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ABSTRACT: Experiments at particle colliders are the primary source of insight into physics at
microscopic scales. Searches at these facilities often rely on optimization of analyses targeting
specific models of new physics. Increasingly, however, data-driven model-agnostic approaches
based on machine learning are also being explored. A major challenge is that such methods
can be highly sensitive to the presence of many irrelevant features in the data. This paper
presents Boosted Decision Tree (BDT)-based techniques to improve anomaly detection in
the presence of many irrelevant features. First, a BDT classifier is shown to be more robust
than neural networks for the Classification Without Labels approach to finding resonant
excesses assuming independence of resonant and non-resonant observables. Next, a tree-based
probability density estimator using copula transformations demonstrates significant stability
and improved performance over normalizing flows as irrelevant features are added. The
results make a compelling case for further development of tree-based algorithms for more
robust resonant anomaly detection in high energy physics.
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1 Introduction

Experiments at high-energy colliders, such as the Large Hadron Collider (LHC), continue to
be the primary source of information about the nature of physics at the microscopic scales.
A major task of the current and future experiments is to search for deviations from the
Standard Model (SM) of particle physics. Traditionally, such searches are performed by
assuming a particular model for physics beyond the Standard Model (BSM), and optimizing
the event selection and statistical analysis to obtain maximum sensitivity to the new physics
signal in the presence of the SM background. Increasingly, these are supplemented with
data-driven methods which minimize model-dependent assumptions about the structure of
deviations from the SM, with machine-learning (ML) based approaches the primary driver
of such searches [1, 2].

The enormous size and complexity of the data sets collected by collider experiments
currently preclude conducting a search for “anything that doesn’t look like the SM” in the full
data set at once. Even if it were possible in principle, the dependence of collider analyses on
complex simulations to interpret measured signals would make such an approach extremely



sensitive to mismodelling errors at all stages of the simulation chain. Instead, recent work
focuses on a simpler task of anomaly detection when localized with respect to a particular
variable [3—-13]. A well-studied benchmark example, starting with the work of [3, 6], is a
search for a dijet resonance, in which the signal jets are produced by a boosted resonance
decay which is imprinted in non-trivial jet substructure. ML techniques allow for searches of
anomalous events with such topology, without making strong model-dependent assumptions
about the new physics model that gives rise to this signal. The original algorithm used the
Classification Without Labels (CWoLa) approach [14]. In this approach, events are divided
into signal and side-band regions based on the invariant mass mj;. A neural-network (NN)
classifier is trained to discriminate between events from the signal and side-band regions.
This classifier is then applied to search for anomalous events in the signal region. This
approach requires that the features distinguishing signal and background be uncorrelated with
m g, which is not always the case in real-world applications. To circumvent this problem,
algorithms such as ANODE [7] and CATHODE [10] were developed to detect anomalies
based on probability density estimation.

A serious issue that can hinder practical applications of the ML-driven anomaly detection
methods is the rapid deterioration of performance with growing dimensionality of data
space. Typically, collider data contains some observables (or features) that are relevant for
discriminating signal and background, and a number of observables whose distribution is very
similar in the signal and background samples. In a true model-agnostic search, one rarely
has the privilege of knowing what features are important beforehand, and inevitably many of
the included features can be irrelevant. It has been observed that the existing algorithms
for anomaly detection, in the context described above, lose their discriminating power very
rapidly as even a small number of irrelevant features are added to the input vectors [15]. In
this paper, we will present approaches that address this issue within both the classifier-based
and probability-density-based approaches to anomaly detection.

The algorithms on which we focus here are based on Boosted Decision Trees (BDTs),
rather than neural networks. BDTs tend to outperform neural networks on tabular data,
where they can take advantage of the preferred basis implied by the input features [16, 17].
Additionally, given that we are working with meaningful inputs (i.e. high level features),
BDTs generally require much less data preprocessing and computational cost compared
to neural networks.

The rest of the paper is organized as follows. In section 2, we describe the “signal” and
“background” data sets that are used in our analysis, and specify how we model the extraneous
irrelevant features. In section 3, we present a BDT-based classifier which uses the CWoLa
approach to aid anomaly detection. We show that before irrelevant features are added, the
BDT algorithm achieves performance similar to that of NN-based classifiers. However unlike
the NN, the BDT performance does not deteriorate significantly when irrelevant features
are present. In section 4, we show how the BDT can be used as a probability density
estimator, providing a powerful tool for anomaly detection even when relevant features
are correlated with mj;. Furthermore, this algorithm is also robust in the presence of
irrelevant features. section 5 contains our conclusions. Technical details related to tuning
of hyperparameters of the BDT algorithms are presented in appendices A and B, while a



case study of our methods’ performance on a dataset with mutually dependent irrelevant
features is discussed in appendix C.

In all plots in this paper, the curves showing performance of neural network anomaly-
detection tools are generated using code provided at https://github.com/HEPML-Ano
malyDetection/CATHODE.

2 Dataset

The signal and background events used in this study are from the LHC Olympics 2020
R&D dataset [18]. In particular, the SM background corresponds to QCD dijet events while
the anomalous signal we want to detect is produced by the decay W' — X (— qq)Y (= qq).
Here W/, X and Y are hypothetical new bosons with masses 3.5 TeV, 500 GeV and 100 GeV
respectively. All events are produced using the Pythia8 [19] and Delphes 3.4.1 [20] Monte
Carlo generators, and jets in each event are identified using FastJet [21] using anti-kp
clustering with R = 1.

The training (plus validation) set is constructed by combining 1000 randomly selected
signal events with a sample of 1000 000 background events. For evaluation purposes, a separate
test set is constructed by having 20000 signal events and 40 000 background events, all of
which lie inside the signal region (defined below). This test set is not used during training.

The physically motivated relevant features are based on the two highest pr jets.
They include

e myy: invariant mass of the two jets, which will be the resonant feature.
o my,: invariant mass of the lighter jet.
e Amy: absolute mass difference between the two jets’ invariant masses.

73711, Té]fi n-subjettiness ratios [22, 23] of the two jets, defined by 721 = m2/7.

Following [6, 7, 10], we define the signal region (SR) by mj; € [3.3,3.7] TeV, and
the sideband region (SB) by my; € [3.3,3.7] TeV. Additionally, for the CWoLa method,
we also define a short side-band (SSB) region, which extends to both sides of the SR by
200 GeV: myy € ([3.1,3.3] U [3.7,3.9]) TeV. These definitions will be used throughout the
rest of the paper.

However, for a model-agnostic search, one would not know a priori that the observables
above are the only features of interest and would likely not have any principled way of
excluding additional superfluous features. To simulate such a scenario, we artificially augment
the original dataset with features drawn from Gaussian distributions, which will be considered
as our irrelevant features. We vary the number of such irrelevant features and examine how
much effect they have on anomaly detection performance. Specifically, we study the cases
of 4 and 16 irrelevant features. The first case represents the situation where the dataset is
a roughly equal mix of relevant and irrelevant features, while the second case provides an
example of a dataset dominated by irrelevant features.



2.1 What do we mean by irrelevant?

Even though the notion of an irrelevant feature is intuitively clear, it is necessary for us to
define it more precisely. We provide here two possible characterizations of ignorable irrelevant
features, each suited to the respective anomaly detection method considered in the text.! Here
“ignorable” means that the feature should not matter in the limit of an infinite amount of data.

« CWoLa method:
A feature y is irrelevant if p(myy € SR|y) = p(mj; € SR).

o Probability density estimation-based method:

A feature y is irrelevant if it is statistically independent of m; and the auxiliary
(relevant) features: p(myy,z1,...,2k,y) = p(myy, x1,...,2x) p(y). This must hold in
both the background and signal samples. Moreover, p(y) in the signal and background
samples must be identical.

In this paper, we will explore the performance of anomaly detection algorithms as a
function of the number of irrelevant features N. As a baseline model, throughout this
paper we assume that the irrelevant features y; are distributed according to a direct product
of Gaussians:

N

N 1 —y2/2

p(yi) —izl_[l\/T—ﬂe 2. (2.1)
A vector of N features drawn from this distribution is then tacked onto each event in the
LHCO 2020 dataset described above, with no distinction made between signal and background
events. The features y; in the resulting dataset satisfy both of the irrelevancy definitions above.
Within our baseline model, the y;’s are mutually statistically independent among them-
selves. This feature is not generic, and is not expected to always hold in realistic physics
scenarios. In appendix C we show that our anomaly detection algorithms continue to perform

well when the irrelevant features are mutually dependent.

2.2 Performance metric

As is standard, we shall present performance comparisons between NNs and our proposed
methods in terms of the significance improvement characteristic (SIC) curve, which is
obtained by plotting the significance improvement,

€s

Vep '

against eg. Here €g is the fraction of correctly identified signal events (true positive rate),

SIC = (2.2)

and ep is the fraction of background events incorrectly identified as signals (false positive
rate). It should be emphasized here that SIC is a meaningful metric only when the analysis
is statistics-limited and not systematics-limited, and the sample is background-dominated;
we shall assume that this is the case.

!The general definition of irrelevancy has been explored in [24]. The conditions stated below are less
general, but suffice in the context of anomaly detection.



3 CWolLa on a tree: classifier BDTs

In this section we compare the performance of BDT-based and NN-based CWoLa methods
in the presence of irrelevant features.?

The CWoLa hunting [3, 6] method attempts to construct the Neyman-Pearson optimal
discriminator [25] between a signal and a background where the signal is assumed to be
dominantly present in the SR. The key observation underlying this is that if the SSB and
SR have different admixtures of signal and background, then the optimal signal-background
discriminator is monotonically related to the optimal SSB-SR classifier and finding one
produces the other, provided that the auxiliary features Z are independent of the resonant
mass my; for the background. While this is a theoretical guarantee, finding an optimal
SSB-SR classifier can be difficult in practice. This is because at very low S/ B ratio, SSB and
SR events largely overlap in feature space with very similar distributions, and most modern
machine learning models are flexible enough to mistake local fluctuations for actual excess of
signal events (i.e., over-fitting). This situation is particularly exacerbated in the presence
of irrelevant features, because they provide additional sources of statistical fluctuations in
a higher dimensional space.

The above consideration do not actually select for a method of approximating the SSB-SR
classifier. In studies involving the CWoLa hunting method, the classifier typically consists of
a fully-connected feedforward neural network. However, it is well-known that neural networks
do not fare well with irrelevant inputs, and this is especially so when they are applied in
the CWola setting for reasons above.

On the other hand, tree-based models are known to be innately robust against irrelevant
features [16, 26], an observation usually attributed to the way they are constructed — for
most tree-based models they are built by performing cuts in feature space to greedily
minimize metrics such as information gain, meaning that they already have some degree
of internal feature selection built in. Here we capitalize on this empirical observation and
apply BDT-based CWoLa to a more realistic setting where inevitably there will be a lot
of irrelevant features.

In what follows, we use xgboost as a reference BDT model to compare with a fully-
connected feed-forward NN. xgboost is chosen since it is widely considered as (one of) the
state-of-the-art gradient boosting tree algorithms in terms of speed and accuracy. For detailed
descriptions of the xgboost algorithm, refer to [27].

3.1 Training procedures

For training the CWoLa classifiers,® we select from the raw training set events for which
myy € [3.1,3.9] TeV. This results in roughly 250000 training events with about 760 signal

2In [15], similar comparisons are made in the context of idealized anomaly detection, in which perfect
understanding of background is assumed. This included a more detailed, physical model of irrelevant
features, while we consider a more realistic measurement scenario. We hence view the two studies as
naturally complimentary.

3The data handling and training procedures are the same as in [10]. Here we summarize them for the sake
of completeness.



n_estimators | max_depth eta alpha | lambda ‘ subsample
292 9 62x107° | 50 ™ | 075

Table 1. One set of xgboost hyperparameters found for the dataset without any irrelevant features.
We use default values for other hyperparameters. Refer to appendix A or [27] for a more detailed
discussion of these hyperparameters.

events in the SR, which corresponds to S/B ~ 0.6% and S/v/B = 2.2. Classifiers arc then
trained to differentiate between SR and SSB labels.

The NN-based classifier is constructed by a fully-connected feed-forward neural network
with 3 hidden layers, each of which has 64 neurons. Rectified Linear Unit (ReLU) activation
function is used. The network is trained for 100 epochs with binary cross-entropy loss
using the Adam optimizer [28] and learning rate set to 1072, During training, only half of
the dataset constructed above is used for actual training while the other half is used for
validation purposes. In particular, the 10 epochs with the lowest validation error are used
to construct an ensemble of 10 classifiers.

For the xgboost-based classifier, we employ a 10-fold cross-validation so that the entire
training set is utilized during actual training. Specifically, we use the cross-validation process
to tune xgboost’s hyperparameters to the dataset without irrelevant features.* Details of
this procedure can be found in appendix A. Since the hyperparameter optimization procedure
is stochastic, we find 10 independent sets of hyperparameters, each of which is used to train
a separate classifier and they together form an ensemble of 10 classifiers. The same set of
hyperparameters is also used to train dataset augmented with irrelevant features. In table 1,
we show one set of hyperparameters found.

3.2 Performance comparison

The performances of xgboost-based and NN-based CWoLa are shown in figure 1. Both
xgboost-based and conventional CWoLa perform similarly in the absence of irrelevant features.
However, when irrelevant features are present, the performance degradation of the neural
network is much more severe than that of the BDT. In particular, in the regime of large
number of irrelevant features (relative to number of relevant ones), the neural network-based
CWoLa method becomes essentially ineffective. On the other hand, while BDTs-based CWoLa
also suffers from the presence of irrelevant features, it is far more resilient. In particular,
even with 16 noisy features, the classifier can still attain an average maximum significance
improvement of around 7.

In the plots in figure 1, the BDT hyperparameters are optimized once, using the dataset
with no irrelevant features, and then kept fixed as the classifier is applied to the datasets
with 4 and 16 irrelevant features. This performance can be further improved by dedicated
hyperparameter optimization each time more irrelevant features are added. The performances
of xgboost on the augmented dataset when the hyperparameters are properly tuned are
shown in figure 2. Impressively, much of the model’s original performance in the absence
of irrelevant features can be recovered without too much of computational burden (relative

4This is necessary because the default hyperparameters are far too aggressive and lead to severe overfitting.
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Figure 1. Performance comparisons between BDT-based (green) and NN-based (red) CWoLa
methods for dataset augmented with 0, 4, and 16 irrelevant Gaussian features. The same xgboost
hyperparameters are used to train in all 3 cases. The solid lines represent average SIC value across
a classifier ensemble defined in the text, and the bands refer to 1 standard deviation of SIC. It is
important to note that for neural networks, the bands correspond to variability for a fized set of
hyperparameters, while for xgboost they correspond to variability across different hyperparameters
found by Bayesian optimization. Clearly, xgboost is far more robust against the inclusion of irrelevant
features than neural networks.

to neural networks). This shows the overall superiority of using BDTs when the input data
is of tabular form in the context of CWoLa hunting.

Another added bonus of using a tree-based classifier is that there exists a naturally defined
and easily computable notion of feature importance [26]. Recall how a tree-based model is
constructed: cuts along different feature directions are selected so as to greedily minimize the
loss function. Hence, for each feature one can compute how much it contributes to the overall
decrease in loss. This adds a layer of interpretability to the model which can potentially be
used to shed light on what features are more relevant in discerning signal from background.®

We can use this notion of feature importance to understand why xgboost is so much more
robust compared to neural networks. In figure 3, we show box plots of feature importance
values as given by the 10 different classifiers in the ensemble in the case of having 16 irrelevant

5Tt is important to emphasize that this is meaningful only when the features are mostly uncorrelated from
each other. If not, it becomes difficult to isolate the effect of each individual feature.
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Figure 2. SIC curves for the xgboost classifier with hyperparameters optimized for the dataset with
no irrelevant features (green), and the same classifier with hyperparameters re-optimized each time
more irrelevant features are added (blue). With proper tuning, much of the original performance can
be recovered even when the dataset has a large fraction of irrelevant features. NN-based classifier’s
performance on the same datasets (red) is provided to help guide the eye.
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Figure 3. Box plots of feature importance values by 10 independent xgboost BDT classifiers applied
to dataset with 16 irrelevant features. The BDT hyperparameters are optimized on the same dataset
(left panel) or on the dataset with no irrelevant features (right panel). The four labeled boxed on the
left side of each plot correspond to relevant features, while the 16 unlabelled boxes correspond to the
artificially introduced Gaussian noise features. The relevant features in the original dataset are found
by the method to be more important for signal/background discrimination compared to the Gaussian
noise, and such a difference is even more pronounced with proper hyperparameter tuning.

features. Strikingly, the model clearly utilizes the relevant features much more than the
irrelevant ones, corroborating with our intuition that tree-based models by nature perform a
certain degree of internal feature selection. This is likely the reason why the xgboost-based
CWoLa shows such favorable results.

In conclusion, even a naive direct application of BDT algorithms to CWolLa method can
significantly increase its robustness to irrelevant features compared to NN-based CWoLa.

4 Probability density estimation with BDTs

Even though the CWoLa method can achieve significant sensitivity improvement in anomaly
detection, its success hinges on the independence of the auxiliary features ¥ with m sy under
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the background hypothesis, which is quite a strong assumption and does not hold in general.
When this assumption is sufficiently violated, CWoLa performance drops drastically [7, 10].

Since this is a strong assumption that does not always hold in physical analyses scenarios
of interest, various methods have been proposed to circumvent it. In particular, we examine
the anomaly detection with density estimation (ANODE) method [7], which was originally
implemented using normalizing flows. While this is not the state-of-the-art anomaly detection
method, it is chosen since the lessons learned here can be easily transferred to other similar
density-estimation-based methods.

Unlike CWoLa, the ANODE method tries to estimate the two probability densities:
p(Z]m) of the full data set, and p(Z|m,bkgd) of the background only (estimated from the
sideband regions and extrapolated in the signal region). Then, the likelihood ratio

p(Z|m)

= p(@m, bked) 1)

is computed in the signal region. This ratio can be shown to be optimal (in the Neyman-
Pearson sense) without any need of additional assumptions.
In other words, the ANODE method mainly consists of two steps:

o Estimate the full density p(&|m) directly from data,

o Estimate the background density p(Z|m,bkgd) by interpolating from the SB regions
into the SR region.

Note that a hidden assumption here is that the auxiliary features have smooth distributions
over the SR in the background, for otherwise there would be no reason to believe that
interpolation would give a sensible background estimate. This is often true in practice given
that the SR is rather small.

Below we explain how the same steps can be achieved using boosted trees.

4.1 Boosted density estimation trees

Motivated by the success of using BDTs with the CWoLa method, here we examine the
possibility of applying them to density estimation. Specifically, we follow the tree density
estimation algorithm presented in [29], which we describe briefly here. For details, please
refer to the original literature.

Conceptually, the BDT density estimation algorithm is very similar to that of normalizing
flows [30] — they both model the transformation between the target density and some base
density as a composition of simple, bijective maps. Importantly, each composition is thought
of as a round of boosting just as in the traditional algorithm.

The major difference between the two is that in the case of BDT, the transformations are
built from cuts in the feature space (selected so that they locally minimize the KL divergence
between the empirical distribution of the transformed data and the base distribution, which is
uniform in our case) with Jacobians admitting closed-form evaluations, whereas for normalizing
flows they are typically parameterized by neural networks [30]. The density estimated by the
corresponding tree is then a leaf-wise constant function. After each round of boosting, one
can define and compute the difference between the learned density and the target density,



which is used as the target density for next round. This procedure is recursively performed
until some termination condition is satisfied.

4.1.1 Copula

When estimating probability densities, it is often helpful to separate the task of estimating
marginal densities and from the task of estimating the dependence structure between variables.
This can be achieved explicitly by Sklar’s theorem [31], which states, as part of the theorem,
that any multivariate probability density p(z1,...,z4) (satisfying some very mild conditions)
can be represented in the following form:

c(Fi(z1), ..., Fa(xa)) fr(z1) -+ falza)
&1y xq) fr(zn) - fa(za),

where the f;’s are the marginal densities, the F;’s are the corresponding cumulative distribution

p(x1,...,xq) (4.2)

function (CDF), and ¢ is the so-called copula density function. This copula function completely
encapsulates the information about dependence structure among variables.

The input data considered in this paper consists of the dijet mass m s, the auxiliary
features x1,...,xx, and the additional features y;...yxy which contain no information
relevant for anomaly detection. Moreover, we assume that irrelevant features are statistically
independent of (myy,x1,...,2K). With this assumption, the copula decomposition takes
the form

p(mJJ7$17'"7xK7y].7"'?yN):é(mJJ7x17'"7xR’)é(yl7"'7yN) (4'3)

X fi(x1) - fr(zr)g1(y1) - 9N (YN) -

Furthermore, if the irrelevant features are mutually independent among themselves, as in
eq. (2.1), the corresponding copula function is trivial,

Then, the likelihood ratio in eq. (4.1) takes the form

é(myy, 1, H f(@k)
5(mJJ,x1,.. xK|bkgd f $k|bkgd

R = (4.6)
Note that by using the copula decomposition, the dependence on the irrelevant features in R
drops out in both the marginal and the copula densities. The cancellation in the marginal
density ratio is easy to ensure in practice since it simply relies on univariate density estimation.
As for the copula density, the model needs to be able to learn that it is independent of
(y1...yn). This is where the tree-structure shines — similar to the supervised case, the tree
model should be able to learn to not cut along the irrelevant directions, since they do not
contribute much towards the decrease in KL divergence when estimating the copula density.

In view of the discussion above, we follow the basic two-stage strategy suggested in [29]:
we first fit models to the marginal variables, and then we use the learned CDF to transform
them to the copula space on which we estimate the corresponding copula density. The final
learned density is given by eq. (4.2). Note that neither the copula factorization, eq. (4.3),

- 10 -



n_estimators | max_depth | 1r | gamma
marginal 100 10 0.1 0.3
copula 2500 50 0.1 0.3

Table 2. Hyperparameters used to estimate the marginal and copula densities with the tree-based
algorithm in [29]. Please refer to the original literature or appendix B for meanings of these parameters.

nor the mutual independence of the irrelevant features, eq. (4.5), are hardwired into our
algorithm. Rather, these features are efficiently learned by the BDT from the structure of
the training data. The high quality of the trained tree model contributes to robustness of
the anomaly detection algorithm in the presence of irrelevant features. At the same time,
the underlying BDT has sufficient flexibility to remain useful when the structure of the
input data is more complex. This is evidenced by the example with mutually dependent
irrelevant features considered in appendix C.

4.2 Interpolation

Once the probability density in the SB region is estimated, the next step is to interpolate it
into the SR. Unlike the NN, a tree-based density estimator does not automatically provide
such an interpolation, and it needs to be implemented by hand. This represents an additional
step in the algorithm, but has an inherent advantage of being controllable, in contrast to
a black box-like interpolation performed by the NN. As a baseline, we employ a naive
linear interpolation:

(Z|mpg) —P(f|mL)(m
mpr — my,

N 5 p
p(&m) = p(Z|myr) + —mpr), mé€ (my,mg), (4.7)
where m = myy; my and mpg are the lower and upper boundaries of the signal region in
myy; and the vector Z includes both auxiliary (relevant) and irrelevant features. While
more elaborate methods of interpolation exist [8, 11, 32], this simple form is chosen here
for the following reasons:

o Under the assumption that the SR is sufficiently small and that the SB is not significantly
signal-contaminated, we expect linear interpolation to give reasonable results (there are
however some subtleties, see section 4.5).

o More importantly, in eq. (4.7), the interpolated density is explicitly linear in the learned
density. In the ideal case that the irrelevant features’ densities factorize from the learned
density, this property ensures that dependence on irrelevant variables will be cancelled
out in the construction of the likelihood ratio. As we shall see below, this linearity
property is important in ensuring robustness.

4.3 Training and evaluation procedures

The NN-based density estimator we use in our comparison is a masked-autoregressive flow
(MAF). The training procedure for a MAF is the same as in [10], and we refer readers
to the original paper for details.

The training of the tree-based density estimator is done by feeding the algorithm the entire
training dataset (560000 events), with hyperparameters listed in table 2. The performance of

- 11 —
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Figure 4. Performance comparison between the BDT implementation of density estimator (green)
and the NN-based implementation found in [29] (red), for the original LHCO dataset. The error bands
show 1 standard deviation of significance improvement across 10 random training-validation-test splits.
The BDT implementation shows superior performance both with and without inclusion of irrelevant
features. In particular, even with 16 irrelevant features added, the BDT only shows a small level
of degradation.

the BDT density estimation algorithm is fairly insensitive to the choice of hyperparameters
as long as the resulting model is sufficiently expressive, due to the fact that we are estimating
the density from the background sample for which we have large statistics. (This is in
contrast with the CWoLa case, where the BDT needs to learn a small difference between the
distributions of auxiliary features in the signal and side-band regions.) The preprocessing
of [10] is not necessary in this case, since trees are invariant under monotonic transformations.
The trained model is then used to evaluate p(Z|m), p(Z|my), and p(Z|mg). The latter two
are used to estimate the background density in the signal region according to eq. (4.7).

The performance of each method is evaluated on a separate test set consisting of 20 000
signal events and 60000 background events, all of which lie in the SR. In particular, we
train the tree-based model for 10 random training-validation-test splits to cross-validate its
variance. The same is not done for neural networks due to their high computational costs.
Comparisons are shown in the next section.

4.4 Performance comparison

In figure 4, we show the performance comparisons between MAF- and tree-based density
estimation algorithms. Without irrelevant features, the tree-based algorithm already provides
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Figure 5. Scatter plot of the density ratio R defined in eq. (4.1) against m;; for 5000 signal events and
5000 background events in the test set (signal region). The plot shows that a naive linear interpolation
is sufficient for the LHCO dataset.

a significant improvement over the NN in the low signal efficiency region. Furthermore,
just as in the case of CWolLa, the MAF-based algorithm suffers from severe performance
degradation as the number of irrelevant features increases. In the case where 16 irrelevant
features are added, the method is essentially no different from a random classifier. On the
other hand, the tree-based algorithm is remarkably robust, showing almost no degradation
of performance with up to 16 irrelevant features.

As an additional note, the success of the tree-based density estimation algorithm also
shows that a simple linear interpolation for background estimation is very effective, at least
for the LHCO dataset. In figure 5 we show a scatter plot of the data-to-background density
ratio against m;; for both signal and background events. It can be clearly seen that the
simple linear interpolation is effective in estimating the background density for the LCHO
dataset. We believe this is evidence that more considerations should go into studying the
interpolation method instead of relying on a black box like NNs.

4.5 Correleated auxiliary features

The primary motivation for density estimation methods is to address situations where the
CWoLa assumption of statistical independence between the auxiliary features & and m sy does
not hold. However, in the example considered above, & and m j; were independent to a large
degree. In this section we explore how our strategies proposed above perform when & and m j;
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Figure 6. Scatter plot of mj; against m s for the log-shifted dataset over the signal region. Before
decorrelation (left panel), the plot clearly shows why a naive linear interpolation should fail — the
interpolation over the dashed line crosses the support of data density, which would cause a sharp
change in the interpolated density. After decorrelation (right panel), we see that the support is roughly
axis-parallel, and we expect that a simple linear interpolation should suffice.

are not independent. Specifically, we artificially introduce dependence between Z and m ;7 viaS

my, — my, +logmyy, (4.8)

AmJ—>ATTLJ+10ngJ,

where all the masses are measured in units of TeV.

In this case, we immediately see a difficulty with our proposed interpolation method.
When & and mj; are strongly dependent, the support of p(m, ) can be of arbitrary shape
in general, but the interpolation in eq. (4.7) implicitly assumes that for a fixed &, p(Z|m)
does not vary too much as a function of m; across the SR.” This is illustrated in the left
panel of figure 6, where a naive linear interpolation over the dashed line would result in
an abrupt and unphysical drop in the interpolated density. This situation can be handled
automatically by NNs since they are able to perform more global interpolations, but we need
to be more careful when implementing the interpolation by hand.

It is clear from the above discussion that the quality of linear interpolation eq. (4.7)
requires that Z and mj; be roughly independent over the SR. To achieve this, we perform
the following simple “decorrelation” procedure. For each feature z, consider the following
transformation:®

m—m, (4.10)
x — f(xz,m), (4.11)

5We consider a non-polynomial dependence on m.; instead of a linear one, as in [7, 10], because our
decorrelation scheme below will be able to completely undo linear correlation, thus making the comparison
not very useful.

"Note that this is different from the CWoLa assumption since we only require weak dependence over the
SR. In general this is easier to attain.

8We do not transform m s since this is a privileged variable under the localized-signal assumption.
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Figure 7. The SIC curves for NN-based (red) and tree-based (green) density-estimation algorithms
applied to the log-shifted dataset. The cases with O (left panel) and 16 (right panel) irrelevant features
are shown for comparison. The error bands are defined in the same way as in figure 4.

where f is such that the transformation is bijective so that no information carried in z is
lost. We can then search for f such that the dependence between x and m; within the SR,
as measured by distance correlation, is minimized. In particular, we consider f belonging
to a family of functions of the form

f(z,m) = ap(m) + a1 (m)x. (4.12)

Since mjy lies within the SR which we assume to be small, we further parameterize the

cocfficients ag and a; as’

ap(m) = am + Bm?,  ay(m) =1+ ym + ém?. (4.13)

To summarize, we search for values of «, 3, and § that minimize the corresponding distance
correlation. This minimization is performed using the L-BFGS method [33] implemented
in SciPy [34].

The right panel of figure 6 shows the scatter plot of mj; against m;; over the SR
after our decorrelation procedure. Visually we can observe that the support of data density
is now parallel to the m j-axis, and numerically we can achieve a distance correlation of
order 10™* between auxiliary features and my; over the SR. This signals the success of
our decorrelation scheme.

With decorrelation carried out, the rest of the algorithm remains the same as in the
previous section. In figure 7 we compare the SIC curves of the NN-based and tree-based
algorithms applied to the log-shifted dataset. We observe that the tree-level algorithm still
greatly outperforms the NN-based method when irrelevant features are added. At the same
time, we also note that the performance of the tree-based algorithm is not as robust with
respect to addition of irrelevant features as in the unshifted case (see section 4.4). This is likely
due to the decorrelation procedure above, which by chance will find non-zero («, 8,7, d) such
that the in-sample distance correlation between m; and the transformed irrelevant feature

9Without loss of generality, we can take the constant term in ao to be zero and the constant term in a; to
be 1, since distance correlation remains invariant under such a choice.
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is minimized. This effect can in principle be mitigated by more rigorous cross-validation
technique, but we do not pursue this point here.

While the simple approach to decorrelation and interpolation taken in this paper is
effective, it may be seen as somewhat ad hoc. Many more elaborate interpolation methods
exist in the literature (e.g., Gaussian process regression, high dimensional splines [26]),
which may further improve the performance and robustness of our algorithm. We leave the
exploration of such methods for future work.

5 Discussion and conclusions

In this work, we have presented two tree-based approaches to detect anomalies in the presence
of irrelevant features. Anomaly detection methods are already starting to be used in LHC
analyses, with searches based on CWoLa hunting at ATLAS alrecady released [35]. Since
BDT-based methods are already used in experimental analyses, we hope that our methods
would be readily able to be adopted and calibrated for experimental use. We first considered a
CWoLa-inspired method, and showed that boosted decision trees are more robust to irrelevant
features compared to neural networks. By exploiting the inherent feature selection of decision
trees, the BDT-based classifier maintained good performance even with the addition of
significantly more irrelevant than discriminating auxiliary features.

In analogy to density estimation methods like ANODE, we proposed using tree-based
models paired with a copula transformation and interpolation step. By estimating the
marginal and copula densities separately, irrelevant features can be factorized out of the
likelihood ratio assuming their mutual independence. Even when this is not the case, we
observe that the resulting reduction in significance improvement still leaves the tree-based
approach much less sensitive to the presence of these features. Our results demonstrated the
promising performance of the tree-based density estimator compared to normalizing flows,
especially in higher dimensionality with many irrelevant features. The tree-based model allows
for a simple and effective linear interpolation scheme for estimating the background density.

Recently, [15] also explored the use of BDTs for anomaly detection in high-energy collider
analyses. This study includes a larger and more physical set of irrelevant features, while
also finding increasingly improved performance and greater stability as irrelevant features
are added during training. However, it assumes that a perfect sample of the background is
available and does not deal with the extrapolation of such a model into a resonant region,
as we do. We thus view our results as complementary and together making a compelling
case for the application of tree-based methods to anomaly detection.

Overall, tree-based methods seem well-suited for anomaly detection tasks when operating
on high-level observables with potential irrelevant features. These naturally lend themselves
to presentation as tabular data. The techniques presented here could find useful application
in collider searches and other physics analyses aiming to be robust against the embedding
of low-dimensional signals in high-dimensional feature spaces. More advanced interpolation
schemes than what we consider here might improve the performance and stability of the
density-based approach, while exploring other tree-based algorithms like Bayesian Additive
Regression Trees might improve the overall fidelity of the learned functions. We leave these
possibilities to future work.
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A Hyperparameter tuning for xgboost

Here we provide details regarding hyperparameter tuning for the xgboost model used in

CWoLa method. The hyperparameters we choose to optimize arc as follows:

e n_estimators: this controls the number of boosting rounds

e max_depth: this controls how complex the base tree learner is by limiting how deep
each tree can be

e eta: this controls how much each tree contributes in building the ensemble
e alpha: L; regularizer on weights of the model
e lambda: Lo regularizer on weights of the model

xgboost has a lot of other parameters, but here we choose to focus on these few because
(i) n_estimators, max_depth and eta are known to have the most impact on the model’s
performance, and (ii) alpha and lambda explicitly control the model’s weights, and therefore
they have a direct impact on how much the model will overfit, which is exactly our concern
here. In addition, we (arbitrarily) fix the subsample parameter, which measures how much
of the training data is used in fitting each individual tree, to be 0.75. In principle one
can also include it in the hyperparameter search but our empirical results show that the
final performance is not very dependent on its exact value. We use default values for all
other hyperparameters.

To search for the optimal hyperparameters, we perform Bayesian optimization on the
10-fold cross-validation score, which we define to be the true positive rate of SR-SB labels at
a fixed false positive rate of 1073, Specifically, the Bayesian optimization is carried out using
the gp_minimize function in the scikit-optimize library, with default settings except we
reduce the number of calls to 30 in order to save time.

B Hyperparameters of boosted density estimation tree algorithm

Here we describe briefly meanings of some of the hyperparameters used when training on
the LHCO dataset. Please refer to [29] for details.

e n_estimators: number of boosting rounds

e max_depth: maximum depth each base tree learner can grow to

10More details about these hyperparameters can be found in [27].
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Figure 8. SIC curve of the tree-based density estimation algorithm with mutually correlated irrelevant
features (blue), compared to the baseline case of mutually independent irrelevant features studied in
section 4 (green).

e 1r: global shrinkage parameter that helps smooth out density learned during each
boosting round. When it is equal to 0, each tree returns the uniform base distribution
(no learning); when it is equal to 1, each tree returns the empirical distribution (most
aggressive learning).

e gamma: amount of node-specific shrinkage. When it is 0, only the global learning rate
1r is used; when it is a positive real number, the amount of shrinkage for each node
grows as its volume in feature space decreases.

C Mutually dependent irrelevant features

In the baseline model used throughout this paper, the irrelevant features enjoy the extra
property that they are mutually independent, see eq. (2.1). While this extra property has no
bearing on the CWoLa hunting method, it does affect our use of copula in section 4: if the
irrelevant features g are mutually independent, the copula density ¢ becomes independent
of . While such independence was not hardwired into our algorithm, it can potentially
make the copula density easier to learn, and one might wonder how robust the algorithm
is if irrelevant features are mutually dependent.
To test this, we rotate the original irrelevant features by a random matrix A:

7' =Ay. (C.1)

Here A is constructed by independently sampling each of its elements from the standard
normal distribution. The elements of the rotated irrelevant feature vector % ' are now mutually
dependent. We then apply the tree-based density estimation algorithm described in section 4
to the dataset (my;, @,y '), where & are the relevant auxiliary features.
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The resulting SIC curve is shown in figure 8. We can see that our method’s performance
is very similar to the case considered in the main text, demonstrating that the method’s
performance is not reliant on the factorization property of eq. (2.1). In other words, the BDT
is able to learn the non-trivial copula function involving irrelevant features well enough to not
cause any degradation in the overall performance. In future work, it would be interesting to
further test this aspect of the algorithm in realistic physical applications of anomaly detection.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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