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ABSTRACT

We give a non-adaptive algorithm that makes 20(Vklog(1/e2=#1)
queries to a Boolean function f : {#1}" — {+1} and distinguishes
between f being ¢;-close to some k-junta versus ez-far from every
k-junta. At the heart of our algorithm is a local mean estimation
procedure for Boolean functions that may be of independent in-
terest. We complement our upper bound with a matching lower
bound, improving a recent lower bound obtained by Chen et al. We
thus obtain the first tight bounds for a natural property of Boolean
functions in the tolerant testing model.
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1 INTRODUCTION

A Boolean function f : {£1}" — {+1} is a k-junta if its output
depends on only k out of its n input variables. Juntas are a central
object of study in computational complexity theory [17, 18, 24] and
related areas such as learning theory [5, 23], where they elegantly
model the problem of learning in the presence of irrelevant features.

Junta Testing. Consider the problem of testing juntas: Given
query access to a Boolean function f : {+1}" — {+1}, distinguish
with probability 2/3 whether (i) f is a k-junta; or (ii) f is e-far from
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every k-junta, where we say that f is e-far from g if
dist(f,g) = Pr [g(x)# f(x)] = e.
x~{x1}"

We will say that f is e-close to g if dist(f, g) < . Testing 1-juntas
(i.e. “dictators”) has its origins in the study of PCPs [2, 15], and
the general problem of testing k-juntas was developed in [13, 28].
After two decades of intensive research, the complexity of testing
k-juntas is well-understood:

o The state-of-the-art adaptive algorithms use O(k/e) queries
(3, 6], and matching Q(k) query bounds are known for adap-
tive algorithms [11, 29] when ¢ is a sufficiently small con-
stant.

e For non-adaptive algorithms, Blais [3] gave a O(k3/2 /¢)-
query algorithm, and a celebrated result of [10] proved a
matching lower bound of Q(k%/2/¢) queries against non-
adaptive algorithms (see also [31]).

We remind the reader that an algorithm is adaptive if during its
execution its choice of queries to f are allowed to depend on the
answers to the queries made thus far; we say that it is non-adaptive
otherwise. In other words, the queries made by a non-adaptive algo-
rithm are independent of the function f. Non-adaptive algorithms
are frequently preferred over their adaptive counterparts, in large
part due to their simpler as well as highly parallelizable nature.

Tolerant Junta Testing. Note that the standard property testing
model is extremely brittle: It requires the algorithm accept if and
only if the function satisfies the property. This is not desirable in
many applications, where the presence of noise in the queries to f
allow a tester in the standard model to simply reject the function. As
a concrete example, it is often the case when learning a function that
a few variables may explain most of the behavior of our function,
but not all of it. In this case, we would again morally like to view
our function as a junta.

Motivated by this, Parnas, Ron and Rubinfeld [26] introduced
the model of tolerant property testing. The tolerant junta testing
problem—which is the focus of this paper—is the following: Given
query access to a function f : {+1}" — {+1} and constants 0 <
£1 < €2 < 1/2, distinguish with probability 2/3 whether (i) f is 1-
close to some k-junta; or (i) f is e2-far from every k junta. We will
say that an algorithm (e1, £2)-tolerantly tests k-juntas if it has this
performance guarantee. Note that the case when ¢; = 0 recovers
the standard property testing model.

Remark 1. It is not too difficult to see that tolerant junta testing
is equivalent to the problem of distance estimation to a junta. More
formally, writing J for the class of k-juntas on n variables and for
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f o {£1}" — {x1}, defining
dist(f, ) = min dist(f, g),
9€Jk

one can see that estimating dist(f, J3) up to additive error ¢ :
(e2 — €1)/2 immediately gives a (e1, £2)-tolerant tester [26]. In light
of this, we will frequently switch between tolerant testing juntas

and junta distance estimation.

The landscape of tolerant junta testing is starkly different from
that of junta testing in the standard model:

o The state-of-the-art upper bound, due to Iyer, Tal, and Whit-
meyer [16] gives an adaptive ZO(W)-query algorithm for
estimating distance to a k-junta. On the lower bounds front,
the sole improvement to lower bounds from the standard
model is due to the recent work of [9] that shows a mere
k2(0g(1/€)) queries are necessary to approximate the dis-
tance to a k-junta.

On the non-adaptive front, the best known upper bound
is due to De, Mossel, and Neeman [12] who gave a 2k .
poly(k, e~1)-query algorithm to estimate the distance to junta
to additive e-error. (See also prior work by [4, 7, 27].) Turn-
ing to lower bounds, a recent line of work starting with [21]

yielded a ZQ(W)—query lower bound for some constant ¢ =
©(1) [8]. The result of [8] closely builds upon a previous
lower bound due to [25].
Our main result closes the gap (up to logarithmic factors) be-
tween the upper and lower bounds on the query complexity of
non-adaptive tolerant junta testing:

Theorem 2. There exists a non-adaptive e-distance estimator for
the set of k-juntas that makes at most poly(k, e1) . 20(Wklog(1/e)
queries, where the O notation hides log(k) and loglog(1/¢) factors.

In particular, our non-adaptive algorithm matches the “highly
adaptive” state-of-the-art upper bound [16] in terms of dependence
on k, and even improves upon its e-dependence. Our main techni-
cal insight is to import ideas and techniques from approximation
theory—in particular, tools used to obtain “approximate inclusion-
exclusion” bounds [19, 22]—to junta testing. Using this framework,
we construct estimators for the absolute value of the mean of a
function f : {+1}" — {1} (ie. for |E[f]]) that can be locally
computed, i.e. computed using only the values of the function re-
stricted to a random Hamming ball of radius O(+/n). We believe that
our local estimator is of independent interest. Furthermore, to our
knowledge, this is the first application of these tools to property
testing of Boolean functions.

We additionally complement our upper bound with a matching
lower bound, improving upon the construction of [8] by incorpo-
rating general ¢ dependence.

Theorem 3. Let 2-0K) < ¢, then any e-distance estimator for k-

junta must make at least 20(Vklog(1/e)) queries, where the Q hides
log(k) and loglog e™! factors.

Note that the restriction that ¢ > 279K s necessary: When
¢ < 2K the tester of [12] only makes kaoly(k, ¢71), which is poly-
nomial in e~!. Together, Theorems 2 and 3 settle the query com-
plexity of non-adaptively, tolerantly testing k-juntas. To the best of
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our knowledge, this is the first natural tolerant testing question for
which tight bounds are known.

1.1 Technical Overview

We now turn to a technical overview of our results.

Tolerant Junta Testing via Local Estimators. Our results are moti-
vated by a simple observation:

Previous lower bounds for tolerant junta test-
ing [8, 25] typically involve constructing two
distributions over Boolean functions that have
different expected means, but look identical on
Hamming balls of small radius.

Indeed, a connection between the mean of a function and distance
to junta is direct as for a set S C [n] with |S| = k, we have that

dist(f, Js) = E  feuyl

yE{il}[”]\é

GY)

Ig
2 xe{£1}S [

N

(Here, dist(f, Js) denotes the minimum distance of f to a junta on
the variables in S.)

These lower bound constructions, together with Equation (1),
motivate the following question of local mean estimation: Given
function f : {£1}" — {1} and access to values of f restricted to
a Hamming ball of radius r centered at a random point x € {+1}",
can you obtain a good estimate for the mean of the function (i.e.
with probability 1 — §, the output is within +¢ of the true mean)?

Naturally, we would like to do this with r being as small as
possible. Let B(x, r) denote a Hamming ball of radius r centered at
x. As a starting point, any estimator that sees a ball B(x, r) where
f is constant must output a number in [f(x) + €], as otherwise
the estimator would fail on the constant function. Taking f to be
the n-bit Majority function and r = 0.0014/n, however, we see that
most balls will be constant despite the Majority function having
mean 0. It follows that we must take r = Q(+/n). Our key technical
contribution establishes that for constant ¢ and §, Hamming balls of
radius O(+/n) are also sufficient to obtain good estimates of the mean.
We prove this by combining constructions of “flat polynomials”
(motivated by the problem of approximate inclusion-exclusion[19,
22]) together with Fourier analysis of Boolean functions [24].

Using this local estimator, we can then get a junta tester when
n = 2k (cf. Section 4). Namely, we sample a random y € {£1}2k and
estimate the means of the functions f(y|s LU x) : {£1}* > {£1)} for
each set S C [2k] of size k by querying f on each point in B(y, r).
These in turn allow us to compute the distance of f to Js for every
subset S of size k.

For larger n = poly(k), we need a better local mean estimator. In-
deed, by the above lower bound determining the mean of a function
on say k1% variables requires a ball of radius k°°. Querying such a
ball, however, would require far too many queries. Fortunately, we
show that balls of smaller radius suffice when the function at hand
has exponentially decaying Fourier tails. (Intuitively, one should
consider the case of applying noise to a function, which should
smooth it and make local balls more indicative of the mean of the
function.) With this in hand, we noise the function and test in the
same way as in the O(k) setting. As before, the query complexity is
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dominated by the number of queries to determine the value of f
on the ball, which is at most poly(k)‘/E = 200Vk)
Unfortunately, for general n querying the ball of radius Vk would

require us to make 2 Vilog(n) queries, which has an undesirable
dependence on n. To circumvent this, we show that our estimator
can equivalently written as linear combinations of higher-order
derivatives of the noise operator. We can then evaluate these using
high-precision numerical differentiation and get a good estimate of
mean.

A Matching Lower Bound. The lower bound construction is a
simple modification of the lower bound of [8], which in turn builds
on the construction of [25]. Essentially to get a lower bound of
exp(Q(r)) one must construct a pair of distributions D and D,
over functions g : {£1}F = {1} Crucially, we need that (i) the
functions must have very different means i.e.

E
g~Dy

E
g~D;

- > €,

[g]

and (ii) the functions should be identically distributed over balls
meaning forally € {+1}1B-1)1 e have that for all x € {0, 1}* we
have

P;) [g(z) =y, Vz € B(x, r)] = [g(z) =y, Vz € B(x, r)].
g~

Pr
g~D;
In their paper, [25] gives a simple construction that are identically
distributed on balls of radii O(y/n). By breaking symmetry, we show
that a simple modification can yield a gap of O(y/nlog(1/¢). Using
this, we can follow the analysis of [8] to prove the result.

1.2 Discussion

Our work raises a number of intriguing directions for future work;
we briefly describe some of them below:

o Does adaptivity help for tolerant junta testing? While this
paper resolves the tolerant junta testing question for non-
adaptive algorithms, there are still large gaps for adaptive
algorithms. As such, it is unclear how many queries are
needed to tolerantly test k-juntas with adaptivity.

Can we obtain improved runtime for tolerant junta testing?
While our algorithms are query optimal, they all require time

exp(k) - 20k V1og(1/) s it possible have them run in time
polynomial in the number of queries?

Finally, a broad direction is that of potential applications of
local estimators to other problems in algorithms and com-
plexity theory. In particular, our approach hints at possi-
ble connections to pseudorandomness: Our local estimators
imply that for any balanced AC? circuit f and almost all
x € {£1}" there exists a y € {1} with f(x) # f(y) and
dist(x, y) < polylog(n).

2 PRELIMINARIES

We use boldfaced letters such as b, x, f, A, etc. to denote random
variables (which may be real-valued, vector-valued, function-valued,
or set-valued; the intended type will be clear from the context). We
write x ~ D to indicate that the random variable x is distributed
according to probability distribution D.
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Given a set J C [n], we will write J := [n] \ J to denote its
complement. We will denote write 1{-} for the indicator function
of the event {-}.

2.1 Boolean Functions

Given Boolean functions f,g : {+1}" — {*1} and a class of
Boolean functions C, we define

dist(fg)i=  Pr [f()#g(x)]. dist(f.C) = mindisi(f.9).

In particular, if dist(f, C) < ¢, then we say that f is “c-close” to C;
otherwise, we say that it is “e-far” from C. Given a set J C [n], and
z € {+1}", we define the restricted function

flymz {21 - {21}
as fl7-z(x) := f(z7,x;). Here we identify {+1}" with {1} x
{il}7 in the natural fashion.

Definition 4. A function f : {+1}" — {+1} is a k-junta if it only
depends on k out of its n variables, i.e. if there exists a function
g: {x1}" — {+1} and indices iy, . . ., i € [n] such that

flx) =g(xi,, ..

We will write Ji for the class of k-juntas over {+1}" where n will
be clear from context; similarly, given a set J C [n], we will write
Jj to denote the class of juntas on the variables in the set J.

.,Xik).

Notation 5. Given a point x € {+1}" and r € N, we write B(x, r)
for the Hamming ball of radius r centered at x;, i.e.

B(x,r) := {y e{=1}": [{i:x; £y}l < r}.

Given x € {#1}" and T C [n], we write x®7 for the point obtained
by flipping the bits of x indexed by T.

2.2 Fourier Analysis over {+1}"
Our notation and terminology follow [24]. We will view the (real)

vector space of functions on the Boolean hypercube f : {+1}" — R
as an inner product space with inner product

(fr9)= B [FG) 0]

We define || f||2 :=
Ifllz = 1.

Given a set S C [n], we define the parity function on S, written
xs : {x1}" — {£1}, as ys(x) := [1;es xi with yp = 1 by conven-
tion. It is easy to check that (ys)s forms an orthonormal basis with
respect to the above inner product. In particular, every function
[ {£1}" — {£1} can be written as

f=, fOus

Sc(n]

<ff> Note that if f : {+1}" — {£1}, then

where f(S) = (f )(5). This decomposition can be viewed as a
“Fourier decomposition” of f. It is not too difficult to see that Parse-
val’s and Plancharel’s formulas hold in this setting:

(f.£)="D, F&* and  (f.g)= D) FOFS).
Sc[n]

Sc[n]



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Itis also immediate that E [ f(x)] = £(0) and Var[f(x)] = Ss49 f(S)?
for x ~ {x1}".

Notation 6. Given k € {0,...,n}, and a function f : {£1}" — R,
we write
WEk[fl:= ) f(s)?

|S|<k
with W2K[ f] and W=K{[ f] defined similarly.

A useful operator in the analysis of Boolean functions is the
Bonami-Beckner noise operator, which we proceed to define next:

Definition 7. Fix p € [0, 1]. For a given x € {0, 1}", we write
y ~ N,(x) to mean a draw of y € {+1}" where each bit y; is drawn
as follows:

x;  with probability p
Np(x) :={+1  with probability 52 .
—1 with probability 1_7‘0
If y ~ Ny(x), we will sometimes say that y is p-correlated with x.
Given a function f : {+1}" — R, we define the noise operator T,
as

Tof):= E f@).

It is a standard fact that the noise operator diagonalizes the parity
basis:

Fact 8 (Proposition 2.47 of [24]). Given a function f : {+1}" — R,
we have
Tof = Y, pPIfS)s.

Scln]

2.3 Coordinate Oracles

The tolerant junta testers of De et al. [12] and Iyer et al. [16]
rely on the notion of approximate coordinate oracles for a func-
tion f : {£1}™ — {£1}, assuming it does not depend on too many
coordinates. We will require Corollary 4.7 of [16] which in turn
builds on Lemma 3.6 of [12]; we reproduce it below for convenience.

Throughout, we assume that we have query access to an under-
lying function f : {£1}" — {+1} and have some (fixed) parameter

k e N.

Proposition 9. Let ¢, > 0. There exists a non-adaptive algo-
rithm CoNsTRUCT-COORDINATE-ORACLES that makes

1 1 1
poly(k, -, log —) - — queries
€ 6] n

to f and outputs an n-oracle ¥ for a set of coordinates S C [n]
which is a collection of Boolean-valued functions with the following
guarantee:

(1) With probability at least 1 — &, for every i € S there exists a
g € F such that dist(g, x;) < n;

(2) We have dist(f, Ji) — dist(f, Jx(S)) < ¢ where Ji(S) de-
notes the family of k-juntas whose relevant coordinates are
a subset of S; and

(3) For any algorithm A that makes g queries to ¥, we may
assume that we actually have perfect access to each coor-
dinate oracle (i.e. n = 0 in the first bullet above), up to an
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additive loss of § in confidence and a multiplicative overhead

of poly (Iog q +log %) in query complexity.

We note that we do not have an explicit description of the coor-
dinates in S; from an information-theoretic standpoint, this would
require query-complexity Q(n). We instead have implicit access to
the coordinates in S (cf. [30] and the references therein).

Thanks to the second bullet in Proposition 9, it suffices for us
to only consider juntas on the poly(k) many coordinates S. Fur-

thermore, as our algorithm will only make exp (55(@)) many
queries, we can assume (thanks to the third bullet in Proposition 9)

throughout the rest of the paper that we have perfect access to all
the coordinates in S.

2.4 Flat Polynomials

Underlying our results are constructions of “flat” polynomials,
originally developed by Linial and Nisan [22] and Kahn, Linial,
and Samorodnitsky [20] to prove approximate inclusion-exclusion
bounds. We will require the following construction due Kahn et
al. [20]:

Lemma 10 (Theorem 2.1 of [20]). Fix integers r, N with 2VN <
r < N. Then there exists a polynomial p : R — R of degree at most
r with the following properties:

(i) p(0) =0 and (ii) max |p(i) — 1| < 2exp|—-Q
i€[n]

2
Nlog(N) ||
It will also be important for us that these polynomials do not
blow up too much for values greater than N and furthermore that

they do not have large coeflicients. Towards this, we prove the
following:

Lemma 11. Let r, N be integers with r < N and suppose that
p : R — R is a polynomial of degree r such that [p(i)| < 2 for all
i=1,...,N with p(0) = 0. Forany ¢ > N, p({) < 4¢".

Lemma 12. Let r, N be integers with r < N and suppose that
p R — Ris a polynomial of degree r such that [p(i)| < 2 for all
i=1,...,N and p(0) = 0. Moreover, set al.r’N such that

plx) = Z air,N(;C) where (f) = xx - l)lfx —it 1).
i=1 !

Then we have |0(l.r’N| <2r’.

We prove Lemmas 11 and 12 in Appendix A.

2.5 Numerical Differentiation

We will also need some standard results about numerical differen-
tiation. In particular, we will be interested in rapidly converging
backwards difference differentiation formulas. While these are un-
doubtably known, we are unaware of a reference and include a
proof in Appendix A.2 of the full version of this paper.

Theorem 13. Let £ and t be positive integers and f be a smooth
function. There exists coefficients fo, ..., f2¢—1 such that for any &
‘r

o d ¢ 30+1 526
if(x —i8) — —(x)8"| < (2¢ 6
Zi}/flf(x i8) = —=7 (08| < 20) .

2¢
e

dxc2t
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Moreover, we have that | ;| < (2£)3¢ for all i.

3 LOCAL ESTIMATORS

Our approach will focus on a statistical estimation problem to
tolerantly test juntas. We start with the following definition:

Definition 14 (Statistic). A statistic is a function S that maps a
function on the Boolean hypercube f : {+1}"” — R to areal number
R.

We will especially be interested in local estimators, i.e. estimators
which only receive access to the values of a function f : {+1}" - R
restricted to a Hamming ball of small radius.

Definition 15 (r-local estimator). Given a function f : {1} — R,
x € {£1}", and a positive integer r < n, an r-local estimator & takes
as input the values of the function f restricted to the Hamming
ball B(x, r)—which we will denote by f|p(y,—and outputs a real
number. Additionally, for 7 > 0, we will say a r-local estimator
& {x1}Bxr) LR T-approximates a statistic S if

| .| = 500

<.

x~{x1}"
Finally, we say that & if k-bounded if its range is [—x, k].

Locally Estimating | E[ f]|. The following lemma establishes the
existence of a local estimator for the absolute value of the mean of
a Boolean function. (Note that the 0-local estimator &(f|p(x, ) =
f(x) is an excellent estimator for the mean E[ ] but is the identically-
1 estimator for | E[f]].)

Lemma 16. Given a Boolean function f : {+1}" — R and a
positive-integer r > Q(+/n), there exists an r-local estimator that
r-approximates | E[ f]| and is O(1)-bounded, where

)

The proof of Lemma 16 is identical to that of Lemma 17 and
is hence omitted.! Lemma 16 allows us to tolerantly test k juntas
when the total number of variables of the function is O(k). We
prove this as a warmup in Section 4 to illustrate our approach to
testing juntas. The general case of functions f : {+1}" — {+1},
however, will require us to smooth the function with noise.

2

nlog(n)

T = 2exp Q(

Lemma 17. Let r be a positive integer, and suppose f : {+1}" —
[-1,1] is a bounded Boolean function such that there exists an
integer ¢ for which

¢

)

wl[f] < exp(

Then there exists an r-local estimator that O(r)-approximates | E[ ]|,
where

Before turning to the proof of Lemma 17, we show the following
simple lemma.

r

r:=2 exp|-Q| ——
P (tlogz(rt)

!We remark that Lemma 17 doesn’t require the estimator to be bounded, but if desired
we can get an O(1)-bounded estimator by thresholding the estimator presented in the
proof.
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2

5

Lemma 18. Suppose that X is a random variable with Var[X] = o
then

|E [IX1] - |E[X]” <o.
ProOF. Note that by Jensen
E[IX[] > |E[X]].
On the other hand,
E[|X| - | E[X]|] < E[|IX - E[X]|] < VE[(X —E[X]?] = &

which completes the proof. O

ProoF oF LEMMA 17. Let N be a parameter we will set later. Let
PN (x) be the polynomial from Lemma 10 and let al.r’N denote coef-

ficients such that
-
x
=3 ()
i=1
where (;lc) — x(x—l)(x—zzu.(x—r-#l). Take

T ENICED WANEDY

i=1 Sc[n]:|S|=i

of

g (M)

Note that this can be computed by only querying f on B(x, r) as

af 1
Foeg CMs() = i ];S(—I)‘T'f(x“) :

Writing f = Ysc[n] f(S)){S, it is easy to check that

9(f1B(x,r) = f(x) = Z ai”N

i=1

> FMxr(x)

Sc[n]:|S|=i T2S

= f@) = D o USDFS)xs ()

S#0

ELF1+ ) (1= SD) FS)xs ).

S#0

()

where we used the fact that ]?((Z)) = E[f]. It is immediate from the
above that

E

x~{+1}"

9 ()| =151

due to orthogonality of { ys}. Furthermore, we have

[g (fIB(x,r))] = ety (9 (Flscen) _E[f])z]

= > -pNOPWIf]
=1

Var
x~{x1}"

®)

where Equation (3) follows from Equation (2) via Parseval’s formula.
We split the sum into two parts:

[9 (fIB(x,r))]

= D, =pPOPWUA1+ ) (= pY OF WIS

Var

x~{x1}"

<N >N
< 2™ Qr*/Nlog(N)) Var[f] + 64 Z e2re=tit, (4)
>N
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Input: Query access to f : {£1}2k 5 {21}, £ € (0,1]
Output: An estimate for dist(f, J)
WARMUP-BALL-TESTER(f, €):

(1) Set parameters
k

=0 —
m (

) and r=0 klog(l) .
£

x(m) o (g1)2k uniformly and
independently at random, and query f on B(x®, r) for
each i € [m].

(3) For each i € [m] and every subset J C [2k] with
|J| = k, compute

(z)
= S(quxm lB(xd 5 r))

where & is the estimator from Lemma 16.

(4) Set
s

m
i=1

and output (1 — max; Ej)/2.

(2) Draw points PLON

£

E] = ]

Algorithm 1: Estimating distance to the closest k-junta for

f{x1)2k 5 (1)

where in order to obtain Equation (4), we used Item (ii) of Lemma 10
to bound the first term and bounded the second term using the
Fourier tail bounds in the statement of Lemma 17 and Lemma 11.
Recalling that Var[f] < 1 and taking

N := 128rtlog(rt),

we get

Var
x~{£1}"

< ze—Q(r/(tlogz(rt))) +64 Z e—[/Zt
>N
9= Ur/(t1log?(rt) | o (te—64r log(rt))

g9 (f|B(x,r))

<

< o~ QUr/(tlog’(rt))

where we also used the fact that the second term above is a geo-
metric series. The result now follows from Lemma 18. )

4 WARMUP: TESTING f : {+1}%f — {+1}

As a warmup, we first show how to use local estimators to tolerantly
test if a function f : {£1}2k 5 {1} s k-junta. This illustrates the
basic idea of our approach while keeping additional technicalities—
such as coordinate oracles (cf. Section 2.3) and applications of the
noise operator (cf. Section 2.2) to a minimum.

Recall from Remark 1 that tolerant junta testing is equivalent to
estimating the distance to being a junta. The key idea of Algorithm 1
is to use our local estimator for | E[ f]| from Lemma 16 to estimate
the distance to being a junta on each set of k coordinates. (Note
that there are at most (215 ) such sets.) Furthermore, because the
estimates are local, this allows us to recycle queries efficiently.
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Theorem 19. Let T be the output of WARMUP-BALL-TESTER(f, €).
With high probability, we have

|T - dist(f, Ji)| < e.

Proor. We will establish that the following holds for all sets
J € [2k] where |]| < k with high probability:

)<

where Ej is as in Algorithm 1. Note that theorem immediately
follows from this.

Recall from Lemma 16 that our estimator & is O(1)-bounded, i.e.
|&E(-)] < O(1). So by Hoeftding’s bound, we have

1- |Ej|
2

dist(f, Jj) —

G || S
x<1> ,,,,, " m Z‘ yN{il}Zk 7] =€/
< exp (—Q (mez)) <8k

Note, however, that
E Ey‘ = E |8lfin _
y~{11}"[ ]] y~{11}"[ (ff y|B(y|],r))]

and that by the guarantee of Lemma 16 we have that

1
E[S(fj—»y|3(y\7,r))] o > feyp)
zre{xl }E
is at most ¢/2. The result now follows from a union bound over all

sets J; recall that there are at most (Zlf) < 4k many such sets. O

5 TOLERANTLY TESTING f : {+1}" — {1}

The core idea to tolerantly test juntas in the general case is similar
to that of the warmup from Section 4, albeit with coordinate oracles
(cf. Section 2.3) to reduce the number of relevant coordinates to
poly(k). However, there are some additional road blocks that we
will need to overcome; we describe these in Sections 5.1 and 5.2
before presenting the junta tester in Section 5.3.

5.1 Hold-Out Noising

The first issue we face in trying to generalize the algorithm from Sec-
tion 4 from ©(k) coordinates to n coordinates is due to the number
of coordinate oracles we construct. Recall that Proposition 9 outputs
poly(k) coordinate oracles; for concreteness, we will think of this
number as k1°.2 Consequently, the naive approach to estimate the
mean of the function f will require balls of radius Vk10, Querying
even one of these balls, however, will require KUK queries—this is

much worse than the known Zo(k)—query non-adaptive bound due
to [12]. Thankfully, we can circumvent this by appropriately nois-
ing the function, which allows us to appeal to the high-precision
estimator (Lemma 17) for functions with sufficiently strong Fourier
decay.

2Given adaptivity, the number of oracles can be reduced from k'* to O, (k) [16];
however, it is not clear how to implement this procedure non-adaptively.
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Input: f : {+1}" — {+£1}, a set of coordinate oracles ¥,
x € {+1}", an noise rate p € [0, 1], error 7 € (0, 1], and
failure probability 5 € (0, l]

Output: An additive 7-estimate of TS pf(x)forallS € F
with [S| =k w.p. 1 -1

Horp-OuTt-Noise-EvaLuaTions(f, x, p, 7, n):
(1) Set
N=6 722k
(2) For 1 <i < N, rerandomize x independently with
probability 1 — p to generate strings y(l), e y(N )
(cf. Definition 7). Query f on all of these points.
(3) For each S C ¥ with |S| = k, set

~ 1
Tf,(x) = N_pk Z

i:S(y)=S(x)

|73 k3 log(l/n))

")

Algorithm 2: Non-adaptively implementing the hold-out
noise operator.

In order to non-adaptively noise the function, we consider the
following variant of the Bonami-Beckner noise operator from Def-
inition 7, which we call the “hold-out” noise operator:

Definition 20 (Hold-out noise operator). Given a setS C [n] and
p € [0, 1], we define the hold-out noise operator Tg as

Tof(x):= E o F@ 1ys =xs].

There will inevitably be a tradeoff between the number of queries
we can make and the noise rate; otherwise, we could simply evaluate
TOS f to determine the mean and distance to junta. For short hand,

given a set of coordinate oracles ¥ = {gi,...,g|#|} and a point
x € {£1}", let

F(x) e {-i_-l}lgt| denote the string y € {i-l}IF| with y; = g;(x).
We extend this notation to subsets S C F of coordinate oracles,
writing S(x) for the vector of queries to the coordinate oracles in S
on x.

Lemma 21. Let {T (x)}s be the outputs of

Horp-OuT-NoISE- EVALUATIONs(f x, p, T, 1) as described in Algo-
rithm 2. Then

Pr[35C F with IS = kst [T () - TS f()| > 7| <

Proor. Fix a set S € ¥ with |S| = k. Note that

[f(y“)) s ) —s<x>}] PTLf().
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By a Hoeffding Bound,

Z Fymn{sy?) = S| - P NTS f)] = 7p*N

ym ,,,,,
kaNZTZ
<2exp|-Q|——
N
< nlF*

The result now follows by taking a union bound over all sets S €
7’
(k)- o

5.2 Estimating the Estimator

The hold-out noise operator allows us to smooth the function
enough to be able to use balls of radius Vk in our local estima-
tor from Lemma 17. However, we immediately run into a second
issue: We would like to average out “irrelevant” coordinates (namely
the coordinates which are not among the coordinate oracles). While
this is easy to do adaptively, it is unclear how to implement this
non-adaptively. Dealing with all n coordinates is infeasible, since
sampling even one Hamming ball of radius Vk would require n®(Vk)
queries. Consequently, we must devise a procedure to estimate our
estimator from Lemma 17 that does not require too many queries.
Recall from Lemma 17 that our estimator computes

&{floen) = 169~ Y 37 2 orsto

i=1 |S|=i
As such it suffices to approximate

> a—(xm(x)

|S|=i

To do this, we compute derivatives of the noise operator dd—pliTp f
at p = 1. Indeed, note that

1 d
- d_piTpf(x) -
_ oy IO =) (T D

i!
|T|>i

- > (% |)f(T)xT(x)

|T|>i

Z 3f(x)

IS|=i

So it remains to estimate these derivatives by computing them
numerically; we will do this via Theorem 13.

Remark 22. We briefly address why we rely on Theorem 13 rather
than using the naive formula

J
—Tpf(x) = lim Z 0( ! ( )Tl z§f(x)

p=1 5—0 &)
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In particular, the error in the above expression decays roughly as
d j+1

dp]“ p= §).

Consider taking the Vk/2nd derivative of VK, (We ought to get
a good approximation here since the noise we apply does not

o Tpf(x)

kill terms at level \/E) However, in this case, the error looks like

exp(Vk)S5. We can take 8 = exp(—Vk), but the denominator in the

expression for the derivative would then be sVk/2 - exp(Q(k)).

So in order to evaluate this expression we need to estimate T f
to additive error exp(—k), which would require too many samples
to do naively. Fortunately, we can rectify this with the speedier
convergence guaranteed by Theorem 13.

We have the following consequence of Theorem 13:

Lemma 23. Fix an integer € and a sufficiently large positive integer
k.Let f: {+1}" — {1} andletg = T, f where p < 1—%.Thenfor

any positive § < O((€k)~190), there exists constants yf 6

with |y€ 6| < (

AR OV

2t

3¢
3175 ) such that

26—-1
Z v Tisisg(x) - < 0(5°%).

p=1

x~ {+1}"

2
Tpg(x))

Proor. Applying Theorem 13 with f = x%, y; = g, ,andx =1
yields
20-1

Do) - G

i=0

< (2{)3€+15€t2[

t!
-0)!

30
for any positive integer t. Moreover, |y;| < (521—‘;3) . Using these
coefficients, we compute

261

E(x) = Z viTi—isg(x) =

20-1
= ) (ZY(l_’5)|T| o

Tpg(x )

=1

TC[n]

)Q(T)XT (x)

By Parseval’s formula, we have that

n [20-1 2
E[E(x)] = Z(Z yi(t =iy - == f),) w[g]
j=0\ i=1
, n 26-1 2
6 _;
<6 / +j:52_1/3(; Yi(l (] ()1) W ][g]

(We refer the reader to the full version of this paper for a complete

calculation.) To bound the second term, we note that since g is is

the result of applying noise to a Boolean function f the weight at
t

level j is at most e~//* and
2

20—-1
(Z yi(1 - 3

i=1

(25)106 .
§52¢

jt
G-0)

isy -
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when j > §71/3. Combining these, we get that

£ J! : 8¢ 200 ik
(1— iy - W [gl <0 |—;"e
;h( isy -0 gl <O /e )
Observe
¢ ¢ ¢
‘%jmt’e—j/k < %emt’log(j)—j/k < %e—j/(zk)

assuming that k, and hence j, is sufficiently large. Thus,

Bl < ot/ + 280 Z 3120

=5-1/3
0(5¢ ) 2k
stle L 22 0t
= * k 1-1/e
<0819

which completes the proof.

With this, we now consider the estimator
2¢6-1

EX 5. (i) = fx) - Za’N(f, Z v{?

It’s not hard to see that |8; s r(f, x)| will be a good estimator for

T i&r/prf)-

the absolute value of the mean:

Lemma 24. Let f : {£1}" — {x1}, k a sufficiently large positive
integer, and 7 € (0, %] Suppose that r > Q(;y/klog(1/7)), p <
(1 - —'bg(l/f)), and 6 <O (le/’(rk)’looo), then

vk
Proor. We first note that by Lemma 12, Lemma 23, and the
Cauchy-Schwartz inequality, we get that

B (|65, 70| - [ex Lol < -

2
(pgr(f %)=& (To S lscx, ,>)) < (2r)- @r)" - 05"

TZ

1000
2

A A L | }

Finally, Jensen’s inequality yields

8% 5., (. 0)|| = Bx [[ETo fl3e.0)

On the other hand, we have that by Lemma 17

| - [l

The lemma now follows by the triangle inequality.

<

This in turn implies that

2

< —.
1000

<

Ee | ]

T
P .

Ex [[E(T, flae.r) <2

[m]

We now conclude with an algorithm (Algorithm 3) to implement
E* in our junta testing setting. We also quickly record that the
procedure outputs estimates whose means are close to the estimates

of 187 5 ,(flinns: *)l-
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Input: f : {+1} — {-1,1}, a set of coordinate oracles ¥,
x € {£1}", an error 7 € (0, %] and a failure probability

ne(0,3]
Output: For each S € (f) outputs estimates vg for
|Eyepenyinhs [f (xls Ly)ll.

ESTIMATE-ABSOLUTE-MEAN(f, F, 7):

(1) Set parameters

. ( kk,g(l)) (

§i= @(TIZ/r(rk)—IOOO)’
209-klog*(1/7).

vlog(3/7)
—\/E ,
andletn:=71
(2) For{=1torandi=1to2r—1:
e Run Horp-Out-Norse-Evaruarions(f, x, p(1 —
i6716), r(1000r5~1)~1007 n/(2r?)) to generate
TS
T isriof @)
(3) Output vs(x) :=

'f(x) Zhoy ™ (TG VTS0

i for

alls e (7).

Algorithm 3: Estimate Absolute Mean

Lemma 25. Suppose f : {+1}" — {£1}, F a set of coordinate
oracles, k is a sufficiently large integer, and 7, > 0, and let vs(x)
be the output of ESTIMATE-ABSOLUTE-MEAN(f, 7, 7). Then have

that |vs(x)| < poly(r™1) - exp(O(+/k log(1/7))) and
Elvs] - 1675, (Flians 0)l| < .
Moreover, the procedure makes poly(zr 1, k)26( Vklog(1/€)) queries.

ProoF. We first prove that the estimates vg are bounded. Indeed,
note that the estimates from HoLD-OUT-NoISE-EVALUATIONS are at
most (p(l 2r5))7k < ¢OWklog(1/7)) 1t then follows by the bounds
on a

" and y % that vs is at most

Ok Tog(1/7)) ((Zr)3’) " < 712, LO(Klog(1]7))
5 =

Note that this also bounds |8:‘(S p(f|[,,]\5, x)|.

We now to turn to prove the bound on the expectation. With
probability 1—n, we have that |Tp(1—i5r/‘)f(x)_Tp(l—iér/f)f(x)l <
7(1000r8 )10 foralli=1...2r—land £ =1..
it follows that

.r. In this case,

3r
vs(x) — |8r5p(f|[n]\5,x)| < £(1000r5~1)71007 (%)2#(2#)

<t/2
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Input: f : {+1}" — {£1}, an integer k, and ¢ € (0,
Output: An estimate for dist(f, Jx)

3

k-JuNTA-DISTANCE(S, €):
(1) Construct coordinate oracles ¥ as in Proposition 9
with error rate ¢/3 and failure probability %

k| 7:|25(\/k10g(1/f))

(2) Draw m := ~om
xD), ., x(™) ~ {+1}" uniformly and independently at
random

(3) For each point, run
ESTIMATE-ABSOLUTE-MEAN( f, F, xD e/4) to get
estimates vs(x).

(4) Set Ds = & 3, vs(x(0)

1-maxs Ds
(5) Output —ma; S-S

points

Algorithm 4: An algorithm to estimate k-junta distance

Using our bounds on 8:( 5.p and vs(x), we then have that

‘ [VS(x) r5.pflin \5’x)|]
< % +2pr712 eXP(a(‘/W))
<.

Finally, note that for the query bound, we make
|F1°k* log(1/)
7'-2(1000,-5—1)—200rp2k

<poly(k, 771 - 20(Vklog(1/7))

poly(k,z™ 1) -0 (

|

20(\Klog(1/2))

which completes the proof.

5.3 Putting It All Together: A
Tester
We finally turn to the proof of Theorem 2.

Theorem 26. Let k-JUNTA-DISTANCE be as in Algorithm 4. Suppose
that f : {£1}" — {x1}, then

Pr [|k-JUNTA-DISTANCE(f, &) — dist(f, Jk)| > ¢] = or(1)
Moreover, k-JuNTA-DISTANCE makes at most 20(Vklog(1/¢)) queries.

Proor. By Proposition 9, we have with high probability the dis-
tance of f to ajunta of f restricted to the coordinates corresponding
to ¥ differs from dist(f, Ji) by at most £/4. Moreover, there are at
most poly(k, 1/¢) such oracles. Now fix a set S C . We’ll bound
the probability that %(1 —Dg) differs from dist(f, Js) by more than
3¢/4. Indeed, we note that by Lemmas 24 and 25 as well as the
triangle inequality that

f(y Uz)]|| < e/2.

Elsecl- ¢ Y

ye{=1}S

z~ {+1}
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It then follows that

Pr [%(1 — D) — dist(f, 5)| > 35/4]
2

<Pr[|Ds — E[Ds]| > ¢/4]
Em )

< exp —
pOly(E_I)ZO(Vk log(1/¢))
Lk
<=
<171
by a Hoeffding bound. By a union bound, with high probability Dg
is within 3¢/4 of dist(f, Js) forall S € (f) as claimed.
For the query bound, note that we make

_ O(WkTlog(1/¢))
-1y ,0(\KIog(1/e)) | kIF 27 VEO8EP
poly(k,e™") - 2 o)

<poly(k, £—1)25(\/k log(1/¢))
queries.

6 LOWER BOUND

We now show that the upper bound obtained in Section 5 is essen-
tially tight. In particular, we establish the following:

Theorem 27. For every ¢ € (Z’O(k),k’z), there exist ¢1,& €
[0,1/2) with ¢ = €3 — &1 such that every (1, £2)-tolerant k-junta
tester for functions f : {£1}?* - {1} must make

exp(Q(vklog(1/ke))) queries

to the function f.

Our proof of Theorem 27 builds on the constructions of Chen et
al. [8] who proved Theorem 27 for ¢; = 0.1 and &2 = 0.2. Note that
this theorem implies Theorem 3 by Remark 1 when & < k~2; on the
other hand, if ¢ > k72, then Theorem 3 holds by simply using the

220Y6) Jower bound from [8].

6.1 The Dy and D, Distributions

As in [8], we start with some objects that we need in the con-
struction of the two distributions Dyes and Dpo. We partition the
variables x1, - - - , X9 into control variables and action variables as
follows: Let A C [n] be a fixed subset of size k, and let C = [2k] \ A.
We refer to the variables x; for i € C as control variables and the
variables x; for i € A as action variables.

Notation 28. Given a point x € {J_rl}Zk, we write |x| := [#{i :
x; = 1}| to denote the Hamming weight of the point x.

We first define some auxiliary functions over the corresponding
action subcubes {+1}4 which we will later use in the definition of
Dyes and Dipo. Let 0 < A < k/2 be a parameter we will set later;
we choose A so as to ensure

Pr
x~{£1}k

P

®)

k
les——A]
2
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where ¢ is as in the statement of Theorem 27. Let A(+:0), o(+:D_p(=:0)
and k(=1 be Boolean functions over {+1}* defined as follows:

-1 |xal > %
R 0ca) =1 -1 [xale (5 -A.5),
-1 |xal< E-n
+1 x4l = %
R (g) =1 -1 |xale (5 -n.5),
+1  |xal < % -A.
-1 |xal > %
R Ga) =1 -1 Jxal € (5 - A %),
+1 |xal < E-aA
+1  |xal = %
W) =1 -1 xale (5 -A5),
-1 |xal < % -A.

We now turn to the definitions of the “yes” and “no” distributions.

To draw a function fyes ~ Dyes, we first sample a set A C [2k]
of size k uniformly at random, set C = [2k] \ A, and sample two
Boolean functions by, by over {+1}€ uniformly at random. Then
the Boolean function fyes over {il}Zk is defined using A and by, b,
as follows:

E* ) (xa)  bi(xc) = —1and ba(xc) = +1
—h(x4)  bi(xc) = —1and by(xc) = -1
fyes(x) = (+ +) .
h'" ) (x4) bi(xc) = +1 and by(xc) = +1
—hP(x4)  bi(xe) = +1 and by(xc) = -1

To draw fno ~ Dno, we first sample A, by, and b, in the same
way as in Dyes, and fio is defined as

h)(xa)  bilxc) = -1 and by(xc) = +1
~h(xa)  bixc) = —1 and ba(xc) = -1
Jol(x) = (=) .
h'™ ) (x4) bi(xc) = +1 and ba(x¢c) = +1
—hC(xa) bi(xc) = +1and by(xc) = -1

See Section 6.1 of the full version of the paper for figures illus-
trating Dyes and Dno. Recall also that at this point we have not
yet specified the parameters A (or equivalently—recalling Equa-
tion (5)—the parameter ¢).

Proposition 29. With probability 10 (1), a function fyes ~ Dyes
is
1

1 + exp (—O(k)) |-close to a k-junta.

£
2
Proor. Consider the (n/2)-junta g : {0, 1} — {0, 1} given by

-1 bi(xc) = -1and by(xc) = +1
b1(xc) = —1and by(x¢) = -1
bi(x¢) = +1 and by(xc) = +1 '

bi(xc) = +1 and by(x¢c) = -1

+1

g(x) = »

-1
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Note that g is a junta on the control subcube. A Chernoff bound
on by together with the definition of Dy.s immediately gives the
desired result. ]

Proposition 30. With probability 1 — o0 (1), a function fho ~ Dno
is
PRrOOF. As in the proof of Lemma 17 of [8], we have by a union

bound and a Chernoff bound over A, b1, and b, that with probability
at least 1 — og(1), the following holds:

1
1_ o)

1 )—far from every k-junta.

Foreveryi € C, there are at least (0‘25—efo(k))-

fraction of strings x € {+1}2k such that x;

+1and fuo(x) # fno(x®).
We assume for the rest of the proof that f, satisfies the above
condition. Let g : {£1}%% = {+1} be any k-junta, and let I C [2k]
denote its set of influential variables. We now split into two cases:

o If ] # C, then there exists i € C such that i ¢ I. Since
g(x) = g(x®"), however, it follows from the above condition
that its distance to being a junta is ;11 — exp(—O(k)) since at
least one endpoint of each of the influential edges needs to
be changed to obtain a junta.

e On the other hand, if I = C, then from the construction of fyo
it follows (using a Chernoff bound on b;) that the distance
to being a junta is at least

1 £
— 42 -0,
4 2

This completes the proof.

6.2 Proof of Theorem 27

We now turn to the proof of Theorem 27. Recall that Dyes and Dyo
are parametrized by ¢, or equivalently A (see Equation (5)). We now
obtain bounds on A as a function of ¢. We start by recalling the
following standard tail bound for the Binomial distribution [1]:

Proposition 31. For X ~ Binomial(n, p) and k < n, we have
1
Pr(X <k]> —exp

ol

where KL(q; || g2) denotes the KL-divergence between Bernoulli
random variables with parameters g; and g. In particular,

afi )

Using Proposition 31 and recalling Equation (5), we get that

-]

A routine calculation using the inequality 1+ x < exp(x) gives that

-2l |

k
n

Elo £+ 1—5 lo
" n gnp n & 1-p

1
&2 — €X
5 P

k

AZ

k

AZ
a2

1 A

2

1

1
£> —exp|-0

d
and so %
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which rearranges to

A>0 kbdi). (6)

The remainder of the argument is identical to the lower bound
obtained by [8]; we include a brisk proof below for the reader’s
convenience. Our notation and terminology follow [8] and we refer
the reader to Sections 2.1 and 5 of [8] for background on proving
lower bounds for testing algorithms (such as Yao’s lemma [14, 32]).
The key observation here—as in [8]—is the fact that coupling the
random variables C, A, by, bz, and r, a non-adaptive algorithm A
can distinguish between fyes and fio only if the following event
occurs:

There are two points x, y € {+1}" queried by
.Z(suchthatxc =yc,and |xa| > %and|yA| <
5 —A.

2

Call this event Bad. The next lemma shows that Bad occurs with
probability ok (1)

Proposition 32. Let A be a non-adaptive algorithm that makes

exp(0.000001+/k log(1/ke)) queries. The probability of the event
Bad is oy (1).

Proor. Let x and y be two points queried by A. For |x4| >
k

> and |ya| < % — A to hold, it must be the case that x and y
have Hamming distance at least A. However, for any x and y with
Hamming distance at least A, the probability that xo = yc¢ is at
most exp(—0.00001+/k log(1/ke)). Proposition 32 now follows by a
union bound over all pairs of points queried by A. O

Proposition 32 now implies Theorem 27 in the same manner that
Lemma 18 of [8] implies Theorem 2 of [8].
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A MISSING PROOFS

Proor oF LEMMA 11. We prove the statement by Lagrange in-
terpolation. Indeed, note that

plx) = ipw [

j=0 i€f{0,...,r\{j}

x—1i

j—i
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and so we have

.
_ t—i
pol< Yo ] =

j=0 ief{0,....,r N\ {j}

r €—i

< 2 ra—

j=1 iE{O,...,r}\{j}]_l

<4

which completes the proof. O

Proor oF LEMMA 12. We prove the statement by induction. We
will show that |ajr’n| < 2(jY. For the base case, note that

lag"| = Ip(D)] < 2

by property (ii). Now suppose that the statement holds for all i < j.

We then note that

Jj .
22 901 = |y a1
i=1

which implies that
=1 ] 1 ] .
o] " <242 i’(.) < 22(;‘— 1)‘(,) <25/
1 1
i=1 i=0

as desired.
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