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Abstract—We investigate a twin-timescale joint beamforming
problem for multiple intelligent reflecting surfaces (IRSs)-assisted
multi-user mmWave orthogonal frequency division multiplexing
(OFDM) systems, where the base station (BS) employs a hy-
brid analog and digital precoder. To alleviate the burden of
frequent channel state information (CSI) acquisition and reduce
design complexity, we devise the passive beamforming vector and
the analog precoder based on statistical CSI, while the digital
precoder is designed based on low-dimensional instantaneous
CSI. Specifically, the former long-term optimization can be
formulated as a stochastic optimization problem. To address this
problem, we propose two different solutions. The first method
devises the passive beamforming vector and the analog precoder
by maximizing the ergodic channel gain. We also propose a
deep unrolling-based method to provide a unified framework
for the stochastic optimization problem. Our simulation results
demonstrate the effectiveness and computational efficiency of the
proposed methods.

Index Terms—Intelligent reflecting surfaces, millimeter wave
communications, twin-timescale beamforming

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) have emerged as a
competitive candidate for future 6G communications, owing
to their ability to smartly reconfigure the wireless signal prop-
agation environment [1]. In particular, IRSs have shown great
potential in addressing the blockage issue in mmWave/THz
communications through joint active and passive beamforming.
However, joint beamforming design requires instantaneous
channel state information (CSI), which necessitates abundant
training overhead. In contrast, statistical CSI remains invariant
over a long time duration and can be obtained with much
lower training overhead [2]. Recent works have struck an
elegant tradeoff between system performance and training
overhead by leveraging two-timescale beamforming, where
passive beamforming at the IRS is designed based on long-
term statistical CSI, and digital precoding at the base station
(BS) is optimized based on short-term instantaneous CSI of
the effective BS-user channel [3], [4]. However, BS typically
adopts a large-scale antenna array to combat severe path
loss in mmWave/THz communications, thereby making the
digital precoder design in [3], [4] computationally intensive
and energy-inefficient. To address these issues, [5] considered
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a twin-timescale beamforming approach for downlink single-
user (SU) MIMO systems with a hybrid structure. Specifically,
the passive beamforming at the IRS and analog precoding at the
BS are designed to maximize the upper bound of the ergodic
rate, which is calculated based on statistical CSI. On the other
hand, digital precoding is devised based on the instantaneous
CSI of the low-dimensional equivalent channel. Despite its low
complexity, the upper bound in [5] in SU-MIMO systems may
result in a large condition number which is unfavorable for
increasing the ergodic rate. Furthermore, the upper bound can
not be readily extended to multi-user scenarios due to mutual
user interference, thereby rendering long-term optimization
almost intractable in such cases.

In this paper, we investigate the twin-timescale beamforming
problem for multi-IRS-assisted multi-user mmWave OFDM
downlink systems. We formulate the twin-timescale problem
as a non-convex stochastic optimization problem and then
decouple it into long-term and short-term optimization prob-
lems. By exploiting the shared statistical CSI among different
subcarriers, we propose to maximize the ergodic channel gain
for long-term optimization and employ a multi-ratio fractional
programming (FP) algorithm for short-term optimization. Fur-
thermore, we propose a deep unrolling-based method to provide
a unified framework to address the stochastic optimization
problem. Specifically, we use a deep unrolling neural network
to learn the input-output relationship of the short-term opti-
mization problem, based on which the long-term optimization
variable can be trained using backpropagation techniques.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

In this paper, we consider a wideband mmWave OFDM
system, where N IRSs are deployed to assist the downlink
transmission from the BS with NV, antennas to K single-
antenna users. To reduce the hardware cost, the BS adopts a
hybrid structure with Ngrp < N; radio frequency (RF) chains.
Let sj, be the data symbol for user k, the transmitter first
precodes sy, at each subcarrier p = 1,..., P, using a low
dimensional digital precoding vector wy, € CNrex1 ' then
transform the signal into time domain with P-point inverse
discrete Fourier transforms (IDFT) followed by cyclic prefix
(CP) addition at each RF chain. Subsequently, the analog
precoding matrix Frp € CNt*Nrr ig applied to generate the
final transmitted signal. For simplicity, define f, , = Frrwy,
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as the effective precoding vector for user k at subcarrier p.
Then, the transmitted signal at the pth subcarrier is given by

p = Souey Frpskp satistying ||z,]|3 < P, where P, is the
total transmit power. Moreover, the nth IRS is a uniform planar
array (UPA) With M, = Mn .y X M, . passive reflecting ele-
ments. Let ®,, £ diag(v/’) be the reflection phase shift matrix
of the nth IRS with v, "4 [e7¥na1 .. eifnmn]H ¢ CMnx1
denoting its passive beamforming vector and ¢y, ., € [0,27)
denoting its phase shift of the mth passive reflecting element.
It should be noted that the reflection phase shift matrix is
frequency flat over different subcarriers. Let G, [p] € CMn >Nt
T k[p] € CMn*1 and dy[p] € CN+*! denote the BS - nth IRS,
nth IRS - kth user, and BS - kth user channels at subcarrier
p in the frequency domain, respectively. Then, the effective
channel between the BS and the kth user at subcarrier p can
be characterized as

N
heff k[ i £ Zn:l
N
=> v Hupl+dpleCM )

where H , 1[p] £ diag(rﬁ{ «P]) G [p] represents the cascaded
BS- nth IRS - kth user channel. As a result, the received signal

of the kth user at subcarrier p is given by

rH [ ®.Golp] + df [p)

K
H H
Yk.p :heff,k[pifk,psk@ + heff,k[pi Z fj,psjvp +nkp, (2
J#k

where 1y, ~ CN(0,07 ) denotes i.id. complex additive
white Gaussian noise. The received signal-to-interference-noise
ratio (SINR) of the kth user at subcarrier p can be calculated
as
H 2
|Pete i [P) FrREWE |

Vep = . (3)
Z];ﬁk |heffkipiFRij7P|2 + U/%,p

B. Channel Model

We adopt a geometric wideband mmWave model [6] to
characterize the related channels. Specifically, the BS-nth IRS
channel G, [p], the BS-kth user channel dj[p], and the nth
IRS- kth user channel ,, ;[p] in the frequency domain can be
respectively characterized as

Ln
n p

[p] = Z Qg,lar (19;,1’7;,1) afl (¢fz,l) e~ I2mfeTi tP 4

=1

Iy,
di[p) = ofjau (Ghy) e 721 P, )
1=1
Ink
. n,k_
T k[p] = Z On k1 Gr (ﬁz,k,zﬁz,k,z) eI lem ’p’a (6)

=1

where f, = 1/T; is the sampling frequency, L,,, I, and J,
denote the number of paths of the corresponding channels,
05, ~ CN(0,02,,),¢c € {G,r,d},i € {n,k,{n,k}} repre-
sents the associated complex path gain, a, (a;) denotes the nor-
malized array response vector at the IRS (BS); {7/, (¥, k}" a
denotes the corresponding time delay, ¥ ; (7;, ;) denotes the

azimuth (elevation) angle of arrival (AoA) of the BS-nth IRS
link, ¢! , is the associated angle of departure (AoD), (}
denotes the AoD of the BS-kth user link, and 9%, , , (7%, )
denotes the azimuth (elevation) AoD of the nth IRS-kth user
link, respectively.

Based on (4)-(6), the cascaded BS-nth IRS-kth user channel
H,, ;.[p] can be further expressed as

Ln nk

I
=1 j=1

X a (19’7—19? T — t»)aH

T i _]7'-)/7, ’Y_] t

(a) Un,k

(%)
S Qu
u=1

()
®

where U, ,, = L,, X Jn,k and the mapping in (a) is given by
(7]

—2mfs fxu a, (ﬁua 'Yu) afl

(i = D)+ 35— u, 07 (0))" = 05, 7 — Kj = Xu,

(®)
CATACAN

©)

JIn,k}s in (b) we define

CMnXUn,k,

ar (0: - 193'7'7; - '7;) = a, (§u7'7u) , Qt

with i € {1,2,...L,}, j € {1,2,.
Drg .k = lar(J1,71) ... ar(ﬁ Un, kvVUn k)i €
Sn,k £ djag(g?e*jQWfs FXu QUn,k J27Tfs%XUnyk) c
CUnwkxUnk and Dp,p = |a(oh) ... at((b);]n,k)] €
CNexUnik; 0% s the uth cascaded path gain With Zero mean
and variance given by o2, £ E[|oS|*] = 0 ;02

Similarly, the BS-kth user channel dj[p] can be recast as

di[p] = Dga,, Bi[pl, (10)

- ay(Cf )] € CNe¥Ikand B, £
,jzwj»sL’;k%]T € Clrx1,

where Dg 4, = [at(ﬁi,i)

d —j2rfakz
[0f 1677 Tl e Ok, I

C. Problem Formulation

As revealed by real-world mmWave channel measurements
[8], the statistical channel information, including the fading
channel statistics o2 ;1 and angle parameters such as AoA and
AoD, which depend on the relative positions of the transceivers
and scatters, remains invariant within tens to even hundreds
of coherence blocks. Therefore, it is natural to devise the
passive beamforming vector and the analog precoder based on
statistical CSI in order to avoid frequent instantaneous CSI
acquisition.

To strike a good balance between the training/computation
resources and system performance, the analog precoder F'rp
and the passive beamforming vectors {v,, } are designed based
on long-term channel statistics, which is termed long-term
optimization. By contrast, short-term optimization aims to
optimize the digital precoder based on the instantaneous CSI
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of the reduced equivalent channel ﬁcqyk[p], ie.,

N
R [] 2 (3 GH pldiag(v,)rn i) + dif [p) Fre. (1)

n=1
We aim to maximize the ergodic sum rate of all subcarriers
based on the twin-timescale CSI. Such a problem is formulated
as

max max 10 (1+ ,
p=1k=1
s.t. TI‘(FRFWpr FRF) S Pta
|Fre(i, ) =1,

[on(m)] = 1, (12)

where Wp £ [wl,p, Ce ,wK,p] S (CNRFXK, FRF(i,j) is
the (i,7)th element of Fgrp, v,(m) is the mth entry of v,
the expectation is computed over the distribution of wideband
mmWave channels {H,, [p]} and {dy[p]}, and 74 p is defined
in (3). The problem (12) is highly non-convex due to the
coupling of optimization variables and non-convex unit modu-
lus constraints. The long-term stochastic optimization is even
more challenging because the objective function in (12) hardly
admits an analytical expression. To address this issue, we
propose two efficient methods based on the ergodic-channel-
gain-maximization (ECGM) criterion and a deep unrolling
framework, respectively.

III. SHORT-TERM OPTIMIZATION

To deal with (12), suppose the analog precoder F'rr and
passive beamforming vectors v,, are pre-optimized. Then, the
BS can estimate the equivalent channel heq x[p] in (11) with
a much lower training overhead, based on which the digital
precoding vector wy;, can be devised to maximize the sum
rate. In particular, the short-term optimization problem can be
characterized as

|heq k [ ] wk7p|2

1 K
— E log,
K
P k=1 Zj;ék |heq,k [p] ’wj;P|2 + Uﬁ,p

K 2
S.t. Zk:l ||FRFw;C,pH2 <P.

It can be seen that the problem (13) is a conventional MIMO
digital precoding problem that has been extensively explored
in the literature. In this paper, we adopt the multi-ratio frac-
tional programming (FP) method in [9] to obtain a suboptimal
solution, in which the iteration process can be performed as

max
{wr,p}

13)

~H
|heq,k [p] wk;P|2

oy . A
where «y, and [, are auxiliary variables, A =

K - - .
Zk:l |ﬂk,p|2hcq,k [p] hcq.,k [p] + APFQFFRF, and )\p is de-
cided by the KKT condition. The FP algorithm is guaranteed
to converge to KKT point [10].

IV. LONG-TERM OPTIMIZATION: A ECG MAXIMIZATION
APPROACH

To tackle the stochastic long-term optimization problem,
we first rewrite the optimized digital precoders obtained via
(13) as a function of the phase shift vectors {v,,} and analog
precoder Fryr, i.e., wz_’p = g,({vn}, Frr). Then, the long-
term optimization problem in terms of {{vn}, FRF} can be
recast as

P K
1
_]E 1 1 )
(3, P2 2 om k)
=1 k=1
K
s.t. Zk:l HFRka,p”z <k
|FRF(17])| = 17
[on(m)| = 1, (n

where

Vi ({vn}, Frie) £ (18)

K ~H
Zj;&k |heq,k [p] wx

Unfortunately, w3, ,, does not have an analytical expression in
terms of {v,} and Fry. Consequently, the ergodic sum rate
does not have an explicit expression of {v,} and Fgrp. To
address this difficulty, we propose an effective criterion termed
ergodic-channel-gain-maximization (ECGM). In particular, we
optimize the long-term variables to maximize the ergodic
channel gain of all users and leave the task of multi-user
interference cancellation to the digital precoder. The ECGM
criterion yields the following problem!

max

{vn) Fre P ZE [Tr (

s.t. |FRF(7’7.])|:17
[vn(m)| =1, (19)

where ﬂcq [p] £ [ﬁcqﬂl[p] ) ﬁcq,K[pH € CNrrxK and
Req i [p] is defined in (11).

So far, we have succeeded in decoupling long-term and short-
term variables. However, the analog precoder F'rr and passive
beamforming vectors {v,,} are still coupled in the objective
function in (19). To solve (19), we develop an alternating
optimization algorithm to alternately optimize Frr and {v,}.

e

o) Hoq )]

ahp =1+ ———p 44 . . .

> ik Peqx [P) wjp|* + cr,ip A. Design of passive beamforming vectors {v, }

/T+ ag, pﬁik wk_’p In this subsection, we optimize the passive beamforming
Br,p = " ) (15)  vector v,, while keeping the other variables fixed. The objective

2
Z_j:l eq,k [ ] f]i}p + o’k_,p
- The transmit power constraint can be satisfied by optimizing the digital
Wkp = vV L+ O"“PB’%DA hequ [p] ) (16) precoder and is thus omitted.
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function in (19) can be recast as
1 P - H
7 2B (T (Healr
p=1
where
1 P K
Ra éﬁ Zle Zk:lE 2l
@1 i " E|D S S D
P szl Zk:l [ Ron oSk [P] Qn 1Sk [P] DR, JJ

DR Wt H M, x M
=Y DrniZnpDy € CHM

| Heo[p])] = ol Ryva + 1, (20)
H, lp|FreFeHY

2D

. A pH H .
where in (a), we define Q. = Dy, . FrrFrpDg n 1 in
(b) we define

En,k £ E[Sn,k [p] Qn,ksi{k [p]]
:diag(Qn,k(lvl)U%,l . Qn,k(Unvk’U"-,k)a.%yUn,k) (22)

where Q, k(i,7) is the (i, j)th entry of @, ; and %, ;. is flat
to all subcarriers; C; is a constant irrespective of v,,. Then,
the optimization problem of v,, can be expressed as

max vIR,v,, st |u.(m)=1,

Un

(23)

In spite of the non-convex unit modulus constraints, the prob-
lem (23) can be efficiently solved via manifold optimization-
based algorithms [4], where the detailed procedures are omitted
for brevity.

B. Design of analog precoder FRry

In this subsection, we optimize the analog precoder F'rr by
fixing the passive beamforming vectors {v,}. The objective
function in (19) can be recast as

%Z: VE [T (B (o) Hea 9]
=5 Zp_ [Tr(Ffp Heg[p|H 5 [p) Frr)| + Ca
=Tr(FRp RFgrr) + Co,
where B 2 1/PY)  E[Heg[p|H[p]] € C¥*Nt and
H.z 2 [heg1 ;.- herx] € CNeXK; Oy is a constant

irrespective of F'rp. Moreover, the covariance matrix R can
be calculated as

R=y > B[HalHED]

K
=Y (Dsa,BiDf,, + Z Dy, Vo Dg k) -

(24)

D A

k=1 n=1
(25)
where By £ EB, AL = diag(odprr-  ohun):
Vi £ diag(cr,...,cu,,)s cu £ 08, Var(u,u), and

A H
Vi & DRy 1 0n ) DR k-

Then, the optimization problem of F'rr can be characterized
as

Without the unit modulus constraint |Frp(i,j)| = 1, the
problem is a generalized eigenvalue problem, and its optimal
solution can be obtained by SVD. Denote its eigenvalue
decomposition as R = USU"™. Then, the optlmal FRry
without constraint is given by Fgp = U(:;,1 : Ngp)T,
where U(:,1 : Ngrp) denotes the submatrix comprising its
Nrr eigenvectors associated first largest Ngr eigenvalues and
T € CNreXNRF g an arbitrary non-singular matrix. Then, we
obtain a near-optimal by projecting Fr onto the manifold
|FRF(Z,j)| = 1, i.e., F;{F = exp(leU(:,l : NRF))

By alternately optimizing F'rr and {v,,}, the algorithm can
converge to a critical point of the problem (19).

It is observed from (23) and (26) that the design of passive
beamforming vectors {v,} and the analog precoder Fgrp
depends only on spatial correlation matrices R, ; and R
which vary much more slowly than instantaneous CSI. Briefly
speaking, the long-term design of Frr and {v,} aims to
maximize the overall ergodic channel gain without considering
multi-user interference while the short-term design of {wy ,}
aims to cancel multi-user interference and maximize the sum
rate.

V. LONG-TERM OPTIMIZATION: A DEEP
UNROLLING-BASED APPROACH

As discussed earlier, the main obstacles to solving the long-
term stochastic optimization (17) include 1) The challenge in
calculating the expectation in the objective function in (17);
2) The difficulty in obtaining analytic expression of wy ,
in terms of {{v,})_,, Frr}. To address the first issue, we
adopt the well-known sample average approximation [11] to

simplify the objective function. Spe01ﬁcally, denote Hgam =

{{{r], Lol 1 G Ip) dy ) D 1}t , as a set of iid.
wideband channel samples whose statlstlcal characteristics are
in accordance with the known statistical CSI of actual channels.
Hence, the expectation in (17) can be approximated by

K P

TE Y lom(1 +97,)

=1p=1

1 :I; K P
zﬁzzzbgz L+ pt) s

27)

where
~t
| (g e [P) ™ (w], ,)*|?
~t )
Zj;k |(heq,k[p])H (w_tj,p)*|2 + Ul%,p
(28)

Yepi({vn}, Frr) £

in which (~Zq ) [p] can be obtained as (11) by adding
superscript ¢ and (w} p) denotes the associated optimized
digital precoding vector. According to the law of large numbers,
the approximation error would vanish when 7' is sufficiently
large.

On the other hand, a deep unrolling neural network (DU-
NN) has proven to be highly efficient to address the latter

max Tr(Ff{FRFRF) st. |Frr(i,j)|=1. (26) issue [4]. Specifically, the deep unrolling neural network can
Frr ’ ’ unfold the traditional iterative algorithms into a layer-wise
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Channel enhancement NN Deep unrolling-based NN

(Long-term) (Short-term)
[P Trainable
19,/ @ o Parameters
|
lunilmo(viulus exp(-‘l{ EXP("I exp(+]
operation
{vn}‘FKF 4 4 A
1 o Wil 21
HeoH, |j v, W Vo B S Y et
W, P Layer 1 Layer / Layer Ly, O
random
samples
H,
Fig. 1. The NN presentation of the proposed deep unrolling-based neural
network.

structure and learn the mapping between the channel sample
H iq[p] = [ﬁzq,l[p], ,ﬁzq, x[p]] and the optimal digital
precoding matrix (W})* £ [wf , ... , W ,,] through end-to-
end training. After the mapping is learned, the relationship
between (W;)* and H Zq [p] can be further characterized by a
neural network in terms of long-term parameters {{v,,}, Frr}.
In this case, the long-term optimization variables {{v,, }, Frr}
can be trained via backpropagation techniques. In the follow-
ing, we elaborate on the details of the network structure.

A. Network structure

As illustrated in Fig. 1, the overall NN consists of a channel
enhancement NN (CENN) that accounts for long-term opti-
mization, a deep unrolling-based NN (DUNN) unfolding the
FP algorithm for short-term optimization, and a loss function.

The CENN is responsible for generating the chan-
nel samples Hgan and converting them into equivalent

channel samples {h []},C 1p 1.+=1» Which can be pa-

rameterized by long-term variables, i.e., (hiqyk)H [p] =
(CN (G ) diag(v,)r!, . [p) + (i) [p)) Frp. Tn order
to ensure that vectors {v,} and the matrix Frp satisfy the
unit modulo constraints, we introduce corresponding auxiliary
vectors {w,, } and matrix € as trainable parameters. After these
parameters are trained, the passive beamforming vectors {v,, }
and F'rr can be obtained by 1m lementing entry-wise modulo

(m Q(i,j)

operations, i.e., v,(m) = Iw o7 and Fre (i, j) = e
On the other hand, the main goal of the deep unrolling-
based NN (DUNN) is to learn the complex dependencies
between the optimal digital precoder (W;)* and equivalent

channel samples I;Tiq[p]. Specifically, DUNN unfolds each
iteration of the original FP algorithm, as shown in (14)-(16),
into a layer in the DUNN. Each iteration depends on the
Lagrangian multiplier )\; which is then transferred into a series
of network parameters {\;}~ ,, where L denotes the total
number of layers of the DU-NN. It should be mentioned that
these parameters {\;} , are flat to all channel samples and
subcarriers to reduce the dimension of trainable parameters,
which, even so, can achieve decent performance as will be
shown in the simulation results. To assure \; > 0, we introduce
auxiliary variables G £ {6,}E | as actual trainable parameters
and let \; = e%. At first, the precoding matrix W;’ZZO for

eq,k

each subcarrier is initialized based on the maximum-ratio-
transmission strategy. Then, the equivalent channel samples and
the optimized precoding matrix W;’l in the Ith layer are fed
into the [ 4 1th layer, whose output is the optimized precoder
W;’Hl. In each layer, the precoding matrix W;’l is updated
with the trainable parameters {\;}£ ; according to (14)-(16).
To satisfy the transmit power constraint and prevent gradient
explosion during the training, a scaling factor is applied to the
precoding matrix such that its norm square does not exceed
the maximum transmit power. Through end-to-end training,
the DUNN learns the trainable parameters {\;}~_ , and finally
outputs the optimal digital precoder (W;)*.

As for the loss function, we can utilize sample average
approximation (27) to simplify the objective function in (17).
Moreover, note that channels at different subcarriers share
the same channel statistics including angle parameters and
variance of path gains, we can generate a small batch size
of channel samples with a limited number of subcarriers, say
B < T and Py < P, to further reduce the computational
complexity. In addition, the vectors {w,, }, matrix €2, and vari-
ables g aIe treated as the actual trainable network parameters,
ie, B £ {{w,})_,,9,G}. As a result, the loss function
of the proposed DU-NN can be recast as L (B;Hsam) =
_BLPO Zf; Zszl 2511 logy (1 + VI:,p,t) , Where ’Y/:,p,t is de-
fined in (28). After the establishment of the network architec-
ture, the loss function’s stochastic gradient with respect to the
trainable parameters B is calculated based on the chain rule
during the backpropagation stage. Subsequently, the Amsgrad
optimizer is utilized to update the values of the trainable
parameters. In this way, the proposed DU-NN can achieve
better performance than the traditional FP algorithm while
inheriting the interpretability from the iteration procedure.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
methods. We consider N = 2 IRSs to assist the downlink trans-
mission, which are deployed at (50, 20,3) m and (50, —20, 3)
m, respectively. The BS is located at (0,0,25) m while K = 2
users are randomly distributed within a circle centered at
(50,0,3) m with a radius of 10 m. We assume that BS-nth
IRS links and nth IRS- kth user links are LOS dominated
whose Rician factors are set to 7 dB and 10 dB, respectively; by
contrast, the BS-kth user links comprise only NLOS paths. The
variances of complex path gain for LOS and NLOS scenarios
are based on the path loss model for Urban macro (UMa) in
3GPP TR 38.901 [12]. Also, each coherence interval consists
of T, = 40 time slots. The noise power is set as —90 dBm.
The central carrier frequency is set to 30 GHz and the sampling
rate is set to fs = 0.08 GHz, with time delays drawn from a
uniform distribution Z/(0, 100) ns. The total number of OFDM
subcarriers is set to P = 32. We set L = 2 and the learning
rate 0.75 for fast convergence. For training efficiency, we set
Py =2 and B = 10 during the training process.

The proposed methods are termed ECGM and DU-NN, re-
spectively. Moreover, the state-of-the-art methods [5], [10], [13]
can be extended to the considered scenarios as benchmarks, i.e.,
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Fig. 2. Average sum rate and average run time comparison.

o [-CSI-based: The joint optimization method based on the
perfect instantaneous CSI [10] .

e MRCM: The multiple-reflection coefficient matrix
(MRCM) algorithm is adopted to optimize analog
precoder F'rrp based on statistical-CSI [5] while the
short-term optimization is based on FP algorithm.

o MLP-NN: The “black-box” multi-layer perceptron (MLP)
NN is built for short-term optimization while the long-
term optimization is optimized by the proposed DU-NN.

o Angle-based: The analog precoder F'rr is designed to
align the largest Nyr path in terms of the magnitude of
path gains [13] while the short-term optimization is based
on FP algorithm.

In Fig. 2 (a), we plot the average sum rate of respective
methods as a function of the transmit power P;, where we set
N; = 64, Ngr = 4, and M,, = 16 x 16 = 256. It can be
observed that the proposed ECGM performs much better than
the angle-based method [13] thereby demonstrating the efficacy
of the criterion. Also, the performance of the proposed ECGM
method nearly coincides with that of the MRCM method which
also aims to maximize the ergodic equivalent channel power
in essence. Moreover, it is seen that the proposed DU-NN
outperforms other benchmarks based on twin-timescale CSI
and the performance gap becomes more evident when the
transmit power P, increases. Additionally, the proposed DU-
NN can achieve performance close to that of the I-CSI-based
method with only a slight performance loss. On the other hand,
long-term optimization is computationally more demanding.
To further investigate the computational complexity of the
algorithms, we present the average run time as a function of
the number of reflecting elements M, where we fix M, = 16
but increase M, and set P, = 30 dBm. Notably, the angle-
based method admits a closed-form solution and thus requires
negligible time, hence, it is not depicted in the figure. Our
results demonstrate that the proposed DU-NN method is more
computationally efficient than the MLP-NN method, indicating
the superiority of the deep unrolling technique over traditional
MLP-NNs. Also, both the MRCM and the proposed ECGM
method require considerably less time than other methods when
M < 192. However, the MRCM method exhibits a sharp
increase in computation time when M > 256, while the

proposed ECGM method remains nearly constant. One possible
explanation could be that the MRCM method updates the phase
shifts of each individual IRS element-by-element, which would
result in a remarkable increase in time consumption when M
increases. As a result, the proposed ECGM method is the most
computationally efficient among the considered methods except
the angle-based method.

VII. CONCLUSION

In this paper, we investigated the twin-timescale beamform-
ing of IRSs and hybrid precoders in multi-user mmWave
OFDM systems. To tackle this stochastic optimization prob-
lem, we proposed two methods: the computationally efficient
ECGM method and the performance-wise superior DU-NN.
Our simulation results demonstrate the competitiveness of the
proposed methods in terms of spectral efficiency and computa-
tional complexity. Moreover, our proposed framework exhibits
promising prospects in generalizing to more complex scenarios.
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