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Abstract—We investigate a twin-timescale joint beamforming
problem for multiple intelligent reflecting surfaces (IRSs)-assisted
multi-user mmWave orthogonal frequency division multiplexing
(OFDM) systems, where the base station (BS) employs a hy-
brid analog and digital precoder. To alleviate the burden of
frequent channel state information (CSI) acquisition and reduce
design complexity, we devise the passive beamforming vector and
the analog precoder based on statistical CSI, while the digital
precoder is designed based on low-dimensional instantaneous
CSI. Specifically, the former long-term optimization can be
formulated as a stochastic optimization problem. To address this
problem, we propose two different solutions. The first method
devises the passive beamforming vector and the analog precoder
by maximizing the ergodic channel gain. We also propose a
deep unrolling-based method to provide a unified framework
for the stochastic optimization problem. Our simulation results
demonstrate the effectiveness and computational efficiency of the
proposed methods.

Index Terms—Intelligent reflecting surfaces, millimeter wave
communications, twin-timescale beamforming

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) have emerged as a

competitive candidate for future 6G communications, owing

to their ability to smartly reconfigure the wireless signal prop-

agation environment [1]. In particular, IRSs have shown great

potential in addressing the blockage issue in mmWave/THz

communications through joint active and passive beamforming.

However, joint beamforming design requires instantaneous

channel state information (CSI), which necessitates abundant

training overhead. In contrast, statistical CSI remains invariant

over a long time duration and can be obtained with much

lower training overhead [2]. Recent works have struck an

elegant tradeoff between system performance and training

overhead by leveraging two-timescale beamforming, where

passive beamforming at the IRS is designed based on long-

term statistical CSI, and digital precoding at the base station

(BS) is optimized based on short-term instantaneous CSI of

the effective BS-user channel [3], [4]. However, BS typically

adopts a large-scale antenna array to combat severe path

loss in mmWave/THz communications, thereby making the

digital precoder design in [3], [4] computationally intensive

and energy-inefficient. To address these issues, [5] considered

This work is supported in part by the National Science Foundation under
Grant ECCS-1923739, ECCS-2212940, and CCF-2316865.

a twin-timescale beamforming approach for downlink single-

user (SU) MIMO systems with a hybrid structure. Specifically,

the passive beamforming at the IRS and analog precoding at the

BS are designed to maximize the upper bound of the ergodic

rate, which is calculated based on statistical CSI. On the other

hand, digital precoding is devised based on the instantaneous

CSI of the low-dimensional equivalent channel. Despite its low

complexity, the upper bound in [5] in SU-MIMO systems may

result in a large condition number which is unfavorable for

increasing the ergodic rate. Furthermore, the upper bound can

not be readily extended to multi-user scenarios due to mutual

user interference, thereby rendering long-term optimization

almost intractable in such cases.

In this paper, we investigate the twin-timescale beamforming

problem for multi-IRS-assisted multi-user mmWave OFDM

downlink systems. We formulate the twin-timescale problem

as a non-convex stochastic optimization problem and then

decouple it into long-term and short-term optimization prob-

lems. By exploiting the shared statistical CSI among different

subcarriers, we propose to maximize the ergodic channel gain

for long-term optimization and employ a multi-ratio fractional

programming (FP) algorithm for short-term optimization. Fur-

thermore, we propose a deep unrolling-based method to provide

a unified framework to address the stochastic optimization

problem. Specifically, we use a deep unrolling neural network

to learn the input-output relationship of the short-term opti-

mization problem, based on which the long-term optimization

variable can be trained using backpropagation techniques.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a wideband mmWave OFDM

system, where N IRSs are deployed to assist the downlink

transmission from the BS with Nt antennas to K single-

antenna users. To reduce the hardware cost, the BS adopts a

hybrid structure with NRF ≪ Nt radio frequency (RF) chains.

Let sk,p be the data symbol for user k, the transmitter first

precodes sk,p at each subcarrier p = 1, . . . , P , using a low

dimensional digital precoding vector wk,p ∈ CNRF×1, then

transform the signal into time domain with P -point inverse

discrete Fourier transforms (IDFT) followed by cyclic prefix

(CP) addition at each RF chain. Subsequently, the analog

precoding matrix FRF ∈ CNt×NRF is applied to generate the

final transmitted signal. For simplicity, define fk,p , FRFwk,p978-1-6654-3540-6/22 © 2023 IEEE
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as the effective precoding vector for user k at subcarrier p.

Then, the transmitted signal at the pth subcarrier is given by

xp =
∑K

k=1 fk,psk,p satisfying ‖xp‖22 ≤ Pt, where Pt is the

total transmit power. Moreover, the nth IRS is a uniform planar

array (UPA) with Mn = Mn,y ×Mn,z passive reflecting ele-

ments. Let Φn , diag(vH
n ) be the reflection phase shift matrix

of the nth IRS with vn , [ejφn,1 . . . ejφn,Mn ]H ∈ CMn×1

denoting its passive beamforming vector and φn,m ∈ [0, 2π)
denoting its phase shift of the mth passive reflecting element.

It should be noted that the reflection phase shift matrix is

frequency flat over different subcarriers. Let Gn[p] ∈ CMn×Nt ,

rn,k[p] ∈ C
Mn×1, and dk[p] ∈ C

Nt×1 denote the BS - nth IRS,

nth IRS - kth user, and BS - kth user channels at subcarrier

p in the frequency domain, respectively. Then, the effective

channel between the BS and the kth user at subcarrier p can

be characterized as

hH
eff,k[p] ,

∑N

n=1
rH
n,k[p]ΦnGn[p] + dH

k [p]

=
∑N

n=1
vH
n Hn,k[p] + dH

k [p],∈ C
1×Nt (1)

where Hn,k[p] , diag(rH
n,k[p])Gn[p] represents the cascaded

BS- nth IRS - kth user channel. As a result, the received signal

of the kth user at subcarrier p is given by

yk,p =hH
eff,k[p]fk,psk,p + hH

eff,k[p]

K
∑

j 6=k

f j,psj,p + nk,p, (2)

where nk,p ∼ CN (0, σ2
k,p) denotes i.i.d. complex additive

white Gaussian noise. The received signal-to-interference-noise

ratio (SINR) of the kth user at subcarrier p can be calculated

as

γk,p =
|hH

eff,k[p]FRFwk,p|2
∑K

j 6=k |h
H
eff,k[p]FRFwj,p|2 + σ2

k,p

. (3)

B. Channel Model

We adopt a geometric wideband mmWave model [6] to

characterize the related channels. Specifically, the BS-nth IRS

channel Gn[p], the BS-kth user channel dk[p], and the nth

IRS- kth user channel rn,k[p] in the frequency domain can be

respectively characterized as

Gn[p] =

Ln
∑

l=1

̺Gn,lar

(

ϑr
n,l, γ

r
n,l

)

aH
t

(

φt
n,l

)

e−j2πfsτ
n
l

p

P , (4)

dk [p] =

Ik
∑

l=1

̺dk,lat

(

ζtk,l
)

e−j2πfsι
k
l

p

P , (5)

rn,k[p] =

Jn,k
∑

l=1

̺rn,k,lar

(

ϑt
n,k,l, γ

t
n,k,l

)

e−j2πfsκ
n,k

l

p

P , (6)

where fs = 1/Ts is the sampling frequency, Ln, Ik, and Jn,k
denote the number of paths of the corresponding channels,

̺ci,l ∼ CN (0, σ2
c,i,l), c ∈ {G, r, d}, i ∈ {n, k, {n, k}} repre-

sents the associated complex path gain, ar (at) denotes the nor-

malized array response vector at the IRS (BS); {τnl , ι
k
l , κ

n,k
l }

denotes the corresponding time delay, ϑr
n,l (γr

n,l) denotes the

azimuth (elevation) angle of arrival (AoA) of the BS-nth IRS

link, φt
n,l is the associated angle of departure (AoD), ζtk,l

denotes the AoD of the BS-kth user link, and ϑt
n,k,l (γt

n,k,l)

denotes the azimuth (elevation) AoD of the nth IRS-kth user

link, respectively.

Based on (4)-(6), the cascaded BS-nth IRS-kth user channel

Hn,k[p] can be further expressed as

Hn,k[p] =

Ln
∑

i=1

Jn,k
∑

j=1

̺Gi (̺
r
j)

∗e−j2πfs
p

P
(τi−κj)

× ar

(

ϑr
i − ϑt

j , γ
r
i − γt

j

)

aH
t

(

φt
i

)

(a)
=

Un,k
∑

u=1

̺Cu e
−j2πfs

p

P
χuar (ϑu, γu)a

H
t

(

φt
u

)

(b)
= DR,n,k Sn,k[p]D

H
B,n,k, (7)

where Un,k = Ln × Jn,k and the mapping in (a) is given by

[7]

(i− 1)Jn,k + j 7→ u, ̺Gi (̺
r
j)

∗ 7→ ̺Cu , τi − κj 7→ χu,
(8)

ar

(

ϑr
i − ϑt

j , γ
r
i − γt

j

)

7→ ar (ϑu, γu) , at
(

φt
i

)

7→ at
(

φt
u

)

,
(9)

with i ∈ {1, 2, . . . Ln}, j ∈ {1, 2, . . . , Jn,k}; in (b) we define

DR,n,k , [ar(ϑ1, γ
r
1) . . . ar(ϑ

r
Un,k

, γr
Un,k

)] ∈ CMn×Un,k ,

Sn,k , diag(̺C1 e
−j2πfs

p

P
χu , . . . , ̺CUn,k

e−j2πfs
p
P
χUn,k ) ∈

CUn,k×Un,k , and DB,n,k , [at(φ
t
1) . . . at(φ

t
Un,k

)] ∈

CNt×Un,k ; ̺Cu is the uth cascaded path gain with zero mean

and variance given by σ2
C,u , E[|̺Cu |

2] = σ2
G,iσ

2
r,j .

Similarly, the BS-kth user channel dk[p] can be recast as

dk[p] = DB,dk
βk[p], (10)

where DB,dk
, [at(ζ

t
k,1) . . . at(ζ

t
k,Jk

)] ∈ CNt×Ik and βk ,

[̺dk,1e
−j2πfsι

k
1

p

P . . . ̺dk,Ike
−j2πfsι

k
Ik

p

P ]T ∈ CIk×1.

C. Problem Formulation

As revealed by real-world mmWave channel measurements

[8], the statistical channel information, including the fading

channel statistics σ2
c,i,l and angle parameters such as AoA and

AoD, which depend on the relative positions of the transceivers

and scatters, remains invariant within tens to even hundreds

of coherence blocks. Therefore, it is natural to devise the

passive beamforming vector and the analog precoder based on

statistical CSI in order to avoid frequent instantaneous CSI

acquisition.

To strike a good balance between the training/computation

resources and system performance, the analog precoder FRF

and the passive beamforming vectors {vn} are designed based

on long-term channel statistics, which is termed long-term

optimization. By contrast, short-term optimization aims to

optimize the digital precoder based on the instantaneous CSI
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of the reduced equivalent channel h̃eq,k[p], i.e.,

h̃
H

eq,k[p] , (

N
∑

n=1

GH
n [p]diag(vn)rn,k[p] + dH

k [p])FRF. (11)

We aim to maximize the ergodic sum rate of all subcarriers

based on the twin-timescale CSI. Such a problem is formulated

as

max
{vn},FRF

1

P
E

{

max
{wk,p}

P
∑

p=1

K
∑

k=1

log2 (1 + γk,p)

}

,

s.t. Tr(FRFW pW
H
p FRF) ≤ Pt ,

|FRF(i, j)| = 1 ,

|vn(m)| = 1, (12)

where W p , [w1,p, . . . ,wK,p] ∈ CNRF×K , FRF(i, j) is

the (i, j)th element of FRF, vn(m) is the mth entry of vn,

the expectation is computed over the distribution of wideband

mmWave channels {Hn,k[p]} and {dk[p]}, and γk,p is defined

in (3). The problem (12) is highly non-convex due to the

coupling of optimization variables and non-convex unit modu-

lus constraints. The long-term stochastic optimization is even

more challenging because the objective function in (12) hardly

admits an analytical expression. To address this issue, we

propose two efficient methods based on the ergodic-channel-

gain-maximization (ECGM) criterion and a deep unrolling

framework, respectively.

III. SHORT-TERM OPTIMIZATION

To deal with (12), suppose the analog precoder FRF and

passive beamforming vectors vn are pre-optimized. Then, the

BS can estimate the equivalent channel h̃eq,k[p] in (11) with

a much lower training overhead, based on which the digital

precoding vector wk,p can be devised to maximize the sum

rate. In particular, the short-term optimization problem can be

characterized as

max
{wk,p}

1

P

K
∑

k=1

log2



1 +
|h̃

H

eq,k [p] wk,p|2

∑K

j 6=k |h̃
H

eq,k [p] wj,p|2 + σ2
k,p



,

s.t.
∑K

k=1
‖FRFwk,p‖

2
2 ≤ Pt . (13)

It can be seen that the problem (13) is a conventional MIMO

digital precoding problem that has been extensively explored

in the literature. In this paper, we adopt the multi-ratio frac-

tional programming (FP) method in [9] to obtain a suboptimal

solution, in which the iteration process can be performed as

αk,p = 1 +
|h̃

H

eq,k [p] wk,p|
2

∑K

j 6=k |h̃
H

eq,k [p] wj,p|2 + σ2
k,p

, (14)

βk,p =

√

1 + αk,ph̃
H

eq,k [p] wk,p

∑K

j=1

∣

∣

∣
h̃
H

eq,k [p] fk,p

∣

∣

∣

2

+ σ2
k,p

, (15)

wk,p =
√

1 + αk,pβk,pA
−1h̃eq,k [p] , (16)

where αk,p and βk,p are auxiliary variables, A ,
∑K

k=1 |βk,p|
2
h̃eq,k [p] h̃

H

eq,k [p] + λpF
H
RFFRF, and λp is de-

cided by the KKT condition. The FP algorithm is guaranteed

to converge to KKT point [10].

IV. LONG-TERM OPTIMIZATION: A ECG MAXIMIZATION

APPROACH

To tackle the stochastic long-term optimization problem,

we first rewrite the optimized digital precoders obtained via

(13) as a function of the phase shift vectors {vn} and analog

precoder FRF, i.e., w⋆
k,p = gk({vn},FRF). Then, the long-

term optimization problem in terms of
{

{vn},FRF

}

can be

recast as

max
{vn},FRF

1

P
E

[

P
∑

p=1

K
∑

k=1

log2(1 + γ⋆
k,p)

]

,

s.t.
∑K

k=1
‖FRFwk,p‖

2
2 ≤ Pt

|FRF(i, j)| = 1 ,

|vn(m)| = 1, (17)

where

γ⋆
k,p

(

{vn},FRF

)

,
|h̃

H

eq,k [p] w
⋆
k,p|

2

∑K

j 6=k |h̃
H

eq,k [p] w
⋆
j,p|

2 + σ2
k,p

. (18)

Unfortunately, w⋆
k,p does not have an analytical expression in

terms of {vn} and FRF. Consequently, the ergodic sum rate

does not have an explicit expression of {vn} and FRF. To

address this difficulty, we propose an effective criterion termed

ergodic-channel-gain-maximization (ECGM). In particular, we

optimize the long-term variables to maximize the ergodic

channel gain of all users and leave the task of multi-user

interference cancellation to the digital precoder. The ECGM

criterion yields the following problem1

max
{vn},FRF

1

P

P
∑

p=1

E

[

Tr
(

H̃
H

eq [p] H̃eq [p]
)]

,

s.t. |FRF(i, j)| = 1 ,

|vn(m)| = 1, (19)

where H̃eq[p] ,
[

h̃eq,1[p] . . . h̃eq,K [p]
]

∈ CNRF×K and

h̃eq,k[p] is defined in (11).

So far, we have succeeded in decoupling long-term and short-

term variables. However, the analog precoder FRF and passive

beamforming vectors {vn} are still coupled in the objective

function in (19). To solve (19), we develop an alternating

optimization algorithm to alternately optimize FRF and {vn}.

A. Design of passive beamforming vectors {vn}

In this subsection, we optimize the passive beamforming

vector vn while keeping the other variables fixed. The objective

1The transmit power constraint can be satisfied by optimizing the digital
precoder and is thus omitted.
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function in (19) can be recast as

1

P

P
∑

p=1

E

[

Tr
(

H̃
H

eq [p] H̃eq [p]
)]

= vH
n Rnvn + C1, (20)

where

Rn ,
1

P

∑P

p=1

∑K

k=1
E
[

Hn,k[p]FRFF
H
RFH

H
n,k[p]

]

(a)
=

1

P

∑P

p=1

∑K

k=1
E
[

DR,n,kSn,k [p]Qn,kS
H
n,k [p]D

H
R,n,k

]

(b)
=

∑K

k=1
DR,n,kΣn,kD

H
R,n,k ∈ C

Mn×Mn , (21)

where in (a), we define Qn,k , DH
B,n,kFRFF

H
RFDB,n,k; in

(b) we define

Σn,k , E[Sn,k [p]Qn,kS
H
n,k [p]]

=diag(Qn,k(1, 1)σ
2
C,1 . . . Qn,k(Un,k, Un,k)σ

2
C,Un,k

) (22)

where Qn,k(i, j) is the (i, j)th entry of Qn,k and Σn,k is flat

to all subcarriers; C1 is a constant irrespective of vn. Then,

the optimization problem of vn can be expressed as

max
vn

vH
n Rnvn, s.t. |vn(m)| = 1 , (23)

In spite of the non-convex unit modulus constraints, the prob-

lem (23) can be efficiently solved via manifold optimization-

based algorithms [4], where the detailed procedures are omitted

for brevity.

B. Design of analog precoder FRF

In this subsection, we optimize the analog precoder FRF by

fixing the passive beamforming vectors {vn}. The objective

function in (19) can be recast as

1

P

∑P

p=1
E

[

Tr
(

H̃
H

eq [p] H̃eq [p]
)]

=
1

P

∑P

p=1
E
[

Tr
(

FH
RFHeff [p]H

H
eff [p]FRF

)]

+ C2

=Tr(FH
RFRFRF) + C2, (24)

where R , 1/P
∑P

p=1 E
[

Heff [p]H
H
eff [p]

]

∈ CNt×Nt and

Heff , [heff,1 , . . . ,heff,K ] ∈ CNt×K ; C2 is a constant

irrespective of FRF. Moreover, the covariance matrix R can

be calculated as

R =
1

P

∑P

p=1
E
[

Heff [p]H
H
eff [p]

]

=
K
∑

k=1

(

DB,dk
BkD

H
B,dk

+
N
∑

n=1

DB,n,kV n,kD
H
B,n,k

)

,

(25)

where Bk , E[βk[p]β
H
k [p]] = diag(σ2

d,k,1, . . . , σ
2
d,k,Ik

),

V n,k , diag(c1, . . . , cUn,k
), cu , σ2

C,uV n,k(u, u), and

V n,k , DH
R,n,kvnv

H
n DR,n,k.

Then, the optimization problem of FRF can be characterized

as

max
FRF

Tr(FH
RFRFRF), s.t. |FRF(i, j)| = 1 . (26)

Without the unit modulus constraint |FRF(i, j)| = 1, the

problem is a generalized eigenvalue problem, and its optimal

solution can be obtained by SVD. Denote its eigenvalue

decomposition as R = UΣUH. Then, the optimal FRF

without constraint is given by F ⋆
RF = U(:, 1 : NRF)T ,

where U(:, 1 : NRF) denotes the submatrix comprising its

NRF eigenvectors associated first largest NRF eigenvalues and

T ∈ CNRF×NRF is an arbitrary non-singular matrix. Then, we

obtain a near-optimal by projecting F ⋆
RF onto the manifold

|FRF(i, j)| = 1, i.e., F ⋆
RF = exp(1j∠U(:, 1 : NRF)).

By alternately optimizing FRF and {vn}, the algorithm can

converge to a critical point of the problem (19).

It is observed from (23) and (26) that the design of passive

beamforming vectors {vn} and the analog precoder FRF

depends only on spatial correlation matrices Rn,k and R

which vary much more slowly than instantaneous CSI. Briefly

speaking, the long-term design of FRF and {vn} aims to

maximize the overall ergodic channel gain without considering

multi-user interference while the short-term design of {wk,p}
aims to cancel multi-user interference and maximize the sum

rate.

V. LONG-TERM OPTIMIZATION: A DEEP

UNROLLING-BASED APPROACH

As discussed earlier, the main obstacles to solving the long-

term stochastic optimization (17) include 1) The challenge in

calculating the expectation in the objective function in (17);

2) The difficulty in obtaining analytic expression of w⋆
k,p

in terms of {{vn}Nn=1,FRF}. To address the first issue, we

adopt the well-known sample average approximation [11] to

simplify the objective function. Specifically, denote Hsam ,
{

{{rtn,k[p]}
K
k=1,G

t
n[p], {d

t
k[p]}

K
k=1}

P
p=1

}T

t=1
as a set of i.i.d.

wideband channel samples whose statistical characteristics are

in accordance with the known statistical CSI of actual channels.

Hence, the expectation in (17) can be approximated by

1

P
E

[

K
∑

k=1

P
∑

p=1

log2(1 + γ⋆
k,p)

]

≈
1

TP

T
∑

t=1

K
∑

k=1

P
∑

p=1

log2(1 + γ⋆
k,p,t) , (27)

where

γ⋆
k,p,t

(

{vn},FRF

)

,
|(h̃

t

eq,k[p])
H (wt

k,p)
⋆|2

∑K

j 6=k |(h̃
t

eq,k[p])
H (wt

j,p)
⋆|2 + σ2

k,p

,

(28)

in which (h̃
t

eq,k)
H [p] can be obtained as (11) by adding

superscript t and (wt
k,p)

⋆ denotes the associated optimized

digital precoding vector. According to the law of large numbers,

the approximation error would vanish when T is sufficiently

large.

On the other hand, a deep unrolling neural network (DU-

NN) has proven to be highly efficient to address the latter

issue [4]. Specifically, the deep unrolling neural network can

unfold the traditional iterative algorithms into a layer-wise
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Fig. 1. The NN presentation of the proposed deep unrolling-based neural
network.

structure and learn the mapping between the channel sample

H̃
t

eq[p] ,
[

h̃
t

eq,1[p], . . . , h̃
t

eq,K [p]
]

and the optimal digital

precoding matrix (W t
p)

⋆ , [w⋆
1,p, . . . ,w

⋆
K,p] through end-to-

end training. After the mapping is learned, the relationship

between (W t
p)

⋆ and H̃
t

eq[p] can be further characterized by a

neural network in terms of long-term parameters {{vn},FRF}.

In this case, the long-term optimization variables {{vn},FRF}
can be trained via backpropagation techniques. In the follow-

ing, we elaborate on the details of the network structure.

A. Network structure

As illustrated in Fig. 1, the overall NN consists of a channel

enhancement NN (CENN) that accounts for long-term opti-

mization, a deep unrolling-based NN (DUNN) unfolding the

FP algorithm for short-term optimization, and a loss function.

The CENN is responsible for generating the chan-

nel samples Hsam and converting them into equivalent

channel samples {h̃
t

eq,k[p]}
K,P,T
k=1,p=1,t=1, which can be pa-

rameterized by long-term variables, i.e., (h̃
t

eq,k)
H [p] ,

(
∑N

n=1(G
t
n[p])

Hdiag(vn)r
t
n,k[p] + (dt

k)
H [p])FRF. In order

to ensure that vectors {vn} and the matrix FRF satisfy the

unit modulo constraints, we introduce corresponding auxiliary

vectors {ωn} and matrix Ω as trainable parameters. After these

parameters are trained, the passive beamforming vectors {vn}
and FRF can be obtained by implementing entry-wise modulo

operations, i.e., vn(m) = ωn(m)
|ωn(m)| and FRF(i, j) =

Ω(i,j)
|Ω(i,j)| .

On the other hand, the main goal of the deep unrolling-

based NN (DUNN) is to learn the complex dependencies

between the optimal digital precoder (W t
p)

⋆ and equivalent

channel samples H̃
t

eq[p]. Specifically, DUNN unfolds each

iteration of the original FP algorithm, as shown in (14)-(16),

into a layer in the DUNN. Each iteration depends on the

Lagrangian multiplier λt
p which is then transferred into a series

of network parameters {λl}Ll=1, where L denotes the total

number of layers of the DU-NN. It should be mentioned that

these parameters {λl}Ll=1 are flat to all channel samples and

subcarriers to reduce the dimension of trainable parameters,

which, even so, can achieve decent performance as will be

shown in the simulation results. To assure λl ≥ 0, we introduce

auxiliary variables G , {θl}Ll=1 as actual trainable parameters

and let λl = eθl . At first, the precoding matrix W t,l=0
p for

each subcarrier is initialized based on the maximum-ratio-

transmission strategy. Then, the equivalent channel samples and

the optimized precoding matrix W t,l
p in the lth layer are fed

into the l + 1th layer, whose output is the optimized precoder

W t,l+1
p . In each layer, the precoding matrix W t,l

p is updated

with the trainable parameters {λl}Ll=1 according to (14)-(16).

To satisfy the transmit power constraint and prevent gradient

explosion during the training, a scaling factor is applied to the

precoding matrix such that its norm square does not exceed

the maximum transmit power. Through end-to-end training,

the DUNN learns the trainable parameters {λl}Ll=1 and finally

outputs the optimal digital precoder (W t
p)

⋆.

As for the loss function, we can utilize sample average

approximation (27) to simplify the objective function in (17).

Moreover, note that channels at different subcarriers share

the same channel statistics including angle parameters and

variance of path gains, we can generate a small batch size

of channel samples with a limited number of subcarriers, say

B < T and P0 < P , to further reduce the computational

complexity. In addition, the vectors {wn}, matrix Ω, and vari-

ables G are treated as the actual trainable network parameters,

i.e., B , {{ωn}Nn=1,Ω,G}. As a result, the loss function

of the proposed DU-NN can be recast as L̃ (B;Hsam) =
− 1

BP0

∑B

t=1

∑K

k=1

∑P0

p=1 log2(1 + γ⋆
k,p,t) , where γ⋆

k,p,t is de-

fined in (28). After the establishment of the network architec-

ture, the loss function’s stochastic gradient with respect to the

trainable parameters B is calculated based on the chain rule

during the backpropagation stage. Subsequently, the Amsgrad

optimizer is utilized to update the values of the trainable

parameters. In this way, the proposed DU-NN can achieve

better performance than the traditional FP algorithm while

inheriting the interpretability from the iteration procedure.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed

methods. We consider N = 2 IRSs to assist the downlink trans-

mission, which are deployed at (50, 20, 3) m and (50,−20, 3)
m, respectively. The BS is located at (0, 0, 25) m while K = 2
users are randomly distributed within a circle centered at

(50, 0, 3) m with a radius of 10 m. We assume that BS-nth

IRS links and nth IRS- kth user links are LOS dominated

whose Rician factors are set to 7 dB and 10 dB, respectively; by

contrast, the BS-kth user links comprise only NLOS paths. The

variances of complex path gain for LOS and NLOS scenarios

are based on the path loss model for Urban macro (UMa) in

3GPP TR 38.901 [12]. Also, each coherence interval consists

of Ts = 40 time slots. The noise power is set as −90 dBm.

The central carrier frequency is set to 30 GHz and the sampling

rate is set to fs = 0.08 GHz, with time delays drawn from a

uniform distribution U(0, 100) ns. The total number of OFDM

subcarriers is set to P = 32. We set L = 2 and the learning

rate 0.75 for fast convergence. For training efficiency, we set

P0 = 2 and B = 10 during the training process.

The proposed methods are termed ECGM and DU-NN, re-

spectively. Moreover, the state-of-the-art methods [5], [10], [13]

can be extended to the considered scenarios as benchmarks, i.e.,
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(a) Average sum rate versus the trans-
mit power Pt.
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(b) Average run time versus M with
Nt = 64.

Fig. 2. Average sum rate and average run time comparison.

• I-CSI-based: The joint optimization method based on the

perfect instantaneous CSI [10] .

• MRCM: The multiple-reflection coefficient matrix

(MRCM) algorithm is adopted to optimize analog

precoder FRF based on statistical-CSI [5] while the

short-term optimization is based on FP algorithm.

• MLP-NN: The ”black-box” multi-layer perceptron (MLP)

NN is built for short-term optimization while the long-

term optimization is optimized by the proposed DU-NN.

• Angle-based: The analog precoder FRF is designed to

align the largest NRF path in terms of the magnitude of

path gains [13] while the short-term optimization is based

on FP algorithm.

In Fig. 2 (a), we plot the average sum rate of respective

methods as a function of the transmit power Pt, where we set

Nt = 64, NRF = 4, and Mn = 16 × 16 = 256. It can be

observed that the proposed ECGM performs much better than

the angle-based method [13] thereby demonstrating the efficacy

of the criterion. Also, the performance of the proposed ECGM

method nearly coincides with that of the MRCM method which

also aims to maximize the ergodic equivalent channel power

in essence. Moreover, it is seen that the proposed DU-NN

outperforms other benchmarks based on twin-timescale CSI

and the performance gap becomes more evident when the

transmit power Pt increases. Additionally, the proposed DU-

NN can achieve performance close to that of the I-CSI-based

method with only a slight performance loss. On the other hand,

long-term optimization is computationally more demanding.

To further investigate the computational complexity of the

algorithms, we present the average run time as a function of

the number of reflecting elements M , where we fix My = 16
but increase Mz , and set Pt = 30 dBm. Notably, the angle-

based method admits a closed-form solution and thus requires

negligible time, hence, it is not depicted in the figure. Our

results demonstrate that the proposed DU-NN method is more

computationally efficient than the MLP-NN method, indicating

the superiority of the deep unrolling technique over traditional

MLP-NNs. Also, both the MRCM and the proposed ECGM

method require considerably less time than other methods when

M ≤ 192. However, the MRCM method exhibits a sharp

increase in computation time when M ≥ 256, while the

proposed ECGM method remains nearly constant. One possible

explanation could be that the MRCM method updates the phase

shifts of each individual IRS element-by-element, which would

result in a remarkable increase in time consumption when M
increases. As a result, the proposed ECGM method is the most

computationally efficient among the considered methods except

the angle-based method.

VII. CONCLUSION

In this paper, we investigated the twin-timescale beamform-

ing of IRSs and hybrid precoders in multi-user mmWave

OFDM systems. To tackle this stochastic optimization prob-

lem, we proposed two methods: the computationally efficient

ECGM method and the performance-wise superior DU-NN.

Our simulation results demonstrate the competitiveness of the

proposed methods in terms of spectral efficiency and computa-

tional complexity. Moreover, our proposed framework exhibits

promising prospects in generalizing to more complex scenarios.
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