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Abstract

This study proposes and demonstrates how computer-aided methods can be
used to extend qualitative data analysis by quantifying qualitative data, and
then through exploration, categorization, grouping, and validation. Computer-
aided approaches to inquiry have gained important ground in educational
research, mostly through data analytics and large data set processing. We
argue that qualitative data analysis methods can also be supported and
extended by computer-aided methods. In particular, we posit that computing
capacities rationally applied can expand the innate human ability to recognize
patterns and group qualitative information based on similarities. We propose a
principled approach to using machine learning in qualitative education
research based on the three interrelated elements of the assessment triangle:
cognition, observation, and interpretation. Through the lens of the assessment
triangle, the study presents three examples of qualitative studies in
engineering education that have used computer-aided methods for visualiza-
tion and grouping. The first study focuses on characterizing students’ written
explanations of programming code, using tile plots and hierarchical clustering
with binary distances to identify the different approaches that students used to
self-explain. The second study looks into students’ modeling and simulation
process and elicits the types of knowledge that they used in each step through
a think-aloud protocol. For this purpose, we used a bubble plot and a k-means
clustering algorithm. The third and final study explores engineering faculty's
conceptions of teaching, using data from semi-structured interviews. We
grouped these conceptions based on coding similarities, using Jaccard's
similarity coefficient, and visualized them using a treemap. We conclude this
manuscript by discussing some implications for engineering education

qualitative research.
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1 | INTRODUCTION

New inquiry fields in education have called for the
creation or extension of formal models and methodolo-
gies for education research and evaluation. Computer-
aided methods present a significant potential to supple-
ment, extend, or strengthen traditional methods of
education research [13, 18, 36]. Over the last two
decades, computation has become an increasingly
important tool in scientific inquiry and engineering
innovation. Some have denominated computational
science as the third pillar of science along with the
theoretical and experimental approaches [43]. Compu-
tation allows researchers to process large amounts of
data, create visual representations of phenomena, and
represent complex phenomena in the form of models
and simulations [33, 42].

With the large amount of data that we collect today
and the complex problems that we need to solve in a
globalized world, many disciplines have seen the
emergence of subdisciplines with the adjective “compu-
tational” in front of them. Computational biology (or
Bioinformatics), Computational Materials Science, and
Computational Social Sciences are some examples of
these new disciplines [20, 33]. Engineering education
and the field of educational research have also been part
of this trend. An example of this phenomenon in
education is the emergence of specialized academic
conferences and journals in learning analytics, computer
applications, and educational data mining [38].

The use of computation in educational research,
however, is not limited to learning analytics or educa-
tional data mining [26]. The increasingly large comput-
ing capacity and the development of computational
techniques such as automatic classification methods,
natural language processing, and pattern recognition
techniques offer new approaches to analyzing the data
that have been traditionally collected by educational
researchers (e.g., performance, perceptions, transcripts)
[1]. However, an important consideration to implement
novel research approaches is that these need to be
scientifically based. In particular, (a) selecting appropri-
ate and effective methods for addressing research
questions and (b) providing a clear explanation of
procedures and valid conclusions that confirm scientific
inferences via explicit chains of reasoning are two
important elements when it comes to methodological
considerations [23]. This paper proposes a rationale and
guidelines to use computer-aided methods in qualitative
research and provides three examples of studies where
different approaches of visualization and clustering have
been used for analyzing qualitative data in engineering
education research. This paper contributes to the body of

knowledge of computer-aided qualitative research meth-
ods by proposing a conceptual framework that may guide
researchers in selecting, using, and interpreting the
outcomes of a principle-based method for a specific data
set and purpose. The manuscript demonstrates different
affordances of these methods to support qualitative data
analysis using three case studies.

2 | BACKGROUND

In 2017, 2019, and 2020, two of the authors of this paper
prepared and taught special sessions related to the use of
pattern recognition techniques to analyze educational
data at engineering education conferences [35, 37]. The
sessions were designed to help educational researchers
familiarize themselves with emergent computer-aided
methods that could provide different affordances to
analyze educational data. Specifically, we suggested that
the pattern recognition process and machine learning
methods could support educational research through
four main approaches: exploration (visualization), classi-
fication, grouping, and validation.

A common qualitative data analysis process starts
from raw data such as text (e.g., transcripts or written
documents), images (e.g., drawings), or audio and video
recordings (e.g., interviews, focus groups). The researcher
will often assign categories or codes that will help them to
start characterizing the phenomenon. This leads to a high-
dimensional data set where each item in the data set has
several categories assigned to it, and it is often difficult to
interpret. The next step is to find themes from this high-
dimensional data set to describe and characterize how
participants experience/describe/conduct a given phe-
nomenon. This process often groups participants within
these themes and the resulting groups must be validated
and characterized.

In parallel, a pattern recognition process starts from
raw data in the form of pictures, text, audio, or video. For
example, a picture is represented as a high-dimensional
data point where each pixel is represented by three
colors: red, green, and blue. In order to recognize
patterns (e.g., the difference between a face and the rest
of the body), a set of feature vectors (i.e., vectors with
relevant information for the task) are identified to find
groups in the data set. These groups are later validated
and characterized with additional data or with experts
analyzing the results in comparison with the original
data set. Clustering algorithms that generate these groups
are part of the family of unsupervised machine learning
algorithms. Figure 1 illustrates the commonalities and
complementarity of the data analysis and the pattern
recognition processes.
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FIGURE 1 A parallel between a pattern recognition process and a qualitative data analysis process.
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FIGURE 2 Affordances of using pattern recognition techniques to analyze quantified qualitative data.

The key to success in this collaboration between
the pattern recognition process and the qualitative
data analysis process lies in transforming attributes or
relations within the data set into numbers. There are
different ways in which one can transform qualitative
data into numbers, and this choice will have an effect
on the methods that one will be able to use. Figure 2
highlights key questions that need to be addressed to
decide what visualization technique or clustering
algorithm can be used for a given purpose. For
instance, one can count the number of times that a
given category is present in a transcript using content
analysis and would end with positive integers. This
would require a specific type of visualization that
enables the researcher to compare the number of
occurrences for a given category (e.g., a bar plot or
bubble plot [5]). Alternatively, one can analyze
whether a category is present (1) or not (0), which
will make the variable binary. In this case, rather than

comparing magnitudes, the researcher may prefer to
use a visualization that shows what categories emerge
for each participant and what pattern may emerge
with these categories among participants. Likewise,
natural language processing techniques use different
approaches to turn text into numbers (e.g., the bag of
words counts the number of times each word appears
in a document, while the term frequency-inverse
document frequency compares among documents).

The meaning and the format of the resulting number
will have an implication on the methods that one can use
for exploration (i.e., what approach to visualization
would be most meaningful for exploration), for categori-
zation (e.g., whether we want to understand the most
popular word in a set of tweets or we want to understand
the quality of an argument in students' reflection), for
grouping (i.e., different clustering methods use different
metrics of distance), and for validation (e.g., the under-
lying assumptions for a permutation test).
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2.1 | Conceptual framework

The conceptual framework for our study is the
assessment triangle [11]. The assessment triangle
has traditionally been used in education to design
valid assessments [21], such as the design of concept
inventories [31]. However, the assessment triangle
has also been used as a conceptual framework for
guiding investigations [17].

A recent systematic literature review investigating
how machine learning has been used to supplement
science assessment identified existing research gaps in
considering or making such alignment explicit [44]. For
this study, as Magana and Boutin [18] proposed, the
assessment triangle is used as a framework to follow a
principle-based method for integrating computer-aided
methods into qualitative research methods. By adopting a
principle-based method facilitated by the assessment
triangle, investigators can make explicit connections
between their study's theoretical or pedagogical founda-
tions with the construct being measured and the
observations and interpretations of their findings under
their selected theoretical lens.

The assessment triangle consists of an approach
where three constructs need to be explicitly aligned in
the process of creating assessments or, similar to this
case, the process of analyzing and interpreting educa-
tional data. The triangle comprises three corners:
cognition, observation, and interpretation [25]. Specifi-
cally, the cognition corner suggests making explicit the
theoretical foundations of the phenomenon being mea-
sured or characterized. This involves aligning a theory or
conceptual framework that describes or hypothesizes
how learners develop knowledge or behaviors conducive
to learning or other desired outcomes. For instance,
when applying the assessment triangle to inquiries not
related to learning, the cognition corner can also include
theories supporting people's conceptualizations or per-
ceptions of educational issues. Once constructs are
grounded in the proper learning theory or a theoretical
or conceptual framework, the next step involves identi-
fying the type of overt activities or artifacts that
constitute evidence of the learning, performance, behav-
ior, or conceptualization, leading us to the observation
corner. The observation corner allows us to operationa-
lize or characterize performances, behaviors, conceptual-
izations, or evidence of learning. The chosen mechanism
of evidence should be aligned with the cognition corner.
This step also involves the identification of the collection
and interpretation of the data. The data can take any
form, including text, video, or interview transcripts. Once
the data have been collected in the corresponding format,
the next step is to characterize that evidence in terms of

the construct being investigated, thus transitioning to the
interpretation corner. The interpretation corner deals
with how results derived from the observation corner are
analyzed, validated, and interpreted.

The following sections will present three studies
previously conducted by the authors that used
visualization and clustering methods to analyze
qualitative data in engineering education research.
In all these three studies, visualization and clustering
techniques contributed to providing insights and
managing high-dimensional data sets derived from
an initial manual qualitative coding process. The first
study explored the characteristics of students’ written
explanations of programming worked-examples, and
used binary numbers to represent whether a category
was present (1) or not (0) for a given explanation.
Thus, this study used a tile plot and hierarchical
clustering with binary distances [32] for visualization
and grouping purposes. The second study used
content analysis [14] to explore how students used
different types of knowledge during a think-aloud
protocol where they were completing a computational
modeling task. As content analysis usually counts the
number of instances that each category appears, this
study used the bubble plot [5] and the k-means
clustering method [12] for exploration and grouping.
These two studies used the R programming language
to create visualizations, preprocess the data (e.g.,
turning categories into binary numbers), and imple-
ment the clustering algorithms. The third study aimed
at grouping engineering faculty into clusters based on
their conceptions of teaching (CoT). CoT were
determined from the transcripts of semi-structured
interviews focused mainly on participants' views of
multiple dimensions including the role of the teacher,
the role of the student, the purpose of assessment, and
the nature of knowledge. In this case, the research
team used the software Nvivo® to form clusters based
on coding similarities by computing Jaccard's similar-
ity coefficient [22] and to create hierarchy tables to
determine the major commonalities across partici-
pants clustered together. Examples of automatic
categorization and validation are beyond the scope
of this manuscript, but can be found in [4, 10, 36]. For
instance, Gillies and colleagues [10] suggest that
natural language processing techniques such as topic
modeling may support qualitative data analysis by
providing early categories that researchers may inter-
pret and refine, while initial qualitative data analysis
may improve topic modeling outcomes. This paper
focuses on demonstrating how computer-aided visu-
alization and grouping (i.e., clustering) may support
qualitative data analyses in educational research.
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2.2 | Study one: Analyzing
students’ written explanations of
programming worked-examples

This study took place in the context of a Computation
and Programming for Materials Science and Engineering
course. In this course, first-year undergraduate students
learned computation and programming skills situated in
the context of their engineering discipline. Twenty-four
students in this course participated in this study. The
goal of this first study was to understand what
approaches undergraduate students used to self-explain
a set of computational modeling worked examples in the
context of a computational science course [40, 41]. This
represents the cognition corner, where we looked for
instances of declarative, procedural, schematic, and
strategic knowledge, adapting Shavelson and colleagues'
[29] types of knowledge framework for assessing learn-
ing. The worked examples included a problem statement
and a step-by-step solution [2], including the program-
ming code in MATLAB®. We collected data asking
students to write in-code comments to self-explain how
the code was solving the problem, the observation corner.
The first four self-explaining activities of the semester
were graded, while nine additional activities were
proposed for extra credit. In total, 24 undergraduate
students enrolled in this course and completed the self-
explaining activities analyzed in this study.

We hypothesized that students’ explanations would
include different components for different parts of the
code. For instance, when the code defines a function,
this function has a goal and it often includes one or
more input parameters and one or more outputs.
Conversely, when the program defines a loop state-
ment, it includes a condition that has to be met in order

to continue executing the code inside. Hence, we
hypothesized that students would discuss issues like
the input parameters and outputs in the part of the code
where a function is defined, and the stopping condition
of a loop statement. To account for this, we analyzed
each section of the worked example separately from
each other and assigned categories to the explanations
of each section. For instance, if the explanation
describes the consequences of executing a section, we
would assign the code Consequences of Actions (COA).
Likewise, if it describes the parameters of a function,
we would assign the code Parameters (PAR). The full
coding scheme can be accessed at [41].

An example of the resulting data set is presented in
Figure 3, where each row represents a student and each
column represents a section. These data are difficult to
understand in this format, so we created a binary table as
shown in Figure 4 for each column from Figure 3 (i.e.,
each section). Figure 4 only shows Section 1 as an
example of how we processed this information. We then
created a visualization for each section using a tile plot
(Figure 5). Figure 5 depicts a “Creating a Function”
section and an “Iterating” section (i.e., Sections 1 and 3),
which show that students are actually writing different
types of explanations for different types of sections. This
also shows that some types of explanations are common
to some sections, but different students used different
approaches to self-explain. We used R programming
language for transforming and visualizing the data.

The next step was to group students based on their
different approaches to self-explaining. We used a
hierarchical clustering method with binary distance
[32] to identify students who used similar approaches
and group them. The binary distance compares where
two students coincide and represents that with a one

Section 1 - Creating the \
function bondmat = atomicbonds (pos, cutoff)

~tion 2 - Setting up Problem Parameters

Std

Section 1

Section 2

Section 3
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for m = n+1:N

tion 5 - Setting up Problem Parameters

dist = pos(m,:)=-pos(n,:);
len = norm(dist);
% Section 6 - Validation
if len < cutoff
bondmat (n,m)=len;
end
“tion 7 - End of the Function
end
end
end

FIGURE 3 Dividing the code by section to assign categories.
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FIGURE 4 From categorization of sections to binary tables.
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FIGURE 5 Visualization patterns from binary tables.

(1) or a zero (0), where no coincidence is found. In this
case, a coincidence was found where two students had
similar categories assigned for their written self-
explanations. We used these groups to re-create the
tile plot, reorganizing students and using colors to
identify them, as depicted in Figure 6. We used the R
package ggplot2 to create these tile plots and the hclust
function to compute the clusters.

Of course, all students in a group did not write exactly
the same explanation, but this approach helped us manage
the high dimensionality in the data set (i.e., number of
categories multiplied by number of sections) and find

(¢) Section 3 - Rerating

HN
I-*-I
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1oy
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clear patterns in the data. The next step in the process was
to identify whether these groups are meaningful, going
back to the data and to existing literature to characterize
students’ approaches to self-explaining. Our interpretation
corner includes (1) assigning categories to students' self-
explanations in a binary form; (2) creating tile plots to
visualize the characteristics of students' explanations;
(3) using hierarchical clustering with binary distance to
group students; and (4) connecting back to literature and
theories of self-explanations to make sense of the findings.
This last step of the process is discussed in detail in
Vieira et al. [41].
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2.3 | Study two: Understanding the use
of different types of knowledge in a
computational modeling task

This study took place in the same context of the first
study, a Computation and Programming for Materials
Science and Engineering course for first-year under-
graduate students. This study focused on understanding
how undergraduate students developed a computational
modeling activity while engaging in a retrospective
think-aloud protocol [34] (observation corner). Specifi-
cally, we aimed at characterizing the computational
cognitive and metacognitive knowledge that they used in
the context of modeling and simulation practices. This
represents our cognition corner for our conceptual
framework. This study used an adapted version of the
modeling and simulation process described by Shiflet
and Shiflet [30] to identify instances of different types of
knowledge in each step of students’ problem-solving
process, namely, (1) analyze the problem; (2) solve the
model; (3) verify the solution; and (4) interpret, report,
and maintain the solution. We also used Shavelson and
colleagues’ [29] types of knowledge framework to
characterize (1) declarative knowledge—knowing that;
(2) procedural knowledge—knowing how; (3) schematic
knowledge—knowing why; and (4) strategic knowledge
—knowing when, where, and under what conditions.
Hence, when analyzing the think-aloud transcript for
each student, we identified what stage of the modeling
and simulation process students were working on, what
type of knowledge they were using, and how many times
(i.e., content analysis). In total, 11 students who were
enrolled in this course in one of two different semesters
participated in this study. Given that the methods
consisted of a one-on-one think-aloud protocol, each
lasting 1 h, 11 students were selected to participate in the
study. The retrospective think-aloud protocol took place
towards the end of the semester, once students had

(a) Section 1 - Creating the Function
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FIGURE 6 Visualization of clusters.

submitted the fourth (i.e., out of five) computational
modeling challenge. As commonly practiced in qualita-
tive studies, the small sample was deemed adequate for
this study. The participating students were purposefully
selected to maximize variability based on their earlier
performances in the course. Five participants were
female and six participants were male.

Figure 7 shows a sample data set for four of the
students who participated in this study. Each table shows
the number of instances they used each type of
knowledge at each step of the modeling and simulation
process. While some ideas may be drawn from this data
set, it is difficult to understand and compare among
students, steps, and types of knowledge. Instead, Figure 8
shows a bubble plot [5], where students correspond to
the y-axis, the steps of the modeling and simulation
process are crossed with the types of knowledge in the
x-axis, and the size of each dot (i.e., bubbles) corresponds
to the number of instances. This visualization shows
much clearer patterns; for instance, students did not
discuss much in the Maintain step, most of them did not
use strategic knowledge in the Analyze step, and many
did not use schematic knowledge in the Solve step.

This visualization also shows that not all students
used the same types of knowledge during the modeling
and simulation activity. Thus, the next step was to
identify similar approaches to create groups (Figure 9).
In this case, since our numbers are integers, we used the
clustering algorithm k-means, which uses a Euclidean
distance to compute the distance between a set of
centroids [12]. These sets of centroids are generated at
random at the beginning and iteratively refined based on
how far/close all points are (i.e., updating the centroids
to be located on the average location of the data points
assigned to each centroid). Our interpretation corner for
this study involved (1) using content analysis to analyze
think-aloud data; (2) using bubble plots to visualize it
and gain insights; (3) using k-means to group students

(c) Section 3 - lterating
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2014 2015
Student 1 (Milan_L) (Student 1, Logan_L)

Analyze Sole Verify Maintain Analyze |Sole Verify Maintain
Declarativ 7 0 1 0 Declarativg 10 7 2 0
Procedura 1 5 1 0 Procedural 0 13 0 1
Sche matic 1 1 1 0 Schemaic 0 0 1 0
Strategic 1 4 1 0 Strategic 1 6 1 3

Student 2 (Lennon_L) (Student 2, Armani_H)

Analyze Sole Verify Maintain Analyze [Sole Verify Maintain
De clarativi 9 3 2 1 Declarat ivg 3 2 < 0
Procedura 1 8 2 0 Procedura! 2 10 2 3
Schematic 2 (] 0 1 Schemaic 2 0 2 1
Strategic 4 6 5 2 Strategic 2 6 4 1

FIGURE 7 Counts per student from the content analysis.
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FIGURE 8 Bubble plot depicting counts per student (rows) from the content analysis.
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FIGURE 9 Clustered students using k-means.
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based on the types of knowledge that they used; and (4)
connecting back to the literature in the use of cognitive
and metacognitive knowledge for modeling and simula-
tion in engineering. In this case, however, we used this
process to validate the already conducted qualitative data
analysis, where clusters were created manually, and
yielded an accuracy rate greater than 95% [19]. As in
study one, we used ggplot2 from R programming
language to create the visualizations and, in this case,
we used the kmeans function to identify the clusters in
the data set.

2.4 | Study three: Exploring conceptions
of teaching among Colombian engineering
faculty

As a part of a larger study, the transcripts of semi-
structured interviews with 20 Colombian engineering
faculty were coded to identify variations along differ-
ent dimensions of their conception of teaching [24].
The participants came from two medium-sized and
one large institution in Colombia, both private and

Dimensions of conceptions of teaching
Purpose of assessment

Fair.assessment, fair.grades...  Provide feedba..  Determine the ac...

AUthenticassess..

Exams and grades donotre.. | o dents: questi...

Assignigrades; sex.

Role of the teacher.

Motivate and challe... 'Curate content

Lectures, but enha...

EXplanithecontents,
7 Facilitate that st...

Gol|aborate with|con

Gulelz, congul..

Promotelearning ox | NOoEIm

Promoie i,

public, with varying degrees of research activity. They
voluntarily enrolled in the study after participating in
faculty development workshops offered at the three
institutions.

The cognition corner of the study is supported by a
few theoretical frameworks that describe the multiple
dimensions across which instructors make sense of their
teaching duty [27, 28]. Drawing from these frameworks,
the dimensions of teaching in this study included the role
of the teacher, the role of the students, the purpose of
assessment, the expected outcome (of teaching), and the
teaching-research nexus as viewed and expressed by
each participant. Transcripts of the semi-structured
interviews mentioned before and summary narratives
crafted by a researcher and validated by participants
constitute the cognition corner. Inductive thematic
analysis of the transcripts [7] yielded multiple codes
within each dimension and provided initial support for
the interpretation corner. However, thematic analysis
across multiple dimensions proved insufficient to readily
identify conceptions of teaching shared by participants as
determined by similarities and differences across the
high-dimensional data. To strengthen the interpretation,

Teaching-research nexus Role of the students

UricI B Reseal. | [Gomp.: Peruse class mat...

Scarcest. Educ. | Ed,

y Indepen..
Nexusisior.. P

Ulscjpli..

Jicon]dnote: H2zceo,,,

.

Provii BEBLENTW

Expected outcome Nature of knowledge

llong-termirete. P OS5 | Co-construc...

iransferables.,
FOSIETITOIESSM
Cugukiiya ...

FIGURE 10 Dendrogram of clustering results based on faculty's conceptions of teaching.
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the portion of the study described in this paper aimed at
identifying groups of participants sharing similar views
and potentially similar conceptions of teaching in a way
more systematic and efficient than manually processing
thematic analysis results. Twelve out of the 20 transcripts
were selected due to their richness and variability. The
software Nvivo® was used to cluster the transcripts on the
basis of coding similarities using Jaccard's similarity
coefficient [22].

When applied to coding, Jaccard's coefficient returns
the number of instances when two participants A and B
are assigned the same code, divided by the total number
of instances when either or both are assigned any code.
Calculated this way, the similarity coefficient ranges
between 0 (no similarity) and 1 (complete similarity).
Nvivo® calculates Jaccard's coefficient for every possible
pair of participants in the sample. The resulting
similarity coefficients for this study ranged from 0.15 to
0.44, with a median of 0.28. Nvivo® uses these coefficients
as distances to apply the complete-linkage (farthest
neighbor) clustering algorithm [9]. The output of the
complete linkage algorithm can be represented as a
dendrogram. In this example, as presented in Figure 10,
clustering yielded four distinct clusters (A, B, C, and D)
at the third level. To improve the consistency of the
clustering, cluster D was split at the fourth level due to its
heterogeneity. This yielded a total of five clusters:
two comprising three participants (Clusters 1 and 2),
two comprising four participants (Clusters 4 and 5), and
one comprising six participants (Cluster 3).

To further characterize the clusters and identify
the commonalities across the participants clustered
together, we used treemaps [16] (called hierarchy
charts in Nvivo®) and commonality tables. Hierarchy
charts like the one in Figure 11 allow visual identifica-
tion of the codes common to participants within a
cluster. Darker areas in the chart represent a higher
number of participants sharing a code and larger areas
represent a higher number of passages coded, even
within the same transcript. For instance, in the
dimension of “Purpose of Assessment,” there are
multiple codes shared by all participants in this cluster,
like their views on fair assessment, feedback as the
main purpose of assessment, and the limitation of
exams and grades in capturing student learning. In
contrast, in the “Teaching-Research Nexus,” there is
less agreement in how participants in this cluster
discussed this dimension, as indicated by the lighter
colors of the codes within this category.

The information in the chart can be summarized
in a commonality table. Commonality tables, like
Table 1, list the codes assigned to the highest number
of participants within each category or codes assigned

Felipe[1]
4E|: Adrianal[1]

Diego[1]
—: Daniel[3]
Isabel[3]
B — Ana[3]
Diana(3]
_: Antonio[3]
Mario[3]
_ _‘: Gloria[5]
c Juliana[5]
_': Jorge[5]
Roberto[5]
1_ Cristina[2]

1 Gabriel[2]

Miguel[2]
Camilo[4]

Enrique[4]

Lucas[4]

FIGURE 11 Hierarchy chart of participants in Cluster 1.

to a majority of participants including how many
references. Codes in the table are sorted first in
descending order of the number of participants coded
with the same code and then in descending order of
the total number of references. Numbers in parenthe-
ses in front of a code indicate the number of
participants who referred to that code, if less than
the number of participants in the cluster. This
way, clusters can be formed, and the common
characteristics highlighted for further analysis and
interpretation.

2.5 | Discussion and implications
This paper proposed a rationale and guidelines to use
computer-aided methods for data processing, analysis,
and visualizations for complementing and supporting
qualitative education research. Furthermore, it exempli-
fied this approach in the context of three different studies
in engineering education ranging from student learning
to faculty development. The emergence of powerful
computational technologies and methods has turned
computation into an important tool for inquiry. In
education, computational tools and methods have been
mostly used for collecting students’ interactions with
tools and resources (i.e., learning analytics), for proces-
sing large data sets with artificial intelligence algo-
rithms [3], and for intelligent tutoring systems that
provide personalized experiences and feedback [15].

We argue, however, that these methods can be
equally useful with smaller data sets, including tran-
scripts from a small number of interviews or any other
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TABLE 1 Commonalities of Cluster 1 (three participants).

Quantity
Role of the teacher

Role of the student

Nature of knowledge

Purpose of assessment

Expected outcome

Teaching-research nexus

qualitative data set, as the richness of qualitative data is
often complex but difficult to report by using traditional
descriptions. Learning analytics, for example, does not
necessarily require large data sets because it essentially
means collecting data on the interaction of the user/
student with an educational tool. For example, Vieira
et al. [39] collected students' interaction with an
educational CAD tool to characterize students’ engineer-
ing design process by analyzing their decisions and
actions on building an energy-efficient house. These text
files were relatively small (i.e., kilobytes) but provided
rich information about students’ processes. On the other
hand, some machine learning methods, especially
classifiers, typically require large data sets for data
training and prediction. It is possible that given this
general belief that computer-aided methods require large
data sets, qualitative researchers may choose not to use
computer-aided methods for education data sets. None-
theless, they can be at least as good as human judgment
for grouping small but highly dimensional qualitative
data sets as we described in the studies about the types of
knowledge that students used during a modeling and
simulation process and the multiple dimensions that
shape faculty's conceptions of teaching.

The main contribution of this study relates to the
integration of guidelines from the assessment triangle to
make explicit how theory, methods, and findings align
with each other when using computer-aided methods in

Conversion from Gaussian and CGS EMU to SI*

Curate content

Motivate and engage students

Facilitate students to learn at their own pace
Lectures, but enhanced

Peruse class materials beforehand outside the class
Independently browse multiple sources for content

Co-constructed with the teacher

Fair assessment, fair grades

Provide feedback to the students

Determine the achievement of learning objectives
Exams do not reflect learning

Students’ questions and class attitude evidence learning

Long-term retention of basic concepts (2)
Prepare students for future duties and job (2)

Research as a tool for students (2)

Competing time and resources (2)

Scarce support for Scholarly teaching (2)

Educational research must be applicable in context (2)
Educational literature supports innovation (2)

Nexus is or could be constructive (2)

I could not assert that I do educational research as such (2)

qualitative education research [18]. By means of the
cognition corner, we made explicit the theoretical
foundations of each of the three studies. Aligned with
the purpose of the observation corner, we then oper-
ationalized constructs associated with each theoretical
foundation to specific performances or behaviors, along
with the ways in which data would be interpreted.
Finally, by means of the interpretation corner, we
interpreted the results derived from each corresponding
study under the lens of the theoretical foundation
stipulated in the cognition corner.

Qualitative researchers often rely on the human
brain's innate ability to recognize patterns, but automatic
clustering approaches may help them deal with high
dimensionality in a consistent way, as we demonstrate in
our case studies and discuss below. Key questions that
researchers and educators should consider when using
these methods to support their inquiry process include
(1) How does it make sense to transform the qualitative
categories into numbers? Are we interested in the presence/
absence of a category (i.e., binary) or in the frequency of
appearance (i.e., binary)? (2) What visualization strategy
may be effective for the specific format of these numbers?
[8] (3) Are the clusters meaningful? Clustering algorithms
will often return groups for any data set [9, 12], even if the
groups are meaningless. Thus, supporting qualitative data
analysis using computer-aided methods does not liberate
the researchers from evaluating the outcome, and even
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deciding the number of clusters. While there are
automatic methods to make an informed decision on
the number of clusters, educational researchers should
also go back to the data and existing theories to
interpret the resulting groups. Likewise, a recent
review of visual learning analytics [38] showed that it
is uncommon to find studies that connect educational
theories to make sense of an educational phenomenon
with visualization theories to inform their selection of a
visualization strategy. This results in inconclusive
findings and limited theoretical contributions as (1)
specific visualization strategies must be used for
specific data sets and purposes [8] and (2) theoretically
grounded research has the potential to enhance our
understanding of educational phenomena.

In the first study, we analyzed students’ written
explanations of programming examples (observation) to
characterize the approaches that they use to self-explain
(cognition). We then used a tile plot and a hierarchical
clustering approach with binary distance [32] to analyze
these explanations, for example, interpretation; [6] and
connect back to the theory of the self-explanation effect
to make sense out of these results. In the second study,
we characterized the types of knowledge [29] that
students used during a modeling and simulation process
(cognition). We collected the data using think-aloud
protocols (observation) and used content analysis
together with a bubble plot [5] and the k-means [12]
clustering algorithm (interpretation) to understand how
students approached this differently. In the third study,
we explored engineering faculty conceptions of teaching
(cognition) using a semi-structured interview protocol
(observation). We analyzed this data set using Jaccard's
similarity coefficient [22] based on coding similarities
from thematic analysis, and visualized them using a
treemap [16]. We connected back these groups using
the theories of conceptions of teaching (interpreta-
tion [27, 28]).

Computer-aided methods, particularly pattern
recognition, and qualitative analysis methods share
similar processes for understanding messy and
unstructured data (e.g., documents and videos). After
familiarizing themselves with the raw data, research-
ers begin a qualitative data analysis by assigning
categories or codes that could describe the phenome-
non under study. Although it is rarely thought of this
way, this process often results in a high-dimensional
data set (i.e., a matrix), where each data point (e.g.,
interview transcript, document, video; represented as
rows in the matrix) is assigned a large number of
codes/categories (i.e., dimensions; columns in the
matrix). A qualitative researcher would try to make
sense of these highly dimensional data sets to group

participants/documents based on similarities and
would try to identify and describe encompassing
themes. In comparison, a pattern recognition process
starts by turning the unstructured data into numbers.
The next step is to identify the key features (i.e.,
feature vectors) that best describe the data for a given
purpose and to find groups/categories based on
these feature vectors. One key difference is that the
pattern recognition process always transforms
the unstructured data into numbers, while qualitative
analysis only does this when explicitly using content
analysis. However, as we saw in the first example
study, simply assigning categories to a data point can
result in a number (i.e., a binary number).

3 | CONCLUSION

Computer-aided methods can be extremely useful to
boost the analysis of qualitative data in educational
research when rationally applied. In this paper, we
provided three examples of studies where different
computational approaches of visualization and clustering
have been applied to support the analysis of qualitative
data in engineering education research, while using the
assessment triangle framework to guide that application.

Specifically, we proposed using the three corners of
the assessment triangle [25] to guide a principle-based
approach to integrate these methods in a meaningful
manner [18]. Specifically, the cognition corner would
inform the phenomenon that we are observing, whether
learning, perceptions, or conceptualizations. The cogni-
tion corner also presents an opportunity to ground the
study in a theoretical or conceptual framework. The
observation corner describes how elicited students’ behav-
iors and resulting artifacts can be used for analysis and
visualization of the data are elicited, and the interpreta-
tion corner describes how we process, analyze, and
interpret the data. In this last corner, it is imperative to
go back to the data, the literature, and the theoretical
framework (when available) to make sense of the
outcomes. The alignment between the three corners of
the assessment triangle also emphasizes the importance
of rigor and alignment. For instance, the fact that
visualization and clustering methods may provide in-
sights and suggest approaches to grouping does not mean
that these results are necessarily meaningful. It is the
duty of the researcher to always go back to the data, to
the literature, and to the theory to validate and make
sense of these findings. In conjunction, these three
studies show how to use a principle-based approach to
extend qualitative research abilities by using computer-
aided methods with small data sets.
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