our
case), they saturate to a constant. The punchline here is clear: for small temperatures the
prolonged universal linear growth of bn, dictated by the locality and Heisenberg uncertainty
principle, will eventually give way to true asymptotic behavior governed by the discrete
model emerging at the UV-cutoff scale. When N is finite we observe the two slopes behavior,
on top of the persistent staggering due to mass, and the transition toward true asymptote
due to UV-cutoff.11

6 Discussion

In the paper we calculated Lanczos coefficients bn and Krylov complexity K(t) of local
operators in several models of quantum field theory, free massive scalars and fermions,
massless scalars compactified on a sphere, and a few holographic examples. Our calculations
revealed that all three deformations of CFTs in flat space: giving particle mass, placing theory

10Scalar field with UV-cutoff was also considered in [49].
11In this case C(t) is not periodic in Lorentzian time, but for any finite N , f2(ω) has finite support, which

is perhaps behind the two slopes behavior, clearly visible in figure 6.
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Figure 6. Lanczos coefficients for free bosons on the lattice (5.6) for different values of β, µ,N param-
eters. For large β initial behavior of bn like the one in filed theory — coefficients grow linearly, either
demonstrating persistent staggering and/or two-slopes behavior, see left panel. When bn approach
UV-cutoff value the QFT behavior changes into one governed by the UV physics, see right panel.

on a compact space, and introducing finite UV-cutoff has a clear imprint on bn and K(t).
Namely, mass leads to persistent staggering of bn (3.1) and decreases the Krylov exponent
λK , while K(t) still grows exponentially. Compact space, at least in certain cases, leads to
two sloped behavior (4.8) and a capped Krylov complexity. Finite cutoff introduces a new
asymptotic regime, where bn behavior is controlled by the lattice model at the UV scale.

These examples help us formulate several takeaway messages, clarifying the universal
operator growth hypothesis of [1] and the role of Krylov complexity. First, asymptotic behavior
of bn in physical systems goes beyond universality previously discussed in the literature,
namely bn can split into two branches for even and odd n, each with its own asymptotic
behavior. In particular this means that asymptotic behavior of bn is not mathematically
equivalent or fully controlled by the high frequency asymptote of f2(ω). Second, we clarified
the role of temperature for bn in lattice models. Third, in field theory with an infinite
UV-cutoff Lanczos coefficients do not probe chaotic behavior. But when a finite cutoff ΛUV
is introduced, by embedding the QFT into a lattice model, a true asymptotic regime of
bn ≳ ΛUV emerges, which is conjecturally probing chaos in the underlying lattice model,
modulo issues raised in [5]. Here it is worth noting that a chaotic QFT can not emerge as a
long wave limit from an integrable lattice model. Thus, with the help of a finite UV-cutoff,
the universal operator growth hypothesis can be extended to quantum field theories.

Another takeaway message is the generalization of the Maldacena-Shenker-Stanford
bound (1.1), which we tested in several non-trivial settings.

Finally, the examples of theories demonstrating two slopes behavior of bn and a capped
K(t) clearly show, Krylov complexity can have qualitatively different behavior than the
holographic and computational, e.g. Nielsen, complexity [8–14, 31, 60].

Our work raises numerous questions, including a number of mathematical questions
about the relation between bn and C(t). Among them are the features of C(t) which lead
to asymptotic persistent staggering (3.1) or two slopes (4.8) behavior and how to deduce
αo, αe, co, ce from C(t). Here we presume a simple generalization of (2.9) is possible, though in
section 4.1 we saw the example when the asymptotic of bn was dependent on the exponentially
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suppressed contributions to C(t). There are many other questions, how to quantitatively
relate λK to co, ce in case of persistent staggering, and how to relate maximal or time-averaged
K(t) to αo, αe in case of two slopes behavior. There are also questions about the physics of
Krylov complexity. Can we prove generalized Maldacena-Shenker-Stanford bound (1.1) in
full generality? Is there any holographic counterpart of K(t)? What is the behavior of bn

and K(t) in interacting QFTs? We leave these and other questions for the future.
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A Massive free theories

A.1 Massive scalar

We start with a free massive scalar in Rd and calculate thermal two-point function

⟨ϕ(τ)ϕ(−1/2)⟩β =
∞∑

n=−∞

(−1)n

β

∫
dd−1k

(2π)d−1
ei2πnτ(2πn

β

)2 + k2 +m2
. (A.1)

Here τ = it/β is the Euclidean time. One operator is placed at τ = −1/2, thus this is a
Wightman-ordered correlator.

⟨ϕ(τ)ϕ(−1/2)⟩β ∝ Tr(e−βH/2ϕ(t, x)e−βH/2ϕ(0, x)).

To evaluate (A.1) we substitute the sum over n by a contour integral going over the singularities
of sinh

( k̃0
2
)
,

⟨ϕ(τ)ϕ(−1/2)⟩β = β2−d

4πi

∫
C
dk̃0

∫
dd−1k̃

(2π)d−1
ek̃0τ

sinh
( k̃0

2
)(
m̃2 + k̃2 − k̃2

0
) . (A.2)

The contour can be deformed and closed through the infinite semicircle at Rek̃0 → ∞, yielding

C(t) = Tr(e−βH/2ϕ(t, x)e−βH/2ϕ(0, x)) ∝ β2−d

(4π)
d−1

2 Γ(d−1
2 )

∫ ∞

m̃
(y2 − m̃2)

d−3
2

cosh(y τ)
sinh(y/2)dy.

A.2 Massive fermion

Similarly for the massive fermion

⟨ψ†
α(τ)ψσ(−1/2)⟩β = 1

β

∫
dd−1k

(2π)d−1

∞∑
n=−∞

(−1)n

β

(
π(2n+ 1)δασ + i m̃ γ0

ασ

)
eiπ(2n+1)τ( (2n+1)π

β

)2 + k2 +m2
. (A.3)
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We work in Dirac representation such that γ0
ασ = ±δασ and use the same trick with the

contour integral

⟨ψ†
α(τ)ψσ(−1/2)⟩β = β1−d

4πi

∫
C
dk̃0

∫
dd−1k̃

(2π)d−1
(k̃0 ± m̃) ek̃0τ

cosh
( k̃0

2
)(
k̃2 + m̃2 − k̃2

0
) . (A.4)

After deforming the integration contour we arrive at

Tr(e−βH/2ψ†(t, x)e−βH/2ψ(0, x))

∝ β1−d

(4π)
d−1

2 Γ
(

d−1
2
) ∫ ∞

|m̃|
dy (y2 − m̃2)

d−3
2
y cosh(yτ)± m̃ sinh(yτ)

cosh
(y

2
) .

B Lanczos coefficients for general C(t)

In the most general case, when C(t) is not a real-valued even function, besides coefficients bn,
Lanczos coefficients also include an. Their definition in terms of Krylov basis can be found
in e.g. [17], and the explicit expression in terms of C(t) is as follows. For the analytically
continued C(τ), τ = it, we first define an n×n Hankel matrix of derivatives M(n)

ij = C(i+j)(τ)
and variables τn = detM(n), τ0 ≡ 1. Then

bn = τn−1τn+1
τ2

n

∣∣∣∣
τ=0

, (B.1)

an = d

dτ
(τn − τn−1)

∣∣∣∣
τ=0

. (B.2)

C Free scalar on Sd−1 × S1

Let us consider a compact space Sd−1 of radius R. The thermal correlation function of the
scalar field living on R × Sd−1 can be expressed in terms of the heat kernel KM(t, x, y) =
⟨x| exp(−tD̂)|y⟩, see e.g., [61]

⟨ϕ(x)ϕ(y)⟩β =
∫ ∞

0
dtK(t, x, y)e−tm2

eff , (C.1)

where M = S1 ×Sd−1 (S1 represents a thermal circle parametrized by τ), and D̂ is the second
order differential operator of the Laplace-Beltrami type,

D̂ = − d

dτ2 −∆Sd−1 , (C.2)

where ∆Sd−1 is the scalar Laplacian on a sphere. Finally m denotes the ‘effective’ mass
of the field under study

m2
eff = m2 + ξR (C.3)

where ξ = d−2
4(d−1) is the conformal coupling and R = R(Sd−1) = (d− 1)(d− 2)/R2 is the

Ricci scalar of the background geometry.
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The wave operators are separable on the product manifold S1 × Sd−1 and hence the heat
kernel can be expressed as the product of the two individual heat kernels on S1 and Sd−1, i.e.,

KM = KS1 KSd−1 (C.4)

KS1 can be readily evaluated using the method of images. It is given by an infinite sum of
the scalar heat kernels on R, which are shifted by integer multiples of β with respect to each
other to maintain periodic boundary conditions for the scalar field on a circle, namely

KS1(t, τ) = 1√
4πt

∞∑
n=−∞

e−
(τ+nβ)2

4t (C.5)

In fact, the heat kernel KSd−1 is also known in full generality [62], e.g.,

KS3(t, x, x) = et/R2

(4πt)3/2

∞∑
n=−∞

e−
π2R2n2

t

(
1− 2π

2R2n2

t

)
. (C.6)

In d = 4, we thus get

Cϕ(τ) =
∞∑

n,ℓ=−∞

∫ ∞

0

dt e−t m2

(4πt)2 e−
(τ+nβ)2+(2πRℓ)2

4t

(
1− 2π

2R2ℓ2

t

)
. (C.7)

Integrating over t, yields

Cϕ(τ) = m
∞∑

n,ℓ=−∞

AK1(Am)− 4B2mK2(Am)
4π2A2 .

A2 = (τ + nβ)2 + (2πRℓ)2 , B = πRℓ . (C.8)

For βm,Rm ≫ 1 the sum is dominated by a few terms in the vicinity of n = ℓ = 0.
Cϕ(τ) simplifies in the case of conformally coupled scalar (m = 0)

Cϕ(τ) =
1

4π2

∞∑
n,ℓ=−∞

(τ + nβ)2 − (2πRℓ)2(
(τ + nβ)2 + (2πRℓ)2)2 . (C.9)

Upon redefinition τ → βτ and R → βR we arrive at (4.1).

D Thermal 2pt function in XY model

Consider the Hamiltonian of integrable XY model with periodic boundary conditions, j = 0
is the same as j = N ,

H =
N∑

j=1

[
(1 + γ)Sx

j S
x
j+1 + (1− γ)Sy

j S
y
j+1

]
− h

N∑
j=1

Sz
j . (D.1)

This chain is diagonalizable by the Jordan-Wigner transform [63], with the quasiparticle
energies given by ϵk =

√
(cos k − h)2 + γ2 sin2 k. Here k varies between 0 to 2π. The

autocorreation function at inverse temperature β is defined as

Cz
β(t) ≡ ⟨Sz

0S
z
0(t)⟩β = Tr(e−βHSz

0S
z
0(t))/Tr(e−βH). (D.2)
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Before giving the expression for Cz
β(t) we first thermal expectation value

mz(h) = ⟨Sz
0⟩β = − 1

2π

∫ π

0
dk cos

{
tan−1

(
γ sin k

cos k − h

)}
tanh βϵk2 , (D.3)

and one can show that lim
h→0

mz(h) = 0. Finally, the autocorrelation function is given by

Cz
β(t) = m2

z(h) +

 1
2π

π∫
0

dk

{
cos(ϵkt) + i sin(ϵkt) tanh

βϵk
2

}2

−

 1
2π

π∫
0

dk cos(2λk)
{
i sin(ϵkt) + cos(ϵkt) tanh

βϵk
2

}2

, (D.4)

where λk = 1
2 tan

−1 γ sin k
cos k−h .

This expression becomes particularly simple, when we set γ = 0, h = 0 which corresponds
to isotropic XY model H =

∑N
j=1

[
Sx

j S
x
j+1 + Sy

j S
y
j+1

]
,

Cβ(t) =
1

4π2

 1∫
−1

dc√
1− c2

[
cos(tc)− i sin(tc) tanh βc2

]2

, (D.5)

which becomes even simpler upon the shift t→ t− iβ/2 that gives the Whightman-ordered
correlator, cf. with (5.5),

CW
β (t) = 1

4π2

 1∫
−1

dc√
1− c2

cos(tc)
cosh βc/2

2

. (D.6)

E Dyck paths integral for two slopes scenario

E.1 Integral over Dyck paths formalism for two branches

Here we will generalize the derivation of the asymptotic behavior of moments

µ2n =
∫
dωf2(ω)ω2n (E.1)

from [3] to the case when bn form two continuous branches for large n, b2n = beven(2n) and
b2n+1 = bodd(2n). We also introduce

ϵ(n) = beven(n)/bodd(n), (E.2)

b(n) =
√
beven(n)bodd(n), (E.3)

and assume they are smooth functions of their argument.
We start with the Dyck path sum representation of moments [1]

µ2n =
∑

{hk}∈Dn

2n−1∏
k=0

b(hk+hk+1)/2, (E.4)

where Dn is the set of all Dyck paths.
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We approximate each Dyck path with hi = 1/2 + 2nf(i/2n), where f(t) is a continuous
function defined on 0 < t < 1 and satisfying |f ′(t)| < 1. Let us consider N consecutive
steps in a Dyck path, where hk+1 − hk = 1 for n distinct values of k so that f ′ = 2n−N

2 .
We additionally require that the index of b is even d times more than it is odd. We split
the interval in pairs and we will denote the steps were value of h increased (decreased) as
“+” or “-” correspondingly.

For pairs “++” or “- -” one factor of b has an odd index and another has an even one.
For pairs “+-” and “-+” both factors will have the same parity that depends on the current
value of hi. If we denote the number of “++” pairs as m and the number of opposite sign
pairs that lead to two even factors as l we obtain d = 4l − 2n+ 4m. Assuming our interval
is small, its weight in (E.4) is given by

b
N/2−2l+n−2m
odd bN/2+2l−n+2m

even =
√
boddbeven

N (beven/bodd)2l−n+2m. (E.5)

The parameters satisfy 0 < n < N , n−N/2 < m < n/2 and 0 < l < n− 2m. The number of
paths for fixed n, m and l is given by Cm

N/2C
n−2m
N/2−mC

l
n−2m. This product can be approximated

with the help of the Stirling’s formula

logCm
N/2C

n−2m
N/2−mC

l
n−2m

≈ N

2

[
S(α) + (1− α)S

(
f ′ + 1− 2α

1− α

)
+ (f ′ + 1− 2α)S

(
β

f ′ + 1− 2α

)]
, (E.6)

where n = N f ′+1
2 , α = m

N/2 , β = l
N/2 and

S(α) = −α logα− (1− α) log(1− α). (E.7)

We can evaluate the sum over l and m√
boddbeven

N ∑
m,l

Cm
N/2C

n−2m
N/2−mC

l
n−2mϵ

2l−n+2m, (E.8)

where ϵ = beven/bodd via the saddle point approximation. This is function (E.2), now
understood as a smooth function of f , ϵ(2nf). The function to be minimized is

W (α,β,f ′, ϵ)=S(α)+(1−α)S
(
f ′+1−2α

1−α

)
+(f ′+1−2α)S

(
β

f ′+1−2α

)
+(2α+2β−f ′−1) log ϵ.

The saddle point equations are

ϵ2(1− 2α− β + f ′)2 = α(α− f ′), (E.9)
ϵ2(1− 2α− β + f ′) = β. (E.10)

It is solved by

α∗ = f ′(1− ϵ2)2 − 4ϵ2 + (1 + ϵ2)
√
4ϵ2 + (ϵ2 − 1)2f ′2

2(ϵ2 − 1)2 , (E.11)

β∗ = ϵ2

(ϵ2 − 1)2

(
1 + ϵ2 −

√
4ϵ2 + (ϵ2 − 1)2f ′2

)
. (E.12)
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Plugging this back in the expression for W , we obtain

Weff(f ′, ϵ) = −f
′

2 log ϵ
4f ′2 + f ′(f ′ +

√
4ϵ2 + (ϵ2 − 1)2f ′2) + ϵ2(2 + f ′

√
4ϵ2 + (ϵ2 − 1)f ′2)

2ϵ2(1− f ′)2

+ 2 log(1 + ϵ) + log (ϵ2 − 1)2

ϵ+ ϵ3 − ϵ
√
4ϵ2 + (ϵ2 − 1)2(f ′)2 . (E.13)

As expected, Weff is invariant under ϵ→ 1/ϵ, which emphasizes that both branches are on
the same footing. In what follows we take 0 ≤ ϵ ≤ 1, by assuming that αodd is the slope
of the faster growing branch and αodd is the slope of the slower growing branch, with no
reference to whether corresponding n is even or odd.

Finally, this gives us a path integral representation of moments (E.1) in terms of smooth
functions (E.2), (E.3)

µ2n =
∫

Df(t)e
n

1∫
0

dt(Weff(f ′,ϵ(2nf))+2 log b(2nf))
. (E.14)

We can verify that this path integral reduces to the path integral for a single branch developed
in [3] when we set ϵ = 1 (beven = bodd). While the second term is singular as ϵ → 0 it is
finite if we carefully take the limit

lim
ϵ→1

Weff(f ′, ϵ) = 2S
(
f ′ + 1

2

)
. (E.15)

Alternatively, the saddle point configuration simplifies to

α∗ = (1 + f ′)2

4 , β∗ = (1− f ′)2

4 , (E.16)

and again we obtain W (α∗, β∗, f ′, 1) = 2S
(

f ′+1
2

)
. This agrees with the expected result, since

W is multiplied by n (it used to be 2n in the single branch case).

E.2 Evaluation of the path integral for two slopes

Here we assume that ϵ = const and
√
bodd(n)beven(n) = αn. The action in this case reads

I =
1∫

0

dt
(
Weff(f ′, ϵ) + 2 log f

)
, (E.17)

where have neglected the constant term 2 log(2αn) in the integral since it does not affect the
shape of the saddle point. Varying I with respect to f(t), we obtain the EOMs

− 2
f(t) = f ′′

1− (f ′)2
(1 + ϵ2 +

√
4ϵ2 + (−1 + ϵ2)2(f ′)2)√

4ϵ2 + (−1 + ϵ2)2(f ′)2 . (E.18)

We can lower the order of the equation by defining g(f) = f ′:

(1 + ϵ2 +
√
4ϵ2 + (1− ϵ2)2g2)g′g

(1− g2)
√
4ϵ2 + (1− ϵ2)2g2 = − 2

f
. (E.19)
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And the solution is

g2 = ϵ4 + (1− (c1f)2)2 − 2ϵ2(1 + (c1f)2)
(1− ϵ2)2 , (E.20)

where c1 is some constant. By requiring g(f(1/2) = f0) = 0, we arrive at

c1f0 = 1− ϵ, c1 = 1− ϵ

f0
. (E.21)

Having found g as a function of f , we can now solve for f as a function of t. Setting
g = f ′ leads to

1
c1
H(c1f, ϵ) =

t

1− ϵ2
+ c2, (E.22)

where

H(x, ϵ) =
(1 + ϵ)

√
1−

(
x

1−ϵ

)2
√
1−

(
x

1+ϵ

)2
F

(
arcsin( x

1+ϵ),
(

1+ϵ
1−ϵ

)2
)

√
ϵ4 + (1− x2)2 − 2ϵ2(1 + x2)

, (E.23)

and F (x, a) is the incomplete elliptic integral (we use the same conventions as Wolfram
Mathematica). Taking the limit x → 1 − ϵ we have

H(1− ϵ, ϵ) =
K

[(
1−ϵ
1+ϵ

)2
]

1 + ϵ
, (E.24)

where K is the complete elliptic integral.
We can use this expression to find c1 and the value of the function at the maximum

(t = 1/2)

2(1− ϵ)K
[(1− ϵ

1 + ϵ

)2
]
= c1, f0 = 1

2K
[(

1−ϵ
1+ϵ

)2
] . (E.25)

As a consistency check we verify that for ϵ = 1 we reproduce the old result lim
ϵ→1

f0 = 1/π

(the solution for a single branch was sin(πt)
π ).

The “on-shell” action can be rewritten as

I(ϵ) = 2
f0∫

0

df

g(f) (W (g(f), ϵ) + 2 log f) , (E.26)

where f0 and g(f) are given by

f0 = 1

2K
[(

1−ϵ
1+ϵ

)2
] , (E.27)

g2(f) = (f2 − f2
0 )

(1 + ϵ)2f4
0

[
(1− ϵ)2f2 − (1 + ϵ)2f2

0

]
. (E.28)
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ϵ
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1

I[ϵ]

Figure 7. Numeric values of I(ϵ), shown in blue, vs the asymptotic value I(1) = 2 log 2
πe for ϵ = 1

(analytic value for the single branch), in red. Also, the asymptotic behavior I(ϵ) = 2 log 2
πe +(1− ϵ)2/8

for ϵ→ 1 (E.48) (shown in dashed black), and the asymptotic behavior (E.40) for small ϵ (shown in
dashed brown).

Written explicitly, this integral is rather cumbersome and difficult to deal with. The numeric
plot of I as a function of ϵ is shown in figure 7. The asymptotic behavior of the moments is

logµ2n ≈ nI(ϵ) + 2n log(2αn). (E.29)

If ϵ = 1, I(1) = 2 log 2
πe and logµ2n ≈ 2n log 4αn

πe .
Leading asymptotic behavior of µ2n for large n is fully determined by the location of the

singularity of the correlation function C(t) along the imaginary axis t = iτ∗,

logµ2n ≈ 2n log 4α0n

πe
, α0 = π/(2τ∗). (E.30)

As we discussed in section 2.2, in field theory, symmetrically ordered correlation function (2.6)
always has the singularity at τ∗ = β/2, and α0 = π/β. In the scenario of two slopes, we
can express αodd, αeven (4.8) in terms of α0 and ϵ

αodd
α0

= 2e−I(ϵ)/2

πe

1√
ϵ
, (E.31)

αeven
α0

= 2e−I(ϵ)/2

πe

√
ϵ. (E.32)

In particular, plotting αodd/α0 and αeven/α0 numerically, as a function of ϵ, see figure 8,
we find that

αodd ≥ α0 ≥ αeven (E.33)

always holds.
We remind the reader that, strictly speaking, αodd and αeven are defined as slopes of faster

and slower growing linear branches correspondingly, with no regard to whether corresponding
index n is even or odd. In other words, the choice ϵ ≤ 1 introduced toward the end of
section E.1 implies that by our definition αodd ≥ αeven.

As discussed in the main text, when C(t) → 0 for t→ ∞, two slopes are only possible if
the slope of the odd branch is larger than the slope of the even branch, consistent with (E.33).
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αodd/α0

αeven/α0

0.2 0.4 0.6 0.8 1.0
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Figure 8. Ratio of αodd/α0 (blue) and αeven/α0 (orange) as a function of ϵ, superimposed with the
asymptotic behavior (E.50), (E.51) for ϵ→ 1 (dashed black), and (E.43), (E.44) for ϵ→ 0 (dashed
brown).

It is also conceivable (although no examples are known) that when C(t) asymptotes to a
non-zero constant, bn might split into two linearly growing branches (for even and odd n),
with αodd ≤ αeven. In this case (E.33) will read αodd ≤ α0 ≤ αeven.

E.3 Small ϵ expansion

In this subsection, we continue discussing the case of two linear branches with different
slopes and will determine the small ϵ behavior of I(ϵ). First of all, since we know the exact
value of f(1/2) we can find the limit

f(1/2) = f0 ≈ 1
| log ϵ| . (E.34)

Next, at small ϵ (E.20) simplifies to

f ′(t) = 1− (f(t)/f0)2, (E.35)

which is solved by f(t) = f0 tanh(t/f0). While this solution seems to not be symmetric under
t → 1 − t, it should be thought of as only applicable at t < 1/2 and defined by symmetry
for t > 1/2. This function is essentially constant for t ≫ 1

| log ϵ| and, thus, stitching it with
a different function at t = 1/2 is appropriate.

Now, we expand W (f ′, ϵ).

W (f ′, ϵ) ≈ S(f ′) + | log ϵ|(1− f ′), (E.36)

I(ϵ) = 2
1/2∫
0

dt(S(f ′)− | log ϵ|f ′) + | log ϵ|+ 4
1/2∫
0

dt log(f), (E.37)

∞∫
0

(S(f ′)− | log ϵ|f ′) ≈ π2/4− log(4)
| log ϵ| − 1, (E.38)

1/2∫
0

dt log(f) ≈ −π
2

8
1

| log ϵ| −
1
2 log | log ϵ|. (E.39)
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Collecting all the terms together,

I(ϵ) = | log ϵ| − 2 log | log ϵ| − 2− 2 log 4
| log ϵ| + · · · . (E.40)

Since the leading behavior of moments is

logµ2n ≈ nI(ϵ) + 2n log(2αn), (E.41)

this means corresponding correlation function C(t) will have a singularity at

it = τ∗ ≈ −ϵ
1/2 log ϵ
α

(E.42)

and
αodd
α0

= − 2
π
log ϵ e− log(4)/ log ϵ, (E.43)

αeven
α0

= − 2
π
ϵ log ϵ e− log(4)/ log ϵ. (E.44)

We can check this result by comparing with the small radius expansion (4.4), when, at
leading order

α = 2π
βR

e−
π

4R ϵ = 4e−
π

2R , R→ 0, (E.45)

and we restored β-dependence. Plugging this into (E.42) yields τ∗ = β/2, which is the
universal result for field theory and readily follows from (4.1). In other words, small radius
expansion (4.4) is in agreement with (E.42).

E.4 1 − ϵ expansion

Let us define ϵ = 1 − δ. We can expand

f0 ≈ 1
π
− δ2

16π . (E.46)

The correction to the action is

δS = δ2

4

1∫
0

dt(1− (f ′)2). (E.47)

Since the variation of the action vanishes on the saddle point solution the contribution coming
from the change in the saddle point will be of order δ4. Thus, to leading order we only
need to evaluate the value of (E.47),

δS = δ2

8 . (E.48)

Finally,

logµ2n = 2n
(
log 4αn

πe
+ δ2

16

)
+O(δ4). (E.49)
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This means, for δ ≪ 1, the correlation function will have a singularity at it = τ∗ =
π/(2α)e−δ2/16. For field theory, in full generality we expect this to be equal to τ∗ = β/2,
and hence α = π/βe−δ2/16. This of course reduces to standard result bn ∼ π

βn when there is
one linear slope, as in conformal field theories in flat space considered in [4]. For the “two
slopes behavior” (4.8) we find in full generality,

αodd = α0(1− δ)−1/2e−δ2/16, (E.50)

αeven = α0(1− δ)+1/2e−δ2/16, (E.51)

when δ ≪ 1, i.e. when αeven/αodd is very close to one. It would be interesting to compare
this prediction with the large R limit of bn for (4.1).

E.5 Persistent staggering behavior

In section 3 we saw that for massive theories Lanczos coefficients exhibit “persistent staggering”
behavior (3.1). It also can be described via the general formalism developed in section E.1
above. We assume beven = αn + ce, bodd = αn + co and in this case ϵ = 1 + c/n + . . .

where c = co − ce is a constant. For c = 0 the problem reduces to the original single-slope,
no intercept problem, which is solved by f(t) = sin(πt)

π . For non-zero c we treat c
n as a

perturbation and obtain

W (f ′, ϵ) = (c=0 part) + c2 sin(πt)2

4n2 + . . . (E.52)

Upon integration, the leading-order correction is c2

8n , while the c = 0 result with ce = co ̸= 0
was calculated in [4],

logµ2n = 2n log 4αn
πe

+ ce + co

α
log(2n) + · · · (E.53)

It is clear that c2

8n is subleading and does not affect the singularity behavior of C(t) ∼ (t−
iτ∗)−2∆, which follows from (E.53),

τ∗ = π

2α, 2∆− 1 = ce + co

α
. (E.54)
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