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We calculate hard spin-independent contributions to energy levels in muonium and positronium which 
are due to radiatively corrected electron factor insertion in two-photon exchange diagrams. Calculation of 
these corrections is motivated by the new round of precise measurements of spin-independent transition 
frequencies in muonium and positronium.
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For many years experimental and theoretical research on en-
ergy levels in muonium and positronium concentrated on hyper-
fine structure, see reviews in [1–5]. Now a new generation of 
experiments on measuring spin-independent transitions (1S − 2S , 
2S − 2P , etc.) in muonium and positronium (see, e.g., [5–17]) is 
either going on or planned. Inspired by these new developments 
we recently started a program of calculating hard three-loop spin-
independent corrections to energy levels in muonium and positro-
nium [18,19].

There are numerous gauge invariant sets of diagrams generating 
such corrections. We have already calculated contributions of three 
gauge invariant sets of diagrams in Fig. 1 [18,19].

Below we calculate contributions to the Lamb shift in muo-
nium and positronium generated by one more set of diagrams in 
Fig. 2 (plus diagrams with crossed exchanged photons, which are 
not shown explicitly). In the case of muonium nonrecoil contribu-
tion of these diagrams was calculated long time ago [20], so here 
we calculate only the radiative-recoil contribution.

For any system of two electromagnetically interacting leptons 
with unequal (or equal) masses the hard spin-independent energy 
shift to the bound state energy level generated by the diagrams 
with two-photon exchanges is described by the integral [21]
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where m and M are the masses of the leptons, Lμν and Hμν are 
the light and heavy fermion factors, respectively, mr = mM/(m +
M) is the reduced mass, Z = 1 is the charge of the heavy fermion 
in terms of the positron charge, n and l are the principal quantum 
number and the orbital momentum, respectively. The expression 
in Eq. (1) is exact in the mass ratio, and is valid also in the case of 
m = M (positronium).

The radiatively corrected electron factor is a sum of three terms

Lμν = L�
μν + 2L	

μν + L

μν, (2)

arising from the two-loop self-energy, vertex and spanning photon 
insertions in electron line and corresponding to the diagrams in 
Fig. 3. Respectively, the first trace in Eq. (1) can be written as
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Insertion of a one-loop polarization operator in a photon line 
in Fig. 3 is equivalent to the substitution in the photon propagator 
(see, e.g., [1,2])
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Fig. 1.
Fig. 2.

Fig. 3.
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A photon line with this insertion has a natural interpretation as a 
massive photon propagator with the mass squared λ2 = 4m2/(1 −
v2). The diagrams with the polarization insertions are obtained 
from this massive propagator integrating over v with the weight 
(α/π)v2(1 − v2/3)/(1 − v2).

All entries in the two-loop fermion factor except the two-loop 
anomalous magnetic moment and two-loop slope of the electric 
form factor decrease at least as k2 at k2 → 0. As a result, the slowly 
decreasing terms with the anomalous magnetic moment and slope 
of the electric form factor produce infrared-divergent contributions 
in the integral in Eq. (1) for the diagrams in Fig. 2. This linear in-
frared divergence indicates existence of a contribution to the Lamb 
shift of the previous order in Zα that is already well known. To 
get rid of this spurious divergence, we subtract the terms with the 
two-loop anomalous magnetic moment and slope of the electric 
form factor from the two-loop electron factor.

The heavy line factor in Eq. (1) has the form

Hμν = γμ
P̂ + k̂ + M

k2 + 2Mk0 + i0
γν + γν

P̂ − k̂ + M

k2 − 2Mk0 + i0
γμ, (5)

where P = (M, 0) is the momentum of the particle with mass M .
In the case of m � M the heavy trace reduces to
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where Hμν(k)rec is a dimensionless function, and ℘
(

1
k2

0

)
is the 

principal value integral, see [21,22] for the definition and proper-
ties.

The linear in mass ratio radiative-recoil contribution is obtained 
from Eq. (1) by the substitution in Eq. (6) [21]
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This expression will be used for calculation of the radiative-recoil 
contribution of the diagrams in Fig. 2 in muonium.

We have shown in [19] that there exists a simple relation-
ship between the integrand for the linear in mass ratio radiative-
recoil corrections in Eq. (7) and the integrand for the total (recoil 
and nonrecoil) spin-independent contribution in the case of equal 
masses m = M . Namely, it is sufficient to let m = M and make the 
substitution Hμν(k)rec →Hμν(k)tot , where

Hμν(k)tot = Hμν(k)rec
k2
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Then the total contribution to the spin-independent energy shift of 
order α7m generated by the diagrams in Fig. 2 in the case of equal 
masses is given by the integral
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where an extra factor 2 reflects the possibility to make radiative 
insertions in both fermion lines.

We calculated the energy shifts in the Feynman gauge for the 
radiative photons. The linear infrared divergences, which, as was 
explained above, indicate the presence of the contributions of the 
previous order in Zα, were omitted, and the spurious logarithmic 
infrared divergences canceled in the sum of diagrams in Fig. 2. Us-
ing Eq. (7) we obtain radiative-recoil correction in muonium
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Calculations are similar to the ones in [18,19], and the infrared 
finite contributions of the diagrams in Fig. 2 are as follows
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J (Mu)
� = 0.10602(3), 2 J (Mu)

	 = −0.07644(2),

J (Mu)

 = 0.07373(3). (11)

The total radiative-recoil contribution to the Lamb shift in muo-
nium from the diagrams in Fig. 2 is
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To calculate the spin-independent contribution to the energy 
shift in positronium we use the expression in Eq. (9)
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where the infrared finite contributions of separate diagrams in the 
Feynman gauge are

J (P s)
� = −0.11001(2), 2 J (P s)

	 = −0.07969(2),

J (P s)

 = −0.32816(1). (14)

Finally, the contribution to the Lamb shift in positronium from the 
diagrams in Fig. 2 is

�E(P s) = −0.12947(3)
α7m

π3n3
δl0. (15)

Combining the results in Eq. (12) with our earlier results for 
muonium [18] we obtain the total radiative-recoil contribution of 
the diagrams in Fig. 1 and Fig. 2
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The contribution to the Lamb shift in positronium generated by 
the diagrams in Fig. 1 [18,19] and Fig. 2 is

�E(P s) = 0.8057(2)
α7m

π3n3
δl0. (17)

The contributions in Eq. (16) and Eq. (17) are too small to play 
a significant role for the results of the ongoing experiments, they 
are at the level of a few tenths of kHz and a few kHz, respec-
tively. However, we expect that these corrections will become phe-
nomenologically relevant in the future with further improvements 
of the experimental accuracy.

There are other gauge-invariant sets of three-loop diagrams 
which arise as radiative corrections to the two-photon exchange 
diagrams, see, e.g., [22]. Hard spin-dependent corrections gener-
ated by these diagrams are already calculated, see, e.g., the review 
in [23] and references therein. Respective spin-independent correc-
tions remain at this time unknown, and we hope to calculate them 
in the near future.
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