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ABSTRACT
The circuit class QAC0 was introduced by Moore (1999) as a model
for constant depth quantum circuits where the gate set includes
many-qubit Toffoli gates. Proving lower bounds against such cir-
cuits is a longstanding challenge in quantum circuit complexity; in
particular, showing that polynomial-sizeQAC0 cannot compute the
parity function has remained an open question for over 20 years.

In this work, we identify a notion of the Pauli spectrum of QAC0

circuits, which can be viewed as the quantum analogue of the
Fourier spectrum of classical AC0 circuits. We conjecture that the
Pauli spectrum of QAC0 circuits satisfies low-degree concentration,
in analogy to the famous Linial, Mansour, Nisan (LMN) theorem on
the low-degree Fourier concentration of AC0 circuits. If true, this
conjecture immediately implies that polynomial-size QAC0 circuits
cannot compute parity.

We prove this conjecture for the class of depth-𝑑 , polynomial-
sizeQAC0 circuits with at most 𝑛𝑂 (1/𝑑 ) auxiliary qubits. We obtain
new circuit lower bounds and learning results as applications: this
class of circuits cannot correctly compute

• the 𝑛-bit parity function on more than ( 12 + 2−Ω (𝑛1/𝑑 ) )-
fraction of inputs, and

• the 𝑛-bit majority function on more than ( 12 + 𝑂 (𝑛−1/4))-
fraction of inputs.

Additionally we show that this class of QAC0 circuits with lim-
ited auxiliary qubits can be learned with quasipolynomial sample
complexity, giving the first learning result for QAC0 circuits.

More broadly, our results add evidence that “Pauli-analytic” tech-
niques can be a powerful tool in studying quantum circuits.

CCS CONCEPTS
• Theory of computation → Quantum complexity theory;
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1 INTRODUCTION
The Fourier spectrum of a Boolean function provides highly useful
information about its complexity. For example, the celebrated result
of Linial, Mansour, and Nisan [33] shows that polynomial-size AC0

circuits give rise to functions whose Fourier spectra obey low-degree
concentration; in other words, they are approximately low-degree
polynomials. Since then, Fourier analytic techniques have played
an essential role in breakthroughs in learning theory [15, 29, 32],
pseudorandomness [8, 10, 11], property testing [5, 17, 31], classical-
quantum separations [40], and more.

Are there analogous analytic techniques for studying models of
quantum computation? A natural quantum generalization of the
Fourier spectrum of a Boolean function is the Pauli spectrum of a
many-qubit operator. Recall that the set of 𝑛-qubit Pauli operators,
P𝑛 := {𝐼 , 𝑋,𝑌 , 𝑍 }⊗𝑛 , forms an orthonormal basis for the space of
2𝑛 × 2𝑛 complex matrices, with respect to the (normalized) Hilbert–
Schmidt inner product. Consequently, any 𝑛-qubit operator 𝐴 can
be decomposed as 𝐴 =

∑
𝑃∈P𝑛

𝐴(𝑃) 𝑃 , analogous to the Fourier
expansion of a Boolean function. Our paper is motivated by the
following question:

When does the Pauli spectrum reveal useful information
about the complexity of a quantum computation?

Analyzing the Pauli spectrum of quantum operations has been a
fruitful endeavor in recent years, leading to structural results about
so-called quantum Boolean functions [35, 43], learning algorithms
for quantum dynamics [26, 46, 50], property testing of quantum
operations [3, 13, 51], and classical simulations of noisy quantum
circuits [1]. Although each result uses a slightly different notion of
Pauli decomposition, most of them focus on the Pauli spectrum of
unitary operators. However, it is unclear how this notion connects
with the complexity of the unitary operator.

An Illustrative Example. One might have hoped for the following
Linial-Mansour-Nisan-style low-degree concentration statement: if
a unitary 𝑈 is computable by some simple circuit (for some notion
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of “simple”), then most of its “Pauli mass” should concentrate on
its low-degree part. The degree of a Pauli tensor 𝑃 ∈ P𝑛 , denoted
|𝑃 |, is the number of qubits on which it acts non-trivially (i.e. the
number of non-identity components). Unfortunately, however, such
notions of low-degree Pauli concentration break down for even the
simplest unitaries: consider the unitary 𝑈 = 𝑋 ⊗𝑛 , which can be
implemented by a single layer of single-qubit gates (see Figure 1).
Clearly the Pauli mass of 𝑈 is concentrated on a single degree-𝑛
coefficient, yet this unitary𝑈 is computed by an extremely simple
circuit.

.

.

.

𝑋

𝑋

𝑋

Figure 1: A simple unitary that does not satisfy low-degree
Pauli concentration in the naive sense.

Note, however, that in this example there is an incongruity be-
tween the classical and quantum settings. A classical Boolean func-
tion 𝑓 : {0, 1}𝑛 → {0, 1} only has one output bit, whereas the
output of unitary𝑈 is 𝑛 qubits. This leads us to restrict our focus to
quantum circuits where there is a designated “target” qubit in the
output. In the aforementioned example, while unitary𝑈 has degree-
𝑛, the target qubit is not influenced by any other qubits, meaning
𝑈 should “morally” have degree-1. This suggests that instead of
analyzing the unitary operator corresponding to the circuit, one
should analyze the quantum channel that comes from applying the
circuit and then tracing out all qubits except for the target qubit.

A New Notion of Pauli Spectrum. We introduce a different notion
of Pauli decomposition: The Pauli spectrum of a quantum channel
E mapping 𝑛 qubits to ℓ qubits is the set of Pauli coefficients of its
(𝑛 + ℓ)-qubit Choi representation ΦE := (𝐼⊗𝑛 ⊗ E)(|EPR𝑛⟩⟨EPR𝑛 |)
which is the channel applied to half of un-normalized 𝑛-qubit Bell
state |EPR𝑛⟩ :=

∑
𝑥∈{0,1}𝑛 |𝑥⟩ ⊗ |𝑥⟩ (see the full version of the paper

for formal definitions of Choi matrices and their Pauli spectrum).
We show that this definition of Pauli spectrum connects with

computational complexity much more closely. In particular we
illustrate the definition’s usefulness by studying the Pauli spectrum
of QAC0 circuits. These are a model of shallow quantum circuits
that, in addition to single-qubit gates, can include wide Toffoli gates
acting on arbitrarily many qubits [36]. This is a quantum analogue
of the classical circuit model AC0, and represents the frontier of
quantum circuit complexity: although we know that polynomial-
size AC0 circuits cannot compute parity [18, 22], proving the same
for QAC0 circuits remains a longstanding open problem [4, 16, 25,
36, 39, 42].

Our Results, In a Nutshell. Our main technical result, at a high
level, is that polynomial-size, single-qubit-output QAC0 circuits
that use few auxiliary qubits must have Pauli spectrum that is
highly concentrated on low-degree coefficients. This is a new struc-
tural result about QAC0 circuits (with limited auxiliary qubits) that

immediately yields average-case circuit lower bounds: we show
that such circuits cannot compute the parity or majority functions,
even approximately (see Section 3 for detailed theorem statements).

This raises the intriguing question of whether low-degree con-
centration holds for all polynomial-sizeQAC0 circuits, not just ones
with few auxiliary qubits. We conjecture that this is indeed true (see
Conjecture 1 for a formal statement). This would be directly analo-
gous to the Linial-Mansour-Nisan theorem about the low-degree
concentration of AC0 circuits [33], and would immediately show
that parity is not computable by polynomial-size QAC0 circuits,
resolving the central open question posed in Moore’s 1999 paper
introducing the QAC circuit model in the first place [36].

Finally, we show that low-degree concentration of the Pauli
spectrum of quantum channels yields sample-efficient learning
algorithms for those channels (see Theorem 3 for a more detailed
theorem statement). This also directly corresponds to the learning
result of [33] who show that low-degree concentrated Boolean
functions can be learned with quasipolynomial complexity. Our
results directly imply that QAC0 circuits with few auxiliary qubits
can be learned using quasipolynomial sample complexity, and if
the conjectured low-degree concentration of QAC0 holds, then all
polynomial-size QAC0 circuits are sample-efficiently learnable.

Although we weren’t able to prove “quantum LMN,” we believe
that the conjecture provides tantalizing motivation for studying the
analytic structure of QAC0 circuits, and for further investigating
this notion of Pauli spectrum more broadly. The analogy with clas-
sical Fourier analysis of Boolean functions appears quite strong; it
will be interesting to discover how far the analogy goes.

Before explaining our results in more detail, we give a brief
overview of QAC0 circuits.

2 QAC0 CIRCUITS
The QAC0 circuit model consists of constant-depth quantum cir-
cuits with arbitrary single-qubit gates and arbitrary-width Toffoli
gates, which implement the unitary transformation

|𝑥1, . . . , 𝑥𝑛, 𝑏⟩ ↦→ |𝑥1, . . . , 𝑥𝑛, 𝑏 ⊕
∧
𝑖

𝑥𝑖 ⟩ .

QAC0 and related models were first introduced by Moore [36] to
explore natural quantum analogues of classical circuit classes such
asNC0, AC0, and AC0 [𝑞], which are well-studied models of shallow
circuits in classical complexity theory.

Aside from being a natural generalization of a classical circuit
model, QAC0 also gives a clean theoretical model with which to
study the power of many-qubit operations in quantum computa-
tions. Recently there has been increasing motivation for under-
standing the power of short-depth quantum computations with
many-qubit or non-local operations. Some experimental platforms
are beginning to realize controllable operations that can affect
many qubits at once; examples include analog simulators [6], ion
traps [20, 21], and superconducting qubit platforms that have mid-
circuit measurements [44].

Parity versusQAC0. Already in his 1999 paper [36], Moore posed
the question of whether the 𝑛-bit parity function can be computed
in QAC0. Recall that computing parity is equivalent to computing
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Table 1: Comparison with the work of Linial, Mansour, and
Nisan [33]; see Section 4 for a detailed discussion. In both the
classical and the quantum settings, we denote the number
of inputs as 𝑛, number of gates as 𝑠, and the depth of the
circuit as 𝑑 . In the QAC0 learning setting, we assume that
𝑎 ≤ 𝑂 (polylog(𝑛)).

AC0 Circuits
(Boolean function 𝑓 )

QAC0 Circuits
(Choi representation Φ)

Fourier Basis 𝜒𝑆 (𝑥 ) ∈
{∏

𝑖∈𝑆 𝑥𝑖
}
𝑆⊆ [𝑛]

(Parity functions)
𝑃 ∈ {𝐼 , 𝑋,𝑌, 𝑍 }⊗𝑛
(Pauli tensors)

Decomposition 𝑓 (𝑥 ) = ∑
𝑆⊆ [𝑛]

𝑓 (𝑆 )𝜒𝑆 (𝑥 )

(Fourier decomposition)

Φ =
∑

𝑃 ∈P𝑛
Φ̂(𝑃 ) · 𝑃

(Pauli decomposition)

Spectral Concentration W>𝑘 [ 𝑓 ] ≤ 𝑠 · 2−Ω
(
𝑘1/𝑑

)
(Lemma 7 of [33])

W>𝑘 [Φ] ≤ 𝑠2 · 2−Ω (𝑘1/𝑑 −𝑎)

(Theorem 1)

Correlation with Parity 1
2 + 𝑠 · 2−Θ

(
𝑛1/𝑑

)
(Implicit in [33])

1
2 + 𝑠 · 2−Ω (𝑛1/𝑑 −𝑎)

(Theorem 2)

Learnability Quasipolynomial sample
(Section 4 of [33])

quasipolynomial samples
(Theorem 3)

fanout, i.e. the unitary operation
|𝑏, 𝑥1, . . . , 𝑥𝑛⟩ ↦→ |𝑏, 𝑥1 ⊕ 𝑏, . . . , 𝑥𝑛 ⊕ 𝑏⟩ ,

up to conjugation by Hadamard gates [36]. Consequently if QAC0

circuits could compute parity, then this would imply that QAC0

would be remarkably powerful: among other things, they would
be capable of generating GHZ states, computing the MOD𝑞 func-
tion for all 𝑞, computing the parity function, and performing phase
estimation and approximate quantum Fourier transforms [4, 36].

Despite being open for more than twenty years, this question
has seen limited progress. Fang et al. [16] showed thatQAC circuits
with sublinear auxiliary qubits cannot compute parity, and more
recently, Padé et al. [39] showed that depth-2 QAC circuits with
arbitrary auxiliary qubits cannot compute parity. Rosenthal [42]
proved that parity can be approximated exponentially well byQAC0

circuits that have exponentially many auxiliary qubits (it was not
known before whetherQAC0 circuits of any size could approximate
parity). Rosenthal also proved that certain classes of QAC0 circuits
require exponential size to approximate parity; however, extending
these lower bounds to general QAC0 circuits seems challenging.
(See Section 5 for more details about these prior works.)

Although lower bounds against classical AC0 are considered one
of the great successes of complexity theory [22, 41, 47, 52], it is
far from clear how to extend those techniques (such as switching
lemmas) to the setting of QAC0. Furthermore, it is unclear whether
QAC0 lower bounds imply AC0 lower bounds: we do not know
if QAC0 circuits can even simulate classical AC0 circuits. Even
though QAC0 circuits appear quite weak (especially for classical
computation), lower bounds have been difficult to obtain.

Going Beyond Lightcones. On the other hand, if we restrict our-
selves to constant-depth quantum circuits with only two-qubit gates
(known as QNC0 circuits), it is comparatively much easier to prove

limitations. For example, such circuits cannot prepare states with
long-range entanglement (like the many-qubit GHZ state or states
with topological order) [2, 14, 49]. At the heart of all QNC0 lower
bound techniques, is the “lightcone argument”— the observation
that each output qubit can only be affected by a small number of
input qubits since there are only a few layers of small gates (see Fig-
ure 2). This argument immediately breaks when either the circuit
has logarithmic depth, or large many-qubit gates. Thus, any effort
to prove lower bounds against more general circuits calls for novel
techniques beyond lightcones. QAC0 circuits are at the frontier of
this boundary and thus an attractive point of attack for developing
new circuit lower bound techniques.

Figure 2: A (backwards) lightcone of a qubit.

3 OUR RESULTS
We show that the spectral properties – with our notion of Pauli
spectrum – of QAC0 circuits with limited auxiliary qubits resemble
those of classical AC0 circuits; this in turn allows us to derive
circuit lower bound and learning conclusions that are analogous to
those of [33] (see Table 1 for a comparison). In particular, our main
technical result is the following bound on the Pauli coefficients
of a QAC0 circuit. For definitions of Choi representations, Pauli
coefficients, etc, we refer the reader to full version of the paper. We
also defer formal statements of our results to the full version of
the paper and instead give informal statements below for ease of
exposition:

Theorem 1. Suppose a 𝑛 to 1-qubit channel E is computed by a
depth-𝑑 QAC0 circuit with 𝑎 auxiliary qubits. Writing ΦE for the
Choi representation of E , we have∑︁

𝑃∈P𝑛+1: |𝑃 |>𝑘

���Φ̂E (𝑃)
���2 ≤ 2−Ω

(
𝑘1/𝑑−𝑎

)

where {Φ̂E (𝑃)} is the collection of Pauli coefficients of ΦE .

Theorem 1 can be interpreted as saying that most of the “mass” of
the Pauli decomposition of the Choi representation of E lies on Pauli
tensors with few non-identity components. As a consequence of
Theorem 1, we obtain circuit lower bounds and learning algorithms
for QAC0 circuits.

Theorem 2. Suppose 𝑄 is a QAC circuit with depth 𝑑 = 𝑂 (1)
and at most 1

2 · 𝑛1/𝑑 auxiliary qubits. Let 𝑄 (𝑥) ∈ {0, 1} denote
the random measurement outcome in the computational basis of a
single output qubit of 𝑄 on input |𝑥⟩.
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• 𝑄 cannot approximate the 𝑛-bit parity function Parity𝑛 (𝑥) =∑𝑛
𝑖=1 𝑥𝑖 mod 2, i.e.

Pr
𝒙∼{0,1}𝑛

[𝑄 (𝒙) = Parity𝑛 (𝒙)] ≤
1
2 + 2−Ω

(
𝑛1/𝑑

)
.

• 𝑄 cannot approximate the𝑛-bit majority functionMaj𝑛 (𝑥) =
1
{∑𝑛

𝑖=1 𝑥𝑖 ≥ 𝑛/2
}
, i.e.

Pr
𝒙∼{0,1}𝑛

[
𝑄 (𝒙) = Majority𝑛 (𝒙)

]
≤ 1

2 +𝑂
(
𝑛−1/4

)
.

We point out that our QAC0 lower bounds in Theorem 2 are
average-case: the circuits fail to approximate parity or majority.
The only previously known average-case lower bounds for parity
were shown by Rosenthal [42]. Notably, he showed an average-
case bound against depth-2 QAC circuits and a size lower bound
of Ω(𝑛/𝑑) for depth 𝑑 circuits. For a more detailed comparison
between our lower bounds and previously established QAC0 lower
bounds, see Section 5.

As a consequence of Theorem 1, we also obtain an algorithm for
learning QAC0 circuits:
Theorem 3. Let E be a channel computed by a depth-𝑑 QAC0

circuit on 𝑛 input qubits with polylog(𝑛) auxiliary qubits. Then for
𝛿 > 0 and 𝜖 > 1

poly(𝑛) , it is possible to learn a channel Ẽ satisfying∑︁
𝑃∈P𝑛+1

���Φ̂E (𝑃) − Φ̂Ẽ (𝑃)
���2 ≤ 𝜖, (1)

with probability 1− 𝛿 using 𝑛polylog(𝑛) log
(
1/𝛿

)
copies of the Choi

state 1
𝑁
ΦE . Here, ΦE and ΦẼ are the Choi representations of E

and Ẽ respectively. In the special case where E computes a Boolean
function 𝑓 : {0, 1}𝑛 → {0, 1}, the learned channel Ẽ corresponds
to a probabilistic function 𝑔 such that Pr𝑥 [𝑓 (𝑥) ≠ 𝑔(𝑥)] ≤ 𝑂 (

√
𝜖).

We further show that all of the above results extend to quantum
channels E that are convex combinations of the channels {E𝑖 }
implemented by QAC0 circuits: E(𝜌) = ∑

𝑖 𝛼𝑖E𝑖 (𝜌). Note that it is
not necessarily true that E can be implemented by a QAC0 circuit.

4 TECHNICAL OVERVIEW
The starting point for our results is the seminal work of Linial,
Mansour, and Nisan [33] on the Fourier spectrum of constant-
depth classical circuits; we refer the interested reader to the mono-
graphs [19, 38] for further background on the subject.

4.0.1 The Work of Linial, Mansour, and Nisan (LMN). Suppose 𝑓 :
{0, 1}𝑛 → {0, 1} is a Boolean function computed by a depth-𝑑 AC0

circuit of size 𝑠 . Recall that 𝑓—viewed as a function 𝑓 : {±1}𝑛 →
{±1}—can be expressed as a real multilinear polynomial

𝑓 =
∑︁

𝑆⊆[𝑛]
𝑓 (𝑆)𝜒𝑆 where 𝜒𝑆 (𝑥) :=

∏
𝑖∈𝑆

𝑥𝑖

which can be viewed as a Fourier expansion of 𝑓 . Themain technical
result of [33], namely Lemma 7, is the following bound on the
Fourier spectrum of 𝑓 :∑︁

|𝑆 |>𝑘
𝑓 (𝑆)2 ≤ 𝑠 · 2−Θ

(
𝑘1/𝑑

)
for all 𝑘 ∈ [𝑛], (2)

which, intuitively, states that most “Fourier mass” of 𝑓 lies on
its low-degree part. Although this bound has been subsequently
sharpened [7, 23, 24, 28, 48], for the sake of simplicity, this work
will focus solely on the [33] bound given by Equation (2).

The primary technical ingredient used by [33] to prove the above
bound is Håstad’s celebrated switching lemma [22]. As an immedi-
ate consequence of Equation (2), one can obtain correlation bounds
against parity as well as a learning algorithm (under the uniform
distribution) for AC0 circuits; we sketch both of these results below,
see Section 4.5 of [38] for a thorough exposition.

Correlation Bounds Against Parity. Suppose 𝑓 : {±1}𝑛 → {±1}
is computed by a depth-𝑑 size-𝑠 AC0 circuit. Recall that Parity𝑛 :
{±1}𝑛 → {±1} is given by Parity𝑛 := 𝜒[𝑛] . As an immediate
consequence of Equation (2),���𝑓 ([𝑛]) ��� ≤ 𝑠 · 2−Θ

(
𝑛1/𝑑

)
.

Furthermore, using Proposition 1.9 from [38], is straightforward to
check that

Pr
𝒙∼{±1}𝑛

[
𝑓 (𝒙) = Parity𝑛 (𝒙)

]
≤ 1

2 + 𝑠 · 2−Θ
(
𝑛1/𝑑

)
.

So, if 𝑑 = 𝑂 (1) and 𝑠 = poly(𝑛), then 𝑓 can agree with the parity
function on at most 1

2 + exp(−Θ(𝑛)) fraction of inputs. Since guess-
ing {0, 1} uniformly at random gives correlation 1/2 with the parity
function, this result implies that, with constant-depth circuits, one
cannot do much better than random guessing.

Learning AC0 Circuits. Taking 𝑘 = Θ

(
log𝑑

(
𝑠
𝜖

))
, Equation (2)

implies that
∑

|𝑆 |>𝑘 𝑓 (𝑆)2 ≤ 𝜖 . In other words, all but 𝜖 of 𝑓 ’s
“Fourier weight” lies on its low-degree coefficients. Based on this
observation, [33] suggest a natural learning algorithm for AC0 :
Simply estimate all the low-degree Fourier coefficients {𝑓 (𝑆)} |𝑆 | ≤𝑘
to sufficiently high accuracy, and—writing 𝑓 (𝑆) for the estimate of
𝑓 (𝑆)—output the {±1}-valued function

sign
©­­«
∑︁
|𝑆 | ≤𝑘

𝑓 (𝑆)𝜒𝑆
ª®®¬. (3)

This gives a quasipolynomial time algorithm for learning AC0 cir-
cuits. In fact, it is known that, under a strong enough cryptographic
assumption, quasipolynomial time is required to learn AC0 circuits
even with query access [30].1

4.0.2 Spectral Concentration of QAC0 Circuits. Inspired by the
classical importance of low-degree Fourier concentration, i.e. Equa-
tion (2), one might hope for an analogous notion of low-degree
Pauli concentration in the quantum setting. As we saw earlier in the
introduction via the example𝑈 = 𝑋 ⊗𝑛 , unitaries implemented by
QAC0 circuits do not have Pauli weight that is low-degree concen-
trated. Instead, we turn to analyzing the Pauli spectrum of QAC0

channels.
1Note that the [33] learning algorithm only requires sample access to the function
𝑓 , which is weaker than the class of algorithms with query access considered by
Kharitonov [30].
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The Pauli Decomposition of Channels. We define the Pauli spec-
trum of channel E as that of its Choi representation ΦE :

ΦE =
∑︁
𝑃

Φ̂E (𝑃)𝑃 .

To highlight that the Pauli spectrum of channels generalizes the
classical Fourier spectrum of Boolean functions, note that when
the channel computes a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, the
Pauli spectrum of the Choi representation is closely related to the
Fourier expansion of 𝑓 :

Φ𝑓 =
1
2 𝐼

⊗(𝑛+1) + 1
2

∑︁
𝑆⊆[𝑛]

𝑓 (𝑆)𝑍𝑆 ⊗ 𝑍 . (4)

Here, 𝑍𝑆 denotes
⊗𝑛

𝑖=1 𝑍
1{𝑖∈𝑆 } .

To further motivate our notion of Pauli spectrum, we return to
our example𝑈 = 𝑋 ⊗𝑛 . Consider the channel

E𝑈 (𝜌) = Tr[𝑛−1] (𝑈𝜌𝑈 †)
that applies𝑈 to the input state and traces out all but the last qubit.
As a check, it is readily verified that

Φ𝑈 = 𝐼⊗𝑛−1 ⊗
∑︁

𝑦,𝑦′∈{0,1}
|𝑦⟩⟨𝑦′ | ⊗ 𝑍 |𝑦⟩⟨𝑦′ |𝑍 .

Thus E𝑈 is “low-degree” as originally hoped for.

The Pauli Spectrum of QAC0 Channels. Returning to quantum
circuits, suppose E is implemented by a depth-𝑑 QAC0 circuit acting
on 𝑛 input qubits and 𝑎 auxiliary qubits. Writing 𝑠 for the number
of Toffoli gates acting in the circuit, this work proves a bound on
the Pauli spectrum of ΦE . Namely, for each 𝑘 ∈ [𝑛 + 1], we show
that ∑︁

|𝑃 |>𝑘
|ΦE (𝑃) |2 ≤ 𝑂

(
𝑠22−𝑘

1/𝑑+𝑎
)
. (5)

Note the resemblance between Equation (5) and Equation (2) ob-
tained by [33]. We now describe the proof of Equation (5).

For simplicity, we first describe the case when𝑈 is implemented
by a circuit without any auxiliary qubits, i.e. when 𝑎 = 0. In this
case, the proof proceeds in two steps:

(1) We first establish that if a depth-𝑑 QAC0 circuit does not
have any Toffoli gates of width at least 𝑘1/𝑑 , then it has no
Pauli weight above level 𝑘 ; and

(2) Next, we show that deleting such “wide” Toffoli gates does
not noticeably affect the action of the circuit.

A lengthy, albeit ultimately straightforward, calculation using stan-
dard analytic tools then establishes Equation (5) for the case when
𝑎 = 0. We note that the proof of the first item above relies on a
lightcone-type argument.

For the more general case where the circuit implementing𝑈 has
𝑎 auxiliary qubits, we consider two cases, corresponding to clean
auxiliary qubits (i.e. when the 𝑎 qubits must start in the |0𝑎⟩ state)
and dirty auxiliary qubits (i.e. when there is no guarantee on the
setting of the state of the 𝑎 qubits). With clean auxiliary qubits,
we can view the 𝑎 auxiliary qubits as a part of the input to the
circuit that we enforce to be set to |0𝑎⟩ by postselecting the Choi
representation; this results in the 2𝑎 blow-up in Equation (5). In the
dirty setting, however, we are able to incur no blowup; we defer
discussion of this to the full version of the paper.

New Circuit Lower Bounds. As an immediate consequence of
our spectral concentration bound on QAC0, we obtain correlation
bounds against parity and majority functions. This follows by:

(1) First, relating the classical Fourier expansion of these func-
tions to the Pauli expansion of the Choi representations of
channels implementing those functions (as in Equation (4));
and

(2) Then, showing that they cannot be approximated by QAC0

with a small number of auxiliary qubits thanks to the spectral
concentration as discussed above.

4.0.3 Learning QAC0 Circuits. Our main learning result is an algo-
rithm for learning channels with Pauli weight that is low-degree
concentrated. Combining this with our low-degree concentration
bound for QAC0 channels (Equation (5)) immediately provides
a learning algorithm for QAC0 channels (with limited auxiliary
qubits). Specifically, we show that quantum channels from 𝑛 to 1
qubits that are implemented with aQAC0 circuit and 𝑜 (poly log(𝑛))
auxiliary qubits can be learned2 using quasipolynomial, i.e.

2𝑂 (poly log𝑛) samples.
In comparison, naive tomography would require 2𝑂 (𝑛) samples.

A Quantum Low-Degree Algorithm. Our algorithm is inspired
by—and closely follows the structure of—the classical low-degree
algorithm introduced by [33].

The first step of the learning algorithm is to estimate all low-
degree Pauli coefficients (i.e. all 𝑃 ∈ P𝑛 for |𝑃 | ≤ poly log(𝑛))
to sufficiently high accuracy. We consider two different learning
models:

• Choi state samples: In the first model we are given copies
of the Choi state 𝜌E =

ΦE
Tr(ΦE )

. We apply Classical Shadow
Tomography [27] to learn the Pauli coefficients.

• Measurement queries: In this model, the learner is allowed
to query an input state 𝜌 and observable 𝑂 and is given the
measurement outcome of E(𝜌) with respect to 𝑂 . For this
setting, we perform direct tomography on the quantum chan-
nel E for specially chosen input states 𝜌 and measurement
observables 𝑂 .

While our approaches for both settings achieve similar sample com-
plexity, the latter has the benefit of being more feasible (from an
experimental implementation standpoint) than the former. Further-
more, the first approach can be thought of as analogous to learning
from random labeled examples, and the second can be thought of
as learning from query access to the function.

“Rounding” to CPTP maps. After obtaining estimates Φ̃(𝑃) for
each of the Pauli coefficients Φ̂(𝑃), the final step is to round Φ̃E =∑
𝑃 Φ̃E (𝑃)𝑃 to a Choi representation of a valid quantum channel—

that is, a completely-positive trace-preserving (CPTP) map. Since
the set of all CPTP Choi representations is a convex set, we show
that there exists a projection onto this set that will only reduce
the distance of our learned state to the true Choi representation.
However, it remains open whether there exists an algorithm to
implement an exact rounding procedure in quasipolynomial time.
2By “learning a channel” we mean learning an approximation (in Frobenius distance)
of its Choi representation.
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Table 2: Lower bounds against QAC circuits. Here, “auxbits”
refers to auxiliary qubits.

Hard Function Depth (𝑑) Restrictions Guarantee

[16] Parity𝑛 𝑂 (1) 𝑜 (𝑛) auxbits Worst Case
[39] Parity𝑛 2 None Worst Case
[42] Parity𝑛 2 None Average Case
[42] Parity𝑛 𝑂 (1) 𝑂 (𝑛/𝑑 ) gates Average Case
Theorem 2 Parity𝑛 𝑂 (1) 1

2𝑛
1/𝑑 auxbits Average Case

Theorem 2 Majority𝑛 𝑂 (1) 1
2𝑛

1/𝑑 auxbits Average Case

Note that this final step is analogous to the classical low-degree
algorithm’s use of the sign function, as in Equation (3).

5 RELATEDWORK
Previous work on Pauli analysis. The original proposal for “quan-

tum analysis of Boolean functions" came from [35], who proposed
the study of Pauli decompositions (i.e. “Pauli analysis") of Hermit-
ian unitaries. The key intuition is that these unitaries possess ±1
eigenvalues, which can be interpreted as the outputs of a classical
Boolean function. Recently, [43] extended seminal results from clas-
sical analysis of Boolean functions to this quantum setting. Further-
more, [13] extended these Pauli analysis techniques to the setting
of quantum non-Hermitian unitaries for applications to quantum
junta testing and learning. Unfortunately, however, as illustrated
earlier in this section, the Pauli spectrum of a unitary 𝑈 does not
cleanly connect with the complexity of implementing 𝑈 . In this
work, we instead look to the Pauli decomposition of channels.

Recently, [3] also look to Pauli-analysis of quantum channels
to extend the junta property testing and learning results of [13] to
𝑛-qubit to 𝑛-qubit channels. They employ Pauli-analytic techniques
by proposing Fourier analysis of superoperators in the Kraus repre-
sentation. Notably, their analysis is limited to 𝑛 to 𝑛-qubit channels.
In this work, we also consider Pauli analysis of superoperators.
However, we instead propose the Choi representations of 𝑛-qubit to
ℓ-qubit channels as our key objects of study. As discussed earlier
in the section, this provides a definition of Pauli spectrum that
connects more closely with computational complexity and allows
us to prove spectral concentration, average-case lower bounds, and
learning results for single-output-qubit QAC0 circuits.

Previous work on QAC0 lower bounds. Since Moore’s paper [36]
that originally defined the model, there has only been a smattering
of lower bound results onQAC.We summarize known lower bounds
against QAC0 circuits below and in Table 2. We then compare them
with our lower bound results.

Fang, et al. [16] established the first lower bounds on the QAC0

model; in particular they proved that a depth-𝑑 QAC circuit cleanly
computes the 𝑛-bit parity function with 𝑎 auxiliary qubits, then
𝑑 ≥ 2 log(𝑛/(𝑎+1)). Here, “cleanly” means that the auxiliary qubits
have to start and end in the zero state.

The key to their lower bound proof is a beautiful lemma (Lemma
4.2 of [16]): for all depth-𝑑 QAC circuits, there exists a subset 𝑆 of
(𝑎 + 1)2𝑑/2 input qubits and a state |𝜓𝑆 ⟩ for that subset 𝑆 , such that
no matter what the other input qubits are set to, the output and

auxiliary qubits result in the zero state. This immediately implies
a lower bound for QAC circuits that cleanly compute the parity
function: First, the clean computation property implies that without
loss of generality the subset 𝑆 is supported on non-auxiliary qubits.
Second, if 𝑑 < 2 log(𝑛/(𝑎 + 1)), then there exists a non-auxiliary
input qubit 𝑖 that is not fixed by |𝜓𝑆 ⟩, but the output qubit should
depend on the state of the 𝑖’th qubit – except the output is already
fixed to zero, a contradiction.

This lower bound is nontrivial as long as the number of auxiliary
qubits is sublinear (i.e. 𝑎 = 𝑜 (𝑛)), whereas our lower bound on the
parity function can only handle up to ∼ 𝑛1/𝑑 auxiliary qubits. On
the other hand, the lower bound of [16] appears to be tailored to
the setting where the circuit has to compute parity both exactly
and cleanly. For a circuit that computes parity exactly (i.e. on all
input strings), the clean computation property is without loss of
generality because one can always save the output and then un-
compute. When the circuit only computes parity approximately
(e.g. on 1

2 + 𝜖 fraction of inputs), the clean computation property
becomes an additional assumption.

Furthermore, the technique of [16] does not obviously extend to
obtain average-case lower bounds: although there may be a fixing
|𝜓𝑆 ⟩ of (𝑎 + 1)2𝑑/2 input qubits that force the output qubit to be
zero, such a fixing occurs with probability at most 2−(𝑎+1)2𝑑/2 under
the uniform distribution on the 𝑛 input qubits – note that this is
exponentially small in 𝑎 and doubly-exponentially small in 𝑑 . This
directly implies that a depth-𝑑 QAC circuit with 𝑎 auxiliary qubits
cannot compute more than 1− 2−(𝑎+1)2𝑑/2 fraction of inputs. When
𝑎 = 𝜔 (log𝑛) this fraction is extremely close to 1. By comparison
our average case lower bound shows thatQAC circuits with limited
auxiliary qubits cannot compute parity on more than 1

2 + 2
−Ω (𝑛1/𝑑 )

fraction of inputs.
We note3 that the techniques of [16] also yield a lower bound

on cleanly computing the majority function, as fixing a sublinear
number of input bits is not enough to fix the majority function.
However, for the same reasons as mentioned in the previous para-
graph, it is unclear whether this argument can be extended to prove
an average-case lower bound.

Later, Padé et al. [39] proved that no depth-2 quantum circuit
(with any number of auxiliary qubits) can cleanly compute parity in
the worst case. They prove this by carefully analyzing the structure
of states that can be computed by depth-2 QAC circuits. Similarly
it is unclear whether these techniques can be extended to the non-
clean or approximate computation setting.

Rosenthal [42] proved that any average-case lower bound on
QAC circuits (approximately) computing parity must use a bound
on the number of auxiliary qubits; once there are exponentially
many auxiliary qubits, then there is a depth-7 QAC circuit ap-
proximately computing parity. Furthermore, Rosenthal proved the
following average-case lower bounds:

(1) A depth-𝑑 QAC circuit needs at least Ω(𝑛/𝑑) multiqubit Tof-
foli gates in order to achieve a 1

2 + exp(−𝑜 (𝑛/𝑑)) approxima-
tion of parity, regardless of the number of auxiliary qubits.

(2) Depth-2 QAC circuits, with any number of auxiliary qubits,
cannot achieve 1

2 +exp(−𝑜 (𝑛)) approximation of parity, even
3We thank an anonymous reviewer for pointing this out to us.
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non-cleanly. This proves an average-case version of the lower
bound of [39].

(3) A particular restricted subclass of QAC circuits (of which
his depth-7 construction is an example) requires exponential
size to compute parity, even approximately.

These are the first average-case lower bound results for QAC that
we are aware of; however, they apply to restricted classes of QAC
circuits and notably do not take into account the number of auxil-
iary qubits. As mentioned earlier, any general (average-case) lower
bound on QAC circuits computing parity (for depths 7 and greater)
must depend on the number of auxiliary qubits.

More recently, Slote [45] initiated the study of the closely related
circuit class that is QNC0 circuits followed by AC0 post-processing,
denoted AC0◦QNC0. Slote conjectures that polynomial-sized AC0◦
QNC0 can not approximate parity, and shows that this is indeed
the case when either the QNC0 circuit has no auxiliary qubits,
or when the AC0 circuit has linear size. Perhaps surprisingly, the
explicit connection between AC0 ◦ QNC0 and QAC0 is unclear:
while QAC0 circuits can certainly implement QNC0 circuits, it
is unknown whether they can implement AC0 — it is, as far as
we know, possible that QAC0 is incomparable with both AC0 and
AC0 ◦QNC0. Nevertheless, for both QAC0 and AC0 ◦QNC0, many
existing techniques (the lightcone argument) fail for similar reasons.
Slote’s approach utilizes Fourier analysis of Boolean functions and
draws connections to nonlocal games.

Related work on quantum learning. Efficient learning of quantum
dynamics is a long-standing challenge in the field. Techniques
such as quantum process tomography [34], which aim to fully
characterize arbitrary quantum channels, require exponentially
many data samples to guarantee a small error in the learned channel,
for all possible channels.

Oneway of achieving sample-efficient quantum channel learning
algorithms is performing full tomography on specific classes of
quantum channels. By focusing on a specific class, rather than
all possible quantum channels, there often exists nice structure
which can be leveraged to reduce the number of data samples
required to fully characterize channels in the class. For example, [3]
showed that 𝑛-qubit to 𝑛-qubit quantum 𝑘-junta channels (acting
non-trivially on at most 𝑘 out of 𝑛 qubits) can be learned to error
𝜖 , with high probability, via 𝑂 (4𝑘/𝜖2) samples. In our learning
result, we focus on quantum channels with an arbitrary number
of output qubits, and with “low-degree" Choi representations4. We
show that a 𝑘-degree channel, involving𝑚 = 𝑛 + ℓ total input and
output qubits, can be learned to error 𝜖 , with high probability, via
𝑂 ((3𝑚)𝑘/(4ℓ𝜖)) samples. Our result is incomparable to [3] since
an 𝑛-qubit to 𝑛-qubit 𝑘-junta channel does not satisfy our notion
of low-degree concentration. To our knowledge, this is the first
work to analyze and offer a learning algorithm specific to channels
with low-degree Choi representations. Furthermore, through our
concentration result, we establish that QAC0 circuits mapping to a
single-qubit output (ℓ = 1) lie in this circuit class, resulting in the
first quasipolynomial learning algorithm for single-qubit-output
QAC0.
4We formally define the notion of a “low-degree" Choi representation in the full version
of the paper.

An alternative approach for achieving sample-efficient learning
algorithms is performing partial tomography on arbitrary quan-
tum channels. For example, rather than full process tomography
of a channel E, [26] consider the task of learning the function
𝑓 (𝑂𝑖 , 𝜌) = Tr(𝑂𝑖E(𝜌)) for a class of 𝑀 observables {𝑂𝑖 }𝑀𝑖=1 and
input state 𝜌 . For an arbitrary quantum channel E and bounded-
degree observables of spectral norm ∥𝑂𝑖 ∥ ≤ 1, they prove that
2𝑂 (log(1/𝜖 ) log(𝑛) ) samples are sufficient to learn the function for
all observables to error 𝜖 with high probability. At a high level, our
result and that of [26] both establish and leverage Fourier concen-
tration (i.e. low-degree approximation) to obtain efficient learning
algorithms for quantum channels. However, our results operate in
different settings. Namely, our work learns a low-degree approxi-
mation of the channel’s Choi representation, whereas theirs learns
low-degree approximations of the channel’s Heisenberg-evolved ob-
servables 𝑂∗

𝑖
= E† (𝑂𝑖 ), where 𝑓 (𝑂𝑖 , 𝜌) = Tr(𝑂∗

𝑖
𝜌). [26] show that

under a locally-flat input distribution, the Heisenberg-evolved ob-
servables of general channels are well approximated by low-degree
observables. While this enables efficient learning of any quantum
channel, restriction to locally-flat input distributions implies that,
for quantum channels encoding classical Boolean functions, mea-
surement expectations will be biased towards inputs which are
not in the computational basis and, thus, uninformative. Our work
instead obtains a sample-efficient learning result for the specific
class of Choi representations of single-output-qubit QAC0 circuits,
with average-case guarantees according to the uniform distribution
over computational basis states. To obtain this result, we prove
low-degree concentration of QAC0 Choi representations. This con-
centration result can further be shown to imply concentration of
the channel’s Heisenberg-evolved observables and, thus, could po-
tentially be leveraged by the [26] procedure to offer a learning
guarantee for single-qubit-output QAC0 channels without restric-
tion to locally-flat input distributions. It is an interesting direction
of future research to formally relate the two works.

Finally, sample-efficient quantum channel learning algorithms
can also be achieved by leveraging quantum-enhanced experiments.
[12] proved exponential separations between learning algorithms
with external quantum memory and those without. Building upon
this, [9] recently demonstrated that full characterization of an un-
known quantum channel’s Pauli transfer matrix requires exponen-
tially many channel queries in the case of classical processing and
memories, but only polynomial samples in the case of quantum
processing and memory. In this work, however, we do not con-
sider quantum-enhanced experiments. Instead, we demonstrate
that there exists a non-quantum-enhanced quasipolynomial learn-
ing algorithm for approximate characterization of the full Choi
representation of single-output QAC0 channels.

6 DISCUSSION
We believe that much remains to be discovered about the analytic
properties of QAC0 circuits. We list some natural concrete (and
not-so-concrete) questions for future work below:

Improved Spectral Concentration? Arguably the most natural
open question is to improve the dependence on the number of
auxiliary qubits in Theorem 1 so as to get a lower bound against
QAC0 circuits with polynomially many auxiliary qubits. In fact, we
conjecture the following improved spectral bound:
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Conjecture 1 (Spectral concentration for QAC0). Suppose E is an
𝑛 to 1-qubit quantum channel that is implemented by a depth-𝑑
QAC0 circuit on 𝑛 input qubits and poly(𝑛) auxiliary qubits with 𝑠
Toffoli gates. Then for all 𝑘 ∈ [𝑛 + 1], we have∑︁

𝑃∈P𝑛+1: |𝑃 |>𝑘

���Φ̂E (𝑃)
���2 ≤ poly(𝑠) · 2−Ω

(
𝑘1/𝑑

)
In particular, we expect no dependence on the number of aux-

iliary qubits in our spectral bound. Note that Conjecture 1 would
immediately imply an average-case lower bound for parity as well
as a lower bound for majority against QAC0 circuits with polyno-
mially many auxiliary qubits, and extend the guarantees of our
learning algorithm to this broader class of circuits. This would also
match the classical bound on the Fourier spectrum of AC0 circuits
obtained by [33].

Improved Learning Algorithms? Another natural direction is to
improve the runtime of our learning algorithm (see Theorem 3):
while we obtain quasipolynomial sample complexity, we do not pro-
vide an explicit algorithm for the final Choi representation rounding
step. We conjecture that there exists a quasipolynomial time algo-
rithm implementing an exact rounding procedure, which would
also achieve a quasipolynomial runtime for the procedure. Recall
that the runtime of the [33] learning algorithm is (under a strong
enough cryptographic assumption) known to be optimal [30].

Connections to State Synthesis Problems? Recent work of Rosen-
thal [42] relates the problem of computing parity to various state
synthesis problems. Could analytic methods as employed in this
paper be used to prove state (or unitary) synthesis lower bounds?

Connections to Pseudorandomness? Classically, circuit lower bounds
have led to unconditional constructions of pseudorandom genera-
tors [37]. One could ambitiously hope for unconditional construc-
tions of pseudorandom states against classes of shallow quantum
circuits via circuit lower bounds.

An Emerging Analogy? This work adds to an emerging anal-
ogy between Fourier analysis in the classical setting of Boolean
functions and “Pauli analysis” in the quantum setting of unitary
operators or more generally quantum channels [3, 13, 35, 43, 50].
Given the tremendous success of Fourier analysis in classical com-
plexity theory, we suspect that much remains to be discovered
about the Pauli spectrum of quantum operations.
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