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ABSTRACT: A singlet majoron can arise from the seesaw framework as a pseudo-Goldstone
boson when the heavy Majorana neutrinos acquire masses via the spontaneous breaking of
global U(1)z symmetry. The resulting cosmological impacts are usually derived from the
effective majoron-neutrino interaction, and the majoron abundance is accumulated through
the freeze-in neutrino coalescence. However, a primordial majoron abundance can be predicted
in a minimal setup and lead to distinctive cosmological effects. In this work, we consider such
a primordial majoron abundance from relativistic freeze-out and calculate the modification
to the effective neutrino number Neg. We demonstrate that the measurements of Neg
will constrain the parameter space from a primordial majoron abundance in an opposite
direction to that from neutrino coalescence. When the contributions from both the primordial
abundance and the freeze-in production coexist, the U(1)-breaking scale (seesaw scale) f
will be pushed into a “sandwiched window”. Remarkably, for majoron masses below 1 MeV
and above the eV scale, the future CMB-S4 experiment will completely close such a low-scale
seesaw window for f € [1,10°] GeV. We highlight that any new light particle with a primordial
abundance that couples to Standard Model particles may lead to a similar sandwiched window,
and such a general phenomenon deserves careful investigation.
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1 Introduction

Over the past few decades, cosmological observations have reached unprecedented precision,
which offers a promising avenue for probing new physics beyond the Standard Model (SM).
For instance, nowadays the measurements of the effective number of neutrino species Nqg
have reached the accuracy of ©(0.1) through the observations of big bang nucleosynthesis
(BBN) and cosmic microwave background (CMB) [1, 2]. In general, any new light particles
coupling to the SM particles might contribute to the relativistic degrees of freedom in the
early universe and lead to significant deviations from the SM prediction of Neg, and therefore
will receive strict constraints from cosmology.

In this work, we revisit the majoron-neutrino interactions under the cosmological con-
straints of Neg and study their possible implications for the low-scale seesaw scenario. A
singlet majoron J can naturally arise as a pseudo-Goldstone boson [3] in the framework of
the type-I seesaw model [4-8], where the heavy Majorana neutrinos acquire masses through
the spontaneous breaking of the global U(1);, lepton-number symmetry. The lepton-number
breaking scale f characterizes the mass scale of heavy neutrinos, i.e., the scale of new physics
responsible for the origin of neutrino masses. After the electroweak gauge symmetry breaking,



the majoron will couple with the SM neutrinos v; through the mixing between active and
sterile neutrinos, where the couplings are suppressed by m;/f (with m; the mass of ;).
Therefore, the majoron is expected to be long-lived due to the large hierarchy between m;
and f, which makes the majoron an interesting candidate of dark matter (DM) [9-17].!
For a relatively low breaking scale f < 100TeV, which corresponds to the low-scale seesaw
scenario, the decay of the majoron into a pair of SM neutrinos could occur and contribute
to Neg at some crucial epochs of the Universe, leaving observable imprints in, e.g., the
BBN and CMB. Given the strict constraints on Neg from current and upcoming CMB
experiments [1, 22-25], it is hopeful that we could probe the mechanism for neutrino mass
generation from observables in the early Universe.

The constraints on the lepton-number breaking scale from Ng have been noticed for
a while [26-30], mostly in a model-independent setup. In previous works, the primordial
abundance of the majoron was usually neglected such that the majoron abundance was
initialized via the effective interaction between the active neutrinos and the majoron. In
particular, for a light majoron below the MeV scale, the majoron abundance is accumulated
through the freeze-in 2v — J process where the majoron-neutrino coupling is sufficiently
small. In this case, the primordial majoron abundance is negligible before the SM neutrino
decoupling, and the decay of the majoron into a pair of neutrinos J — 2v after the SM
neutrino decoupling will inject energies into neutrinos, causing an excess of Neg. Consequently,
a smaller breaking scale f (equivalent to a larger majoron-neutrino coupling) brings about
a larger majoron abundance, thereby leading to a larger deviation of Ngg. Therefore, the
constraints from the Nyg measurements will put a lower bound on f in the freeze-in situation.

However, a primordial majoron abundance generated beyond the effective majoron-
neutrino interaction in general cannot be neglected before the SM neutrino decoupling. In
fact, it can be predicted even in a minimal setup and more importantly, it may have a
sizable effect to Neg. In this work, we investigate such an effect that has usually been
neglected in the literature. We focus on the situation where the majoron is assumed to be in
thermal equilibrium with SM particles in the early Universe, such that the primordial majoron
abundance is inherited from relativistic freeze-out. As can be seen later, this situation is easy
to realize, either via the interactions between the majoron and the heavy Majorana neutrinos
or through the majoron-Higgs interactions in the scalar sector. We will also consider the
situation where the primordial majoron abundance is accumulated by some other mechanism
beyond the relativistic freeze-out.

The primordial majoron abundance will lead to several interesting phenomena. First of all,
for a non-negligible primordial abundance, if it exists before the SM neutrino decoupling but
is only depleted into radiation near the recombination epoch, Neg will be drastically increased
by orders of magnitude (see section 3.2). Therefore, the precision measurements of Neg at the
CMB epoch will severely constrain the abundance, and put strict bounds on the ultraviolet
(UV) physics that features the abundance. Furthermore, for nonrelativistic majoron decay, a
larger breaking scale f leads to later decay, and hence a larger modification to Neg. So the

'Tf the U(1)7, global symmetry is only broken spontancously, then the majoron will be strictly massless as
a real Nambu-Goldstone boson. However, to serve as a DM candidate, the majoron should acquire a nonzero
mass where the global symmetry is broken explicitly [11, 18-21].



constraints from Ngg will put an upper bound on f, in contrast to the freeze-in situation. This
is particularly interesting because when the freeze-in and primordial abundances coexist, the
constraint from the Neg measurements will push f into a sandwiched window. Remarkably,
the next-generation CMB experiments could further narrow or completely close such a
sandwiched window [22-25].

The remaining part of this paper is organized as follows. In section 2, we start with a
brief review of the singlet majoron model. Then we perform a general analysis of the majoron
evolution in the early Universe and its cosmological impacts. In section 3, we derive Neg
using an approximate analytical (but intuitive) method by assuming instantaneous majoron
decay. A stricter calculation of N.g beyond instantaneous majoron decay is conducted in
section 4. The constraints on f from Neg are given in section 5, which provide a cosmological
sandwiched window for the low-scale seesaw scenario. We summarize our main results in
section 6. Finally, some technical details are included in the appendices.

2 Framework

2.1 The singlet majoron model

The singlet majoron model [3] introduces a complex scalar S, which is a singlet under the
SM gauge symmetries. The relevant Lagrangian in the Yukawa sector is given by

.~ 11—
£=—[LY,®Ng — S NEYN NS +he., (2.1)

where /1, = (11, lL)T and ® = ioc2®* are the left-handed lepton doublet and the Higgs doublet,
respectively. Y, is the Dirac neutrino Yukawa coupling matrix, and Yy is the Yukawa coupling
matrix for the right-handed (RH) neutrino singlets Ng, where N§ = CTRT has been defined
with C' = iy29° the charge-conjugation matrix.

The Lagrangian in eq. (2.1) owns a global U(1);, symmetry if we assign the lepton
numbers of relevant particles to be: L(¢1,) = L(Ng) = +1, L(®) = 0, and L(S) = —2. This
global symmetry is spontaneously broken after S acquires a non-zero vacuum expectation
value (VEV) from the scalar potential (see appendix A.2 for the discussion about a general
scalar potential obeying the lepton-number conservation)

v ok (sis) + % (sts)". (2.2)

In this work, we adopt the linear realization of the broken symmetry. That is, the complex
scalar is parametrized as?

1
S=—=(f+p+iJ), 2.3
7 (f+p+iJ) (2.3)
where p and .J are two real degrees of freedom. In addition, f is the scalar VEV, corresponding
to the lepton-number breaking scale, which provides a Majorana mass term Mg = Y f/v/2
for the RH neutrinos. Note that f is also the seesaw scale provided O(Yy) ~ O(1), i.e.,

2See ref. [11] for the nonlinear realization of the broken U(1); symmetry, where S is parametrized as

S=(p+f) eV



f =~ O(Mg), which is usually considered as the UV completion of the canonical seesaw
model [4-8].

From eq. (2.2), it is easy to show that p will acquire a mass proportional to f after the
lepton-number breaking while J remains massless. Therefore, the pseudo-scalar J (i.e., the
majoron) is identified as the Goldstone boson of the spontaneous U(1);, symmetry breaking.
In practice, a non-zero majoron mass mj can be generated by adding terms that explicitly
violate the U(1)y symmetry, at either tree or loop levels [11, 18-21]. A simple case of mass
generation is discussed in appendix A.2. In the following analysis, we will simply treat the
majoron mass as a free parameter.

After the breaking of the electroweak gauge symmetry, the majoron can interact with
active neutrinos through the flavor mixing between active and sterile neutrinos. The general
interaction in the mass basis turns out to be [31]

6
1 .
Lj=—— Z N [’75 (m, + mj) (5577 — ReC,-]) +1 (m,- — mj) ImCij . (2.4)
i,j=1
A detailed derivation is presented in appendix A.1. In eq. (2.4), n; denotes the neutrino
mass eigenstate with mass m;, and the indices ¢ = 1,2,3 (i = 4, 5,6) correspond to the active
(sterile) neutrino species. The mixing parameters C;; = Zi’:l U} Uy; are defined by the 6 x 6
unitary matrix ¢ which diagonalizes the neutrino mass matrix via

oo ( ) (25)
u U* = Diag (m1, ma, ..., mg), 2.5
M3 Mg
with Mp =Y, v/ v/2 the Dirac neutrino mass matrix and v ~ 246 GeV the electroweak VEV.
Note that O (Mp) < O (Mp) is required to generate the tiny masses for active neutrinos
through the seesaw mechanism.
To obtain the interaction between the majoron and the active neutrinos, one can simply

take 4,7 = 1,2,3 in eq. (2.4) and identify n; = v; (for ¢ = 1,2,3). Then it follows that
Cij ~ &;j, where the non-diagonal elements are suppressed by O (M3 /M3), leading to

.03
iJ

L~ — E MV 7Y5V; - (2.6)
2f =

Therefore, the interaction between the majoron and the active neutrinos is approximately
diagonal and is suppressed by feeble majoron-neutrino couplings g,, = m;/f.

For the mass region of 1eV < mj < 1MeV which will be considered in this work, the
majoron can decay to two active neutrinos, where the decay width is given by

L\~ o fom2 2 My~
Tyoon = W;ﬂ% mJ—4mi >~ 167Tf2 2 m; . (27)

In addition, the majoron can also decay to two photons at two-loop level with the width

scaling as [15]

2 .
Loy ~ a®Tr (YY) mi/ 12, (2.8)



where « is the fine-structure constant. The di-photon decay mode is severely constrained by
the CMB, X-, gamma- and cosmic-ray observations [12, 13, 15]. In fact, for the low-scale seesaw
scenario (i.e., f < 100 TeV) considered in this paper, the Yukawa couplings Y, are suppressed
by the tiny neutrino masses (recall that the seesaw relation gives Y, ~ v/m;f/v < 107%),
thereby making J — 2v the dominant decay mode of the majoron.

2.2 Majoron cosmology in the low-scale seesaw scenario

Due to the large hierarchy between m; and f, the majoron is expected to be long-lived [cf.
eq. (2.7)]. For a large enough f, the majoron can naturally serve as a DM candidate [9-17].
For relatively small f, e.g., around the electroweak scale, the majoron becomes unstable
within the cosmological time scale and will dominantly decays to active neutrinos.

To see when the majoron decays, let us consider the temperature T’y of nonrelativistic
majoron decay, which can be defined as

7 =Ty ~T 0, =2H(T)). (2.9)

Here H(T) ~ 1.66/g,(T)T?/Mp, is the Hubble parameter at the radiation-dominated epoch,
with g,(T) the relativistic degrees of freedom for energy density and Mp; ~ 1.22 x 109 GeV
the Planck mass. Moreover, the decay width of the majoron I'; can be calculated by eq. (2.7)
as an approximation. Note that for relativistic majoron decay, the lifetime 77 in eq. (2.9) is
enhanced by an additional Lorentz factor E;/my > 1. Combining eqs. (2.7) and (2.9), we
obtain that the nonrelativistic decaying temperature T'; scales as

1/2
1 3
Ty~ 0.077gp_1/4? (Z ’TTL?’TTLJMPl)

i=1
~ 0.997 [ 230 " B ( 3 >1/2 < g )_1 keV (2.10)
- 9p 0.05eV 0.1 MeV 100 GeV ’ '

where g, in the right-handed side of eq. (2.10) should be calculated at 7. In figure 1, we show
the plane of (my, f) where the lifetime of the majoron is longer than the age of the Universe
0 ~ 4.4 x 10'7 s, and the parameter space where the majoron decays as a nonrelativistic
particle (i.e., Ty < my). We also show the values of mj; and f that lead to the decaying
temperature of Ty = 1eV and T; = 0.1 MeV, which typically corresponds to the epochs
of matter-radiation equality T,q and the completion of the SM neutrino decoupling T} gec,
respectively. It can be seen from figure 1 that in the region of nonrelativistic majoron decay
with the decaying temperature Teq ST S Ty dec, the corresponding lepton-number breaking
scale resides in f € [1,10°] GeV (i.e., the yellow-shaded region in figure 1), which happens
to be the low-scale seesaw scenario provided that the masses of RH neutrinos arise from
the spontaneous lepton-number violation.

Before calculating the contribution of majoron decay to Nyg, we need to specify the early
evolution of the majoron, which determines the primordial majoron abundance. Generally
speaking, there are two possibilities that the majoron can keep thermal equilibrium with
SM particles in the early Universe:
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Figure 1. The decaying temperature of the majoron T’y with different values of the majoron mass
my and the lepton-number breaking scale f. Some typical epochs of the majoron decay are shown in
the plot where: the majoron is stable over the cosmological time scale 77 ~ 4.4 x 107 s (above the
blue long-dashed line), the majoron decays after the epoch of the matter-radiation equality Teq ~ 1€V
(above the green short-dashed line), the majoron decays before the SM neutrino decoupling epoch
Ty dec = 0.1 MeV (below the red dotted line), and the majoron decays as a relativistic particle (below
the black solid line). The yellow-shaded region is the parameter space which interests us in this work,
i.e., the majoron decays nonrelativistically with the decaying temperature Toq S Ty S Ty dec- The
lepton-number breaking scale in the yellow-shaded region resides in 1 GeV < f < 100 TeV, which
corresponds to the low-scale seesaw scenario.

o First, the RH neutrinos can readily be thermalized in the SM plasma via two-body/
inverse decay or rapid active-neutrino oscillations [32, 33]. Before the electroweak gauge
symmetry breaking, the majoron couples to RH neutrinos via

iJ

. 3
_ iJ _
LiNN = —2—\/§N§YNNR +he = T > M;NyvysN;, (2.11)

i=1

where the mass eigenstates of the RH neutrinos Ny + N = (N1, No, Ng)T have been
defined, and M; is the mass of N;. Furthermore, for Yukawa couplings Y that are not
too small, the scattering 2N — 2.J via eq. (2.11) can in turn thermalize the majoron for
the temperature 7' 2 M;. Note that there is no decaying channel of N; — N; + J (with
M; > Mj) since the non-diagonal elements in Yy are not physical before the gauge

symmetry breaking.

e Second, the majoron can couple with the Higgs boson via the following interaction
¥ das (qﬂ@) (STS) , (2.12)

which is not forbidden by the global U(1);, symmetry and should be included into a
general scalar potential (see appendix A.2 for more details). Moreover, it was shown [34]
that even for a portal coupling Apg as small as O(107%), the scattering 2¢ — 25 can



still thermalize the scalar S. After the gauge symmetry breaking, the majoron couples
with the SM Higgs boson h through the mixing (induced by Aeg) between two CP-even
bosons h and p, and can be thermalized via h — 2J or 2h — 2J.

Therefore, a thermalized majoron in the early Universe can easily be realized in the
minimal setup that exhibits a spontaneous global U(1);, breaking in the scalar sector and
at the same time, predicts an unstable majoron decaying at Toq S 77 S Ty dec. Since the
majoron is much lighter than the RH neutrinos and the Higgs bosons, it is expected to undergo
relativistic freeze-out. The freeze-out temperature T}, of the majoron depends on the details
of the UV models, and will be treated as an input parameter in the following discussions.

After the gauge symmetry breaking, the active neutrinos can also generate the majoron
abundance through the neutrino coalescence process 2v — J [cf. eq. (2.6)]. Due to the
suppression of the majoron-neutrino coupling g,, = m;/f, the production channel follows the
freeze-in evolution [35-38] and culminates at 7'~ O(m). Therefore, the majoron abundance
is, strictly speaking, not a constant after the relativistic freeze-out. As can be seen in figure 1,
for 1¢V S my < 1MeV and a suppressed coupling g,,, the majoron is expected to decay after
the SM neutrino decoupling. This late-time decay will modify the effective number of neutrino
species Neg due to the energy injection to active neutrinos. Such effects have been studied in
refs. [26-30] where the constraints of Neg from the CMB measurements have been applied to
derive the upper bound of the majoron-neutrino coupling in terms of the majoron mass.

Nevertheless, previous studies have mainly focused on the majoron-neutrino effective
interaction, where the majoron abundance is generated by and then depleted back to the SM
neutrinos.? It is the purpose of this work to detail the effects of the primordial abundance on
Negg. While we concentrate on the low-scale seesaw scenario, it is worthwhile to emphasize
that the analysis performed in subsequent sections can analogously be applied to other
UV scenarios, where a new light particle coupling to active neutrinos or photons has a
non-negligible primordial abundance before the SM neutrino decoupling and decays after
that epoch.

3 Analytical derivation of A N.g from majoron decay

In this section, we perform an approximate analytical calculation of the N.g excess from
majoron decay (i.e., ANeg = Neg — Nesf}\/l) by assuming that the majoron decays instanta-
neously, where NS@’I ~ 3.045 denotes the SM prediction of the effective number of neutrino
species [39-46]. The calculation depends on the kinematic properties (that is, relativistic
or nonrelativistic) of the majoron at decay. In the first two subsections, we compute AN g
from relativistic and nonrelativistic majoron decay respectively, with the primordial ma-
joron abundance inherited from the relativistic freeze-out. In the last two subsections, we
compute ANgg from the freeze-in production followed by majoron decay, where there is

no primordial majoron abundance.

3See, however, refs. [28-30] that partly discussed a primordial majoron abundance.



3.1 Relativistic freeze-out and relativistic decay

In order to be model-independent, we do not specify the freeze-out process of the majoron
from UV scenarios (i.e., the majoron will be thermalized via the scattering either with the
RH neutrinos or with the Higgs boson); rather, we treat the freeze-out temperature Tt, as
an input parameter. Then the yield of the majoron at T, is given by

ny _45((3)

Y},Lfo = — = 477-, )
SSM =Ty, 2194 (Tto)

(3.1)

where n; = ((3)T?/n? is the number density of the relativistic majoron in thermal equilibrium
with {(x) the Riemann (-function, and sgy is the SM entropy density
2
SsM = gs(T)%TB , (3:2)
with gs(T) the relativistic degrees of freedom for entropy in the SM. Therefore, the majoron
freeze-out yield depends only on the relativistic degrees of freedom at T%,.

The observations of the light-element abundances generated during the BBN era put
stringent constraints on the interactions of neutrinophilic particles [47, 48]. Here we would like
to estimate the contribution of the majoron to Neg at the BBN epoch. It is usually stated that
the BBN process starts after the deuterium bottleneck temperature T ~ 0.078 MeV [49-51].
Nevertheless, any extra radiation before the neutron-proton freeze-out at 7'~ 0.8 MeV will
modify the Hubble expansion rate, leading to more neutron abundance at freeze-out and
hence more *He. Observations of the primordial helium-4 synthesized at the BBN epoch will
constrain the extra radiation, which is effectively parametrized by ANyg [51]. If the majoron
decays after T' ~ 0.1 MeV, the majoron itself contributes to the Hubble expansion rate before
the BBN starts. Then AN.g at the BBN epoch can be approximated by*

4/3 4/3
ANBBN _ _PJ  ps(T) [SSM(TBBN)] _4(95,BBN) (33

= —au = 53 =
° P gy PPN (TBBN) L ssm (Tho) T\ Ysito

where g, gpn and g, denote the relativistic degrees of freedom at Trpn and T, respec-
tively, and

2
oM =TTt (3.4)

is the one-flavor neutrino energy density with T, = T, before neutrino decoupling. For
definiteness, we will take TN =~ 1 MeV to denote the temperature before the neutron-proton
freeze-out.

Next, let us consider the situation where the majoron decays relativistically after the
BBN ends and prior to the matter-radiation equality epoch T¢q ~ 1€V. The energy from the
majoron would then inject into active neutrinos, acting as extra radiation at the recombination

“Note that the quantity p./ séﬁ is a constant after the majoron decouples. In addition, the majoron
abundance from the freeze-in neutrino coalescence 2v — J contributes negligibly to the majoron abundance
and Neg when the majoron is still in the relativistic regime.
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Figure 2. AN.g calculated from relativistic majoron decay at the epochs of BBN or CMB with
different freeze-out temperature Ty, (black short-dashed line). The regions above different horizontal

1.
lines correspond to the 20 excluded regions of ANeg from the constraints of BBN+Y,+D (green dotted
line), Planck (red short-dashed line), as well as the future projected sensitivities of SO (magenta dot-
dashed line) and CMB-S4 (blue dashed line). The gray solid line denotes the minimal ANeg >~ 0.027,
which corresponds to the freeze-out temperature Ty, 2 O(100) GeV.

~

epoch T' ~ 0.1eV and being constrained by the CMB measurement. In the approximation

4/3
4 (1IN [ gsomm /
-7(7) (550) (35)
F=T4q Js.fo

where pj_,9, denotes the neutrino energy density inherited from relativistic majoron decay,

of instantaneous decay, we arrive at

CMB _ PJ—=2v
ANg™— = S
Pv

and the factor T, /T = (4/11)"/3 has been used for the (instantaneous) neutrino decoupling.
In addition, we have assumed that the decay is completed before Tiq so that ANeg is
evaluated at Tg.

Given g5 ppN/gs.cmB = 11/4,° we arrive at ANEBN — ANE%MB. This identity implies
that when the majoron decays in the relativistic regime, the extra radiation contributes
equally to Neg at the epochs of BBN and CMB, which only depends on the freeze-out
temperature. It is clear that a lower Tg, leads to a larger ANgg. This can be understood as
follows. After the relativistic freeze-out of the majoron, the decoupling of other SM particles
will inject energies into the plasma of photons and neutrinos, thereby reheating the SM bath

SM SM

and enhancing p? >

. Therefore, the later the majoron decouples, the less enhancement p
will receive, which implies a larger ANgg.

In figure 2, we show the behavior of ANeg calculated from relativistic majoron decay at
the epochs of BBN or CMB with different freeze-out temperatures T},, where the evolution

of g4(T') is taken from ref. [52]. We also show the constraints on ANeg from the Planck

5 . . . . . . . . . . . . .
°This ratio is obtained in the approximation of instantaneous neutrino decoupling, which is sufficient for
the analytic analysis.



2018 result [1]: Neg = 2.99 £ 0.17, the combination of BBN, helium (Y},) and deuterium (D)
abundances [2]: Neg = 2.889 + 0.229, and from the future sensitivities of Simon Observatory
(SO) [22, 23] and CMB-S4 [24, 25]. The 20 upper bounds are given by

Planck : ANqg < 0.285, (3.6)

BBN +V, +D: ANeg < 0.347, (3.7)
SO : ANeg < 0.1, (3.8)

CMB-S4 : AN.g < 0.06. (3.9)

It can be seen that for the majoron that decays relativistically after the neutrino
decoupling and before the matter-radiation equality epoch, the current constraints from
BBN+Y,+D and Planck requires Ty, > 64 MeV and T}, > 104 MeV, respectively, while the
future sensitivities from the SO and CMB-S4 will further limit the decoupling temperature
to Tiy > 192MeV and T, > 397 MeV, respectively. Note that a minimal ANg ~ 0.027 is
expected for the early-time decoupling of the majoron, i.e., T, = O(100) GeV, where all the

SM particles are relativistic with g, = 106.75.

3.2 Relativistic freeze-out and nonrelativistic decay

Now let us turn to the more interesting scenario, where the majoron decays in the nonrel-
ativistic regime. We expect that ANSCEBN #* ANeCHMB in this case. The former is still given
by eq. (3.3) while the latter is calculated as

myY 7. s
ANCMB _ PJ;@V LM 1fo SM’ ~ 0815 [ 9oL (@) 7 (3.10)
Pv T=Teq Py T=Tj Gs.fo Ty

where the energy injection from the majoron into neutrinos at Tyq is estimated by the value of
myny at Ty [defined in eq. (2.9)]. Note that we do not include the contribution to the majoron
abundance from the freeze-in process 2v — J, so the yield Y keeps constant after freeze-out.

From eq. (3.10) it is clear that later decay of the majoron will cause a larger ANeg
at the CMB epoch. This can also be understood by the dilution-resistant effect [30] (see
section 3.4 for more discussions): after the decoupling of neutrinos, we have pSM o a=*
with a the scale factor, while the majoron energy density in the nonrelativistic regime scales
as py oc a . As a result, later decay of the majoron implies that p>™ suffers from more
redshift (dilution) than the energy of the nonrelativistic majoron py (resistance), thereby
leading to a larger AN.g after majoron decay.

A key observation is that, since later decay of the majoron implies a larger lepton-number
breaking scale f or equivalently a smaller majoron-neutrino coupling, and leads to a larger
ANE%MB, it implies that the constraint from ANngB will put an upper bound on f. This is
in contrast to the freeze-in scenario without a primordial majoron abundance, where a lower
CMB
it

bound of f can be obtained from the constraint of AN_"", as we shall discuss below.

3.3 Freeze-in without primordial majoron

In the low-scale seesaw scenario, where f is around the electroweak scale, the neutrino
coalescence 2v — J can also contribute to the majoron abundance via the freeze-in mechanism.

~10 -



In this subsection, we calculate the excess of Neg from freeze-in production of the majoron,
and make a comparison with the results derived in the previous subsection with a primordial
majoron abundance.

To simplify the calculation of ANeg, we assume that the freeze-in production of the
majoron is essentially completed before it decays. We first consider the case of nonrelativistic
majoron decay. The Boltzmann equation of the majoron abundance before decay is given by

dT SSMHT ’ '

where Yy = ny /ssm denotes the freeze-in abundance of the majoron and the collision term

C3,_,; is computed in appendix B, which is a function of the neutrino temperature T,,.
Let us assume again that the decay occurs instantaneously at T after the neutrino
decoupling. Then the excess of Neg at the CMB epoch coming from the nonrelativistic
majoron decay can be calculated by
myY 5 ssm

CMB .
AN = ——y
Py

~ 2.94g, 7, Y} <@> , (3.12)
T=T; Ty

where g5 7, denotes the relativistic degrees of freedom at the decaying temperature. Note
that the nonrelativistic factor m/Ty & \/mj/Mp1f/m; [cf. eq. (2.10)] also appears here
as in eq. (3.10).

At first sight, it seems that a heavier majoron and a larger lepton-number breaking scale
lead to a larger ANSMB,| which occurs in the freeze-out case (see section 3.2). However,
ANS{MB in eq. (3.12) also depends on my and f through Y. To see it more clearly, we
calculate Y with the following approximations:

¢ We take the Boltzmann approximation of the neutrino distribution functions so that
the collision term C3,_, ; is given by eq. (B.6).

o We assume that neutrinos decouple instantaneously at 7T}, gec >~ 0.1 MeV, so the neutrino
temperature in C%. ., ; is given by T, = T (for T > T, qec) or T,,/T = (4/11)1/3 (for
T < Ty,dec).

o To obtain the freeze-in abundance of the majoron, one needs to integrate eq. (3.12)
over the temperature. Since the majoron decays nonrelativistically after the neutrino
decoupling, we can further expand the collision term in the integral in terms of m /T
for T' > T, qec and in terms of T'/m; for T' < T}, dec.

With above approximations, we arrive at a very simple result

M 1/2
ANSMB ~ (.139 ( mej) (Gfev) , (3.13)

where gs 7, ~ 3.36 has been used, and for concreteness, we have taken the normal ordering of
the neutrino masses with m; = 0 and 33_; m2 ~ (0.00866V)? + (0.05¢V)? [53].
From eq. (3.13) it is now clear that for the freeze-in case, a lighter majoron and a smaller

f will lead to a larger ANqg. Therefore, the constraint from CMB measurements will put a
lower bound on the lepton-number breaking scale. This is in contrast to the case of freeze-out
with a primordial majoron abundance, as already discussed in section 3.2.

- 11 —



3.4 Comparison between freeze-out and freeze-in

From eq. (3.13), one may naively expect that ANeg can keep increasing with the decreasing
of my and f. However, a lighter majoron and a larger coupling (i.e., a smaller f) would
make the majoron-neutrino system easier to reach thermal equilibrium, when the freeze-in
formalism and consequently the result in eq. (3.13) are no longer applicable. In fact, as
pointed out in refs. [30, 42], when the majoron gets thermalized with the SM neutrinos,
one obtains a maximal AN ~ 0.12.

Based on the analysis in section 3.3, we can understand the maximal AN in a different
way.® Recall that the result in eq. (3.13) is derived in the regime of nonrelativistic majoron
decay, i.e., p;j < my with p; the magnitude of the majoron momentum. The averaged
momentum for a nonrelativistic thermalized majoron is given by (p;) ~ /3m;T;.” By
requiring (ps) < my and taking advantage of eq. (2.10), we obtain a lower bound on f:

(%) >0.96 (1\:2,)1/27 (3.14)

where 322 m? ~ (0.0086 eV)? + (0.05eV)? and 9,(Ty) ~ 3.36 have been used. Substituting
eq. (3.14) back to eq. (3.13), we arrive at ANGMB < 0.14. This confirms the result in
refs. [30, 42] that nonrelativistic majoron decay from the freeze-in mechanism without a
primordial abundance can lead to a maximal AN.g at O(0.1).

Another point worth mentioning is that there is no excess of Neg from the relativistic
majoron decay in the freeze-in scenario. In section 3.1, we have demonstrated that the
relativistic majoron decay with a primordial abundance can generate a nonzero ANg.
However, this is not the case if the majoron abundance only comes from the freeze-in
production, which instead predicts a vanishing AN.g. To see it more clearly, we can rewrite
the Boltzmann equation of the majoron-neutrino system as [30]

% [(PJ + Pu)a4] = a’(ps —3Py), (3.15)

where P; denotes the pressure of the majoron. In the relativistic regime, we have Py = p;/3,

4is a constant. In this case, if there is no primordial

so the comoving energy density (ps + pv) a
majoron abundance, the energy density will first transfer from neutrinos to the majoron
through the freeze-in process 2v — J and then back to neutrinos through the relativistic
majoron decay J — 2v, while the total energy density of the majoron-neutrino system in
a comoving volume remains unchanged. Therefore, there would be no excess of Neg if the
majoron decays in the relativistic regime.

In conclusion, if there is no primordial majoron abundance, a nonzero ANeg can only
be generated if the majoron decays in the nonrelativistic regime. In addition, a smaller
lepton-number breaking scale f and majoron mass m; lead to a larger ANgg, which has a
maximal value at O(0.1). On the other hand, when there is a primordial majoron abundance,

In refs. [30, 42], the maximal AN.q is derived from the conservation of particle number, energy and
entropy.

"Strictly speaking, the majoron never reaches thermal equilibrium in our analysis of the freeze-in process.
Nevertheless, here we use the statistics for a thermalized majoron since we only want to estimate the upper
bound of AN.g that is caused by the majoron decay.
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both the relativistic and nonrelativistic majoron decay at late times can generate a nonzero
ANeg. In particular, for the case of nonrelativistic decay, a larger f and m; will predict a
larger A Nqg, contrary to the freeze-in case where there is no primordial abundance. To have
a more precise constraint on the lepton-number breaking scale from observations of Neg, in
the next section, we proceed to perform a stricter calculation of ANy in the nonrelativistic
region by going beyond the approximation of instantaneous majoron decay used in section 3.2.

4 Calculation of A N.g beyond instantaneous majoron decay

In this section, we carry out a stricter calculation of AN from nonrelativistic majoron
decay, which has a primordial abundance inherited from the relativistic freeze-out. We also
make a comparison with the freeze-in production 2v — J followed by nonrelativistic decay
J — 2v. For later reference, we use the following shorthand:

FONR = relativistic Freeze-Out + NonRelativistic decay ,
FINR = Freeze-In 4+ NonRelativistic decay .

We are interested in the case where the majoron decays after the SM neutrinos have
decoupled from the plasma at around T, qec >~ 0.1 MeV [41-46, 54], so as to suppress the
nontrivial impacts on the BBN processes as well as the neutrino decoupling. Under this
circumstance, the neutrinos generated from majoron decay at temperatures below T, gec can
no longer be thermalized via the SM weak interactions. Therefore, in the FONR case, we
can treat majoron decay separately from the SM thermal bath.

In general, the neutrino coalescence 2v — J also contributes to ANqg in the FONR case.
Nevertheless, we will neglect it in the calculation of ANgg for two reasons. First, as shown in
section 3.4, the contribution from neutrino coalescence to ANqg can only reach up to O(0.1),
which is beyond the sensitivity of current CMB measurements [1]. Second, as can be seen
from section 3.2 and section 3.3, the dependence of ANt on m; and f is opposite between
the FONR and the FINR cases, so it would be more clear to treat the two processes separately.
The inclusion of neutrino coalescence in the FONR case will be discussed in section 5.

Without including the contribution from neutrino coalescence, the Boltzmann equations
governing the nonrelativistic majoron decay are given by

%+3Hp,]:—€§_>2y, %—HLHp,,:Cf}_}zV, (4.1)
where Cf} _,9, is the collision term responsible for the energy transfer rate. In the nonrelativistic
regime, we have Cf} o, @mynjl'y with I'y >~ I'j_,9, and the primordial majoron abundance
ny = ((3)T3/n? coming from relativistic freeze-out.

Defining Y* = ny/ssm = ps/ (mgssm) and Y = p,/ sé{\i , we can rewrite the Boltzmann
equations as

dY? FJY? dYVp o mJFJY}l

ar — HT AT B’ (42)
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Tio/MeV | 64 104 | 192 | 397 | > O(10%) — —
Y | 0.018 | 0.015 | 0.007 | 0.005 | 0.003 | 9x107* | 3x107*

ANBEN 10.347 | 0.285 | 0.100 | 0.060 | 0.027 0.008 0.003

€

Table 1. Correspondence among the freeze-out temperatures Tt,, the primordial majoron abundances
Y i and the contributions to ANeq at the BBN epoch.

which lead to the solutions

VIT) = Yo 20T ypr) = mgry [ar L

/ T s HT”
with an initial temperature Tiy; > T and Hin; = H (Tin;). For definiteness, we take Tiy; =
0.1 MeV, which is consistent with the requirement of T; < T}, gec. It should be pointed out
that a higher Ti,; does not modify the result significantly, since the decay mainly occurs
around Ty determined by T'; ~ 2H(T), and Y is exponentially suppressed for 7' < T;.% In
addition, the initial abundance is determined by the freeze-out abundance in eq. (3.1), i.c.,

Yfini =Y 45¢(3) (4.4)

Jfo — 27T4gs(Tfo) .

In table 1, we have listed the correspondence between Tf, and Y7 ; for some typical
freeze-out temperatures. Alternatively, one can also use the contribution of the relativistic
majoron to ANy at the BBN epoch to characterize the primordial abundance (i.e., the
third line of table 1). Note that the first five values of ANEPN in table 1 can be obtained
from T}, using eq. (3.3). For ANEPN < 0.027, it cannot be inherited from the relativistic
freeze-out mechanism, where the thermal plasma at 7' > O(100) GeV only contains the SM
degrees of freedom. Nevertheless, we can still establish a one-to-one correspondence between
ANEBN and the primordial majoron abundance Y i

Since the nonrelativistic majoron decay occurs after the neutrino decoupling and before
the matter-radiation equality epoch, when the relativistic species include photons and
neutrinos, it is reasonable to treat the relativistic degrees of freedom g, (in the Hubble
parameter) and gs (in the entropy density) as constants. Taking into account the temperature
ratio between photons and neutrinos derived from noninstantaneous neutrino decoupling:
T/T, ~ 1.3985 [42], one obtains

4
gp:2+gx2x3x(%> ~ 3.38, (4.5)
~2+7><2x3><(T”>3~393 (4.6)
gs = S T ) =393 :

Combining eqs. (4.3)—(4.6) and given a freeze-out temperature Tk, one can obtain the
neutrino energy density Y,? that comes from the majoron decay. The excess of N.g at the

8This exponential suppression also justifies the approximate analytical results derived in section 3 under
the approximation of instantaneous majoron decay.
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CMB epoch is then given by

p.4/3
angs = Xosu| (4.7)
Py =T
Note that ANeg calculated above is based on eq. (4.1), where only the contribution
from majoron decay J — 2v is included. On the other hand, the heavy sterile neutrinos N;
could also contribute to ANcg through decay (N; — J + v;) or 2-to-2 scattering (2J — 2v
mediated by N;). In the following, we show that the contributions from sterile neutrinos
to ANeg are negligible compared with that from majoron decay.

o We first consider the contribution from sterile neutrino decay N; — J +v; (for i,j =
1,2,3). Since the masses of sterile neutrinos satisfy M; ~ f > T, jec, the decay occurs
much earlier than the decoupling of active neutrinos. So the direct contribution from
decay to ANeg is washed out as active neutrinos are still in thermal equilibrium with
photons. On the other hand, the freeze-in production of majoron abundance from N;
decay culminates at T' ~ O(M;), at which the relativistic majoron freeze-out also takes
place. At this epoch, the contribution to primordial majoron abundance is dominated
by the thermal freeze-out, while the freeze-in contribution is negligible.

e Next we consider the contribution from 2J — 2v mediated by N; (for i = 1,2,3).
We can compute the cross section of 2J — 2v using eq. (A.17), with the coupling
suppressed by C;; ~ Y, < 107" in the low-scale seesaw scenario. The cross section is
s-wave dominated, so that we can estimate the collision term as follow:

2 3
€4y ~ (oV)2smzumimy ~ LS 2 (4.8)

i=1
Here we have neglected the exact numerical factor from phase-space integration, which
is smaller than that from majoron decay. Recall that the collison term from majoron
decay is given by Cf_, = myn T ;. So we obtain C%_, /C5, ., ~m;f?/T3. Given
my 2, T for nonrelativistic majoron decay/annihilation and f > m, we conclude that
the contribution to ANgg from majoron annihilation 2J — 2v is strongly suppressed

compared with that from majoron decay J — 2v.

Based on our calculations of ANyg discussed above, the excluded regions in the (my, f)
plane from the current CMB measurements are shown in figure 3. To compare the calculation
of AN.g using the approximation of instantaneous majoron decay in section 3.2 with non-
instantaneous decay in section 4, we have shown the excluded regions obtained from both
in figure 3, which match quite well with each other. Therefore, the instantaneous majoron
decay serves as a good approximation in our problem.

The excess of Neg from the majoron decay depends on the primordial majoron abundance,
which is characterized by the freeze-out temperature T}, in eq. (4.4). In figure 3, we have
shown results from two typical freeze-out temperatures: Ty, = 64 MeV and T, > 100 GeV.
The first one is the lowest freeze-out temperature that is allowed by BBN+Y,+D (see
figure 2). A lower Tg, corresponds to a larger primordial abundance and would lead to a
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under the constraints of current CMB measurements on Neg. The pink- and green-shaded regions in
the upper right corner are excluded by Planck 2018 at 20 level [1], with different primordial majoron
abundances characterized by the freeze-out temperatures T¢,. The excluded regions are obtained
from instantaneous decay in section 3.2 (dashed line) and noninstantaneous decay in section 4 (solid
line), respectively. In addition, the yellow-shaded region in the lower left corner corresponds to the
relativistic decay regime, while the gray-shaded region in the upper left corner corresponds to the
scenario where the majoron decays after the matter-radiation equality epoch (post-equality decay).

larger AN.g excluded by the BBN measurements [cf. eq. (3.3)]. The second one is the case
where the freeze-out temperature is sufficiently high and all the SM species are relativistic,
corresponding to a minimal ANeg ~ 0.027 at the BBN epoch. We can see that for the largest
primordial abundance allowed by current BBN measurements, the majoron that decays
nonrelativistically is severely constrained. In particular, a lepton-number breaking scale above
300 GeV is excluded when the majoron mass is within [107°, 1] MeV. The constraint is less
strict with a smaller primordial abundance or equivalently, a higher freeze-out temperature.
For Tg, > 100 GeV, which corresponds to the smallest primordial abundance that can be
induced from relativistic freeze-out, we find that a breaking scale f > 2TeV is already
excluded by the current Planck measurements for m; € [107°,1] MeV.

Note that for f < 1GeV, the majoron decay generally occurs in the relativistic regime, as
can be inferred from figure 3. Therefore, we concentrate on f > 1GeV. Also, it is worthwhile
to mention that for a lighter majoron around the eV scale, the nonrelativistic decay could
occur after the epochs of matter-radiation equality and recombination when effects on, e.g.,
the structure formation and the neutrino free-streaming become significant [29]. On the other
hand, for a heavier majoron above the MeV scale, the decay channel to electron-positron pairs
opens. Besides, the majoron decay to neutrinos and electron-positron pairs could occur during
the epochs of the BBN and neutrino decoupling and have observable effects. In particular, for
1MeV < my < 100 MeV, the most stringent constraint on f comes from Supernova 1987A.
The absence of observing 100 MeV-range neutrino events from Supernova 1987A puts a lower
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bound on the lepton-number breaking scale: f 2 0.1 GeV (m;/MeV) [55]. See also [56, 57]
for further discussions. It would be interesting to further investigate these nontrivial effects
outside the mass region shown in figure 3, which goes beyond the scope of the current work.

5 The sandwiched window from precision N, measurements

We have seen from figure 3 that the current Planck measurements of Neg can already put
strict upper bounds on the lepton-number breaking scale for the scenario where the majoron
decays nonrelativistically with a primordial abundance (FONR). On the other hand, in
section 3.3 we demonstrated that the majoron abundance can also be accumulated through
the freeze-in production 2v — J and later decays nonrelativistically back to the neutrinos
(FINR). As discussed in section 3.4, the FINR case can lead to a maximal ANqg ~ O(0.1),
which is beyond the sensitivity of the current Planck measurements.

However, the forecast sensitives of ANeg measurements in the future CMB experiments
will be increased by a factor of a few. For instance, the SO experiment [22, 23] has a projected
20 sensitivity ANeg < 0.1, while the CMB-S4 experiment [24, 25] is expected to have a 20
sensitivity ANgg < 0.06. Therefore, for future CMB experiments, the FINR case can also
be probed. Furthermore, due to the opposite dependence of ANy on my and f between
the FONR and the FINR cases, one can expect that the viable parameter space of the
lepton-number breaking scale would be pushed into a narrow sandwiched window when
the contributions from the FONR and FINR cases coexist. In particular, null signals of
the Nog excess in future CMB experiments could even close such a window and completely
exclude the model.

To see the sandwiched window more clearly, we first consider the bounds from the
FONR and FINR cases separately. That is, the bound from one case is derived without
the contribution from the other case. In figure 4, we show the sandwiched window for the
lepton-number breaking scale from the constraints of future SO and CMB-54 experiments at
20 level. Note that for the FONR case, the constraints depend on the primordial majoron

abundances, which are characterized by AN&BN

, i.e., the contributions of the primordial
relativistic majoron at the BBN epoch (see table 1). For the FINR case, we apply the
results derived in ref. [30] by replacing the effective majoron-neutrino coupling g, with the
breaking scale via f = 0.05€V/g,. It corresponds to mapping the model-independent results
into the seesaw framework.

In the upper left panel of figure 4, we show the parameter space of my and f under the
constraints of SO with a primordial majoron abundance characterized by AN‘E’CEBN = 0.06
(corresponding to Tg, = 397 MeV). It can be seen that for such a primordial abundance,
the excluded region from the FONR case happens to be adjacent to that from the FINR
case, and there is no viable parameter space for nonrelativistic majoron decay. This implies
that if an excess of ANe%MB > 0.1 is not observed by the future SO experiment at 20 level,
then the scenario with the freeze-out temperature Ty, < 397 MeV will be ruled out within
the regime of nonrelativistic decay.

In the upper right panel of figure 4, the result is shown for a smaller primordial majoron
abundance characterized by ANSEN = 0.027 (corresponding to Ty, > 100 GeV). Since the
primordial abundance is reduced, the excluded region from the FONR case is expected to be
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Figure 4. The sandwiched window for the lepton-number breaking scale from the constraints of

the future SO (upper panel: ANgg < 0.1) and CMB-S4 (lower panel: ANqg < 0.06) experiments.

In each subfigure, the green-shaded regions denote the excluded regions from the FONR case with
different primordial majoron abundances (characterized by ANBEN). The shaded regions in the lower
left corner denote the regime of relativistic decay (yellow) and the regions excluded from the FINR
cases (purple). The white bands labeled by “low-scale seesaw window” are the viable parameter space
where the contributions from FONR and FINR cases coexist.

smaller than that in the upper left panel, thereby leaving a viable parameter space that is
sandwiched by the constraints from the FONR and the FINR cases (denoted as “low-scale
seesaw window”). For such a low-scale seesaw scenario, this is the parameter space where
a minimal primordial majoron abundance inherited from relativistic freeze-out can survive,
provided that no excess of ANECHMB > 0.1 is observed by the future SO experiment.

In the lower left and lower right panels of figure 4, the results are shown under the
constraints of CMB-S4 with a primordial majoron abundance characterized by AN, (EEBN = 0.008
and ANE%BN = 0.003, respectively.” We can infer from the lower left panel that the future
CMB-54 experiment is able to fully close the window for the low-scale seesaw scenario,

9Note that for ANEPYN < 0.027, the primordial majoron abundance cannot be inherited from the relativistic
freeze-out (see figure 2). Smaller primordial abundances may be satisfied by other mechanisms (e.g., freeze-in
production from the Higgs boson or RH neutrinos in the early Universe) or by the existence of extra relativistic
degrees of freedom at high temperatures.
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where the primordial majoron abundance comes from relativistic freeze-out and later decays
nonrelativistically, provided that an excess of ANG%MB > 0.06 is not observed by CMB-54 at
20 level. Nevertheless, the case with a smaller primordial abundance (ANEBN < 0.008) is
still possible to survive if the abundance comes from other mechanism rather than relativistic
freeze-out, as is shown in the lower right panel. This implies that even if the majoron itself
as a relativistic species at the BBN epoch only contributes to AN.g at the order of 0.1%, its
late-time nonrelativistic decay can generate observable effects in the future CMB experiments.
Finally, it should be noted that the above analysis is based on the assumptions that the
bounds from the FONR and FINR cases are treated separately. For the real situation, the
contribution to ANgg from neutrino coalescence 2v — J should also be taken into account
in the FONR case. In this case, one expects that the sandwiched window in figure 4 will
become somewhat narrower. This can be understood by the fact that the contribution to
ANqg at the CMB epoch for the real situation can always be divided into two parts

ANGMB = ANEP + AN (5.1)

where ANEP (ANE]) denotes the contribution from the primordial majoron abundance
(neutrino coalescence). Since both ANE® and ANY are non-negative, one will always
obtain a larger AN,g than taking into account ANE® and ANE separately. Therefore,
the constraints and exclusion regions that we obtained in figure 4 should be considered as
the most conservative results. Nevertheless, since AN can reach a maximal value at the
order of 0.1 and the dependence of AN on m; and f is opposite to ANfﬂO, it justifies our
treatment as a good approximation to visualize the sandwiched window.

Before closing this section, we briefly comment on the applicability of our results to other
well-motivated scenarios that feature lepton-number violations. In the low-scale type-I seesaw
framework concerned here, the Dirac Yukawa coupling is highly suppressed by the active
neutrino mass, i.e., Y, ~ v/m;f/v < 107°. Such small couplings could be evaded, e.g., in the
framework of the inverse seesaw model [58]. In the inverse seesaw scheme, apart from three
RH neutrinos Ng, one introduces another three singlets Ni,. The Lagrangian is given by

.~ __ 11—
L=—-0Y,®Nyg — N, M NR — §NLY7</NES + h.c., (5.2)

where M is the mass scale of heavy sterile neutrinos. The Majorana mass p = Y3 f/ V2
explicitly breaks lepton-number symmetry and thus can be very small in a technically natural
way [59]. Assuming the hierarchy p < Y,v <« M, the active neutrino mass is given by:
m, ~ Y2v?u/M?, where we have suppressed the flavor indices for simplicity. Therefore, one
can have an O(1) Yukawa coupling Y, in the low-scale inverse seesaw scenario since the
active neutrino mass is naturally suppressed by small u. In this case, we find the coupling
between majoron and active neutrinos turns out to be g, ~ (/Y m,/f. Furthermore, if the
lepton-number breaking scale f is around the electroweak scale, then we have g, ~ m,/f,
which is the same order as the case of the type-I seesaw model [see eq. (2.6)]. Therefore, our
above calculation of A Neg from majoron decay is also applicable to the inverse seesaw scheme.

While the majoron cannot serve as dark matter in the low-scale type-I seesaw scenario,
the dark matter candidate can be readily accommodated in the model-dependent setup. In
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particular, under the inverse seesaw framework, some of the sterile neutrinos could be at the
keV-MeV scale and play the role of warm dark matter [60]. For such warm dark matter, its
contribution to ANeg is negligible due to the Lyman-« forest constraints [61].

6 Conclusions

In this work, we have focused on the low-scale seesaw scenario associated with a singlet
majoron from the spontancous global U(1)y, breaking, and investigated the constraints on the
lepton-number breaking scale f from the cosmological measurements of Nyg. This provides a
complementary approach to the collider searches for lepton-number violation and TeV-scale
Majorana neutrinos.

For the low-scale seesaw scenario, the breaking scale f is expected to be not far above
the electroweak scale, so the majoron can decay within the cosmological time scale. The
majoron interactions in the early Universe have two possible effects on Neg at the epoch of
CMB. The first is that the majoron abundance is accumulated through freeze-in production
(2v — J) after the electroweak gauge symmetry breaking, and later decays nonrelativistically
back to neutrinos (J — 2r). This possibility has been widely discussed in the literature,
where lower bounds of f were obtained. In this work, we mainly focused on the second
possibility that was usually neglected in previous studies. That is, the majoron possesses
a non-negligible primordial abundance, which is inherited from relativistic freeze-out and
later depleted into neutrinos. This situation is quite common within the minimal framework,
where the majoron gets thermalized in the SM bath through the interactions with RH
neutrinos or the Higgs boson.

We have demonstrated that the primordial abundance has sizable modification to A Neg
that can be probed by the current and future CMB experiments. If the majoron decays
relativistically, the contribution to AN.g was shown in figure 2, which only depends on
the freeze-out temperature. Things become more interesting if the majoron decays in the
nonrelativistic regime. As was shown in figure 3, the current Planck measurements could
already put severe constraints on the lepton-number breaking scale. More importantly, in this
case, a larger f would lead to a larger ANgg. Therefore, opposite to the freeze-in scenario,
upper bounds of f are obtained from primordial majoron decay. Furthermore, when both
the freeze-out and freeze-in abundances coexist, we obtain a sandwiched window for f in
terms of the majoron mass.

Given the forecast sensitivities of future SO and CMB-S4 experiments, we showed the
sandwiched windows in figure 4. It can be seen that null signals of ANgg in future CMB
experiments will push the low-scale seesaw scenario into a narrow sandwiched parameter space.
In particular, if the primordial majoron abundance is inherited from relativistic freeze-out
and later decays nonrelativistically into neutrinos, null signals of AN from CMB-54 is
able to fully close such a low-scale seesaw window.

Finally, although we have mainly focused on the majoron abundance in this work, it
is worthwhile to emphasize that any new light particle coupled to neutrinos or photons
can also be expected to result in a sandwiched window in the parameter space, as long as
the particle has abundances from both the UV sources and the freeze-in production and
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only decays after the neutrino decoupling. Such a general phenomenon deserves careful
investigation in the future.
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A Majoron interactions

In this appendix, we summarize the majoron interactions in the singlet majoron model.
Most of the results in this section are not new and have been given in the literature but
without details [31, 62]. Nevertheless, we would like to derive them here for the purpose of
completeness and self-consistency, and also to set up our notations.

A.1 Majoron-neutrino interactions

First of all, before the electroweak gauge symmetry breaking, the majoron only couples to
RH neutrinos. In this case, one can take the basis where the mass matrix of RH neutrinos
is diagonal, i.e., Yy = Yy = Diag (Y1, Y2, Ys). Defining the mass eigenstates N = Ny +
N§ = (N1.No,N3)", we can write Ng = PrN and N§ = PN with Prj, = (1£75) /2
being the projection operators. Then we have

NENgp = NPRN, NN =NPN. (A.1)

Therefore, from eq. (2.1), we arrive at the interaction between the majoron and RH neutrinos:

i —~ i oS
2 NGVNNG = - S VNN, . A2

After the electroweak gauge symmetry breaking, the Higgs boson acquires the non-zero

Ly=— N YN Ng +

VEV and the majoron will interact with active neutrinos through the flavor mixing between
active and sterile neutrinos. The relevant Lagrangian reads

iJ —
——=N&YNyNR + h.c.

- <”L N ) (]\/([)T ﬁi) (:;) 25 R

where Mp = Y,v/+/2 is the Dirac mass matrix. The 6 x 6 mass matrix in eq. (A.3) can
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(A.3)

be diagonalized via
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where m = Diag (m1, ma, m3) and M = Diag (M7, Ms, M3) are the diagonal mass matrices
for light and heavy neutrinos, respectively. Here we have explicitly split the 6 x 6 unitary
matrix U into four 3 x 3 sub-matrices V, R, S and U. From eq. (A.4) and the unitarity
of U, one can obtain the following conditions

ViV +58Ts =UlU+RR=1, (A.5)
VIR+STU =0, (A.6)
vinV" + RMR" =0, (A7)

which will be useful later. Changing from the flavor eigenstates to the mass eigenstates via
v, = Vir, + RN§,
Ng = S*Tf + U*Ng , (A.8)

the mass term in eq. (A.3) becomes

1/ =\ (m 0\ (%

ﬁmass = 75 <ﬁL Nﬁ) — N + h.c.
2 0 M) \Ng

_ Ly

24

1

(miﬁiw + My;NiNi) , (A.9)
1

where we have defined 7y, + Uf =V = (v, 10, V3)T and NR + NS =N = (Nl,Ng,Ng,)T. In
the meanwhile, the interaction term in eq. (A.3) becomes

iJ /— - — ~
— _ Y (D af crrt ~ oT T *~C *
Lr==3; (7ust + Ngut) (sms™ + UMUT) (S*9f + U*Ng) + hec.
i7 /- (sts str) [(m o)\ [(sts str\ (%
- _ 7 DL Nf{ e N + h.c.
2f vtsutu) \o M) \vts vtu) \ Ny

__g(fﬁ) 10\ (VIiVVIR)| [m 0
o\ o) \mtv orir) | \o &7

v vir\ | (7%
X (1 0) _ (Vv ViR P the., (A.10)
01 R'V R'R Ngr
where in the third line we have used the unitarity conditions in eqgs. (A.5) and (A.6). To simplify
L \T
the notation, it is helpful to define ny, = (&,Nﬁ) and ny, +nf = n = (n1,na,.. .,nﬁ)T,

where n; (for i = 1,2,3) correspond to the mass eigenstates of active neutrinos while n;
(for ¢ = 4,5,6) correspond to those of sterile neutrinos. Then it follows that nrn{ = nPrn
and n{n;, = nP,n. In addition, we define

ty vt —~ m 0
C= VIV VIR , M= . EDiag(m17m27-"7m6)' (A'll)
R'V R'R 0 M
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Note that the (4, j) element of C can be related to the elements of the unitary matrix U via

3
Cij = > Upilhyj , i,j=1,2,...,6. (A.12)
k=1
With above notations, eq. (A.10) can be reduced to
J_ e A N A Afo*]| . c
L= (M= (M +Mc*) + M| nf + e, (A.13)
Using eq. (A.7), it is straightforward to obtain cMc* = 0. Therefore, we are left with
Ly = —g [(rLL/\/lnL - nL/\/lrLL) - (nL (CM + MC ) ny, — ng (C M+ MC) nL)]
i O — o
— _g ”2221 {mmi%m - (CM + MC )z_j n; Prnj + (C M+ MC) y niPLnj]
oS _ . _
Y] > [mimivsng — (mi + mj) Re Cij Maysng + i (m; — my) Im Cyj ming]
ij=1
i 1
= _ﬁ Z ng {’)/5 (m, + mj) (5(5” — ReCij> +1i (’ITLZ — mj) ImCij] n;, (A.14)
ij=1

which is the general majoron-neutrino interaction given in eq. (2.4). Below we consider some
special scenarios of the general interaction:

e Fori,j=1,2,3, from eq. (A.12) we have C;; = §;; — O (M3 /ME) ~ &;;, leading to

.7 3
iJ .
Ly, =~ 27 Z MV YsV; - (A.15)
I =1
Therefore, the interaction between the majoron and the active neutrinos is approximately
diagonal and is suppressed by m;/f.
o Fori,j=4,5,6, we have C;j ~ O (M3/M3), therefore
/R
LinN =~ By > M;NivsN; , (A.16)
i=1

which means the interaction between the majoron and the sterile neutrinos is also
approximately diagonal.
o Fori=1,2,3 and j =4,5,6, we have C;; ~ O (Mp/Mg) and
i G
LN~ ﬁZijnﬁ(%Rer—I—iImCij)nj. (A.17)
i=1j=4

This describes the interaction among the majoron, the active neutrinos and the sterile
neutrinos.

The corresponding Feynman rules for majoron-neutrino interactions are summarized in
figure 5.
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Figure 5. Feynman rules for the majoron-neutrino interactions. The arc arrows denote the orientations
of fermion flow [63]. We have identified v; = n; and N; = n;43 (for i = 1,2,3). Note that when ¢ = j,
there is a factor of 2! due to the two indistinguishable neutrinos. This is why there is an additional
factor of (1 + ¢;;) compared with eq. (A.14).

A.2 DMajoron-Higgs interactions
When extended with a complex singlet S, the general scalar potential which obeys the gauge

symmetry and global U(1)[, symmetry is given by

V(®,8) = 2070 4 u25TS 4+ 22 (qﬂ@) +% (STS>2+/\¢,S (qﬂ@) (STS), (A.18)

where
GT f Iy
o +1iJ
d = . S=-= , (A.19)
B 4HiGY |
N R V2 V2
with ® the SM Higgs doublet. Substituting the VEVs into the potential we have
122122/\%4 )‘%4/\%‘22
Vv, )=V ({(®),(S)) = FHav + §ﬂsf + RV + @f + 3 v . (A.20)
The VEVs are determined by minimizing the scalar potential,
SV (0,f) = b+ 2 e (A21)
10 >\<I>S 0?2 =
- Y - 2 = A.22
from which we obtain
2 _ 2
5= \/ 2 Dwsty = Asiig) (A.23)
/\fb)‘S - )‘<I>S
2 _ 2
[ = \/ 2wty — Matts). (A.24)
A‘b)‘S - )‘<I>S

Note that in the limit of Agg — 0, the VEVs reduce to v = /—2u3, /A and f = /—2u%/As.
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To calculate the spectrum of scalars in the singlet majoron model, we substitute eq. (A.19)
into eq. (A.18) and keep only quadratic terms, obtaining

Aov? Apgv h
VO EUQhIQ 4 §f2p/2 + /\<1>svfh'p' — 1 (h' p/) 2 @5 f e (A.25)
2 2 2 Xosvf Asf? ) \P

where egs. (A.23) and (A.24) have been used to climinate the quadratic terms of G*, G°
and J. Therefore, we are left with four Nambu-Goldstone bosons

ma+ =mgo =my=0. (A.26)

Among them, G* and G will be absorbed into the longitudinal components of gauge bosons,
while J will be left massless because it does not participate in any gauge interaction.

The mass of J can be generated, for example, by introducing terms that explicitly break
the global U(1) symmetry [11, 18-21]. A simple way for generating the majoron mass is
to add a tree-level U(1)-breaking term:

\S2aTo (A.27)

such that the majoron gets a tree-level mass m2] = M2 /2. For my < 1 MeV, we arrive at
Ay < 10711, It should be mentioned that such a small coupling cannot help to thermalize
the majoron, as was pointed below eq. (2.12). In addition, while the majoron abundance
can be generated by the freeze-in Higgs decay h — 2J, it is much suppressed with respect
to the neutrino coalescence 2v — J, as the former already eases at T ~ O(myp) > my.
Therefore, the impacts on the cosmological evolution of the majoron from this simple case
can be safely neglected.

In addition, the mass cigenstates of the two CP-even neutral scalars {h, p} are given
by diagonalizing the mass matrix in eq. (A.25),

h\ [ cosf sind n (A.28)
p)  \=sin6cosd) \p' ]’ '

where the mixing angle results from the Higgs portal coupling Aeg, with

2 ps tan ( v )
tan20 = —5———— tanf = - | . A.29
)\(QP tan? 8 — A% I ( )

Moreover, the masses turn out to be

mn = \/Aev? cos2 0 + As f? sin? 0 + Aggvf sin 26, (A.30)

m, = \/)\Sf2 cos2 6 + A\pv2sin? § — Apgv fsin 26 . (A.31)

In the limit of Ao — 0 we have mj = v/ Apv and m, = VAsf.
The majoron self-interaction comes from the term proportional to Ag, while the interaction
between the majoron and the Higgs field comes from the term proportional to Agg. More
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explicitly, we have

2
Ly=— % (74420202 +477%0) - % (2J2G*G+ +J2(G0) + 22 2vJ2h’)

2
_ Mg %ﬂa—cﬁ _ Jes g (¢°)

8 4
1 2 .2 20 1 , : 2
~1 (/\scos 0 4+ Apg sin 9) J4p© — 3 (Asfcos® — Apgvsinf) J<p
1 1
~1 ()\qps cos? 0 + \gsin? «9) J2h? — B (Aosvcos @ + Ag fsin @) J2h
= i (As — Aag) sin 2072 ph.. (A.32)

The Feynman rules for the majoron self-interaction and majoron-Higgs interactions are
summarized in figure 6.

B Neutrino coalescence rate

The collision term of the neutrino coalescence 2v — J in eq. (3.11) is given by

n dgp d3p 1 d3p2

w—J = / (27)32E (27)32E, (27)22E, (27T)454|M|gu—>Jf1(E1)f2(E2) ) (B.1)

where 0% = §*(p1+pa—p), and the quantum statistics for J is neglected. f;(F;) = (e%i/Tv41)~1
are distribution functions of incoming neutrinos, with 7}, the neutrino temperature, and
the squared amplitude is given by

2 27”;27 3 2
(M3 =~ N2 > my. (B.2)
™=

To calculate eq. (B.1), we can first go to the rest frame of J. Suppose in the rest plasma frame
with 4-velovity u# = (1,0), the 4-momentum of the majoron is denoted by p* = (E, ). Then
changing to the rest frame of J with p’* = (my, 0 ) is equivalent to boosting the rest plasma
frame with «'* = (E/mj,—p/my). In the rest frame of J, we denote the neutrino 4-momenta
by pll’fz = (w1,2,¢1,2), where wy = wy = my/2, |¢1| = || = Bumy/2 are determined by the
momentum conservation, with 5, = /1 — 477%2 / m?] the neutrino velocity. Then, in the rest
frame of J, the collision term is given by

d3 D d3 q d3 o 4
no= 2m)4 6% (G + @) 6 ( 24/ 1@ + m? — )
CQV—)J / (27T)32E (27T)32w1 (27’(’)220.}2( 7T) (QI + Q2) ( |q1| +m; my

X |M|§y—>Jf1(p/1 : u/)fQ(pIQ ’ ul) ) (BB)

where the distribution function of the thermalized neutrinos in the rest frame of J reads

1 1
T P /T ] T (B2 aw/ma) /T 4

filp; - ')

(B.4)
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Figure 6. Feynman rules for the majoron self interaction and majoron-Higgs interactions, where 6 is
the mixing angle between two CP-even scalars p and h.

for i = 1,2. Integrating out |gs| and |gi| via d-functions, we are led to

n ﬂl/ 2 2dp ’ / ’
Gy = gasMBusy [ V52 [ dcos 670 )1 )
T, ©© 1 E;:i/"jup +1
v 2 p e v
1673 |M |2V~>J /; dpE eE/Tu +1 IOg B Bup | ° (B5)

pQTy + e 2Ty

Taking the Boltzmann approximation, we have

_ T, m>
Chyory = 5" RNV / A% — m2 e B/ ~ 167T3]{2 Zm Ki(my/T,), (B.6)

where in the last step we have assumed m; < my so that 3, ~ 1, and K is the modified

Bessel function.
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