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ABSTRACT
We give a non-adaptive algorithm that makes 2

Õ (
√
k log(1/ε2−ε1))

queries to a Boolean function f : {±1}n → {±1} and distinguishes

between f being ε1-close to some k-junta versus ε2-far from every

k-junta. At the heart of our algorithm is a local mean estimation

procedure for Boolean functions that may be of independent in-

terest. We complement our upper bound with a matching lower

bound, improving a recent lower bound obtained by Chen et al. We

thus obtain the first tight bounds for a natural property of Boolean

functions in the tolerant testing model.

CCS CONCEPTS
• Theory of computation→ Randomness, geometry and dis-
crete structures; Streaming, sublinear and near linear time
algorithms; •Mathematics of computing→ Probabilistic in-
ference problems.
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local mean estimation

ACM Reference Format:
Shivam Nadimpalli and Shyamal Patel. 2024. Optimal Non-adaptive Tolerant

Junta Testing via Local Estimators. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver,
BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3618260.3649687

1 INTRODUCTION
A Boolean function f : {±1}n → {±1} is a k-junta if its output

depends on only k out of its n input variables. Juntas are a central

object of study in computational complexity theory [17, 18, 24] and

related areas such as learning theory [5, 23], where they elegantly

model the problem of learning in the presence of irrelevant features.

Junta Testing. Consider the problem of testing juntas: Given

query access to a Boolean function f : {±1}n → {±1}, distinguish

with probability 2/3 whether (i) f is a k-junta; or (ii) f is ε-far from
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every k-junta, where we say that f is ε-far from д if

dist(f ,д) := Pr
x∼{±1}n

[д(x) , f (x)] ≥ ε .

We will say that f is ε-close to д if dist(f ,д) ≤ ε . Testing 1-juntas
(i.e. “dictators”) has its origins in the study of PCPs [2, 15], and

the general problem of testing k-juntas was developed in [13, 28].

After two decades of intensive research, the complexity of testing

k-juntas is well-understood:

• The state-of-the-art adaptive algorithms use Õ(k/ε) queries

[3, 6], and matching Ω̃(k) query bounds are known for adap-

tive algorithms [11, 29] when ε is a sufficiently small con-

stant.

• For non-adaptive algorithms, Blais [3] gave a Õ(k3/2/ε)-
query algorithm, and a celebrated result of [10] proved a

matching lower bound of Ω̃(k3/2/ε) queries against non-
adaptive algorithms (see also [31]).

We remind the reader that an algorithm is adaptive if during its

execution its choice of queries to f are allowed to depend on the

answers to the queries made thus far; we say that it is non-adaptive

otherwise. In other words, the queries made by a non-adaptive algo-

rithm are independent of the function f . Non-adaptive algorithms

are frequently preferred over their adaptive counterparts, in large

part due to their simpler as well as highly parallelizable nature.

Tolerant Junta Testing. Note that the standard property testing

model is extremely brittle: It requires the algorithm accept if and

only if the function satisfies the property. This is not desirable in

many applications, where the presence of noise in the queries to f
allow a tester in the standard model to simply reject the function. As

a concrete example, it is often the case when learning a function that

a few variables may explain most of the behavior of our function,

but not all of it. In this case, we would again morally like to view

our function as a junta.

Motivated by this, Parnas, Ron and Rubinfeld [26] introduced

the model of tolerant property testing. The tolerant junta testing

problem—which is the focus of this paper—is the following: Given

query access to a function f : {±1}n → {±1} and constants 0 ≤

ε1 < ε2 ≤ 1/2, distinguish with probability 2/3 whether (i) f is ε1-
close to some k-junta; or (ii) f is ε2-far from every k junta. We will

say that an algorithm (ε1, ε2)-tolerantly tests k-juntas if it has this
performance guarantee. Note that the case when ε1 = 0 recovers

the standard property testing model.

Remark 1. It is not too difficult to see that tolerant junta testing

is equivalent to the problem of distance estimation to a junta. More

formally, writing Jk for the class of k-juntas on n variables and for
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f : {±1}n → {±1}, defining

dist(f ,Jk ) := min

д∈Jk
dist(f ,д),

one can see that estimating dist(f ,Jk ) up to additive error ε :=

(ε2 − ε1)/2 immediately gives a (ε1, ε2)-tolerant tester [26]. In light

of this, we will frequently switch between tolerant testing juntas

and junta distance estimation.

The landscape of tolerant junta testing is starkly different from

that of junta testing in the standard model:

• The state-of-the-art upper bound, due to Iyer, Tal, and Whit-

meyer [16] gives an adaptive 2
Õ (
√
k/ε )

-query algorithm for

estimating distance to a k-junta. On the lower bounds front,

the sole improvement to lower bounds from the standard

model is due to the recent work of [9] that shows a mere

kΩ(log(1/ε )) queries are necessary to approximate the dis-

tance to a k-junta.
• On the non-adaptive front, the best known upper bound

is due to De, Mossel, and Neeman [12] who gave a 2
k ·

poly(k, ε−1)-query algorithm to estimate the distance to junta

to additive ε-error. (See also prior work by [4, 7, 27].) Turn-

ing to lower bounds, a recent line of work starting with [21]

yielded a 2
Ω(

√
k )
-query lower bound for some constant ε =

Θ(1) [8]. The result of [8] closely builds upon a previous

lower bound due to [25].

Our main result closes the gap (up to logarithmic factors) be-

tween the upper and lower bounds on the query complexity of

non-adaptive tolerant junta testing:

Theorem 2. There exists a non-adaptive ε-distance estimator for

the set of k-juntas that makes at most poly(k, ε−1) · 2Õ (
√
k log(1/ε ))

queries, where the Õ notation hides log(k) and log log(1/ε) factors.

In particular, our non-adaptive algorithm matches the “highly

adaptive” state-of-the-art upper bound [16] in terms of dependence

on k , and even improves upon its ε-dependence. Our main techni-

cal insight is to import ideas and techniques from approximation

theory—in particular, tools used to obtain “approximate inclusion-

exclusion” bounds [19, 22]—to junta testing. Using this framework,

we construct estimators for the absolute value of the mean of a

function f : {±1}n → {±1} (i.e. for | E[f ]|) that can be locally
computed, i.e. computed using only the values of the function re-

stricted to a random Hamming ball of radiusO(
√
n). We believe that

our local estimator is of independent interest. Furthermore, to our

knowledge, this is the first application of these tools to property

testing of Boolean functions.

We additionally complement our upper bound with a matching

lower bound, improving upon the construction of [8] by incorpo-

rating general ε dependence.

Theorem 3. Let 2
−O (k ) ≤ ε , then any ε-distance estimator for k-

junta must make at least 2
Ω̃(
√
k log(1/ε ))

queries, where the Ω̃ hides

log(k) and log log ε−1 factors.

Note that the restriction that ε ≥ 2
−O (k )

is necessary: When

ε < 2
k
, the tester of [12] only makes 2

k
poly(k, ε−1), which is poly-

nomial in ε−1. Together, Theorems 2 and 3 settle the query com-

plexity of non-adaptively, tolerantly testing k-juntas. To the best of

our knowledge, this is the first natural tolerant testing question for

which tight bounds are known.

1.1 Technical Overview
We now turn to a technical overview of our results.

Tolerant Junta Testing via Local Estimators. Our results are moti-

vated by a simple observation:

Previous lower bounds for tolerant junta test-

ing [8, 25] typically involve constructing two

distributions over Boolean functions that have

different expected means, but look identical on

Hamming balls of small radius.

Indeed, a connection between the mean of a function and distance

to junta is direct as for a set S ⊆ [n] with |S | = k , we have that

dist(f ,JS ) =
1

2

−
1

2

E
x ∈{±1}S

[����� E
y∈{±1}[n]\S

[f (x ⊔y)]

�����
]
. (1)

(Here, dist(f ,JS ) denotes the minimum distance of f to a junta on

the variables in S .)
These lower bound constructions, together with Equation (1),

motivate the following question of local mean estimation: Given
function f : {±1}n → {±1} and access to values of f restricted to

a Hamming ball of radius r centered at a random point x ∈ {±1}n ,

can you obtain a good estimate for the mean of the function (i.e.

with probability 1 − δ , the output is within ±ε of the true mean)?

Naturally, we would like to do this with r being as small as

possible. Let B(x, r ) denote a Hamming ball of radius r centered at

x . As a starting point, any estimator that sees a ball B(x, r ) where
f is constant must output a number in [f (x) ± ε], as otherwise
the estimator would fail on the constant function. Taking f to be

the n-bit Majority function and r = 0.001
√
n, however, we see that

most balls will be constant despite the Majority function having

mean 0. It follows that we must take r = Ω(
√
n). Our key technical

contribution establishes that for constant ε and δ , Hamming balls of

radiusO(
√
n) are also sufficient to obtain good estimates of themean.

We prove this by combining constructions of “flat polynomials”

(motivated by the problem of approximate inclusion-exclusion[19,

22]) together with Fourier analysis of Boolean functions [24].

Using this local estimator, we can then get a junta tester when

n = 2k (cf. Section 4). Namely, we sample a random y ∈ {±1}2k and

estimate the means of the functions f (y |S ⊔x) : {±1}k → {±1} for

each set S ⊆ [2k] of size k by querying f on each point in B(y, r ).
These in turn allow us to compute the distance of f to JS for every

subset S of size k .
For larger n = poly(k), we need a better local mean estimator. In-

deed, by the above lower bound determining the mean of a function

on say k100 variables requires a ball of radius k50. Querying such a

ball, however, would require far too many queries. Fortunately, we

show that balls of smaller radius suffice when the function at hand

has exponentially decaying Fourier tails. (Intuitively, one should

consider the case of applying noise to a function, which should

smooth it and make local balls more indicative of the mean of the

function.) With this in hand, we noise the function and test in the

same way as in theO(k) setting. As before, the query complexity is
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dominated by the number of queries to determine the value of f

on the ball, which is at most poly(k)
√
k = 2

Õ (
√
k )
.

Unfortunately, for generaln querying the ball of radius
√
k would

require us to make 2

√
k log(n)

queries, which has an undesirable

dependence on n. To circumvent this, we show that our estimator

can equivalently written as linear combinations of higher-order

derivatives of the noise operator. We can then evaluate these using

high-precision numerical differentiation and get a good estimate of

mean.

A Matching Lower Bound. The lower bound construction is a

simple modification of the lower bound of [8], which in turn builds

on the construction of [25]. Essentially to get a lower bound of

exp(Ω(r )) one must construct a pair of distributions D1 and D2

over functions д : {±1}k → {±1}. Crucially, we need that (i) the

functions must have very different means i.e.����� E
g∼D1

[g]

����� −
����� E
g∼D2

[g]

����� ≥ ε,

and (ii) the functions should be identically distributed over balls

meaning for all y ∈ {±1} |B(x ,r ) | we have that for all x ∈ {0, 1}k we

have

Pr
g∼D1

[
g(z) = yz ∀z ∈ B(x, r )

]
= Pr

g∼D2

[
g(z) = yz ∀z ∈ B(x, r )

]
.

In their paper, [25] gives a simple construction that are identically

distributed on balls of radiiO(
√
n). By breaking symmetry, we show

that a simple modification can yield a gap of O(
√
n log(1/ε). Using

this, we can follow the analysis of [8] to prove the result.

1.2 Discussion
Our work raises a number of intriguing directions for future work;

we briefly describe some of them below:

• Does adaptivity help for tolerant junta testing? While this

paper resolves the tolerant junta testing question for non-

adaptive algorithms, there are still large gaps for adaptive

algorithms. As such, it is unclear how many queries are

needed to tolerantly test k-juntas with adaptivity.

• Can we obtain improved runtime for tolerant junta testing?

While our algorithms are query optimal, they all require time

exp(k) · 2Õ (k
√
log(1/ε ))

. Is it possible have them run in time

polynomial in the number of queries?

• Finally, a broad direction is that of potential applications of

local estimators to other problems in algorithms and com-

plexity theory. In particular, our approach hints at possi-

ble connections to pseudorandomness: Our local estimators

imply that for any balanced AC0
circuit f and almost all

x ∈ {±1}n there exists a y ∈ {±1}n with f (x) , f (y) and
dist(x,y) ≤ polylog(n).

2 PRELIMINARIES
We use boldfaced letters such as b,x, f ,A, etc. to denote random

variables (whichmay be real-valued, vector-valued, function-valued,

or set-valued; the intended type will be clear from the context). We

write x ∼ D to indicate that the random variable x is distributed

according to probability distribution D .

Given a set J ⊆ [n], we will write J := [n] \ J to denote its

complement. We will denote write 1{·} for the indicator function
of the event {·}.

2.1 Boolean Functions
Given Boolean functions f ,д : {±1}n → {±1} and a class of

Boolean functions C, we define

dist(f ,д) := Pr
x∼{±1}n

[
f (x) , д(x)

]
, dist(f , C) := min

д∈C
dist(f ,д).

In particular, if dist(f , C) ≤ ε , then we say that f is “ε-close” to C;

otherwise, we say that it is “ε-far” from C. Given a set J ⊆ [n], and
z ∈ {±1}n , we define the restricted function

f |J→z : {±1} J → {±1}

as f |J→z (x) := f (z J , x J ). Here we identify {±1}n with {±1} J ×

{±1} J in the natural fashion.

Definition 4. A function f : {±1}n → {±1} is a k-junta if it only
depends on k out of its n variables, i.e. if there exists a function

д : {±1}n → {±1} and indices i1, . . . , ik ∈ [n] such that

f (x) = д(xi1 , . . . , xik ).

We will write Jk for the class of k-juntas over {±1}n where n will

be clear from context; similarly, given a set J ⊆ [n], we will write
JJ to denote the class of juntas on the variables in the set J .

Notation 5. Given a point x ∈ {±1}n and r ∈ N, we write B(x, r )
for the Hamming ball of radius r centered at x , i.e.

B(x, r ) :=
{
y ∈ {±1}n : |

{
i : xi , yi

}
| ≤ r

}
.

Given x ∈ {±1}n andT ⊆ [n], we write x ⊕T
for the point obtained

by flipping the bits of x indexed by T .

2.2 Fourier Analysis over {±1}n

Our notation and terminology follow [24]. We will view the (real)

vector space of functions on the Boolean hypercube f : {±1}n → R
as an inner product space with inner product〈

f ,д
〉
:= E

x∼{±1}n

[
f (x) · д(x)

]
.

We define ∥ f ∥2 :=
√〈

f , f
〉
. Note that if f : {±1}n → {±1}, then

∥ f ∥2 = 1.

Given a set S ⊆ [n], we define the parity function on S , written
χS : {±1}n → {±1}, as χS (x) :=

∏
i ∈S xi with χ∅ ≡ 1 by conven-

tion. It is easy to check that (χS )S forms an orthonormal basis with

respect to the above inner product. In particular, every function

f : {±1}n → {±1} can be written as

f =
∑
S ⊆[n]

f̂ (S)χS

where f̂ (S) :=
〈
f , χS

〉
. This decomposition can be viewed as a

“Fourier decomposition” of f . It is not too difficult to see that Parse-

val’s and Plancharel’s formulas hold in this setting:〈
f , f

〉
=

∑
S ⊆[n]

f̂ (S)2 and

〈
f ,д

〉
=

∑
S ⊆[n]

f̂ (S)д̂(S).
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It is also immediate thatE
[
f (x)

]
= f̂ (∅) andVar[f (x)] =

∑
S,∅ f̂ (S)

2

for x ∼ {±1}n .

Notation 6. Given k ∈ {0, . . . ,n}, and a function f : {±1}n → R,
we write

W≤k [f ] :=
∑
|S | ≤k

f̂ (S)2

with W≥k [f ] andW=k [f ] defined similarly.

A useful operator in the analysis of Boolean functions is the

Bonami–Beckner noise operator, which we proceed to define next:

Definition 7. Fix ρ ∈ [0, 1]. For a given x ∈ {0, 1}n , we write

y ∼ Nρ (x) to mean a draw ofy ∈ {±1}n where each bityi is drawn
as follows:

Nρ (x) :=


xi with probability ρ

+1 with probability
1−ρ
2

−1 with probability
1−ρ
2

.

If y ∼ Nρ (x), we will sometimes say that y is ρ-correlated with x .
Given a function f : {±1}n → R, we define the noise operator Tρ
as

Tρ f (x) := E
y∼Nρ (x )

[
f (y)

]
.

It is a standard fact that the noise operator diagonalizes the parity

basis:

Fact 8 (Proposition 2.47 of [24]). Given a function f : {±1}n → R,
we have

Tρ f =
∑
S ⊆[n]

ρ |S | f̂ (S)χS .

2.3 Coordinate Oracles
The tolerant junta testers of De et al. [12] and Iyer et al. [16]

rely on the notion of approximate coordinate oracles for a func-

tion f : {±1}n → {±1}, assuming it does not depend on too many

coordinates. We will require Corollary 4.7 of [16] which in turn

builds on Lemma 3.6 of [12]; we reproduce it below for convenience.

Throughout, we assume that we have query access to an under-

lying function f : {±1}n → {±1} and have some (fixed) parameter

k ∈ N.

Proposition 9. Let ε, δ > 0. There exists a non-adaptive algo-

rithm Construct-Coordinate-Oracles that makes

poly

(
k,

1

ε
, log

1

δ

)
·
1

η
queries

to f and outputs an η-oracle F for a set of coordinates S ⊆ [n]
which is a collection of Boolean-valued functions with the following

guarantee:

(1) With probability at least 1 − δ , for every i ∈ S there exists a

д ∈ F such that dist(д, xi ) ≤ η;
(2) We have dist(f ,Jk ) − dist(f ,Jk (S)) ≤ ε where Jk (S) de-

notes the family of k-juntas whose relevant coordinates are
a subset of S ; and

(3) For any algorithm A that makes q queries to F , we may

assume that we actually have perfect access to each coor-

dinate oracle (i.e. η = 0 in the first bullet above), up to an

additive loss of δ in confidence and a multiplicative overhead

of poly

(
logq + log 1

δ

)
in query complexity.

We note that we do not have an explicit description of the coor-

dinates in S ; from an information-theoretic standpoint, this would

require query-complexity Ω(n). We instead have implicit access to
the coordinates in S (cf. [30] and the references therein).

Thanks to the second bullet in Proposition 9, it suffices for us

to only consider juntas on the poly(k) many coordinates S . Fur-

thermore, as our algorithm will only make exp

(
Õε (

√
k)

)
many

queries, we can assume (thanks to the third bullet in Proposition 9)

throughout the rest of the paper that we have perfect access to all

the coordinates in S .

2.4 Flat Polynomials
Underlying our results are constructions of “flat” polynomials,

originally developed by Linial and Nisan [22] and Kahn, Linial,

and Samorodnitsky [20] to prove approximate inclusion-exclusion
bounds. We will require the following construction due Kahn et

al. [20]:

Lemma 10 (Theorem 2.1 of [20]). Fix integers r ,N with 2

√
N ≤

r ≤ N . Then there exists a polynomial p : R→ R of degree at most

r with the following properties:

(i) p(0) = 0 and (ii) max

i ∈[n]
|p(i) − 1| ≤ 2 exp

©­«−Ω
(

r2

N log(N )

)ª®¬.
It will also be important for us that these polynomials do not

blow up too much for values greater than N and furthermore that

they do not have large coefficients. Towards this, we prove the

following:

Lemma 11. Let r ,N be integers with r ≤ N and suppose that

p : R → R is a polynomial of degree r such that |p(i)| ≤ 2 for all

i = 1, . . . ,N with p(0) = 0. For any ℓ ≥ N , p(ℓ) ≤ 4ℓr .

Lemma 12. Let r ,N be integers with r ≤ N and suppose that

p : R → R is a polynomial of degree r such that |p(i)| ≤ 2 for all

i = 1, . . . ,N and p(0) = 0. Moreover, set αr ,Ni such that

p(x) =
r∑
i=1

αr ,Ni

(
x

i

)
where

(
x

i

)
:=

x(x − 1)...(x − i + 1)

i!
.

Then we have |αr ,Ni | ≤ 2r r .

We prove Lemmas 11 and 12 in Appendix A.

2.5 Numerical Differentiation
We will also need some standard results about numerical differen-

tiation. In particular, we will be interested in rapidly converging

backwards difference differentiation formulas. While these are un-

doubtably known, we are unaware of a reference and include a

proof in Appendix A.2 of the full version of this paper.

Theorem 13. Let ℓ and t be positive integers and f be a smooth

function. There exists coefficients β0, ..., β2ℓ−1 such that for any δ������∑i βi f (x − iδ ) −
dℓ f

dxℓ
(x)δ ℓ

������ ≤ (2ℓ)3ℓ+1δ2ℓ max

ξ ∈[x ,x−2ℓδ ]

�����d2ℓ fdx2ℓ
(ξi )

�����
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Moreover, we have that |βi | ≤ (2ℓ)3ℓ for all i .

3 LOCAL ESTIMATORS
Our approach will focus on a statistical estimation problem to

tolerantly test juntas. We start with the following definition:

Definition 14 (Statistic). A statistic is a function S that maps a

function on the Boolean hypercube f : {±1}n → R to a real number

R.

We will especially be interested in local estimators, i.e. estimators

which only receive access to the values of a function f : {±1}n → R
restricted to a Hamming ball of small radius.

Definition 15 (r -local estimator). Given a function f : {±1} → R,
x ∈ {±1}n , and a positive integer r ≤ n, an r -local estimator E takes

as input the values of the function f restricted to the Hamming

ball B(x, r )—which we will denote by f |B(x ,r )—and outputs a real

number. Additionally, for τ ≥ 0, we will say a r -local estimator

E : {±1}B(x ,r ) → R τ -approximates a statistic S if����� E
x∼{±1}n

[
E(f |B(x ,r ))

]
− S(f )

����� ≤ τ .

Finally, we say that E if κ-bounded if its range is [−κ,κ].

Locally Estimating | E[f ]|. The following lemma establishes the

existence of a local estimator for the absolute value of the mean of

a Boolean function. (Note that the 0-local estimator E(f |B(x ,r )) :=
f (x) is an excellent estimator for themeanE[f ] but is the identically-
1 estimator for | E[f ]|.)

Lemma 16. Given a Boolean function f : {±1}n → R and a

positive-integer r ≥ Ω(
√
n), there exists an r -local estimator that

τ -approximates | E[f ]| and is O(1)-bounded, where

τ := 2 exp

©­«Ω
(

−r2

n log(n)

)ª®¬.
The proof of Lemma 16 is identical to that of Lemma 17 and

is hence omitted.
1
Lemma 16 allows us to tolerantly test k juntas

when the total number of variables of the function is O(k). We

prove this as a warmup in Section 4 to illustrate our approach to

testing juntas. The general case of functions f : {±1}n → {±1},

however, will require us to smooth the function with noise.

Lemma 17. Let r be a positive integer, and suppose f : {±1}n →

[−1, 1] is a bounded Boolean function such that there exists an

integer t for which

W=l [f ] ≤ exp

(
−
ℓ

t

)
.

Then there exists an r -local estimator thatO(τ )-approximates | E[f ]|,
where

τ := 2 · exp
©­«−Ω

(
r

t log2(rt)

)ª®¬.
Before turning to the proof of Lemma 17, we show the following

simple lemma.

1
We remark that Lemma 17 doesn’t require the estimator to be bounded, but if desired

we can get anO (1)-bounded estimator by thresholding the estimator presented in the

proof.

Lemma18. Suppose thatX is a randomvariablewithVar[X ] = σ 2
,

then ���E [
|X |

]
−

��E[X ]
����� ≤ σ .

Proof. Note that by Jensen

E[|X |] ≥ | E[X ]|.

On the other hand,

E[|X | − | E[X ]|] ≤ E[|X − E[X ]|] ≤
√
E[(X − E[X ])2] = σ

which completes the proof. □

Proof of Lemma 17. Let N be a parameter we will set later. Let

pNr (x) be the polynomial from Lemma 10 and let αr ,Ni denote coef-

ficients such that

pNr (x) =
r∑
i=1

αr ,Ni

(
x

i

)
where

(x
i
)
=

x (x−1)(x−2)...(x−r+1)
r ! . Take

д(f |B(x ,r )) := f (x) −
r∑
i=1

αr ,Ni

∑
S ⊆[n]: |S |=i

∂ f

∂xS
(x)χS (x).

Note that this can be computed by only querying f on B(x, r ) as

∂ f

∂xS
(x)χS (x) =

1

2
|S |

·
©­«
∑
T ⊆S

(−1) |T | f (x ⊕T )
ª®¬ .

Writing f =
∑
S ⊆[n] f̂ (S)χS , it is easy to check that

д(f |B(x ,r )) = f (x) −
r∑
i=1

αr ,Ni

∑
S ⊆[n]: |S |=i

∑
T ⊇S

f̂ (T )χT (x)

= f (x) −
∑
S,∅

pNr (|S |) f̂ (S)χS (x)

= E[f ] +
∑
S,∅

(
1 − pNr (|S |)

)
f̂ (S)χS (x). (2)

where we used the fact that f̂ (∅) = E[f ]. It is immediate from the

above that

E
x∼{±1}n

[
д

(
f |B(x ,r )

)]
= E[f ]

due to orthogonality of {χS }. Furthermore, we have

Var
x∼{±1}n

[
д

(
f |B(x ,r )

)]
= E

x∼{±1}n

[(
д

(
f |B(x ,r )

)
− E[f ]

)
2

]
=

n∑
ℓ=1

(1 − pNr (ℓ))2W=ℓ[f ] (3)

where Equation (3) follows from Equation (2) via Parseval’s formula.

We split the sum into two parts:

Var
x∼{±1}n

[
д

(
f |B(x ,r )

)]
=

∑
ℓ≤N

(1 − pNr (ℓ))2W=ℓ[f ] +
∑
ℓ>N

(1 − pNr (ℓ))2W=ℓ[f ]

≤ 2e−Ω(r
2/N log(N )) · Var[f ] + 64

∑
ℓ>N

ℓ2r e−ℓ/t . (4)
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Input: Query access to f : {±1}2k → {±1}, ε ∈ (0, 1]

Output: An estimate for dist(f ,Jk )
Warmup-Ball-Tester(f , ε):

(1) Set parameters

m := Θ

(
k

ε2

)
and r := Θ̃

©­«
√
k log

(
1

ε

)ª®¬ .
(2) Draw points x (1), . . . ,x (m) ∼ {±1}2k uniformly and

independently at random, and query f on B(x (i), r ) for
each i ∈ [m].

(3) For each i ∈ [m] and every subset J ⊆ [2k] with
|J | = k , compute

Ex
(i )

J := E

(
f J→x (i ) |B(x (i ) |J ,r )

)
where E is the estimator from Lemma 16.

(4) Set

E J :=
1

m

m∑
i=1

Ex
(i )

J

and output (1 −maxJ E J )/2.

Algorithm 1: Estimating distance to the closest k-junta for

f : {±1}2k → {±1}.

where in order to obtain Equation (4), we used Item (ii) of Lemma 10

to bound the first term and bounded the second term using the

Fourier tail bounds in the statement of Lemma 17 and Lemma 11.

Recalling that Var[f ] ≤ 1 and taking

N := 128rt log(rt),

we get

Var
x∼{±1}n

[
д

(
f |B(x ,r )

)]
≤ 2e−Ω(r/(t log

2(r t ))) + 64
∑
ℓ>N

e−ℓ/2t

≤ 2e−Ω(r/(t log
2(r t ))) +O

(
te−64r log(r t )

)
≤ e−Ω(r/(t log

2(r t )))

where we also used the fact that the second term above is a geo-

metric series. The result now follows from Lemma 18. □

4 WARMUP: TESTING f : {±1}2k → {±1}

As a warmup, we first show how to use local estimators to tolerantly

test if a function f : {±1}2k → {±1} is k-junta. This illustrates the
basic idea of our approach while keeping additional technicalities—

such as coordinate oracles (cf. Section 2.3) and applications of the

noise operator (cf. Section 2.2) to a minimum.

Recall from Remark 1 that tolerant junta testing is equivalent to

estimating the distance to being a junta. The key idea of Algorithm 1

is to use our local estimator for | E[f ]| from Lemma 16 to estimate

the distance to being a junta on each set of k coordinates. (Note

that there are at most

(
2k
k
)
such sets.) Furthermore, because the

estimates are local, this allows us to recycle queries efficiently.

Theorem 19. Let T be the output of Warmup-Ball-Tester(f , ε).
With high probability, we have��T − dist(f ,Jk )

�� ≤ ε .

Proof. We will establish that the following holds for all sets

J ⊆ [2k] where |J | ≤ k with high probability:������dist(f ,JJ ) −
(
1 − |E J |

2

)������ ≤ ε

where E J is as in Algorithm 1. Note that theorem immediately

follows from this.

Recall from Lemma 16 that our estimator E is O(1)-bounded, i.e.
|E(·)| ≤ O(1). So by Hoeffding’s bound, we have

Pr
x (1), ...,x (m)


������ 1m m∑

i=1

���Ex (i )

J

��� − E
y∼{±1}2k

[���EyJ ���]
������ ≥ ε/2


≤ exp

(
−Ω

(
mε2

))
≤ 8

−k .

Note, however, that

E
y∼{±1}n

[���EyJ ���] = E
y∼{±1}n

[
E

(
f J→y |B(y |J ,r )

)]
and that by the guarantee of Lemma 16 we have that���������E

[
E

(
f J→y |B(y |J ,r )

)]
− E


������� 12k

∑
z J ∈{±1}

k

f (z J ,y J )

�������

���������

is at most ε/2. The result now follows from a union bound over all

sets J ; recall that there are at most

(
2k
k
)
≤ 4

k
many such sets. □

5 TOLERANTLY TESTING f : {±1}n → {±1}

The core idea to tolerantly test juntas in the general case is similar

to that of the warmup from Section 4, albeit with coordinate oracles

(cf. Section 2.3) to reduce the number of relevant coordinates to

poly(k). However, there are some additional road blocks that we

will need to overcome; we describe these in Sections 5.1 and 5.2

before presenting the junta tester in Section 5.3.

5.1 Hold-Out Noising
The first issuewe face in trying to generalize the algorithm from Sec-

tion 4 from Θ(k) coordinates to n coordinates is due to the number

of coordinate oracles we construct. Recall that Proposition 9 outputs

poly(k) coordinate oracles; for concreteness, we will think of this

number as k10.2 Consequently, the naive approach to estimate the

mean of the function f will require balls of radius

√
k10. Querying

even one of these balls, however, will require kΩ(k
5)
queries—this is

much worse than the known 2
Õ (k )

-query non-adaptive bound due

to [12]. Thankfully, we can circumvent this by appropriately nois-

ing the function, which allows us to appeal to the high-precision

estimator (Lemma 17) for functions with sufficiently strong Fourier

decay.

2
Given adaptivity, the number of oracles can be reduced from k10

to Oε (k ) [16];
however, it is not clear how to implement this procedure non-adaptively.
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Input: f : {±1}n → {±1}, a set of coordinate oracles F ,

x ∈ {±1}n , an noise rate ρ ∈ [0, 1], error τ ∈ (0, 1], and

failure probability η ∈ (0, 1
2
]

Output: An additive τ -estimate of T
S
ρ f (x) for all S ⊆ F

with |S | = k w.p. 1 − η.

Hold-Out-Noise-Evaluations(f , x, ρ, τ ,η):

(1) Set

N := Θ

(
|F |3k3 log(1/η)

τ 2ρ2k

)
.

(2) For 1 ≤ i ≤ N , rerandomize x independently with

probability 1 − ρ to generate strings y(1), . . . ,y(N )

(cf. Definition 7). Query f on all of these points.

(3) For each S ⊆ F with |S | = k , set

T̃
S
ρ (x) :=

1

Nρk

∑
i :S (y (i ))=S (x )

f (y(i))

Algorithm 2: Non-adaptively implementing the hold-out

noise operator.

In order to non-adaptively noise the function, we consider the

following variant of the Bonami–Beckner noise operator from Def-

inition 7, which we call the “hold-out” noise operator:

Definition 20 (Hold-out noise operator). Given a set S ⊆ [n] and
ρ ∈ [0, 1], we define the hold-out noise operator TSρ as

T
S
ρ f (x) := E

y∼Nρ (x )

[
f (y) | yS = xS

]
.

There will inevitably be a tradeoff between the number of queries

we canmake and the noise rate; otherwise, we could simply evaluate

T
S
0
f to determine the mean and distance to junta. For short hand,

given a set of coordinate oracles F = {д1, ...,д |F |} and a point

x ∈ {±1}n , let

F (x) ∈ {±1} |F |
denote the string y ∈ {±1} |F | with yi = дi (x).

We extend this notation to subsets S ⊆ F of coordinate oracles,

writing S(x) for the vector of queries to the coordinate oracles in S
on x .

Lemma 21. Let {T̃Sρ (x)}S be the outputs of

Hold-Out-Noise-Evaluations(f , x, ρ, τ ,η) as described in Algo-

rithm 2. Then

Pr
[
∃ S ⊆ F with |S | = k s.t.

���T̃Sρ f (x) − T
S
ρ f (x)

��� > τ
]
≤ η.

Proof. Fix a set S ⊆ F with |S | = k . Note that

E
y (i )

[
f (y(i)) · 1

{
S(y(i)) = S(x)

}]
= ρkTSρ f (x).

By a Hoeffding Bound,

Pr
y (1), ...,y (N )


������ N∑i=1 f (yi )1

{
S(y(i)) = S(x)

}
− ρkNT

S
ρ f (x)

������ ≥ τ ρkN


≤ 2 exp

©­«−Ω
(
ρ2kN 2τ 2

N

)ª®¬
≤ η |F |−k

The result now follows by taking a union bound over all sets S ∈(F
k
)
. □

5.2 Estimating the Estimator
The hold-out noise operator allows us to smooth the function

enough to be able to use balls of radius

√
k in our local estima-

tor from Lemma 17. However, we immediately run into a second

issue:Wewould like to average out “irrelevant” coordinates (namely

the coordinates which are not among the coordinate oracles). While

this is easy to do adaptively, it is unclear how to implement this

non-adaptively. Dealing with all n coordinates is infeasible, since

sampling even oneHamming ball of radius

√
k would requirenΩ(

√
k )

queries. Consequently, we must devise a procedure to estimate our
estimator from Lemma 17 that does not require too many queries.

Recall from Lemma 17 that our estimator computes

E

(
f |B(x ,r )

)
= f (x) −

r∑
i=1

αr ,Ni

∑
|S |=i

∂ f

∂xS
(x)χS (x).

As such it suffices to approximate∑
|S |=i

∂ f

∂xS
(x)χS (x).

To do this, we compute derivatives of the noise operator
d i
dρ i Tρ f

at ρ = 1. Indeed, note that

1

i!
·
di

dρi
Tρ f (x)

����
ρ=1

=
∑
|T | ≥i

|T |(|T | − 1)(|T | − 2) . . . (|T | − i + 1)

i!
f̂ (T )χT (x)

=
∑
|T | ≥i

(
|T |

i

)
f̂ (T )χT (x)

=
∑
|S |=i

∂ f (x)

∂xS
χS (x)

So it remains to estimate these derivatives by computing them

numerically; we will do this via Theorem 13.

Remark 22. We briefly address why we rely on Theorem 13 rather

than using the naive formula

d j

dρ j
Tρ f (x)

����
ρ=1
= lim

δ→0

∑j
i=0(−1)

i (j
i
)
T
1−iδ f (x)

δ j
.
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In particular, the error in the above expression decays roughly as

O

(
δ
d j+1

dρ j+1
Tρ f (x)

����
ρ=ξ

)
.

Consider taking the

√
k/2nd derivative of x

√
k
. (We ought to get

a good approximation here since the noise we apply does not

kill terms at level

√
k .) However, in this case, the error looks like

exp(
√
k)δ . We can take δ = exp(−

√
k), but the denominator in the

expression for the derivative would then be δ
√
k/2 = exp(Ω(k)).

So in order to evaluate this expression we need to estimate Tρ f
to additive error exp(−k), which would require too many samples

to do naively. Fortunately, we can rectify this with the speedier

convergence guaranteed by Theorem 13.

We have the following consequence of Theorem 13:

Lemma 23. Fix an integer ℓ and a sufficiently large positive integer

k . Let f : {±1}n → {±1} and letд = Tρ f where ρ ≤ 1− 1

k . Then for

any positive δ ≤ O((ℓk)−100), there exists constants γ ℓδ
1
, . . . ,γ ℓ,δ

2ℓ−1

with |γ ℓ,δi | ≤

(
2ℓ
δ 1/3

)
3ℓ

such that

E
x∼{±1}n


©­«
2ℓ−1∑
i=0

γ ℓ,δi T
1−iδд(x) −

dℓ

dρℓ
Tρд(x)

ª®¬
2 ����
ρ=1

 ≤ O(δ ℓ/6).

Proof. Applying Theorem 13 with f = xt , γi =
βi
δ ℓ , and x = 1

yields ������2ℓ−1∑
i=0

γi (1 − iδ )t −
t !

(t − ℓ)!

������ ≤ (2ℓ)3ℓ+1δ ℓt2ℓ

for any positive integer t . Moreover, |γi | ≤
(

2ℓ
δ 1/3

)
3ℓ
. Using these

coefficients, we compute

E(x) :=
2ℓ−1∑
i=0

γiT1−iδд(x) −
dℓ

dρℓ
Tρд(x)

����
ρ=1

=
∑

T ⊆[n]

©­«
2ℓ−1∑
i=1

γi (1 − iδ ) |T | −
t !

(t − ℓ)!

ª®¬ д̂(T )χT (x)
By Parseval’s formula, we have that

E
x
[E(x)2] =

n∑
j=0

©­«
2ℓ−1∑
i=1

γi (1 − iδ )j −
j!

(j − ℓ)!

ª®¬
2

W=j [д]

≤ δ ℓ/6 +
n∑

j=δ−1/3

©­«
2ℓ−1∑
i=1

γi (1 − iδ )j −
j!

(j − ℓ)!

ª®¬
2

W=j [д]

(We refer the reader to the full version of this paper for a complete

calculation.) To bound the second term, we note that since д is is

the result of applying noise to a Boolean function f the weight at

level j is at most e−j/k and

©­«
2ℓ−1∑
i=1

γi (1 − iδ )j −
j!

(j − ℓ)!

ª®¬
2

≤ O

(
(2ℓ)10ℓ

δ2ℓ
j2ℓ

)
≤ O

(
δ ℓ

k
j70ℓ

)
.

when j ≥ δ−1/3. Combining these, we get that

©­«
2ℓ−1∑
i=1

γi (1 − iδ )j −
j!

(j − ℓ)!

ª®¬
2

W=j [д] ≤ O

(
δ ℓ

k
j70ℓe−j/k

)
Observe

δ ℓ

k
j70ℓe−j/k ≤

δ ℓ

k
e70ℓ log(j)−j/k ≤

δ ℓ

k
e−j/(2k )

assuming that k , and hence j, is sufficiently large. Thus,

E
x
[E(x)2] ≤ δ ℓ/6 +

O(δ ℓ)

k

∞∑
j=δ−1/3

e−j/(2k )

≤ δ ℓ/6 +
O(δ ℓ)

k
·

2k

1 − 1/e

≤ O(δ ℓ/6)

which completes the proof. □

With this, we now consider the estimator

E⋆
ρ ,δ ,r (f , x) = f (x) −

r∑
ℓ=1

αr ,N
ℓ

©­« 1ℓ!
2ℓ−1∑
i=0

γ ℓ,δi T
1−iδ r /ℓTρ f

ª®¬ .
It’s not hard to see that |E⋆

ρ ,δ ,r (f , x)| will be a good estimator for

the absolute value of the mean:

Lemma 24. Let f : {±1}n → {±1}, k a sufficiently large positive

integer, and τ ∈ (0, 1
2
]. Suppose that r ≥ Ω̃(

√
k log(1/τ )), ρ ≤(

1 −

√
log(1/τ )
√
k

)
, and δ ≤ O

(
τ 12/r (rk)−1000

)
, then����Ex [���E⋆

ρ ,δ ,r (f ,x)
���] − ���Ex [

f (x)
] ������� ≤ τ

Proof. We first note that by Lemma 12, Lemma 23, and the

Cauchy-Schwartz inequality, we get that

E
x

[(
E⋆
ρ ,δ ,r (f ,x) − E

(
Tρ f |B(x ,r )

))2]
≤ (2r2) · (2r )2r ·O(δ r/6)

≤
τ 2

1000

.

This in turn implies that

Ex

[(���E⋆
ρ ,δ ,r (f ,x)

��� − ����E (
Tρ f |B(x ,r )

)����)2] ≤
τ 2

1000

.

Finally, Jensen’s inequality yields����Ex [���|E⋆
ρ ,δ ,r (f ,x)

���] − Ex
[���E(Tρ f |B(x ,r ))���] ���� ≤ τ

2

.

On the other hand, we have that by Lemma 17����Ex [���E(Tρ f |B(x ,r ))���] − ��Ex [f (x)]������ ≤ τ

2

The lemma now follows by the triangle inequality. □

We now conclude with an algorithm (Algorithm 3) to implement

E⋆
in our junta testing setting. We also quickly record that the

procedure outputs estimates whose means are close to the estimates

of |E⋆
r ,δ ,ρ (f |[n]\S , x)|.
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Input: f : {±1} → {−1, 1}, a set of coordinate oracles F ,

x ∈ {±1}n , an error τ ∈ (0, 1
2
], and a failure probability

η ∈ (0, 1
2
]

Output: For each S ∈
(F
k
)
outputs estimates νS for

| Ey∈{±1}[n]\S [f (x |S ⊔y)]|.

Estimate-Absolute-Mean(f , F , τ ):

(1) Set parameters

r := Θ̃
©­«
√
k log

(
1

τ

)ª®¬ , ρ =

(
1 −

√
log(3/τ )
√
k

)
,

δ := Θ(τ 12/r (rk)−1000),

and let η := τ 202−k log
3(1/τ )

.

(2) For ℓ = 1 to r and i = 1 to 2r − 1:

• Run Hold-Out-Noise-Evaluations(f , x, ρ(1 −

iδ r/ℓ), τ (1000rδ−1)−100r ,η/(2r2)) to generate

T̃
S
ρ(1−iδ r /ℓ )

f (x).

(3) Output νS (x) :=�����f (x) − ∑r
ℓ=1

αr ,N
ℓ

(∑
2ℓ−1
i=0 γ ℓ,δi T̃

S
ρ(1−iδ r /ℓ )

f (x)

)����� for
all S ∈

(F
k
)
.

Algorithm 3: Estimate Absolute Mean

Lemma 25. Suppose f : {±1}n → {±1}, F a set of coordinate

oracles, k is a sufficiently large integer, and τ ,η > 0 , and let νS (x)
be the output of Estimate-Absolute-Mean(f , F , τ ). Then have

that |νS (x)| ≤ poly(τ−1) · exp(Õ(
√
k log(1/τ ))) and����E[νS ] − |E⋆

r ,δ ,ρ (f |[n]\S , x)|

���� ≤ τ .

Moreover, the procedure makes poly(τ−1,k)2Õ (
√
k log(1/ε ))

queries.

Proof. We first prove that the estimates νS are bounded. Indeed,

note that the estimates from Hold-Out-Noise-Evaluations are at

most (ρ(1−2rδ ))−k ≤ eO (
√
k log(1/τ ))

. It then follows by the bounds

on αr ,n
ℓ

and γ ℓ,δi that νS is at most

eO (
√
k log(1/τ ))

(
(2r )3r

δ r

)
· 2r r ≤ τ−12 · eÕ (

√
k log(1/τ ))

Note that this also bounds |E⋆
r ,δ ,ρ (f |[n]\S , x)|.

We now to turn to prove the bound on the expectation. With

probability 1−η, we have that |T̃ρ(1−iδ r /ℓ ) f (x)−Tρ(1−iδ r /ℓ ) f (x)| ≤

τ (1000rδ−1)−100r for all i = 1 . . . 2r − 1 and ℓ = 1 . . . r . In this case,

it follows that���νS (x) − |E⋆
r ,δ ,ρ (f |[n]\S , x)|

��� ≤ τ (1000rδ−1)−100r

(
(2r )3r

δ r

)
2r r (2r2)

≤ τ/2

Input: f : {±1}n → {±1}, an integer k , and ε ∈ (0, 1
2
]

Output: An estimate for dist(f ,Jk )

k-Junta-Distance(f , ε):

(1) Construct coordinate oracles F as in Proposition 9

with error rate ε/3 and failure probability
1

k

(2) Drawm :=
k |F |2Õ (

√
k log(1/ε ))

εO (1) points

x (1), ...,x (m) ∼ {±1}n uniformly and independently at

random

(3) For each point, run

estimate-absolute-mean(f , F ,x (i), ε/4) to get

estimates νS (x).
(4) Set DS =

1

m
∑
i νS (x

(i))

(5) Output
1−maxS DS

2

Algorithm 4: An algorithm to estimate k-junta distance

Using our bounds on E⋆
r ,δ ,ρ and νS (x), we then have that����E [

νS (x) − |E⋆
r ,δ ,ρ (f |[n]\S , x)|

] ����
≤

τ

2

+ 2ητ−12 exp(Õ(
√
k log(1/τ )))

≤ τ .

Finally, note that for the query bound, we make

poly(k, τ−1) ·O

(
|F |3k3 log(1/η)

τ 2(1000rδ−1)−200r ρ2k

)
≤poly(k, τ−1) · 2Õ (

√
k log(1/τ ))

which completes the proof. □

5.3 Putting It All Together: A 2
Õ (
√
k log(1/ε ))

Tester
We finally turn to the proof of Theorem 2.

Theorem26. Letk-Junta-Distance be as in Algorithm 4. Suppose

that f : {±1}n → {±1}, then

Pr
[��k-Junta-Distance(f , ε) − dist(f ,Jk )

�� ≥ ε
]
= ok (1)

Moreover,k-Junta-Distancemakes atmost 2
Õ (

√
k log

2(1/ε ))
queries.

Proof. By Proposition 9, we have with high probability the dis-

tance of f to a junta of f restricted to the coordinates corresponding
to F differs from dist(f ,Jk ) by at most ε/4. Moreover, there are at

most poly(k, 1/ε) such oracles. Now fix a set S ⊆ F . We’ll bound

the probability that
1

2
(1−DS ) differs from dist(f ,JS ) by more than

3ε/4. Indeed, we note that by Lemmas 24 and 25 as well as the

triangle inequality that������� Ex (i )
[νS (x

(i))] −
1

2
k

∑
y∈{±1}S

����� E
z∼{±1}[n]\S

[f (y ⊔ z)]

�����
������� ≤ ε/2.
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It then follows that

Pr
[
1

2

(1 − DS ) − dist(f ,JS )| ≥ 3ε/4

]
≤ Pr

[
|DS − E[DS ]| ≥ ε/4

]
≤ exp

©­« ε2m

poly(ε−1)2Õ (
√
k log(1/ε ))

ª®¬
≤
1

k
|F |−k

by a Hoeffding bound. By a union bound, with high probability DS
is within 3ε/4 of dist(f ,JS ) for all S ∈

(F
k
)
, as claimed.

For the query bound, note that we make

poly(k, ε−1) · 2Õ (
√
k log(1/ε )) ·

k |F |2Õ (
√
k log(1/ε ))

εO (1)

≤poly(k, ε−1)2Õ (
√
k log(1/ε ))

queries. □

6 LOWER BOUND
We now show that the upper bound obtained in Section 5 is essen-

tially tight. In particular, we establish the following:

Theorem 27. For every ε ∈ (2−O (k ),k−2), there exist ε1, ε2 ∈

[0, 1/2) with ε = ε2 − ε1 such that every (ε1, ε2)-tolerant k-junta

tester for functions f : {±1}2k → {±1} must make

exp(Ω(
√
k log(1/kε))) queries

to the function f .

Our proof of Theorem 27 builds on the constructions of Chen et

al. [8] who proved Theorem 27 for ε1 = 0.1 and ε2 = 0.2. Note that

this theorem implies Theorem 3 by Remark 1 when ε < k−2; on the

other hand, if ε > k−2, then Theorem 3 holds by simply using the

2
Ω(

√
k )

lower bound from [8].

6.1 The Dyes and Dno Distributions
As in [8], we start with some objects that we need in the con-

struction of the two distributions Dyes and Dno. We partition the

variables x1, · · · , x2k into control variables and action variables as

follows: Let A ⊆ [n] be a fixed subset of size k , and letC = [2k] \A.
We refer to the variables xi for i ∈ C as control variables and the

variables xi for i ∈ A as action variables.

Notation 28. Given a point x ∈ {±1}2k , we write |x | := |#{i :

xi = 1}| to denote the Hamming weight of the point x .

We first define some auxiliary functions over the corresponding

action subcubes {±1}A which we will later use in the definition of

Dyes and Dno. Let 0 ≤ ∆ ≤ k/2 be a parameter we will set later;

we choose ∆ so as to ensure

ε := Pr
x∼{±1}k

[
|x | ≤

k

2

− ∆

]
(5)

where ε is as in the statement of Theorem 27. Leth(+,0),h(+,1),h(−,0)

and h(−,1) be Boolean functions over {±1}A defined as follows:

h(+,−)(xA) =


−1 |xA | ≥

k
2

−1 |xA | ∈ (k
2
− ∆, k

2
),

−1 |xA | ≤
k
2
− ∆.

h(+,+)(xA) =


+1 |xA | ≥

k
2

−1 |xA | ∈ (k
2
− ∆, k

2
),

+1 |xA | ≤
k
2
− ∆.

h(−,−)(xA) =


−1 |xA | ≥

k
2

−1 |xA | ∈ (k
2
− ∆, k

2
),

+1 |xA | ≤
k
2
− ∆.

h(−,+)(xA) =


+1 |xA | ≥

k
2

−1 |xA | ∈ (k
2
− ∆, k

2
),

−1 |xA | ≤
k
2
− ∆.

We now turn to the definitions of the “yes” and “no” distributions.

To draw a function fyes ∼ Dyes, we first sample a set A ⊂ [2k]
of size k uniformly at random, set C = [2k] \ A, and sample two

Boolean functions b1,b2 over {±1}C uniformly at random. Then

the Boolean function fyes over {±1}2k is defined usingA and b1,b2
as follows:

fyes(x) =


h(+,−)(xA) b1(xC ) = −1 and b2(xC ) = +1

−h(+,−)(xA) b1(xC ) = −1 and b2(xC ) = −1

h(+,+)(xA) b1(xC ) = +1 and b2(xC ) = +1

−h(+,+)(xA) b1(xC ) = +1 and b2(xC ) = −1

.

To draw fno ∼ Dno, we first sample A, b1, and b2 in the same

way as in Dyes, and fno is defined as

fno(x) =


h(−,−)(xA) b1(xC ) = −1 and b2(xC ) = +1

−h(−,−)(xA) b1(xC ) = −1 and b2(xC ) = −1

h(−,+)(xA) b1(xC ) = +1 and b2(xC ) = +1

−h(−,+)(xA) b1(xC ) = +1 and b2(xC ) = −1

.

See Section 6.1 of the full version of the paper for figures illus-

trating Dyes and Dno. Recall also that at this point we have not

yet specified the parameters ∆ (or equivalently—recalling Equa-

tion (5)—the parameter ε).

Proposition 29. With probability 1−ok (1), a function fyes ∼ Dyes

is (
1

4

−
ε

2

± exp

(
−O(k)

) )
-close to a k-junta.

Proof. Consider the (n/2)-junta д : {0, 1}n → {0, 1} given by

д(x) =


−1 b1(xC ) = −1 and b2(xC ) = +1

+1 b1(xC ) = −1 and b2(xC ) = −1

+1 b1(xC ) = +1 and b2(xC ) = +1

−1 b1(xC ) = +1 and b2(xC ) = −1

.
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Note that д is a junta on the control subcube. A Chernoff bound

on b1 together with the definition of Dyes immediately gives the

desired result. □

Proposition 30. With probability 1−ok (1), a function fno ∼ Dno

is (
1

4

− e−O (k)
)
-far from every k-junta.

Proof. As in the proof of Lemma 17 of [8], we have by a union

bound and a Chernoff bound overA,b1, andb2 that with probability
at least 1 − ok (1), the following holds:

For every i ∈ C , there are at least (0.25−e−O (k ))-

fraction of strings x ∈ {±1}2k such that xi =
+1 and fno(x) , fno(x ⊕i ).

We assume for the rest of the proof that fno satisfies the above

condition. Let д : {±1}2k → {±1} be any k-junta, and let I ⊆ [2k]
denote its set of influential variables. We now split into two cases:

• If I , C , then there exists i ∈ C such that i < I . Since
д(x) = д(x ⊕i ), however, it follows from the above condition

that its distance to being a junta is
1

4
− exp(−O(k)) since at

least one endpoint of each of the influential edges needs to

be changed to obtain a junta.

• On the other hand, if I = C , then from the construction of fno
it follows (using a Chernoff bound on b1) that the distance
to being a junta is at least

1

4

+
ε

2

− eO (k ).

This completes the proof. □

6.2 Proof of Theorem 27
We now turn to the proof of Theorem 27. Recall that Dyes and Dno

are parametrized by ε , or equivalently ∆ (see Equation (5)). We now

obtain bounds on ∆ as a function of ε . We start by recalling the

following standard tail bound for the Binomial distribution [1]:

Proposition 31. For X ∼ Binomial(n,p) and k ≤ n, we have

Pr [X ≤ k] ≥
1

√
2n

exp

(
−n · KL

(
k

n





 p))
where KL(q1 ∥ q2) denotes the KL-divergence between Bernoulli

random variables with parameters q1 and q2. In particular,

KL

(
k

n





 p) = k

n
log

k

np
+

(
1 −

k

n

)
log

©­«
1 − k

n
1 − p

ª®¬.
Using Proposition 31 and recalling Equation (5), we get that

ε ≥
1

2k
exp

(
−k · KL

(
1

2

−
∆

k





 1

2

))
.

A routine calculation using the inequality 1+x ≤ exp(x) gives that

KL

(
1

2

−
∆

a





 1

2

)
≤ Θ

(
∆2

a2

)
and so ε ≥

1

2k
exp

©­«−Θ
(
∆2

k

)ª®¬

which rearranges to

∆ ≥ Θ
©­«
√
k log

(
1

kε

)ª®¬. (6)

The remainder of the argument is identical to the lower bound

obtained by [8]; we include a brisk proof below for the reader’s

convenience. Our notation and terminology follow [8] and we refer

the reader to Sections 2.1 and 5 of [8] for background on proving

lower bounds for testing algorithms (such as Yao’s lemma [14, 32]).

The key observation here—as in [8]—is the fact that coupling the

random variables C,A,b1,b2, and r , a non-adaptive algorithm A

can distinguish between fyes and fno only if the following event

occurs:

There are two points x,y ∈ {±1}n queried by

A such that xC = yC , and |xA | ≥
k
2
and |yA | ≤

k
2
− ∆.

Call this event Bad. The next lemma shows that Bad occurs with

probability ok (1)

Proposition 32. Let A be a non-adaptive algorithm that makes

exp(0.000001
√
k log(1/kε)) queries. The probability of the event

Bad is ok (1).

Proof. Let x and y be two points queried by A. For |xA | ≥
k
2
and |yA | ≤ k

2
− ∆ to hold, it must be the case that x and y

have Hamming distance at least ∆. However, for any x and y with

Hamming distance at least ∆, the probability that xC = yC is at

most exp(−0.00001
√
k log(1/kε)). Proposition 32 now follows by a

union bound over all pairs of points queried by A. □

Proposition 32 now implies Theorem 27 in the same manner that

Lemma 18 of [8] implies Theorem 2 of [8].
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A MISSING PROOFS
Proof of Lemma 11. We prove the statement by Lagrange in-

terpolation. Indeed, note that

p(x) =
r∑
j=0

p(j)
∏

i ∈{0, ...,r }\{j }

x − i

j − i
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and so we have

|p(ℓ)| ≤
r∑
j=0

|p(j)| ·

������ ∏
i ∈{0, ...,r }\{j }

ℓ − i

j − i

������
≤

r∑
j=1

2

������ ∏
i ∈{0, ...,r }\{j }

ℓ − i

j − i

������
≤ 4ℓr

which completes the proof. □

Proof of Lemma 12. We prove the statement by induction. We

will show that |αr ,nj | ≤ 2(j)j . For the base case, note that

|αr ,n
1

| = |p(1)| ≤ 2

by property (ii). Now suppose that the statement holds for all i < j .
We then note that

2 ≥ |p(j)| =

������
j∑

i=1
αr ,ni

(
j

i

)������
which implies that

|αr ,nj | ≤ 2 + 2

j−1∑
i=1

ii
(
j

i

)
≤ 2

j−1∑
i=0

(j − 1)i
(
j

i

)
≤ 2j j

as desired.

□
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