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J duT,,, in quantum field theories that flow between two conformal fixed points. In four
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for non-conformal theories.
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1 Introduction

The averaged null energy (ANE) is the nonlocal operator

£ = /duTuu, (1.1)

where u is a null coordinate. In the last few years it has become clear that this and similar
operators, known generally as light-ray operators, play an interesting role in quantum field
theory and quantum gravity. They measure the flow of energy and other quantities, thus pro-
viding infrared-safe observables that are complementary to the S-matrix [1-4]. In conformal
field theory, light-ray operators control the behavior of certain correlation functions, because
they appear in the lightcone and Regge OPEs and are often the leading contributions to the
Lorentzian inversion formula [5-7]. The ANE also appears in deformations of the modular
Hamiltonian [8], determines the onset of quantum chaos [5, 9, 10], and is closely tied to
soft theorems and asymptotic symmetries [11-13]. In holographic theories the ANE is
dual to a gravitational shockwave and tied to the emergence of causality [1, 14, 15]. In
quantum field theory in Minkowski spacetime, the ANE satisfies the positivity condition
(U|€,|T) > 0 in any state. This is the averaged null energy condition, or ANEC. The
ANEC was derived in various free theories long ago [16-19] and more recently extended
to interacting theories using the monotonicity of relative entropy [8], and separately, con-
formal bootstrap methods together with reflection positivity [5]. In a theory coupled to
gravity, a suitable generalization of the ANEC underlies a variety of classic theorems on
causality, singularities, positive energy, and wormholes [20-22]. In quantum field theory
without gravity, the ANEC constrains the coupling constants and anomaly coefficients of
CFTs [1, 14] (see also [5, 9, 23-26]); its higher spin relatives constrain the 3D critical Ising
model [5], a prediction that was subsequently verified by numerical bootstrap [27]; and
through holographic duality, the ANEC was an early hint for how to derive Einstein gravity
from CFT [28-32]. These techniques have now been subsumed by the Lorentzian inversion
formula in the program to derive strict inequalities for CFT correlators and scattering
amplitudes [33-36].

In this paper, we will study the interplay between the ANE and the renormalization
group (RG). We consider quantum field theories in Minkowski spacetime in four dimensions.
In CFTs, we show that correlators of &£, have contact terms dictated by the conformal
anomaly. In non-conformal QFTs, we derive sum rules for the change in the Euler anomaly
along an RG flow. The sum rules, together with the ANEC, provide a new derivation of the
a-theorem. Similar methods can be used to derive the Zamolodchikov c-theorem from the



ANEC in two dimensions; the application to two dimensions will be reported in a separate
paper [37] together with other constraints from the two-dimensional ANEC.

These two theorems establish that the renormalization group is monotonic in d = 2
and d = 4. The c-theorem was derived by Zamolodchikov using the stress-tensor two-point
function (T,g7,s) at separated points [38]. The a-theorem, conjectured by Cardy [39],
was derived by Komargodski and Schwimmer [40] using background field techniques and
anomaly matching applied to the contact terms in the (8OO0) correlation function, where
O =1T,“ is the trace of the stress tensor. Both of these theorems have also been derived
from quantum information theory [41-45].

Nonetheless, the physical interpretation of these results, known collectively as C-
theorems, remains quite mysterious. It is often said that the C-theorems come from the
reduction in degrees of freedom as massive states are integrated out along an RG flow. But
this is unsatisfying: why should the Euler anomaly measure degrees of freedom in even
dimensions? And is there a C-theorem in five or more dimensions? The entropic proof
applies in three dimensions [43], but has not been extended to five or more, and it relies
on subleading terms in the entanglement entropy so there is still no clear connection to
counting degrees of freedom. The situation in holographic theories is better, because there
is a universal, dimension-independent derivation of the C-theorems in the bulk based on the
null energy condition for bulk matter [46]. But the dual of this argument, phrased in the
language of the boundary QF T, is unknown — the dual of the bulk null energy condition
is not the boundary null energy condition [47]. It thus remains a fascinating problem to
understand the C-theorems more deeply.

Our approach is based on the 3-point correlation function (©&,0) in both two and four
dimensions. In quantum field theories that flow between two conformal fixed points, we
derive the following sum rules for the change in the Euler anomaly from the UV to the IR.

In four dimensions, in the coordinates ds?> = —dudv + dz?,
1 oo
ayy — GIR = — o d4x1/ d*zy (uy — ug)?F - T2(0(21) T (0)O(22)) . (1.2)
32 Jyi<o0 va<0

The application to two dimensions will be discussed in a separate paper [37]. The analogous
sum rule is

Cyv — CIR = —671'/ d2LII1/ d2.172 (u1 - uz)2<@(x1)Tuu(0)@(x2)> . (13)
1<0 v2<0

1%

The 3-point functions in the integrands are Wightman functions, with no contact terms.
These integrals can be rewritten as expectation values of the averaged null energy,
(¥| [ duTyy|¥). Therefore, the ANEC implies that both Ac and Aa are non-negative.
The state |¥) is defined by an insertion of the trace © smeared against a particular kernel
(see (4.15)). It is similar to the ‘conformal collider’ state studied by Hofman and Maldacena
in CFT [1], except that in our case, the wavepacket is inserted close to the ANE light ray
rather than at large separation.

The sum rules can also be written in terms of time-ordered or retarded correlation
functions, and the latter version provides a physical interpretation: they measure the
response of (&,) to a Weyl deformation of the Hamiltonian.



The logic behind (1.2)—(1.3) is simple once we have developed some new techniques for
the analysis of light-ray operators in QFT. In particular we study the role of anomalies
and contact terms in correlation functions involving a light-ray operator, and constrain
the types of contact terms that can be generated along an RG flow. Other RG sum rules
for stress tensor correlators have been discussed in the literature [48-50]. An important
difference in (1.2)-(1.3) is that the integrals have no contact terms and can be expressed in
a way that is manifestly positive. The holographic RG sum rules derived in [51] are also
related to the boundary ANEC, and they are based on the same intuition that C-theorems
should be related to the spreading of quantum information, but they have a more limited
regime of validity.

At present we have not found a way to extend our methods to odd dimensions, or to
d = 6, where there is a supersymmetric a-theorem [52-56] but the general case remains open.

The averaged null energy operator plays an important role in two other recent develop-
ments in quantum field theory: quantum information of deformed half-spaces [8, 11], and
the Lorentzian inversion formula [6]. Thus our results connect these developments to the
RG. In the discussion section we point out the connections, leaving a detailed exploration
to future work. It is unclear exactly how our results are related to the derivation of the
a-theorem by Komargodski and Schwimmer, but we suggest that the relation should be
viewed as a generalization of the Lorentzian inversion formula to non-conformal theories.
We also refer the reader to the discussion section for a brief technical summary that outlines
the derivation of the sum rule.

Outline. We setup our conventions and discuss some relevant properties of the ANE in
section 2. We then turn to a general discussion of contact terms in Lorentzian signature,
and at a conformal fixed point in d = 4 dimensions, derive the contact terms in the retarded
correlator (R[E,; ©0)]) and the time-ordered correlator (7[£,00]) (section 3). In section 4
we consider quantum field theories that flow between fixed points, apply the CFT results
to the infrared fixed point, and derive the sum rules and the a-theorem. Finally we work
out the example of a free massive scalar in section 5. In the discussion (section 6), we
summarize the strategy used to the derive the sum rule and discuss its interpretation from
the perspectives of quantum information and, more speculatively, Lorentzian inversion.

2 Preliminaries

In this section, we present the relevant material for the rest of this work, including our
conventions for the stress tensor and correlation functions. We then discuss properties of
the ANE operator and its behavior inside correlation functions.

2.1 Conventions

In Euclidean spacetime we use coordinates

ds* = dr? + dy?* + d2? (2.1)



with # € R?~2. In Minkowski spacetime, we use
ds* = —dudy + di* = —dt* + dy* + di*, (2.2)

where
u=t—y=—(y+1ir), v=t4+y=y—ir. (2.3)

‘We define the stress tensor with the convention

-2 65 2i 0
Tyw=——, Tw)=———logZ. 2.4
122 Jjg5g”” < 12 > \/—79(59“” ( )
In Euclidean signature this convention corresponds to
2 6Sg 2 46
Tyw=——>, T,)=—— log 7 , 2.5
14 \/656]“” < M > \/gaguu g ( )

with Sg the Euclidean action. The trace of the stress tensor is denoted

o_n__2 05 205
me /=g dw V9 dw '

with the Weyl variation
59#1/ = guuéw- (27)

Dirac delta functions are defined covariantly such that | ddx\/ﬁé(d)(x) =1, and we use the
following Fourier transform conventions:

d
FK) = / Al ST L (1) ) = / (;lﬂl))de_iK'z. (2.8)

We denote Euclidean momentum by K* and Minkowski momentum by k*. We use the
customary double bracket notation to strip off momentum conserving delta function,

(O(k1) - O(kn)) = (2m) 8D (k1 + - + k) (O(k1) - - O(kn))) - (2.9)

2.2 Correlation functions

We will work exclusively with connected correlators, which are denoted (---). In Euclidean
signature, the stress tensor correlators are given by the variation

(-2 i
V@) ... /g(x,) 0g* (x1) ... g8 (xn,)

Correlators involving the trace © are defined with the traces taken inside the variation,

£2) .. O = =gy g,
(O(z1)...0(zp)) Jo@n) ... \/g(xn)g# ( /1)59’“’@1) g% ( /n)égo‘/j(xn)
2n e

= o) e ). bwlan) B (2.11)

(T (@1) -+ Tap(20)) =

log Z . (2.10)

log Z




To compute Euclidean correlators with both T}, and ©, the variation leading to 7},, is done
last, regardless of the order in which the fields are written:

Ny — 1 LT TN S
(©(21) Ty (22)) o Vo) b @) ( 1)755,%(3;1)1 gz (2.12)
(O(21)0 (1) Ty (3)) = _°

Vo(x1)y/g(x2)y/g(x3)
1

1) 0
afs po
X —————— x x
5 (w3)” (2)59“ﬁ(:r2)g ( 1)5g””(:r1)

With these conventions, g"’(T}, ---) and (©---) differ by contact terms. The Ward
identities, taking into account these definitions, imply

log Z .

VAT (2)0(21)) = (B(2))V,6'D (z — 21) (2.13)
and

V(T (2)0(21)0 (22)) = (B(2)O(21)) V0D (x — 29) + (B(2)O(22)) V., 6\ (z — 21) .
(2.14)

A review of Ward identities as well as the derivation of these relations is in appendix A.
In Lorentzian signature, variations of log Z produce time-ordered correlators. In flat
Minkowski space the time-ordered product is defined at separated points by

T[Ol(xl)OQ(xQ)' o On(x'ﬂ)] = Z ‘9(tﬂl - t(TQ)' o e(tﬂn—1 - tﬂn)om (1‘01)- o O(fn (xo'n) ;

O'ESn
(2.15)

where the sum is over permutations of the set {1,...,n}. The retarded product is defined
at separated points by

RIO(x); O1(w1) -+ Oni(wn—1)] = ()" 32 Ot —to,)O(to, , —to,,)  (2.16)

o€Sn_1
[' o [[O(‘r)v 00'1 (xfn )]7 00'2 (3702)]' o OUW—I(xUn,—I)] )

where the power of i is chosen such that the retarded product is Hermitian. In (2.16), the
first argument is special, with O(z) always placed fully to the left in the nested commutator.
The sum symmetrizes over the remaining operators, O1(z1) ... Op—1(xp—1). The retarded
correlator vanishes unless O(z) is in the closed future lightcone of all the other operators.

Time-ordered and retarded correlators at coincident points are well defined as distri-
butions, but their definition is not (2.15)—(2.16). We will discuss the contact terms in

section 3.

2.3 Properties of the averaged null energy

The averaged null energy (ANE) operator is the null energy integrated over a null ray,
[ee)
Eu(1,T) = / duT g (u, v, 7). (2.17)
—00

The ANE on a light-ray through the origin is denoted &,(0) = &£,(0,0).



The ANE operator is a special case of a light-ray operator, which generally may or
may not be given by the integral of a local operator. The systematic study of light-ray
operators in conformal field theory in d > 2 dimensions was initiated in [1]. Light-ray
operators appear in the lightcone OPE of local operators and thus control the high energy
limit of correlation functions [1, 5]. This was explored in the context of the Lorentzian
inversion formula in [57]. Light-ray operators also obey commutativity properties that
lead to sum rules on the CFT data [31, 57]. Their OPEs and crossing relations have
been studied in [3, 14, 58-61]. Light-ray operators built from the stress tensor have special
algebraic properties [12, 32, 62—68] and encode some universal features of higher-dimensional
CFT [69-72]. They have been studied perturbatively in specific examples [73-75]. Higher
spin generalizations were studied in [5, 57, 76, 77]. For phenomenological applications, see
e.g. [2, 3, 14, 78-86].

2.3.1 Positivity

Our convention for the stress tensor is such that the classical null energy condition is
€?ePT,s > 0 for ¢ a forward-pointing null vector. The averaged null energy condi-
tion (ANEC) states that &, is a positive semidefinite operator; that is,

(W[E, W) =0, (2.18)

in any state |¥). The ANEC has been established in various free theories [16-19] and
more recently it was derived in interacting quantum field theories under quite general
assumptions [5, 8].

Non-negative operators that have vanishing vacuum expectation value must annihilate
the vacuum |0), because otherwise a linear combination |0) + |¢) can be found in which the
expectation value is negative [87]. Thus the ANE operator satisfies

(0]&, = E,]0) = 0. (2.19)

This can also be shown by direct calculation: in a Wightman correlator
(0|O1(z1) - .. On(x)E,|0), the ie prescription for the O insertions ensures that the u-integral
in [ duT,, can be smoothly deformed to vanish in the lower half plane [5]. In CFT, uni-
tarity and representation theory of the conformal group imply that all light-ray operators
annihilate the vacuum [57].

2.3.2 The ANE in ordered correlators

Time-ordered and retarded correlators of a light-ray operator are defined by ordering inside
the integral,

(TTE(v, 2)O(21)O(22)]) = /_ O:o duu (T[T (v, £)O (1) O(2)]) (2.20)

(RIE,(v, ); O(x1)O(22)]) = /_o:o du (R[Tyu(u, v, Z); O(x1)O(x2)]) . (2.21)



We will also use correlators where the ANE is in position space, but other operators are in
momentum space. These are defined as

(T1Eu(v, Z)O(k1)O(k2)]) = /ddxlddxz e"’“'““k""“/du (TTuu(u, v, Z)O(21)O(22)])

(R[Eu(v, T); O(k1)O(ko)]) = / Ay das, k1o tikows / dut (R[To (1, v, 7); O(21)O(23)])
(2.22)

The fact that the ANE annihilates the vacuum can be used to simplify these correlators.
Consider the time-ordered product of the local null energy T, and two local operators
O; = O(z;). At separated points,

T[Tuu(x)olog] = 9(t — tl)e(tl — tz)Tqul(Dg + 9(t — tz)e(tg — tl)Tuu0201 (2.23)
+0(t1 —t)0(t — t2) 01T O2 + O(t2 — 1)0(t — 1) 02T, O1
+ 9(t1 — t2)9(t2 — t)@lozTuu + ‘9(t2 — t1)9(t1 — t)@golTuu .

Using (2.19) and causality, which implies that commutators must vanish for spacelike
separated operators, it is clear that if we integrate the stress tensor over a null ray, only
two of these six orderings are non-vanishing in the 3-point function. In particular, only the
second line of (2.23) contributes. This is pictured on figure 1. Placing the ANE through
the origin, we obtain

<T[5u(0)0102]> = 9(1/1)9(—\)2) <O15u(0)02> + 9(\/‘2)9(—\/1) <025u(0)01> (2.24)

+ contact terms,

where we used causality to write the step functions in terms of the null coordinate v. With
an je-prescription appropriate to the operator ordering, the light-ray integral is convergent
so it can be performed safely. The retarded correlator also simplifies. At separated points,

R[Tuu(0); 0102] = —0(—11)0(t1 —t2) [T (0), O1], O2] —=0(—t2)0(t2 —t1) [[Tuu(0), O2] , O1] .
(2.25)

Expanding the nested commutators in (2.25), integrating the stress tensor to obtain an
ANE operator, and using the fact that the ANE annihilates the vacuum to remove all
the correlation functions where the ANE is either all the way to the right or to the left,
we obtain

(R[€4(0); 0102]) = 0(—v1)0(—v2) [(O1£4(0)O2) + (O2£,(0)O1)] (2.26)

-+ contact terms.

We can then transform the local O; operators to momentum space, such that ordered
correlators of the ANE operator can be expressed in terms of Wightman functions as

(RIEu(v, ); O1)OE)]) =2 [ dan / dy R B TEET2 (O (1) E, (v, 2)O(22) sep
vi<v vo <y

+ contact terms, (2.27)
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Figure 1. Possible orderings of operators. As the ANE operator &£, annihilates the vacuum both
on the right and on the left, the cases where both operators O are on one or the other side of the
ANE vanish. The only ordering that is not trivial is the one in the middle diagram, where there is
one O operator on each side of the ANE operator.

and

(TEMDOROG]) =2 [ dloy [ dlay o8 (00 E,(0, )Ow2)

v

+ contact terms. (2.28)

Wightman functions do not have contact terms, but for clarity we have written ‘sep’ for
‘separated’ to indicate that there are no contact terms included in the first lines.

2.3.3 Response function

Retarded correlation functions measure the response of an operator to a deformation of the
Hamiltonian. Turning on a time-dependent deformation Hy — Hg + V (£), the expectation
value of an operator A in the interaction picture is

(Ao = WO A@U®) . U0 =Texp (i /tdt'vu’)), (2.29)

with the right-hand side evaluated in the undeformed theory. Expanding perturbatively in
V' gives the Dyson series of retarded correlation functions. For a deformation by a local
operator such that §S = [ JO with real J, the first few terms are!

(A(7))det = (A()) + /ddxl J(z1)(R[A(z); O(x1)]) (2.30)
+ % / dy Ay J () (29) (RIA(); O(21)O(@2)]) + - -

This provides a physical interpretation for the retarded correlation functions of the ANE.
Let us insert the ANE through the origin, and turn off the deformation at v = —e, slightly
before the ANE insertion, to avoid contact terms. The first and second order terms vanish

'These are full correlators. Elsewhere we use (-) for connected correlators. Once we choose A = &, there
is no difference for the low-order terms written, because the disconnected terms vanish using £,|0) = 0.



using &,|0) = 0, so the leading term is

(€u(0))aer = (V[ (0)[¥) (2.31)
1
= / day / A%y J (1) J (22) (R[E4(0); O(21)O(22)])sep »

v1<0 v <0
where the state is [¥) = U(v = —¢)|0) and in the second line we have sent ¢ — 0. In
particular, if we take O to be the trace of the stress tensor, then the correlator (R[E,; ©O])
that will play a central role in this paper is the expectation value (£, )get in a Weyl-deformed
theory. Since (2.31) is an expectation value, it is required to be nonnegative by the ANEC
in the original theory on a flat metric.?

3 Contact terms in Lorentzian correlators

In this section we discuss general properties of contact terms in Lorentzian correlation
functions, then use the trace anomaly to calculate the contact terms in (7[7,300]) and
(R[T,s3; ©0]) in four-dimensional CFT. From the latter results we write the Euler anomaly
a in CFT in terms of the averaged null energy.

3.1 General properties

The conformal anomaly produces contact terms in correlation functions of the stress tensor.
These contact terms are most commonly discussed in Euclidean signature, where they
appear as Dirac d-functions in position space, or polynomials in momentum space. In
Lorentzian signature, contact terms appear in the time-ordered, anti-time-ordered, retarded,
and advanced momentum-space correlators. These four types of correlators are all related to
each other by analytic continuation in momenta. This implies that, in fact, all the different
correlators in momentum space share the exact same contact terms up to phases. The goal
of this section is to explain this in detail.

The definitions of the different orderings of operators (2.15) and (2.16) only apply
at separated points. Correlators at coincident points, i.e. contact terms, are defined by
consistency relations or (equivalently) by variations as in (2.10). In a CFT in even dimensions,
the conformal anomaly signals the fact that the stress tensor cannot be simultaneously
conserved and traceless at coincident points. Because we defined the stress tensor by the
metric variation, as in equation (2.10), we have opted for conservation over tracelessness,
and the trace anomaly leads to coincident point contributions to correlation functions.

In Lorentzian signature, it is easier to study contact terms in momentum space. Let
us first review the analytic structure of momentum-space correlators (see [90] for a more
comprehensive review). In a unitary quantum field theory, physical states are required to

2Note that there are two different things one could mean by the averaged null encrgy in a Weyl-deformed
theory. Here we mean f duT,, in the theory with metric e*(—dudv + dfg). Some papers on the ANEC in
curved spacetime study instead the quantity f dA\T\\ = f due“Ty, where X is an affine parameter in this
metric [88, 89]. These papers show that the ANEC (in the latter sense) can be violated in quantum field
theory on a conformally flat background. The ANEC is believed to hold in gravitational theories, but only if
the null ray is achronal and the background satisfies the Einstein equations [22].



have momentum in the closed forward cone, V; = {q|¢® < 0,¢' > 0}. This is one of the
Wightman axioms (see e.g. [91]).% It follows that O(q)|0) = 0 for ¢ ¢ V. Moreoever,

n
T1O(k1) ... O(kn)]0) = R[O(K1); ... O(kn)] |0) = 0, it Y kigVi. (31
i=1
Similarly, a string of operators, in any ordering, vanishes when acting on the left vacuum (0|
if the sum of their momenta is outside the closed backward cone, V_ = {q|¢*> < 0,¢* < 0}.
These properties can be used to show that if all external and internal momenta lie outside
the region V _, then the retarded and time-ordered correlators are equal up to a phase:

(RIOA(kn): Oa(k) . O 1 (1)) = (=" (TIONK) Oulka)]) . k¢ Vo,
i€l

(3.2)

for all I C {1,...,n — 1}. This implies that the 7 and R momentum-space correlators

are analytic continuations of the same function, up to the phase (—i)"~!. (The advanced

and anti-time-ordered functions are also analytic continuations of this same function, but

we will not need them.) There are poles or branch cuts so that the correlators differ for
momenta in V_.

The general derivation of (3.2) is reviewed in e.g. [90]. We will sketch it briefly for the

2-point and 3-point functions. For the 2-point function, the orderings are trivially related by

iR[Oz(x2); O1(21)] — T[O1(21)O2(22)] (3.3)
= 9(t2 — tl)[OQ(l‘Q), Ol(Ll)] — 0(751 — tg)ol(l‘l)OQ(l‘Q) — H(tz — tl)OQ(l‘z)Ol(iL‘l)
= —(91(331)(’)2(332).

The second line in this expression makes sense only at separated points, but the first and
third line are equal as distributions. The Fourier transform of the Wightman function
(O1(x1)Ox(2)) vanishes for kg ¢ V1, because O(k2)|0) must create a state in the physical
spectrum to obtain something non-vanishing. Therefore applying this to (3.3) we have
(R[O2(—k); O1(k)) = —i{(O1(k)O2(—k))) for k ¢ V_. This establishes (3.2) for 2-point
functions. For the 3-point function, the starting point is the identity

R[Og; 0102] + 7'[(’)1(’)203] = iOQR[Og; 01] + i01R[03; 02] + iR[@l; 02]03 + 050,03,
(3.4)

with O; = O;(x;). If {ki, ko, k1 + ko} ¢ V_ then the Fourier transform of the right-hand
side vanishes, since (0|01 (k1) = (0|O2(k2) = 0, and Os(—k1 — k2)|0) = 0. This implies
R[03; 0109 = =T [010203], as stated in (3.2).

We now turn to contact terms. By definition, contact terms are analytic in momenta.
Therefore (3.2) holds everywhere without any restriction on momenta,

<<R[On(kn)7 Ol(kl) v On—l(kn—l)»contact = (_Z)n_1<<7-[01(k1) v On(kn)]»contact 3 sz .
(3.5)

5We are also assuming the existence of the time-ordered product, which is an extra assumption that
has not been derived from the Wightman axioms. The R-product is then defined from the 7-product. See
e.g. [90, 92].
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There can be partial contact terms which are analytic in some momenta but not others; (3.5)
applies to the full contact terms, analytic in all momenta.

Euclidean momentum-space correlators are related to time-ordered Lorentzian correla-
tors by a Wick rotation. Thus we can summarize the situation as follows. Up to simple
phase factors, exactly the same contact terms appear as polynomials in momenta in the
Euclidean, time-ordered, anti-time-ordered, retarded, and advanced correlators. Wightman
functions do not have contact terms, because an analytic function that vanishes for spacelike
momenta is identically zero.

It is important to keep in mind that whereas retarded and time-ordered correlators
are well defined distributions, the expansions (2.15) can only be used at separated points.
Contact terms in Euclidean correlators come from imposing conservation at coincidence
points in the Euclidean path integral. Similarly, contact terms in time-ordered correlators
come from imposing conservation at coincident points in the Lorentzian path integral,
and contact terms in retarded correlators can be understood from the path integral on a
Schwinger-Keldysh contour.

3.2 Contact terms in four-dimensional CFT

In a four-dimensional CFT in curved spacetime, the trace of the stress tensor is

(©) = —aBy + W2, + biOR + boA’R + bgA*, (3.6)

where Ej is the Euler density and W, is the Weyl tensor (see appendix B) [93, 94] (see
also the reviews [95, 96]). The Weyl anomaly consists of the first two terms, with coefficients
a and c¢. The other terms, where A is the UV cutoff and the b; are dimensionless coefficients,
can be removed by local counterterms, but if they are set to zero in the UV, they will be
generated along an RG flow.? We retain them in order to ensure that the eventual sum
rule is independent of non-universal terms.

Dimensional analysis also allows a contribution to the trace proportional to R?, but this
term is eliminated by the Wess-Zumino consistency condition which requires (0(z1)©(z2))
to be symmetric [97]. In CP-violating theories there could also be a Pontryagin term
PR, P Rogps- We will not keep track of it, but it does not contribute to (00T,,) so it
does not affect the conclusions.

2-point function (®0®). Correlation functions of the stress tensor involving at least one
insertion of © can be calculated by varying (3.6). For example, the trace 2-point function
in Euclidean signature is

S x 0 x x
O@)82)) =~ g™ ) s (ate (@) . 67

4The corresponding terms in the Fuclidean effective action are

log Z, = /d4a:\/§ (b—jA“ + %AQR + VR + b’;RWR”“) ,

such that b10R + baA2R + bsA* = % log Z, with by = —12b} — 4b] where we used the Bianchi identity.

2
NG
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with the metric implicitly set to g, = d,, at the end. Varying (3.6) and then transforming
to momentum space (this computation can be found in appendix B) gives the Euclidean
2-point function

(O(K)O(—K)) = —6b1 Kt + 6byA2K? + 4bsA*. (3.8)

The Wick rotation to Lorentzian signature with (K7, K') = (ik, k') produces the time-
ordered correlator

(TIO(K)O(—K)]) = —i(—6bik* + 6baA%k? + 4bzA™) . (3.9)

This is a pure contact term, so the retarded correlator is equal up to a phase, as discussed
in section 3.1. This amounts to

(R[O(k); ©(=k)]) = —i(T[Ok)O(=K)]) = 6b1k* — 6baA%k> — 4b3A*. (3.10)

Note that the anomaly coefficients (a, ¢) do not appear in (©0). The 2-point function
(Top0) is calculated in appendix B, and is also independent of a or c. To study the anomaly,
we therefore proceed to higher variations.

3-point function (T,,©0). Consider (T;,00), with T, the null energy. To calculate
the Lorentzian correlators, we vary the trace (3.6), transform to momentum space, and
Wick rotate. The calculation is a straightforward application of the definitions in section 2.2
and is detailed in appendix B. The results are

(R[Tuu(k3); O(k1)O(k2)]) = 8a(ki ks + k3, k? — 2k1ukoy k1-k2) (3.11)
+ 4by[(kry 4 kou)?k1 ko — 3kiukou (K2 + k3)]
— AboA* (K7, + k3, — krukou)

and
(T1O(k1)O(k2)Tuu(k3)])) = —(R[Tuu(ks): ©(k1)O(k2)])) - (3.12)

The Weyl-squared anomaly ¢ dropped out, but the Euler anomaly a appears in the first line.
In a given CF'T, the coefficients b; and b2 can always be set to zero by local counterterms,
but they are generated by RG flows so they cannot be set to zero simultancously in the UV
and IR.

3.3 The trace anomaly from averaged null energy

Contact terms in correlation functions involving light-ray operators are derived by integrating
the local correlators. It is convenient to work in momentum space. We will now use (3.11)
to calculate the contact terms in (£,00) in a 4d CFT, and derive a universal formula for
the a anomaly in terms of this correlator.

The ANE operator through the origin is

“dk, d®k

£ul0) = [duTualuv=0,5=0)= |
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Ordered correlators of the ANE are defined in (2.22). By setting k3, = 0 and integrat-
ing (3.11) over the other components of k3, we find the retarded correlator

(R[£4(0); ©(k1)O(k2)) = 8mk?, [2a (k1 + ko)? 4 3by (k¥ + k3) — 3boA%]5 (k1o + Kou), (3.14)
and the time-ordered correlator

(TTE(0)O(k1)O(k2)) = —(R[Eu(0); O(k1)O(k2)) - (3.15)
Note that the argument of &,(0) is always a position, (v, ) = (0,0), not a momentum.
The equation (3.14) can be inverted to solve for the three trace coefficients a, by, be by
taking advantage of the different transverse momentum structures. After setting kq, =
ko, = 0, the momentum dependence of the Euler anomaly term is (kj + kg)? — (El + E2)2.
This is the only term involving Ky 'EQ, so to extract the a coefficient we integrate (3.14) over
kou, act with agluékl -5k2, then set all momenta to zero. The result is a universal formula
for the Euler term in the conformal anomaly in a 4d CFT:

o= 6714 [ ks dtes i35(us) 7122 RIEO); (1) O] (3.16)

This is the key relation that we will use in the derivation of the sum rule. By translation
invariance we can also fix the u-position of Ty, instead of one of the traces, giving an
expression in terms of the local null energy,

o= 6i4 / day dhs (w1 — u2)? Bt - B (R [T (0); ©(21)0(22)]) . (3.17)

The non-universal terms can be extracted from (3.14) by acting with different momentum
derivatives. Choosing the differential operator (ﬁlu gives

by A% = 2171 / d*zy d*ro u? §(up) (R[E4(0); O(x1)0(x2)]), (3.18)

and the other coeflicient can be isolated using Gglu(gkl - 51@)27 such that

1

b= 103

/ dizy diagu? §(ug) () — 2)2(R[£4(0); O(21)O(2)]) . (3.19)

4 The a-theorem from the ANEC

We now turn to the study of non-conformal quantum field theories and derive the sum rule
relating (©&,0) to the change in the Euler anomaly, Aa = ayy — air, along an RG flow.
The strategy is sketched in figure 2. We will apply the CFT relation (3.16) to the infrared
theory, and then decompose the right-hand side into contributions from the UV fixed point
and contributions along the RG flow.
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CFTyy (R[€4; ©0))uv

QFT (R[E4;00))

Low momentum limit

CFTir <R[5u» @®]>IR

Energy

Figure 2. Logic of the anomaly matching sum rule. We consider the correlator (R[€,;©0)]) in a
QFT that flows between two fixed points. At low momentum it must reproduce the IR anomaly.
This can be viewed as a sum rule, with contributions from the UV and from separated points along
the flow.

4.1 Matching in the infrared

Consider a four-dimensional QFT that flows from CFTyy at high energies to CFTr at low
energies. For a QFT with a mass scale M, high energies means E > M and low energies
means E < M. Throughout this section and for the rest of the paper, we use brackets
(-) to denote connected correlation functions in the QFT, with (-)yy and (-)ig used for
connected correlators in the CFTs at the fixed points. Let us choose the counterterms to
set by = by = b3 = 0 in the UV CFT. The mass scale M plays the role of the UV cutoff in
the TR theory, so

(O)uv = —auvEs + covWi s » (4.1)
(O)r = —arEy + CIRWiua[f + b0R + bQMZR + 53M4 .

The renormalization group relates the correlation functions of the QFT to those of the
CFTs. In the infrared, the statement that the QFT flows to CFTigr means that correlation
functions of the QFT approach those of CFTig when all momentum invariants are small
compared to the mass, i.e. K; - K; < M 2. Correlators of the QFT involving © must
agree with the above expressions for (O)g at low momenta. In particular, the 3-point
function satisfies

K;-K;
M?2

(Tap(K3)O(K1)O(K2))) ~ (Top(K3)O(K1)O(K2))r, for <1, (42

where the right-hand side is the CFT correlator obtained in (3.11) (in Lorentzian) or (B.17)

(in Euclidean), which is a pure contact term that is analytic in all momenta. Corrections
K} K2 Kk

to (4.2) are suppressed by positive powers of the invariants 2 % apzs, multiplied by
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logarithms. The same statements apply to the time-ordered and retarded correlators in
Lorentzian signature. In the ultraviolet, the statement that the QFT flows to CFTyy
at high energies means that the correlators of the two theories agree up to corrections
suppressed by the invariants %

In order for (4.2) to hold, it is important to keep all terms in the IR trace in (4.1),
including those multiplying the UV cutoff. Usually in the discussion of a CFT in isolation
the b-coefficients are renormalized to zero. These terms, unlike the anomaly coefficients,

are not intrinsic to the IR CFT, but they can be calculated from the QFT using (4.2).

4.2 Derivation of the sum rule

The IR relation (4.2) can be viewed as a sum rule that relates the UV to the TR. All of the
terms in the CFT correlator must match the low-momentum expansion of the QFT. In
four dimensions, this means all terms up to and including O(K*). Writing out the Fourier
transform, we have

/d4x1d4xzd4x3 eHKrm il ratils s (o (24)0(21)0(72)) & (Tos(K3)O(K1)O(K2))1R 5
(4.3)

at low momentum. The Fourier integral has three types of contributions, depending on how
many points are coincident: separated terms with no delta functions, ‘partial contact’ (PC)
terms with a single delta function, and full contact terms with two delta functions. The full
contact terms are controlled by the UV fixed point, while the partial contact terms depend
on both the UV CFT and the RG flow. Let us write these three terms as

(Top(23)0(21)O(22)) = (Tap(23)O(21)O(22))sep + (Tap(23)O(21)O(72))pC (4.4)
+ (Top(23)0O(21)O(22)) UV

which have zero, one, and two delta functions respectively. The separated term (-)gcp is
by definition a non-singular distribution that agrees with the full correlator (-) when no
two points are coincident, and integrates to zero against test functions with support in a
vanishingly small region; in other words, it is the correlator with all contact terms discarded.
For the split in (4.4) to be well defined, each term must individually be a well defined
distribution. Equivalently, the split only makes sense when integrated against test functions
such that all three integrals converge separately.

We apply the split (4.4) and the matching condition (4.3) to the ANE correlator.
Isolating the contribution from separated points, we have

/ oy dhay 6P THRRT RIE, (0): ©(21)O ()] )sep + PC (4.5)
~ (R[E4(0); O(k1)O(k2))1r — (R[Eu(0); ©(Fk1)O(k2)])uv ,

where PC' stands for the term originating from the partial contact terms:

PC = / Az d ey etk (RE (0); ©(21)0 (w2)]) e - (4.6)
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Plugging in the UV and IR CFT correlators obtained in (3.14), and recalling that we tuned
the non-universal terms to zero in the UV, gives

[ dtardtay cBn (RIE (0);0(01)0 (@2)sep + PO (47)

~ 167k, [(am — auv) (k1 + k2)? — 301 (k3 + k3) — 36oM2]6(k1y + ku)

Next, we use the definition (2.16) to write the separated correlator in terms of nested
commutators. As discussed in section 2.3.2, most of the terms drop out using the fact that
the ANE annihilates the vacuum. All that remains is a Wightman function and we obtain

d'z, / Aty F1FRE (©)(11)£4(0)O () + PC (4.8)
v1<0 v2<0
~ 873, [(am — auv) (b + ho)? = $b1 (k3 + K3) — $bs M2 6k + ko) -

The ‘sep’ subscript has been dropped because the Wightman function does not have contact
terms; there are no coincident point contributions to the first term.

Our goal now is to relate Aa = ayy — air to the separated 3-point function. This is
complicated by the presence of the unknown partial contact term PC, which has no known
positivity properties because it involves coincident points. Below in section 4.4 we will
analyze the partial contact terms and show that they arise only when there is a conserved
dimension-4, spin-2 operator other than the stress tensor, i.e., a possible improvement term.
Typically the stress tensor is the unique primary operator with these quantum numbers,
but there can also be contributions from (9,05 — go30?)O where O is a scalar primary of
dimension two. The contribution of such an operator — and therefore the most general
allowed form of the partial contact term — is

PC = [F(k1) + F(k2)k7 6 (kru + k2u) | (4.9)

with F' an unknown function. Crucially, this has no kj - ko momentum dependence. We can
therefore extract Aa from (4.8) by picking off the coefficient of ky - ko.

The Fourier transform in (4.8) may be divergent, and then the split into separated and
contact terms becomes ambiguous. However the coefficient of the O(k?) term converges
and is therefore defined unambiguously.

4.2.1 The a-theorem

We seek a positive sum rule using the ANEC in the form

/ 'z, / ds f*(21) ] (22)(O(21)E0(0)O () > 0. (4.10)
v1<0 v2<0
This inequality holds for any smearing kernel f. The simplest choice is

fm(@) = e ay,, (4.11)
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where m = 1,2 runs over the transverse directions, i.e. # = (21,23). This kernel is
equivalent to acting with a derivative (—9; -9z ) on (4.8), then setting ki, = —kpy = w

and k1, = ko, = El = 152 = (0. The leading term at small w is therefore
/ diazy / diay e 2 L 20(0(21)E,(0)O(22)) ~ 32w (ayy — ar)V™,  (4.12)
v1<0 v2<0

where V* = 76(0) = %/ du is an infinite volume factor. The k-derivatives have removed
any contributions from the non-universal terms PC, by, and bs.

The sum rule (4.12) relates Aa to an expectation value of &,(0), which is required to
be non-negative by the ANEC. Therefore, the ANEC implies the a-theorem:

ayv > AR - (4.13)

The a-theorem was first derived by Komargodski and Schwimmer by matching the anomaly
in the dilaton scattering amplitude, which is related the four-point function of the trace [40].
This followed a study of anomaly matching across phases with spontaneously broken
conformal symmetry in [98]. The strategy we have followed here is also similar to anomaly
matching, but applied to the stress tensor 3-point function rather than the 4-point function.

There are two small variants of the sum rule that we will discuss in the following
subsections. The first is an IR-regulated version using a wavepacket, which replaces V* in
the sum rule by a finite positive number — this justifies ignoring the infinite volume factor
in the derivation of the a-theorem. The second is another way of regulating the volume
factor by fixing the u-position of one of the operator insertions. After describing these other
sum rules we will return to the analysis of partial contact terms in section 4.4 in order to
justify the claim (4.9).

4.2.2 Wavepacket regulator
Define the state

t(w)m) = / d*z 0(—v)e /7" L O (u, v, 7)[0) (4.14)

where o is an infrared cutoff with 0~! < w < M. This is designed to be an IR-regulated
version of the smearing in (4.11). Using (4.8) we find

S W (@) ml|Ea(0)[(w)m)

m=1,2
- / &z / g e —m) =D /0" 2 5 (0 (11)E,(0)0(x2))
v1<0 v2 <0
~ 8(ayy — amr )V 2mow?. (4.15)
To obtain the second line, the Gaussian damping factors have been written as e~u'/o? =

ﬁ Jdp ePu=p"0*/4 hefore exchanging the orders of integration. Comparing to (4.12), we
see that the volume factor V" has been replaced by a finite positive number as expected.
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4.3 Exact sum rules for Aa

The volume divergence V" can also be regulated by fixing the u-position of one of the
operator insertions and using null translation invariance. In addition, we can extract the
w? contribution to the correlator by acting with 92 and setting all momenta to zero. If we
fix ug = 0 in (4.12), this gives the exact sum rule

1 L
avv —am = —— | da / A2 125 (us) T - T2 (O(21)Ea(0)O(2)) . (4.16)
32 Jyi<0 va<0

Once again there are no contact terms in the integral. This formula can also be derived
directly by starting with the CFT equation (3.16), as applied to the IR theory, and following
the same logic as section 4.2 — that is, moving the UV contact terms to the left-hand side.
A second version of the exact sum rule comes from applying the same logic to the
time-ordered correlator. The contact term just differs by a sign, so the result is

1

av —am = — [ d'm / A2 126 (ug) T - F2(0(21)E4(0)0(22)) . (4.17)
32 v1>0 vo <0

Yet another option is to fix the u-position of Ty, rather than the trace, as in (3.17).
This gives the symmetrical sum rule

1 - o
ayy — QR = ——— d*zy / d43:2(u1 - uQ)2x1 - Z9(0(21) Ty (0)O(22)) . (4.18)
32, v1<0 Jva<0

None of the exact sum rules (4.16)—(4.18) is manifestly positive, because they are not
expressed as an expectation value of £,. Nonetheless they are positive by the results of
section 4.2.

4.4 Analysis of partial contact terms

It remains to justify dropping partial contact terms in the derivation of the sum rule for Aa.
In d dimensions, consider the Euclidean correlation function

(Top(z3)O(21)0(22)) - (4.19)

Partial contact terms, by definition, are contributions with two points coincident, and the
third point separated. There are two different types of partial contact terms to consider:
terms with (©©) coincident, involving §¥ (z; — x2), and terms with (T,s0) coincident,
involving 0 (3 — 1) or 6(¥ (x5 — z3). Both types of partial contact terms can exist (and
they are nonzero in the free massive scalar), but we will show that they do not contribute
to the sum rule.

Let us start with the first type, where the two traces © coincide. It is easy to see that any
such terms drop out of the ANE correlators (R[E,(0); O(z1)O(x2)]) or (T[E€,(0)0(x1)O(x2)]).
In the case where the two traces © coincide, they must be ordered on the same side of the
ANE insertion. Therefore we can use &,|0) = 0 and these contributions vanish.

We now turn to the partial contact terms where T,,5 coincides with one of the ©
insertions. Such a term arises if there is a delta function in the OPE,

Top(23)0(21) D O 7 (21) Dogory .. (9)6D (3 — 1) , (4.20)
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where O is a (not necessarily primary) local operator in the UV CFT (multiplied by /-
functions), D is a differential operator, and ¢ > 0. Therefore in the 3-point function they
take the form

(Top(x3)0(21)O(x2)) D (0777 (21)O(22)) Darfor; 5. ., ()Y (w3 — 1) (4.21)
+(12).

In the Lorentzian 3-point function in momentum space, focusing on the time-ordered
correlator for concreteness (the retarded correlator is similar), this becomes

(TTop(k3)O(k1)O(k2)]) D Gorg ™ (k2)Pagor...op(k3) + (1 < 2) . (4.22)
Here P is a tensor that is an analytic function of ks, and
Gos (k) = (TIO7 7" (k)O(=k)]) - (4.23)

The correlator in the sum rule has k3, = 0 and only involves the null energy, T, so we
now specialize to this case, and denote

I'= (T1Tuu(k3)0(k1)O(k2) ) pclyy,—o - (4.24)

The tensor indices on P must be accounted for by combinations of k3’s and metric tensors.
If £=0or 1 and ks, =0, it is impossible to write a nonzero tensor structure for Pyye,..0,-
For ¢ > 2, the nonzero part of this tensor must take the form

Puualaz...og(k3)|k3u=0 = gua1gu02U03...w(k3) 5 (4'25)

for some tensor U. To see this, we note that each u index must appear on a metric tensor
because ks, = 0, but they cannot appear together, because gy, = 0. Thus we have shown
that any partial contact term must enter the 3-point function in the form

L~ (T[Ouw 7 (k2)O(=k2)|)Ups..c,(k3) + (1 <+ 2). (4.26)

The sum rule for Aa was designed to pick off the term proportional to k3,k; - k2. The
2-point function on the right-hand side of (4.26) provides the factor of k3,. There are only
two ways to get a factor of kj - ko, which are the following terms with / = 2 and ¢ = 3:

T ~ (T[Ouu(k2)O(—k2) k3 + (T [Owu” (—k2)O(k2) Y kse + (1 4> 2) . (4.27)

By dimensional analysis, the first term only affects the sum rule if the operator has scaling
dimension A(O,,) = 2 and the second term only affects the sum rule for A(O,,7) = 3.
However, this is forbidden by the unitarity bound in the UV CFT. Therefore there are
no partial contact contributions to the sum rule. This also justifies a posteriori using the
split (4.4) in the derivation.

One may wonder whether any partial contact terms at all are allowed in the correlation
function (T [Tyw(k3)O(k1)O(k2)]) when ks, = 0. It follows from (4.26) and the unitarity
bounds that the only partial contact term at O(k*) has £ = 2, U = constant, and A(Oy,,) = 4.
This can arise if there is a dimension-2 scalar field, with O, = (0,0, — g,“,a?)o. Because
of the momentum dependence, this does not affect the sum rule for Aa, but it prevents
us from a writing a sum rule for the non-universal terms Ab; and Aby in terms of the
separated correlator.
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5 Example: Massive scalar

In this section, we will apply the sum rule to a conformally coupled free massive scalar field

in four dimensions. This theory flows to a massless scalar in the UV, with ayy = ﬁ

(see e.g. [40], see also [99] for a bootstrap attempt at bounding a in specific examples). In
the IR it flows to the trivial empty CFT with ajg = 0. The action in d dimensions is

S = —é / /= g((96)* + m2¢* + ERG?) (5.1)

where the conformal coupling is £ = %. The stress tensor in flat spacetime derived from
this action is

Ty = 0,00, ¢ — %guu(m2¢2 + (8¢)2) —&(0,0, — guva2)¢2 ; (5.2)
and the trace is
o — _gm2¢2 +2(d — 1)é¢0¢ + (2((1 —1)¢— g + 1) (04)> . (5.3)

We will compute time-ordered connected correlation functions involving the stress tensor
T, and its trace. At separated points these are given by Wick contractions, using the
Feynman propagator

Gla =) = (TIool) = —i [ S22 (54
J (2m)d p? 4+ m? —ie
When d = 4, the conformal coupling is £ = % such that the trace is
0 = —m*¢* + (0 —m?)g, (5.5)
and the null energy is
T = 2(000)" ~ 30026, (56)

In the calculation of correlation functions at separated points, we are free to use the
equation of motion to replace the trace by

0 — —m?¢?, (5.7)

because terms like (¢(z)(CJ — m?)¢(y)) can only produce contact terms. We can then use
Wick contractions (with the substitution (5.7)) to obtain the correlator at separated points.
This gives

4m*

S G(w1) (400,00, — 02, = 02,) [G(e13)Glas)] , (5.8)

(Tl (23)0(21)O (22)])sep = —3 o

where z;; = x; — x;, which is a product of Bessel functions.
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S}
Figure 3. Feynman diagram for (7 [Ty, (k3)©(k1)©(k2)]) in the free massive scalar.

We will check the time-ordered version of the sum rule in (4.17). The retarded sum
rule is the same up to a minus sign. To evaluate them, we will first go to momentum space.
The Fourier transform of (5.8) is

«T[Tuu(k3)@(k1)@(k2)]>>sep (5-9)

_ 4m4 / d4p (pu + k1u>2 + (pu - k2u>2 + 4(pu + klu)(pu - k2u)
3 ) @Ry G — i+ R+ 2 i) (p— haP F =)
This is the 1-loop diagram shown in figure 3, up to the contact terms that we dropped by

applying the equations of motion. The result of the integral at low external momentum is

(T T (k3)© (k1) O (k2) [ Dsep (5.10)
2

1 2 2
—mk’mk’m + W(lﬁ + k2)* (k1u + k2u)

-8 W(k%ukg + k3, kF — 2k1ukauks - ko)
1
—4. W((klu + kgu) k1 -k — krukou (K + K3)) + O(K°)
where we have expanded in 7—]2%7, :L% ) %1—5]% < 1. The integral is done by Wick rotating

pt — —ip”, combining the denominators with the Feynman trick, expanding in k, then
doing the Feynman parameter integrals and lastly the convergent loop integral.” Although
regularization is not necessary, it can be a convenient way to check the integral, and in
appendix C we reproduce this result (and a few other similar correlators in the massive
scalar theory) using dimensional regularization.

Finally we evaluate the sum rule (4.17),

Aa = % / dus / de1d es u26(ug) @1 -F2 (T [Tuu(us, vs = 0, &3 = 0)0(21)0(22)])sep (5.11)

= o O = D) Tes T T T r — £2)O (k1) O(k2) s
B 1
576072

which is indeed equal to the Euler anomaly ayy for a free massless scalar.

k1=ko=0

(5.12)

®Initially the loop diagram appears to be log divergent, but the terms with p2 in the numerator drop out
because they have integral proportional to g.. = 0. In any case, only the k-derivatives of the correlator
appear in the sum rule, and after taking a k-derivative the loop integral converges. Note that if we had
not used the equations of motion, the integral would have power-law divergences and we would need to
renormalize to calculate the full correlator. Thus the fact that the sum rule only involves the correlator at
separated points is a major simplification in this calculation. Note that because of the UV divergences, the
split into separated and contact terms in the k?m? term is ambiguous, but the calculation of the separated
k* terms is well defined.
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6 Discussion

6.1 Technical summary

In this subsection we review the derivation of the sum rule and the a-theorem to emphasize
the main steps. We will ignore a variety of non-universal contributions to the correlation
functions that appear in the intermediate steps. All of the non-universal terms were
considered in detail above and shown to drop out of the final sum rule.

We studied the retarded correlation function

(R[E4u; ©(21)O(x2)]) :=—0(—v1)0(v1i—v2){[[Ew, O(21)], O(m2)]) — (21 <> x2)+contact terms,
(6.1)

where © = T, # and &, = [duTyy(u,v = 0,7 = 0). The starting point is the conformal
anomaly, (0) = ¢(Weyl)?—a(Euler). By varying the anomaly with respect to the background
metric, we derived the contact terms in the (7,300) correlation function. With the trace
insertions in momentum space, this led to

(R[Eu; O(K1)O (k)] crr = 16mak?, (k1 + k2)20(kry + kou) + - -- (6.2)

where the dots are non-universal. See (3.14) for the complete formula.

The result (6.2) holds at a conformal fixed point. In a quantum field theory that flows
between two fixed points, the correlators of the QFT at small momentum agree with the
infrared CFT. Therefore (6.2) holds for the QFT correlator at small momentum, with ag
appearing on the right-hand side:

(R[E4; O(k1)O (ka)))qrr = 16marr kT, (k1 + k2)?6 (k1y + kou) + - - (6.3)

(There are other, non-universal terms at the same order in k that drop out of the sum rule
and were discussed above.) The left-hand side has a contribution from the UV region of
the Fourier integral, which is controlled by the UV fixed point. Moving the UV contact
terms to the other side of the equation we obtain

<R[5u, @(kl)@(k2)]>sep = 167T(CLIR — aUv)(kl + kQ)Q(S(klu + kzu) =+ - 5 (64)

with ‘sep’ for ‘separated’ indicating that no contact terms are included in the Fourier
integral that defines the left-hand side. Thus the left-hand side, being a retarded correlation
function at separated points, is the Fourier transform of the nested commutator

—0(=v1)0(v1 = v2)([[€u(0), O(21)], O(22)]) + (1 & 2) (6.5)

The ANE annihilates the vacuum, &,|0) = 0, so when the commutators are expanded, most
of the terms drop out. What survives is a Wightman function,

/ 'z, / Ay TR 2 (© (1) E,.(0)0 (2)) (6.6)
v1<0 <0

= —871‘/{'%”(&[}\/ — aIR)(/ﬁ + k2)25(k’1u + k'2u) +oee
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For the complete version of this formula including non-universal terms see (4.8). To prove
positivity, act on both sides with —5k1 -5k2 and set ko, = —k1. The left-hand side becomes
an expectation value (¥|&,|¥), which is positive by the ANEC, and the right-hand side is
proportional to ayy — arg. The non-universal terms in ...’ drop out of the leading term at
low momentum because they do not have k1 - ko dependence. It follows that ayy > agr.
The sum rule (1.2) is the coefficient of k%ulzl - k3 in (6.6). Three slightly different versions
of the sum rule are discussed above: a manifestly positive, IR-regulated expression for
Aq in (4.15), a time-ordered sum rule involving the averaged null energy in (4.17) and a
retarded sum rule in (4.16).

In this summary we have glossed over two crucial details that were discussed at length
above. The first is the analysis of counterterms, which is necessary to show that the
non-universal terms drop out. The second is the issue of ‘partial contact’ terms, which
are contributions to the QFT 3-point function with two points coincident and one point
separated. We have shown that all of the non-universal terms and partial contact terms
drop out of the sum rule.

6.2 Connections to quantum information

Using the results of [8] relating the ANE to the modular Hamiltonian, the derivation of
the c-theorem and a-theorem from the ANEC can be re-phrased in terms of the relative
entropy: monotonicity of relative entropy implies monotonicity of the renormalization group
in two and four dimensions. This is distinct from the information-theoretic derivation of
the C-theorems in [41, 42, 44, 45].

To make this more explicit, let us review the derivation of the ANEC in [8]. In null
coordinates ds?> = —dudv + di?, let region A be the Rindler wedge u > 0, v < 0, and A°
the complementary Rindler wedge u < 0, v > 0. The full modular Hamiltonian is defined

Hp=Hq— Hye, (6.7)

where H 4 is the modular Hamiltonian for region A in the vacuum state. The density matrix
of Rindler space is thermal with respect to the boost generator, so H A is an integral of the
stress tensor.

The two regions A and A€ meet at the Rindler bifurcation surface, v = v = 0. We
now consider deforming this surface in the null direction, so that the regions end at v = 0,
u = €(Z). Under this deformation the change in the modular Hamiltonian is [8]

§Hy = —QW/dd_QfE(f) /duTuu(u,v =0,7). (6.8)

Consider the relative entropy S (pﬁ“ p4) where py4 is the vacuum state and pﬁ is an excited
state. This quantity is monotonic under partial trace, which in the present context means
a deformation of the Rindler wedge with ¢(#) > 0. Relative entropy is a measure of
distinguishability, and monotonicity captures the intuition that hiding part of a system
can only make it harder to distinguish two states. Monotonicity of relative entropy can
be used to prove that the full modular Hamiltonian satisfies 6(¢)|H A1) < 0 under such a
deformation. Together with (6.8), this implies the ANEC [8].
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In (4.14), we defined a state |¥) created by a smeared insertion of the trace © such
that (¥|&,|¥) is proportional to ayy — aig. Therefore in this state the monotonicity of
relative entropy under a null deformation of the half-space implies the a-theorem.

Relative entropy was used in a different way in [100] to prove the 2d c-theorem
and, in higher dimensions, to constrain the RG flow of the area term in the entropy.
Distinguishability and relative entropy have also been discussed as a measure of distance
between quantum field theories in [101-104].

6.3 Connections to Lorentzian inversion?

The averaged null energy condition was derived by CFT methods in [5] (see also [9, 23, 57]).
Those methods are now best understood as a particular limit of the Lorentzian inversion
formula [6, 7]. The relation is that the positive sum rule for the ANE derived in [5] is the
leading-twist term in the inversion formula.

This suggests a role for Lorentzian inversion in the study of RG flows. Of course, the
formula of Caron-Huot applies only to conformal field theories. However, if it is applied
to the infrared fixed point, it has contributions from all scales, and therefore encodes
information about the RG flow from the UV. Perhaps this can be related to the dispersion
relation for the dilaton scattering amplitude used to derive the a-theorem in [40]. If so, then
the inversion formula, which relates 3-point functions to 4-point functions, may provide
a bridge between our approach and the derivation of Komargodski and Schwimmer [40].
It would also be very interesting to connect to the local renormalization group [105-107],
which has been applied to this problem in order to relate the 2 — 2 dilaton S-matrix to
3-point amplitudes [108, 109)].

To expand on this, let us compare our sum rule to that of [40]. By simply setting the
two results for Aa equal, we obtain the suggestive relation

1

1 A Im A(s)
32

dlor [ da s 2(0@)E00@) = L [T T (69)
v1<0 v2<0 0 S

™

where A is the dilaton scattering amplitude in the forward limit. This is interesting because
it hints at a generalized Lorentzian inversion formula for RG flows.

To see why, let us briefly review the relationship between light-ray operators and the
inversion formula. Following [5], consider a 4-point function of identical scalar primaries of
dimension A,

G = (O(u,v)O(x1)O(22)O(—u, —v)), (6.10)
where we have set the transverse coordinates to zero in the first and last insertions. Define
n=—uv, o=1/u (6.11)

and choose kinematics with 0 < n < ¢ < 1. We also assume z; is in the left Rindler wedge,
and x2 is in the right Rindler wedge. In the limit 7 — 0 at fixed u, two of the insertions
become null separated. Using the lightcone OPE, the following sum rule for the averaged
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null energy was derived in [5]:6

€
(O(21)E,(0)O(22)) = N lim lim >~ 4=2/2 | 4o dDisc G.. (6.12)
e—0n—0 s
The integrand is the double discontinuity, which is a non-negative double commutator [9,
110],

dDisc G = ([O(z1), O(u, v)][O(—u, —v), O(z2)]) > 0. (6.13)

The light-ray sum rule (6.12) is a particular limit of the Lorentzian inversion formula. To
see this, one simply expands the integrand in the inversion formula in the same kinematic
limit, and this reproduces exactly (6.12) [57, 111].

Now let us compare the CFT sum rule (6.12) to the RG sum rule (6.9). In both cases,
we have a light-ray expectation value on the left, and a manifestly-positive quantity built
from the 4-point function on the right. This is the sense in which we view the RG sum
rule as a natural extension of the lightcone inversion formula to an RG flow. It would be
interesting to understand this more directly, and perhaps to find a more general inversion
formula beyond CFT.
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A Ward identities

In this appendix we derive the Ward identities and explain some subtleties associated to
the transformation of the stress tensor under diffeomorphisms. Everything in this appendix
is in Euclidean signature.

A.1 Diffeomorphisms

The subtleties stem from the fact that with the standard Osborn-Petkou conventions (2.10),
used throughout the paper, the stress tensor does not quite behave like a tensor. Although
(T,) is an ordinary (weight zero) tensor, the operator 7}, inside a correlation function
behaves instead like a tensor density of weight one. The reason is that correlation functions
are defined with the 1/,/g’s multiplied at the end, rather than inside the variations. Thus

5This equation and its higher-spin generalization can be found in eq. (6.4) in [5]. The normalization
factor N is a constant that can be found there. We have used the relation Re disc G(z, z) = dDiscG(z, 2)
for z,z € (0,1) to rewrite the integrand it in terms of the double discontinuity.
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T, defined following Osborn and Petkou is actually a tensor density that is multiplied by
an inert, non-transforming factor of 1/,/g at the end of a calculation.”

To derive the Ward identities for the stress tensor it is convenient to start with the
stress tensor density,

T;w = \/gT;w: (Al)

with correlation functions

~ ~ ) 0

o Tasea) ) = A S Y o) 187 (A2)

T, is a tensor density of weight one. In general, under a diffeomorphism z# — z# — (¥,
the transformation of a tensor density O of weight w is the Lie derivative

LOM g5, = CHOUON g5, = O O g5, = (A.3)
+ 8514”(9“1‘12'“,152.“ +---+ wOalf”Z"'ﬁlg%aﬂC“ .

The replacement d,, — V,, leaves this expression unchanged. For a tensor density O of
weight one, we can write O = /g0 where O has weight zero, and the Lie derivative satisfies
(suppressing indices on O, which may have spin)

L0 = /gL O + /gOV . (F . (A.4)

For the stress tensor, the explicit formulae are
['CTaﬁ = CuauTaﬁ + aaCHTmS’ + GBC“Tau (A~5)
LcTop = JGLTop + /GTapV (" . (A.6)

We now turn to the Ward identities. Recall that the metric transforms under diffeomorphisms
as Legh” = —2V(1¢Y) | Diffeomorphism invariance of the effective action log Z [g] requires

0=6log Z = / dle (Leg™) <> log Z = — / dia\JGCIV(T) | (A7)

Sghv

This implies the conservation of stress energy in a general background, V#(T),,) = 0. For a
correlation function, coordinate invariance under x — z’ requires

(O (@)0'(2) ) = (Oa)Oa2) )y, (A.3)
where g is the background metric. The infinitessimal form of this equation is
(LcO(21)O(x2) - )H(O(21)LcO(2) - -+ ) + -+ - = 0 (O(21)O(22) - - +) (A.9)
= [ dateg (OO ).

oghv

It is possible to define a stress tensor that behaves like a true tensor inside correlation functions by
bringing the 1/,/g’s inside the variations, but at the expense of producing asymmetric contact terms. This
is why we chose to use the Obsorn-Petkou tensor density conventions. The resulting Ward identities [112]
look superficially different from those found in many other sources including the textbooks e.g. [113] which
use tensor conventions.
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where ¢ acts only on the background metric, and O is a tensor density of any rank. We
can take O = faﬁ, but not Ti,5 for the reasons above stemming from the Osborn-Petkou
conventions. Each operator insertion transforms independently, so without loss of generality
we can focus on the one-point function. Then (A.9) becomes

[ o5 @)V (T (@) Tas (@1)) = ~Lc(Tas @) (A.10)

Dividing by v/g(x1) in (A.10) to write this in terms of the Osborn-Petkou stress tensor and
using (A.5) gives

[ oG T ) Tap 1)) = ~£(Taplo) — Tap(@)Vuch ). (A1)

This can also be derived by varying the conservation equation V#(T,,,) = 0; see section A.4
below. The extra term on the right indicates that the Osborn-Petkou stress tensor transforms
as a weight-one tensor density inside correlation functions. Stripping off the integral gives
the conservation law

V(T (2) Tap(@1)) = (Tap(@))Vid D (@ = 21) + Vo ((Tp(2))0 D ( — 21))  (A12)
+ Vi (Lo (@)D (2 = 21)) -
In n-point functions of 7},,,, we get a sum of such terms for each insertion. These expressions
agree with [112].
Now counsider correlation functions involving © insertions. Recall from (2.11) that

correlators of © are defined with the trace inside the variation, but the 1/,/g outside. It
follows that ©® behaves like a weight one scalar density, i.e.,

[ e ae v L)) = ~Lo(®lm) — @@V, @), (A13)
Using L:O = (“V,0 and stripping off the integral this implies
V(T (2)O(21)) = (O(x))V,, 0D (x — 1) . (A.14)

For the 3-point function,

VAT, (2)0(21)O(22)) = (O(2)O(22)) V0D (z — 21) + (B(x)O(21)) V., 0D (2 — 25) .
(A.15)

These are superficially different from the standard Ward identity for a scalar of dimension
d, which would have —V,(©0)5@ on the right-hand side (see e.g. [113]). In those references,
the operators are implicitly defined with the 1/,/g’s inside the variations.

A.2 Symmetries

Given a closed codimension-1 surface ¥ = 9V, define the surface deformation acting on a
local operator O(x1) by

S[c] 0 O(z1) = ?{ dSH VT, 0 (1)

= - / VIVHC T O(21) — / V¢ VT, O(71) . (A.16)
v 1%
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If O is a true tensor, e.g. O = T, wg or O = (:), then assuming ¥ encloses x1, the last term is
—L:(O(x1)). For O =T,p or O there is an extra term from (A.11).

If ¢ generates a symmetry, i.e. V#(¥T,, = 0 up to contact terms, then S[(] is a
topological operator. By slicing ¥ in half in the standard way we can reinterpret its action
as the commutator

S[¢] o O(x1) = [Q¢, O(x1)] - (A.17)

For the stress tensor, accounting for the extra term in (A.11), this implies

Q¢ Tap(x1)] = LcTop(r1) + Tap(x1) V(1) — /ﬂw1 \V 9(@)VEC (1) Ty (2) Top (1) -
(A.18)

We now set g,, = d,,. The isometries of the flat metric yield the Poincare Ward identities,
for which the last term in (A.18) vanishes using d*¢*) = 0.

A.3 Dilatations in CFT

If the theory is conformal, then there is a dilatation symmetry (¢ = x® with conserved
charge D. The action of the dilatation on the stress tensor in d dimensions is

(D, Top] = 20, Tog + d T . (A.19)

For the conformal Ward identities, unlike Poincare, the last term in (A.18) is important.
Dilatations have 9(@¢? = ¢*# with ¢°? the flat metric. Denote the contact term in
T, (2)O(x1) by brackets, {7}, O}. Consistency of (A.18) with (A.19) requires the last term
in (A.18) to contribute

/ d%z\/g(x)g" (2){ Ty (x)Tap(x1)} = 2T0s(21) - (A.20)
T~vT1
Therefore

" () Ty (2) Top (1)} = 2T0p(21)8'P (z — 1) + total z-derivatives . (A.21)

A change in conventions as to whether the variation is done with respect to ¢®? or 9aB>
and where the 1/,/g’s are placed, would not alter (A.19), but it would change the contact
term (A.21). The effect of such a change in conventions is to move contributions between
the two terms in (A.16).

This discussion and in particular (A.21) apply in all spacetime dimensions, with and
without a conformal anomaly. (We have assumed there is no diff anomaly.) In odd
dimensions where there is no conformal anomaly, (A.21) simply comes from expanding out

"
indicates that the anomaly cannot alter the {T[jTafg} — 2T,3 contact term. The only effect

the metric variations in the equation Jg%(ﬂﬁT”(x) -++) = 0. In even dimensions, (A.21)
of the anomaly here is to add a c-number total derivative in (A.21) that is responsible

for the nonzero two-point function (T} (x1)Tag(22)), proportional to ¢ in both two and
four dimensions.
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Next let us repeat this analysis for a local scalar primary operator, O, in a CFT. Define
correlation functions by adding a source [,/gJO and varying as

16
N
—2 5 5

V(1) v/g(xs) 09°F (1) 6.J (x2)

etc. The action of the dilatation is [D, O] = /0,0 + AQO, and the conservation equation
analogous to (A.18) is

(0) = log Z (A.22)

(Top(21)O(22)) =

log Z, (A.23)

[D,0(z1)] = xﬁ”@(xl)) - V99" T, 0(x1) . (A.24)

T~z

Therefore the contact term is
" (2){ Ty (2)O(1)} = (d — A)O(21)5D (& — 1) + total z-derivatives . (A.25)

This agrees with [112].

Finally, consider the operator ©, defined in (2.11). This operator behaves under
diffeomorphisms and dilatations exactly like a scalar primary of dimension d. Therefore the
contact term vanishes upon integration:

M (){T )y (2)O(21)} = total z-derivatives. (A.26)

This can also be derived by taking the trace of (A.21) and using g“”(xl)(sg%u(z)gaﬁ (z2)
1

syt = 9 (109 (22) sy syt + VIO (1 — 22) g 5

dguv
A.4 Varying the conservation equation

The Ward identities (A.14)—(A.15) can also be derived by varying the conservation equation,
VH#(T,,) = 0, with respect to the background metric. This is a useful check of the signs.

To ease the notation we adopt the convention that all quantities are evaluated at the
point z, unless there is a sub/superscript, so T}, = T, (), T,S,l,) = T (x1), ©2 = O(22),
etc. Delta functions are written §; = 6(¥(z — ;) and §;; = 6@ (x; — x;). All derivatives
are with respect to x. Everything in this subsection is in Euclidean signature. Define the
variations

2 9
A,uz/ = _EW s A= g”yAuV-, (A27)

B =~ Vo(x;) 6gH (z;)’

AW = g (g )Aff)-

14

The correlators are

Tyw) = A log Z A28
JZ 7
1
(T,w01) = ﬁAMV\/gTA(l) log Z
1

<T,uu@1@2> - AW\/QTA(I)\/@A(Q) log Z .

V192
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A useful identity for the Weyl variation of a covariant derivative is
ADvHY,, = VFAWY,, — 26, VHY,, + (d — 2)Y,, V61 — YOV, 61, (A.29)

where ¢ is a scalar and Y}, is a symmetric tensor. The Weyl variation of the 1-point
function is

1
AT,y = E,@A(UAW log Z (A.30)
= (Tw01) + — [VaiA®, Ay og 2.
f I1 t

A short calculation gives the commutator [\/gTAW, A, ] = —(d — 2)81./gA .. Therefore
AT,) = (T),01) — (d — 2)81 (Tyw) - (A.31)
Now to get the first order Ward identity we vary the conservation equation:

0=AMvMT,,) (A.32)
= VFAINT,,) — 26, VF (T,,) + (d — 2)(T}, ) V#61 — (TE)V,0
= V"(T,,01) — (O)V,01.
We used (A.29) then (A.31). Thus we have the first Ward identity,
VM<T;U/@1> = <(")>V,,51, (A33)

in agreement with (A.14). Varying this equation again under A®) the Weyl variation at
the point 9, gives (A.15).

B Details of CFT calculations

In this appendix, we calculate the Euclidean two- and three-point functions (7},,©) and
(1,,©0) in 4d CFT by varying the trace anomaly. The results are used in section 3.2 in
the main text.

B.1 Trace anomaly

In a four-dimensional CF'T on a curved background, the trace is

(O(x)) = —aEy+ W}, , + biOR + by AR + bsA* (B.1)

where Fj is the Euler density and W, is the Weyl tensor. As explained under (3.6), it is
possible (and customary) to set by = ba = b3 = 0 by adding local counterterms. In even
dimensions, the Euler density is defined as

1

VL I2]2 . fin V. 01p202...pn0,
EQn — %RMIVI[)lUl . Rﬂn”nﬂngnel 1V1[42]2. . fin nepl 1P202...Pn0On . (BQ)
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The Weyl tensor is given by

1
Wiwpe = Ruvps + m(guo—Rup — GupRvo + GupRus — guoRyp)
1
+ m(gltﬂglm’ - g/mgyp)R . (B.3)

In four dimensions, and using all the symmetries of the Riemann tensor, we have

Ey,=R, ,—4R., + R’ (B.4)
1
2 _ n2 2 2
VV;wprr - R;wprr - QR[U/ + gR ) (B5)

with R0 the Riemann tensor, 17, the Ricci tensor and R the Ricci scalar. In terms of
these tensors, the trace anomaly (B.1) is

(0) = (c—a)R;,,, +2(2a— )R, + <§ - a) R? + b, VPV, R+ byA’R + b3A* . (B.6)

B.2 (©06)
Applying the definition (2.11), the Euclidean 2-point function is given by the variation

I S x 0 x x
O@)82)) =~ g™ ) s (ae (@) - (B

Varying (B.1) in a general curved background gives
(O(21)0(22)) = (B.8)
[ — 8aG, V*V” — 2b; (RV? + V¥RV, + 3V4) + 2b,A%(R — 3V2) + 4b3A4} 5D (215),
where z;; = x; — 25, and G, = R — % g R is the Einstein tensor. In flat Euclidean space,
(O(21)0(w2)) = [ = 6hoA20 — 650" + 4bgA*] 09 (1)
The Fourier transform to Euclidean momentum space gives
(O(K1)O(=K1)) = —6b1 K} + 6D A2 K7 + 4bgA* . (B.9)

B.3 (T,.0)
Using the definition in (2.12),

2 0
V(1) Vg(x2) 09* (22)

Performing the variation, we obtain (in flat Euclidean space)

(©(@1)T)w(w2)) =

Vot @] @0

(Oa1) Ty (2)) = [261(0,0,0% — ") + 202M2 (0,0, — 9, 0°) + bsA g, 6D (212)
(B.11)
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with 02 = 9,0". In Euclidean momentum space,

(O(K )Ty (—K1)) = 20 KH(K 1, K1,y — g K?) — 200 A% (K1, K1, — 9,0 K7) + b3A g,
(B.12)

whose trace agrees with (B.9). The Ward identity (A.14) is also satisfied,

KH(O(=K) T (K)) = K.(©) (B.13)

Guv=06uv

since the trace in flat space is (O)

B.4 (T,,0©0)

The 3-point function is cumbersome but straightforward. With the definition in (2.12) it is
given by the variation

2 J
V(1) Vg(x2)V/g(xs) 094 (x3)

(0(21)0(2) Ty (3)) = — [ o) 9(x2)<@(r1)@(:v2)>]~

(B.14)
The (O0) 2-point function in a general background is (B.8). Note that the covariant delta
function has a nontrivial metric variation,

1
5 (8D (@r2)] = 56 (212)gap09"” (B.15)
Varying (B.8) once more we obtain the Euclidean correlator (in flat space),

(T (23)0(21)O (22)) = 4b3A1 g, 612613 (B.16)
— bo A2 [6000120%015 + 40107015 + 692012013
+ boA? [120(,8120,)013 + 120,0,012013 + 46120, 0,013
+ 2b1 g, [2325125»2513 — 60,,0°%6120%013 — 0n0120%0%613 — 30512013 — 68u855128a8551;;]
+ by [126(#61281,)82613 + 240(,0%0120,)013 + 240,,0%6120,)0ab13 + 126@51262513]
+ b1 [240,0,00010% 615 — 4925120, 0,015 — 40”0120, 0 Dadrs + 240, 0,07 012013]
+ agu | — 80761207013 + 8060301200 013
+ a[80,0,0150%015 + 8920120, 0025 — 160°(,0120,)adrs|
where we defined 6;; = 6 ) (25 — x;), and all derivatives are with respect to x1. It is trivial to

transform to momentum space by first converting x-derivatives to derivatives with respect
to z9 and x3, so for example 8M8,,61282513 — KQMKQ,,K?%, etc. The result is the Euclidean
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momentum space correlator
(T (K3)0(K1)O(K2)) = 4b3A’ g,
+ 4byA? [gm, <K12 + K3+ %Kl : KQ) - K1, Ky, — Ko, Ko, + Kl(MKQ,,)}
+ 261 g (= A(K - K2)? + BKPKS + Ky - Ko (KT + K3))|
+2hy [2K1 - Ko(Ky + K2) (K1 + K2), — 6K1(;¢K2u)(K% + K%)}
+ 8algu (K1 - K2)? = KIK3) + K1uK1, K3 + Koo KE = 2(Ky - K2) Ky, Ko |
(B.17)
This satisfies the Ward identity (A.15), which in momentum space requires
KE (T (K3)O(K1)O(K?)) = — K1, (O(K2)O(—K2)) — K2 (O(K1)O(—K1)), (B.18)

for K1 + Ky + K3 =0, with (00) from (B.9).
The null-null component of the 3-point function, in Euclidean signature, is

(T (K)O(K1)O(K)) = —4baA? [K2, + K3, — K1, Ko
-+ 4b1 [K] . KQ(K]U + KQu)(Klu + KQu) - 3[(111[(211([(12 + KQZ):|

+ 8a| K}, K3 + K3,K3 = 2(Ky - Ko) K1y Koy . (B.19)

C Massive scalar computations

In this appendix, we calculate a few 1-loop diagrams for the massive scalar theory in
dimensional regularization. The results here are not used in the main text, except as a
second way to calculate the diagram in figure 3. The correlators written in this appendix are
regulated by not renormalized. We work in Euclidean spacetime, where the propagator is

G(x; —xj) = /77 (C.1)

Gy
g (2m)e p2 + m?2

We will frequently use x;; = x; — x; as well as the following standard loop integral results

 d% 1 1 r (n — %) 1
/ 2m) (P2 + A)r — (4m)d2  T(n) An-8’ (C.2)
/ddp pape 1 gﬂl“(n—l—g) 1 )
(27r)d (p2 +A)n - (47T)d/2 9 F(n) A"—l—g R ( _ )

d
ddp PuPvPpPo 1 1 r (n —2- 5) 1

- - vYpo vo adu . 4
/ (27r)d (p% + A" (471')‘1/24 (gu 9po t GupYvo + Guog p) T(n) An_z_% (C.4)

The stress tensor in four dimensions can be found in (5.2) (and the trace in (5.3)). Moreover,
as explained in the main text, we can set © to —m?¢? up to contact terms.
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C.1 (00)

The trace-trace two-point function computation is a simple Wick contraction exercise. The
loop integral that we ultimately need to evaluate is

(oo k) = [ 2 o ©5)
VUL @t @2+ md) (o + Ka)? 4+ m?) |
We perform this integral using Feynman parametrization
A=m?+ Kzl —x), p—p—xKy, (C.6)

with 2 the Feynman parameter and the loop results (C.2)—(C.4). The O(K*) term is

Ki

<<9(K1)®(_K1)»|0(K4) = W .

(C.7)

C2 (T,0)

We now compute the two-point function (7}, (z1)©(x2)). After doing the Wick contractions,
this two-point function in position space is given by

4m? 2m?
(T (21)O(x2)) = —75’1#(;123111@12 + (G1201,01,G12 — g G12001Gr2)
1
+ guum4G%2 + ngQ,ul/alaGIQG?GIQ s (08)
which is
(T (21)O(22))
e / dipy dipy €PN (p1upay, — 2paupa + g (303 — Sp1 - p2 + m?))
= | Gtz W+ )+ m) '
(C.9)

In momentum space, we obtain

d*p —3Bpu+2K1)py + g (30 K1+ p* + m?
(T KB(-KD) =m? [ [({f)g o) )

Performing the integral with the same Feynman parameter, we finally obtain

(K1, K1 — g K7) K2

<<TuV(K1)@(_K1)>>|o(K4) = - 144072 i (C.10)
We can take the trace, and obtain
Nz Kil
g <<T;w($1)@($2)>>|0(1(4) = 18072 (C.11)

which matches with (C.7).
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Cc.2.1 (T,,00)

The three-point function is given by

4m?
(T (23)O(21)O(x2)) = 7G12[ (02011 + 01,021) — (81p<91y + 82M82y)
+ g (01 + 02) — 3gum® — 001008 | GrsGas.  (C.12)
which is
AmA d4p1 d4p2 d4p3 eP1T12+ip2T13+ipsTas

(C.13)

(T (23)0(21)0(@2)) = =3~ | 551 ) @2m)t 2+ ) (0] + m2) (02 + 2

|: - 4p2(,up3u) + (p2up21/ + p3,up3u) - g;w(pg + Pg) - 3giwm2 + guwp2 p3:| .
The Fourier transform is

(T (K3)O(K2)0 (Kl)»

_ 4gwm / ((p+E1)*+(p—K2)*) +m° + 5 (p+ K1) (p—K2)
(p*+m?)((p+ K1) +m2)((p K3)?+m?)

4 4/ d*p [(p(u+K1(p)(pu)_K2z/))+(pu+K1u)(pl/+K1V)+(pM_Klu)(pV_Kly)}
(

37 ) (2m)? @2 +m2)((p+ K1)2+m2) ((p— K2 +m?)
(C.14)
Evaluating this loop integral, we obtain
(T (K3)O(K2)O (K1) ) o4
72131 5 (KipKuy + 5K, K, ) + 72 o3 (Ko Tay + 5K (K )
* I?zogz (KWK“ + Ko Ko + 4K1(uK2u)) (C.15)
- 2g§;2 (Kil + Ky + KT + g(Kl2 + K3)Ky - Ko + g(Kl : K2)2> :

where we only wrote the terms up to O(K*). Note that specializing to y = v = u, we
obtain the three-point function (5.10) written in a more compact form:

K2
(T (K3)O(K)OEN oy = mgos (Kfu + 5K 1K) + =025 (K3, + 5K1uKou)
K- K
g (Kt K3, + 4K1uKa) - (C.16)

Open Access. This article is distributed under the terms of the Creative Commons
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