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ABSTRACT: We study 3d quantum gravity with two asymptotically anti-de Sitter regions,
in particular, using its relation with coupled Alekseev-Shatashvili theories and Liouville
theory. Expressions for the Hartle-Hawking state, thermal 2n-point functions, torus wormhole
correlators and Wheeler-DeWitt wavefunctions in different bases are obtained using the ZZ
boundary states in Liouville theory. Exact results in 2d Jackiw-Teitelboim (JT) gravity are
uplifted to 3d gravity, with two copies of Liouville theory in 3d gravity playing a similar role
as Schwarzian theory in JT gravity. The connection between 3d gravity and the Liouville ZZ
boundary states are manifested by viewing BTZ black holes as Maldacena-Maoz wormholes,
with the two wormhole boundaries glued along the ZZ boundaries. In this work, we also
study the factorization problem of the Hartle-Hawking state in 3d gravity. With the relevant
defect operator that imposes the necessary topological constraint for contractibility, the
trace formula in gravity is modified in computing the entanglement entropy. This trace
matches with the one from von Neumann algebra considerations, further reproducing the
Bekenstein-Hawking area formula from entanglement entropy. Lastly, we propose a calculation
for off-shell geometrical quantities that are responsible for the ramp behavior in the late time
two-point functions, which follows from the understanding of the Liouville FZZT boundary
states in the context of 3d gravity, and the identification between Verlinde loop operators
in Liouville theory and “baby universe” operators in 3d gravity.
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1 Introduction

To better understand the quantum nature of gravity, we study exactly soluble simple models
of gravity. This machinery has been successful in low dimensional theories of pure gravity
with negative cosmological constant, where bulk degrees of freedom are absent. In particular,
fruitful results have been achieved in 2d Jackiw-Teitelboim (JT) gravity, please refer to [1]
for a nice review. The next logical step is to study 3d gravity, where only boundary graviton
excitations are involved [2]. At the level of action, the theory in the bulk is topological as
classical 3d gravity has a famous Chern-Simons theory formulation [3, 4]. In the presence of one
or two asymptotically AdS boundaries, 3d quantum gravity is related to copies of geometrical
Alekseev-Shatashvili theories, which corresponds to quantization for the coadjoint orbits of
the Virasoro group [5-10]. Recently, it has been proposed that exact quantization of 3d
gravity around on-shell solutions is equivalent to “Virasoro TQFT”, based on considerations
on quantization of Teichmiiller spaces [11-14].

In this paper, we mainly focus on 3d quantum gravity with two asymptotic boundaries,
where the spatial slice takes the topology of an annulus. It has been understood that in
such cases, 3d gravity is related to four copies of Alekseev-Shatashvili theories that are
coupled across boundaries [10, 15]. Via a field redefinition, the coupled theories become
two copies of Liouville theory with non-trivial mixing between the zero modes [15, 16], and
the path integral measure is reduced to flat Liouville measures from Alekseev-Shatashvili
symplectic measures [17]. Hence, Liouville theory plays a similar role as Schwarzian theory
in JT gravity [18]. Using this correspondence, we identify the Hartle-Hawking state in
3d gravity as a quantum state in two copies of Liouville theory, further uplifting exact
calculations in 2d JT gravity to answers in 3d gravity. We exhaust the list of calculations
here: partition function [18-20], correlation functions [21], Wheeler-DeWitt wavefunctions in
different bases [22, 23], factorization, modification of trace and entanglement entropy [24, 25],
and wormholes describing quantum noise [26]. As expected, dimensional reduction of our
3d results reproduces all the 2d JT answers [17, 27]. For off-shell configurations, we also
reinterpret the calculation for the spectral form factor [20] in [10] in terms of overlaps between
quantum states [28]. Further identifying the Verlinde loop operators in Liouville theory as 3d
“baby universe” operators, we propose a calculation for the late time two-point functions [28]
that is related to resolving the version of information paradox proposed in [29]. These results
have been more or less anticipated in [17, 21, 30, 31], in particular when Liouville theory
is used as an intermediate tool to calculate Schwarzian quantities. In this paper, we use



techniques developed in [14, 32] to show directly that such an identification follows from
a geometrical reasoning.

3d quantum gravity on two asymptotic boundaries is related to four copies of coupled
Alekseev-Shashvili theories summed over orbits [10, 15], which is further equivalent to two
copies of Liouville theory upon field redefinition [15, 16], provided that we consider the
correct path integral measure. In particular, the connection between 3d gravity and Liouville
theory includes description of Hilbert spaces, which further allows us to obtain expressions
for gravitational quantities, i.e. two-boundary torus wormhole correlators. The wormhole
contribution for the product of correlation functions is the variance that describes quantum
noise [26].

We also propose the Hartle-Hawking state in 3d gravity to be given by two copies of
the Liouville ZZ boundary states,

W) = e I Z2)e PN ZZ) (L.1)

where 2 is to distinguish the two Hilbert spaces, and the non-trivial pairing between different
chiralities is shown in figure 6. |ZZ), known as the ZZ boundary state, is a Liouville
conformal boundary state and is constructed from certain superposition of Ishibashi states
to ensure conformal invariance [33]. H is the Hamiltonian in Liouville theory and the tilde
is to denote a second copy. It is known that Liouville theory is not the holographic dual
of gravity. For one thing, Liouville theory has a flat spectrum whereas holographic CFTs
have an exponential Cardy density of states [34]. Hence, the Liouville thermofield double is
not the dual of Hartle-Hawking state as the information on the Cardy spectrum is encoded
in the ZZ boundary state.

The motivation of proposing (1.1) stems from having the partition function of non-rotating
Euclidean BTZ black holes as two copies of Liouville overlaps [21, 33]

Zyry = (ZZ)e P11\ 22)(Z 2| P12 2Z)

() ().

where x1 is the Virasoro vacuum character. Slicing the thermal partition function in half
in the thermal direction allows us to identify the Hartle-Hawking state in (1.1) naturally.®
To further understand this proposal, we notice that non-rotating BTZ metric takes the
following parametrization,

ds? = dp? + cosh? pe®*3 dzdz (1.3)
where from Einstein’s equations, ® has to satisfy the Liouville equation and the Liouville
field takes the following expression

o 4? 1
- Fsin2 (%”Im(z)) . (14)

The singular behavior of the Liouville field near Im(z) — 0;3/2 corresponds to the “ZZ
boundary condition” [33].

!Similar ideas have been considered in [31].



The asymptotically AdS boundaries lie at p — +00 respectively. In previous works [32, 35],
similar metric ansatz (1.3), known as the hyperbolic slicing, which we now call it the “wormhole
slicing” as it is used to study two-boundary observables, i.c. Maldacena-Maoz (or Fuchsian)
wormbholes connecting two asymptotic boundaries, and the semiclassical gravity calculation in
3d matches the large ¢ behavior of Liouville CFT quantities. Ref. [14] argue that the matching
of semiclassical behavior further implies an exact equivalence between the 3d gravity and
Liouville results at finite central charge ¢. The wormhole slicing (1.3) seems to provide a
contradicting geometry for quantities with one asymptotic boundary, i.e., the Hartle-Hawking
wavefunction and BTZ partition function. However, the ZZ boundary condition glues the
“two” halves that are denoted by p — +o0 respectively. In the language of boundary CFT,
this is can be viewed as the doubling or folding trick as shown in figure 10 [36-38].

With the wormhole slicing, we can study 2n-point correlation functions for below black
hole threshold probe operators that are inserted symmetrically across p = 0 in BTZ back-
ground. In gravity, this corresponds to the study of Einstein action coupled to 2n massive
probe particles whereas in Liouville theory, this corresponds to the computation of 2n-point
functions with two ZZ boundaries on a finite cylinder. The on-shell renormalized gravitational
and Liouville actions match after a careful treatment of counterterms. The exact matching
of these two results beyond semiclassical level follows from arguments in [14]. We can also
understand this exact matching directly using CFT techniques, and we provide a detailed
analysis for the case of two-point functions. The ZZ boundary state being a superposition of
Ishibashi states [39, 40], encodes all contributions from descendents. As an explicit example,
we show that a probe operator insertion between Ishibashi states is exactly equal to the two-
point torus conformal block, as expected from the doubling trick [36, 38]. In addition, the ZZ
wavefunction and together with the DOZZ structure constant [41] in the Liouville transition
amplitude becomes the crossing kernel [42-44]. These facts turn the Liouville overlap into a
two-point identity block on a torus. We like to mention that correlation functions in terms of
Liouville overlaps also match with the ensemble-averaged result that is proposed in [32].

The relation in (1.1) is further verified in semiclassical limit through the calculation of
Wheeler-DeWitt wavefunctions. We first analyze in detail the boundary value problem in
gravity, in particular paying attention to possible corner terms. We find two bases: the fixed
(®o, J) basis and fixed (E, J) basis, generalizing results in JT gravity [22, 23]. The (E, J)-
basis, including higher-dimensional wavefunctions, take the form of a “Pacman” geometry and
are studied in great detail in [45]. It is worth mentioning that the (F,J)-states in the bulk is
holographically dual to Liouville primary states, further giving us the following identification
between Wheeler-DeWitt wavefunctions and Liouville overlaps

VE(E, J) = (Ple 114 22)(Ple P4 2 2), (1.5)

where the matching involves analytic continuation of Liouville momenta P, P such that
P, P are related to the ADM mass F and imaginary angular momentum J of black holes
in Euclidean signature. In this work, we focus on the (®q,.J)-states, which again can be
studied using the wormhole slicing and matching with Liouville theory beyond large ¢ involves
techniques developed in [14]. For J = 0, @ is related to the renormalized geodesic length
between the “two” halves of the asymptotic boundaries at p — oo respectively at fixed



angular coordinates, making (®g, 0)-basis being the uplift of the fixed geodesic length basis in
JT gravity [22, 23]. With one extra dimension, the bulk slice of (®g, 0)-states is a hyperbolic
cylinder with scalar curvature R(®) = —2 instead of a 1d geodesic. With that being said,
in addition to determining the height of the hyperbolic cylinder, ®( also parametrizes the
waist. In Liouville theory, we define the state |®g) using Liouville zero mode wavefunction
(Do|P) = ¥p(Po) [40]. The on-shell action is the large ¢ limit of the corresponding Liouville
transition amplitude

WL (g) = (@ole /4 22) (Role 1/ Z22) . (1.6)

The connection of our results to 2d JT gravity is straightforward and can be achieved by
performing dimensional reduction or taking the near-extremal limit [17, 27], which we show
explicit examples respectively.

The (g, J)-basis involves mixing of moduli between the “two” boundaries, and the
spacetime geometry of the Wheeler-DeWit wavefunction corresponds to a quasi-Fuchsian
wormhole [32]

ds®> = dp® + cosh? pe®(#2) |dz + 4G N J (1 + tanh p)e“b(z’g)dﬂ2 . (1.7)
The on-shell action is given by
c c
_Sgrav(q)(): J) = _ESLiouv(z,'LD) (q)()v J) - ESLiouv(w,E)((I)Oa J) ) (1-8)

where (z, z) are the coordinates for the flat metric at the “left” boundary and (w,w) are the
coordinates for the “right” boundary. For the right hand side of the equation, we have one
action that corresponds to a Liouville field ®_(z,w) living on a complex metric dzdw and
its complex conjugate @4 (w, Z) living on another complex metric dwdz.

We use our two-sided Hartle-Hawking state to study the factorization problem in 3d
gravity. In terms of Chern-Simons theory, we find a local boundary condition that factorizes
the state into two single-sided gravity Hilbert spaces. Similar to the case in JT gravity, this
“cutting map” is not isometric [24]. We find the relevant defect operator that provides an
isometric factorization map: J : H — H ® Hpr, which subsequently modifies the definition of
trace to Z,, = Tr,(Dp") in the calculation of n-th gravitational Rényi entropy. Interestingly,
the extra single-sided defect operator D that we need for the correct calculation of trace
in gravity takes the following form

e o] ~ P P
D:/() dP,dP/ Z S]lp/S]Ug,lhp',Nﬁ|}Lp/,N1> <hp/,N1|<hp/,N1| y (19)
N1,Ny

where hpr, h B are the conformal weights for Virasoro primary operators and Ny, ]Vl denote the
levels for the descendents. Syps is the modular S-matrix element between identity operators
and primary operators. Implicitly, the defect operator projects to identity in the dual cycle in
the language of Chern-Simons theory, which further corresponds to zero flux projection. This
is exactly the topological contractibility condition in the thermal cycle in gravity. Furthermore,
the modified trace due to the defect operator matches with the proposed unique trace formula
for gravity in the context of Type Il von Neumann algebra with a trivial center [25, 46].



Using these ingredients, we calculate the entanglement entropy and obtain

Z. A1 A R
SEE = —0h ((Z:)”) ‘n:l = —Try,plnp+ Try,pInD, (1.10)

where p is the normalized reduced density matrix. The answer takes a similar form as the
FLM formula [47], and we show that the second term is the expectation value of an “area
operator” in a precise sense. This term reproduces the Bekenstein-Hawking area formula
at the saddle point in the large c¢ limit [48-52]. Since Syp is also the Plancherel measure of
the quantum semi-group SL;F(2, R) [31, 42, 43, 53-55], our derivation provides a canonical
interpretation on the Bekenstein-Hawking entropy as a topological entanglement entropy [56].
In particular, our derivation follows from the observation that the topological contractibility
condition in gravity can be imposed by an operator in 2d CFT constructed from modular
invariance. This is in the spirit of the original derivation of Cardy’s formula [34].

Our formalism is also useful for computing off-shell geometrical quantities. We explain the
Hilbert space description on the spectral form factor calculation [10] in 3d gravity, generalizing
the 2d results [20, 28]. In this procedure, we explain the roles played by the FZZT-boundary
states [40, 57], and find that Verlinde loop operators in Liouville theory are the holographic
dual of “baby universe” operators in gravity [25]. We follow a similar proposal to the 2d JT
case [28], and show that “double-trumpet” geometries that contribute to late time two-point
functions have density of states that exhibit level repulsion in random matrix theory, which
further governs the linear growth of correlators at late times, thus providing a potential
solution to the version of information paradox in [29] for 3d gravity.

The paper is organized as follows. In section 2, we review relations between 3d gravity with
two boundaries, Alekseev-Shatashvili theories and Liouville theory. In section 3, we explain
our identification of the Hartle-Hawking state with the Liouville ZZ boundary states. We
provide a geometric explanation for this identification, in particular using the wormhole slicing
of BTZ black holes to explain the gluing of “two” boundaries that arises from ZZ boundary
conditions. In section 4, we further generalize results of partition functions by including
operator insertions. Using wormbhole slicing, we first show the matching of semiclassical results
between gravity and Liouville theory results. We then use the torus two-point functions as an
explicit example to show how overlaps of Ishibashi states become the torus conformal blocks,
and how the ZZ wavefunctions and DOZZ structure coefficients in Liouville theory combine
together to give the crossing kernel. The combination of these gives us the exact formula of
the Virasoro identity block. Finally, we match Liouville correlation functions with results
obtained from an ensemble average interpretation of CFTs. In section 5, we show the correct
boundary value problem for the study of Wheeler-DeWitt wavefunctions in gravity. We find
two different bases for the wavefunctions: the fixed (®g, J)-basis and fixed (E, J)-basis. We
study the fixed (®g, .J = 0)-basis using the wormhole slicing, further matching the large ¢ limit
of the corresponding transition amplitude in Liouville theory. We then analyze the geometry
that corresponds to the fixed ($y, J)-basis using quasi-Fuchsian wormholes. In addition,
the dimensional reduction of the fixed (®g,JJ = 0)-basis to the geodesic length basis in JT
gravity is demonstrated. In section 6, we show how to factorize the two-sided Hartle-Hawking
state into two single-sided Hilbert spaces and find the relevant modification to the trace
formula in gravity through implementing topological contractibility conditions using CFT



data. Using these ingredients, we reproduce the Bekenstein-Hawking entropy formula in 3d
gravity from a canonical calculation. In section 7, we show how the Hilbert space formalism
can be used to study off-shell gravitational quantities. Further understanding the roles played
by the FZZT boundary states and identifying Verlinde loop operators as “baby universe”
operators, we reproduce the “double trumpet” spectral form factor in 3d gravity. Finally, we
give a proposal on the relevant off-shell wormhole geometry that contributes to the linear
ramp behavior in late time two-point functions, further suggesting a possible candidate in
resolving the information paradox in 3d gravity.

Note added. While this work was in preparation, the papers [31, 55] appeared, which
studied properties of the Hartle-Hawking state and the factorization problem from a quantum
group perspective.

2 3d gravity with two asymptotic boundaries as Liouville theory

We first review the canonical quantization of 3d gravity with two asymptotic boundaries,
which has been done in previous works [9, 10, 15, 16, 58, 59]. We focus on the connections
between 3d gravity, Alekseev-Shatashvili theory and Liouville theory, in particular on the role
played by Liouville zero modes and their connection to holonomies along the non-contractible
cycle in gravity.

2.1 3d gravity as coupled Alekseev-Shatashvili theories summed over orbits

The 3d Einstein-Hilbert action on an asymptotically AdS spacetime M is given by

B 1
N 167Gy

So / Py gR+2), 2.1)
M

up to boundary terms. We consider a spacetime manifold M with spatial topology of an

annulus A4, and parametrize the spacetime using coordinates (r,t,¢). Taking L, and L, to

be the generators in the fundamental representation of SL(2, R), and combine the dreibein

e¢® and spin connection w® into A“ and A% as

AY =% e, A% = w® — ¢, (2.2)

we construct algebra-valued one forms, A = A*L, and A= A°L,.
The Einstein-Hilbert action can be expressed as a difference of Chern-Simons actions
for A and A [3, 4, 10]

~ ~ 1
S0l A] = ~SeelA] + Sl ], Sell] = J-
!

/ TT(A/\dA—kgA/\A/\A) L (23)
M 3

up to boundary terms. More explicitly, we have

1

SeslA] = 167Gy

/ drdtd Tr (AgAy — ArAy +2A4,F,y) | (2.4)
M
where the dot indicates a derivative with respect to t and the field strength is given by

Fy= GTA¢ — 8¢Ar + [AT,A(f)] . (2.5)



The variation of the above bulk term gives?

1
8nG N

—08es[A] + 0Ses[A] = /M(EOM) + /8 " dtde Tr(A 0 A,

~ A6Ay) - /d |t T 454, — AAy). (20)

87G N

where OM is composed from two disconnected boundaries, outer circle 9M™ and inner circle
OM~, and each boundary has spatial topology S'. This is shown in figure 1. To impose
asymptotically AdS3 boundary conditions at the inner and outer circle, we need to add the
following boundary terms to the original action in (2.3)

~ - 1 ~
Spav[A, A] = — / dtde Tr( A2 Az—i/ dtde Te(A2 + A2), (2.7
by | ] 167G N Jors ¢ Tr(Ay + A3) 167Gy Jor- ¢ Tr(Ay + Ag), (2.7)
such that Ay — A, = Ay + Ay = 0 at IM* and Ay + A, = Ay — A, = 0 at IM~.
In the following, we focus on the gauge field A at OM™ for simplicity and the analysis
for the remaining gauge field A at the outer boundary follows suit. The terms at the inner

boundary also follow a similar story. The relevant terms are given by

1

S_[A] = e ( /M drdtde Tr (A¢Ar — A, Ay + 2AF, ¢) _ /d y

| dtdg n(Aﬁ,)) . (2.8)
Integrating out A;, we get F,., = 0 and the spatial gauge fields are pure gauge

A, =G19,G,

Ay =G Yoy + K(1)G, (29)

where G(t,r, ¢+2m) = G(t,r, ¢) is an element of SL(2,R) and K (t) parametrizes the holonomy.
With the above parametrization of gauge fields and F,4 = 0, the action (2.8) becomes,

1
487G N

S_[G, K(t)] = /M Tr (G-1dG)?

(2.10)
/ YT (G10,GG0G + 26T K(10-G + KA(1) .
oM

- 167G N

where 0_ = 04 — 0;. The bulk term is the Wess-Zumino term and with it being a total
derivative, it depends only on the boundary group element. We pick the “canonical” gauge
for the hyperbolic holonomy K (t) and the path integral for its conjugate momentum forces
it to be independent of time [10, 15]

K()=Lo=1 ((1) _01> , (2.11)

with v being a constant. Next, we use Gauss decomposition to decompose the group element
on the outer boundary, h(t,¢) = G(t,r = r°" ¢) [6, 9],

_ _ WLo L (10 exp(¥/2) 0 1X
h(t,d) = ¥ I=eVloeX s — (Y 1) ( 0 exp(—\I//Q)) (0 1> , (2.12)

2The relative sign between the two boundary terms comes from having the normal vectors to the boundary
to be outward pointing in global coordinates.



where Y, ¥ and X are functions of (¢,¢). Eq. (2.10) becomes

1

S_[h, K(t)] = e

1 1 q
/ dtde <75‘_\IJ(8¢\IJ +29) 4+ =%+ 26P3_X(8¢Y — 'yY)) .
oM+ 2 2
(2.13)
To make connection with the geometric Alekseev-Shatashvili theories that is related to

the quantization of coadjoint orbits for the Virasoro group [5-7, 9, 10], we introduce the
following parametrization for Y (¢, ¢)

Y(t,¢) = exp (= (fL(t. ¢) — 9)) , (2.14)

where f1(t,¢) is an element of Diff(S!) with periodicity fr(t,¢ + 27) = fr(t,¢) + 27. In
addition, asymptotically AdSs boundary conditions gives us the following constraints [58]

A, =0, Ag=L +L(t,d)Ly, (2.15)
leading us to
eV (0gY —Y) =1, 040 +vy=2X, L(td)=0sX+X>. (2.16)

With Y (t,¢) in (2.14), we can solve for X and e¥

1 1!
eV = —fi(t, 9)e AT X (4 9) = Svf - 55 (2.17)
L

!

where / indicates the derivative with respect to the angular coordinate ¢. With (2.14)
and (2.17), we obtain the chiral Alekseev-Shatashvili action [6, 7]

S_[fr] = — /BMertdgb [ fL =L+ ?O_fLfr| - (2.18)

327G N L

The Hilbert space for this theory corresponds to a Virasoro highest weight representation
with central charge and conformal weight [9]

3 c—1
2G N 24

(1++%) . (2.19)

Performing a similar analysis for the antichiral gauge field ﬁ, which is parametrized by a
Diff(S!) element fg on the outer boundary gives,

1
dtd
327G N Jom+ ¢ [

+ 704 iR - (2.20)

Silfrl =— +]{Rf

R

where 0; = 04 + 0.



anti-chiral [chiral]

@;;chiralj

Figure 1. On the annulus, the gravity Hilbert space is equivalent to a superposition of coupled
chiral(anti-chiral) and anti-chiral(chiral) Alekseev-Shatashvili theories that lives on the inner and
outer circle respectively.

The full action (2.3) is given by a sum of four coupled Alckseev-Shatashvili actions
on the boundaries,

Solfr. fr: fro frl = S—[f1] + S+lfr] + S—[fr] + St [frl,

1 a—fifz 2 /
3zﬂaN./f,M+dtd¢{ S0l

1 OThh
32wGN/aM+dtd¢ N 7 0+JriR| (2.21)
1 (O_J1LIL 2y 7 7
el A8 duds | =LLE 4 T0-Fu,
1 (04l | o oo
T3y g W0 | TS 0 n)

where f1.(fr) and fr(f) are functions related to the group element G(G) at the outer
and inner circle respectively.

We pay attention to how both the zero modes v and 7 couple the outer and inner
boundaries. As shown in figure 1, the pairing of the left and right-moving sectors between two
copies of Liouville theory at the two asymptotic boundaries follows a similar permutation. We
can write down the metric on the spatial slice that corresponds to fixed holonomy wormhole
geometries [10], as shown in figure 2,

2
ds® = (w sinh?(p) + W) d¢? + dp?, (2.22)

where p € (—oc,00) and ¢ ~ ¢+ 27. The whole theory consists of quantum states that comes

from the quantization of these wormhole backgrounds and we will show that the BTZ black
hole state can be viewed as a specific superposition of these wormhole states.

- 10 -



(Y +7)

Figure 2. The spatial geometry that corresponds to fixed holonomies K = vLg, K = ’?EB. The
length of the waist is w(y + 7).

The path integral for the quantization of the whole theory is given by [10, 17, 30]?

Pf(wa)Pf(WfR)Pf(wa)Pf(w]yR) eiSo[fL,fR;foR} 2.29)
U(1) x U(1) ’

Zaxg = /0 7 / DfLDfrDFLDfn

where wy is the symplectic two form for the geometric action of f. Subsequently, the Hilbert
space of four coupled Alekseev-Shatashvili theories is composed from a sum over two copies
of Virasoro modules*

H:/ dfy/ Y © HY™) @ (HY" @ Y™ . (2.24)
0 0

2.2 Coupled Alekseev-Shatashvili theories and Liouville theory

In this section, we show that under a field redefinition, the action and measure can be
described by two copies of Liouville theory [9, 10, 15-17, 30, 59].

The non-trivial coupling by the zero modes v and 7 respectively sheds light on how the
four fields (fz, fr, fL, fR) should be paired to give two copies of Liouville theory. Focusing
on the pairing of (fr, fr) through the superselection sector v, we introduce the following
field redefinition [17, 60, 61]

) n( & sinh?® (3(fz — fr)) )’

(2.25)
1 i 1,%,’, / / v
Oo(t,¢) =5 | 77 — 5 — (Lt fr)coth{ -(fL—fr)) |,
b*\f, fr 2
Under this field redefinition, the symplectic two form becomes
Wy = /d¢ Olg N OD . (2.26)

which is the correct flat measure for Liouville theory. The second pair labelled by tildes
follows a similar non-canonical field redefinition, i.e. (fr, fr) = (®,1I3). The action in (2.21)

3We have modded out the U(1) redundancies in the field redefinition for integration space of (2.23), see

(6.21) and appendix D of [30].
“The signs of v and 4 are chosen to correspond to smooth and nonsingular bottleneck geometries [10]. In
Liouville theory, this also eliminates the double counting on degenerate v and -y states.
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then becomes

1 . 5
So =g / dtdg (Tpd — He + T5® — Hy)

1 . (1 197 9
= — [ dtdp |Te® — | VTG + - —5 + 5 — 25
877,/ (/)<‘P (2 e T b2>

. 1 9r o 1(512 65 5//

where the path integral of the four coupled Alekseev-Shatashvili theories becomes two copies

(2.27)

of the phase space path integral form of Liouville theory, which is equivalently

1

50 = 5o

/dtdg/) G(qﬂ — %) —e? 420" + %(52 — 7)) —e® 4+ 25”) : (2.28)

In conclusion, we have shown that 3d gravity with two asymptotic boundaries is equivalent
to two copies of Liouville theory, where the left and right-moving sectors of each Liouville copy
are paired across the boundaries as shown in figure 1. This is similar to the correspondence
between Chern-Simons theories and WZW models for compact gauge groups where we need
to further impose gauge constraints to get gauge invariant wavefunctions in the bulk theory,
which further translates to imposing Ward identity on the boundary [62, 63]. This provides
the famous identification of the bulk Hilbert space with boundary conformal blocks, where
in particular for gravity, the bulk Hilbert space is given by Liouville conformal blocks [11].
In later parts of the paper, we show that the state in gravity is given by a superposition of
Ishibashi states, which has the same energy for the left and right-movers [39].

Before we move on to the study of wavefunctions, we want to point out that the
identification of the total bulk Hilbert space as two copies of Liouville theory is useful
in computing observables. For example, the exact two-boundary wormhole correlation
functions can be obtained by taking trace in the presence of operator insertions in Liouville
theory [14, 32]. In appendix B, we show an example of a two-boundary torus wormhole that
is obtained from the product of torus two-point functions, and in the Schwarzian limit b — 0,
we reproduce wormholes in JT gravity that have two insertions on each of its disk boundary.
It is mentioned in [26] that wormholes are the gravity dual description of quantum noise.

3 Hartle-Hawking state in 3d gravity

3.1 BTZ partition function and the Liouville ZZ boundary states

Euclidean non-rotating BTZ black hole is topologically a solid torus with a contractible
Euclidean time 7 circle, whose periodicity is 5. As shown in previous works [8-10, 27, 64],
the one-loop exact partition function for non-rotating BTZ can be expressed as a product

Zprz = X1 (-%) X1 <%) ; (3.1)

of vacuum characters
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with modular parameter 7 = % The Virasoro vacuum character xq is the trace over the

identity module of the Virasoro algebra:

_ Lo—< (1 — q)q_ 2 2miT
x1(7) = Try, (¢F° 21) = — L~ ¢=¢*"", (3.2)
1[( ) Hi ( ) ,,7(7_)

and

n(r) = /% [[(1 =), (3.3)
n=1

is the Dedekind eta function.

We can define the Hartle-Hawking state for non-rotating BTZ by slicing open the path
integral for the partition function at the time reflection symmetric position. The spatial surface
where the slicing occurs has the topology of an annulus. In section 2, we reviewed the relation
between the bulk Hilbert space of gravity on an annulus to the Hilbert space of two copies of
Liouville theory, where a non-trivial matching of chiralities across the boundaries is involved.

The product of vacuum characters takes the following expression in terms of Liouville
theory states

a(=2)n(3) = 22zieh 51220224051 22) = (2211 22)(2 21 72)

(3.4)
where |ZZ) and |ZZ) are the two copies of ZZ boundary states in Liouville theory [33], and
H=H;+Hr=Lo+ Lo — 15 is the total Hamiltonian for Liouville CF'T. For non-rotating
BTZ, ¢ = q is real. We will comment on complex ¢, i.e. the case for rotating BTZ black
holes, in the end.

We first briefly review the ZZ boundary states in Liouville theory. Zamolodchikov and
Zamolodchikov (ZZ) quantized Liouville theory on a Poincare disk and found a solution for
the quantized geometry [33]. The ZZ boundary condition for the classical solution is defined
at the location at which the Liouville field blows up. To be more specific, with |z| = 1 being
the radius of the Poincare disk, the ZZ boundary condition is

4

P(z,2)
T T A=

(3.5)

and the boundary is at |z| — 1. With the holomorphic coordinate transformation w =

fz) = —izjri, we map the Poincare disk to the upper half plane, and the ZZ boundary

condition can be stated as

- 1
P(w,w
So(wd) T (3.6)

which is defined on the real line w = w, as shown in figure 3. In quantizing the Liouville field
in (3.5) and as shown in figure 4, we can change to the closed string channel, and view the
77 boundary condition as giving us the ZZ conformal boundary state that satisfies [38, 39]

(Ln—L_p)|Z2Z)=0. (3.7)
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Figure 3. (Left): on the Poincare disk, the ZZ boundary condition (indicated by orange line) is
imposed at |z| — 1. (Right): alternatively, we can conformally map the disk to the upper half plane
and impose the ZZ boundary condition on the real line w = w.

1 —_—
1

!

/

pa

Figure 4. From the open-closed duality, we interpret the boundary condition in the open channel as

a boundary state in the closed channel [38].
A complete set of solutions to (3.7) is given by Ishibashi states | P)), labeled by the normalizable
primary operators in Liouville theory,

V, = e20® — 2(F+iP)e (3.8)

where P > 0, and the Ishibashi states are normalized as

P2

(Plg=~5|Q)) = xp(7)6(P — Q) = %5(13 ~Q). (3.9)

Using the expression of the bulk one point function (V,(w)) in the presence of the ZZ boundary
condition, the ZZ boundary state can be written as a superposition of Ishibashi states [33]

22) = /OOO AP, (P)|P)) | (3.10)

where the Z7Z wavefunction is given by

) —iP/b 1

Uy7(P) = 2°Mim P (mpy(b?) T(1 = 2iPb)[(1 - 2iPJb)’

(3.11)

and y(z) = T'(2)/T(1 — ). p is the cosmological constant and it scales as p = (47b*)~! in
the semiclassical limit b — 0. We can express the Z7Z wavefunction in a compact form

Vzz(P)=/S1pSL(P), (3.12)
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where Sqp is the modular S-matrix

2l ) . (3.13)

S1p = 4v/2sinh(27 Pb) sinh (T

Besides encoding the Cardy density of states in holographic 2d CFTs, Syp is also the

Plancherel measure on the quantum semi-group SLJ(2,R) [31, 56]. Sp(P) is a pure phase

known as the Liouville reflection amplitude

aipp T (14 3P D(1 + 2iPb)
r(1-Z2)T(1 - 2iPh)

S1.(P) = — (mr (1)) (3.14)

In this paper, we consider another convention in normalizing the Liouville primary
operators [32]
o p20® 2(F+iP)® 5.15)
VS VSuP) '

In addition to putting the formulas in a much compact form, V, is Hermitian due to the

reflection property of Liouville primaries V, under P — —P [33]. Hence, they are more
natural to be considered in the context of AdS/CFT. In terms of the normalized operators
Va, the ZZ boundary state is given by®

22)= [T aPw, (PP = [T aP'VEie P, (3.16)

which takes the same form of the Cardy state for the identity operator in rational CFTs [65].
We can easily check that

(ZZ)qb 5| 22) = /O T APAQU 1(P)y,(Q)((Pld™511Q))

= [T apsipxetn) = (1) (3.17)

T

where the above result can also be anticipated from the doubling trick, as shown in fig-
ure 5 [17, 36, 38]. In section 4, we demonstrate the doubling trick works similarly with
operator insertions, thus relating operators between the ZZ boundary states to Liouville
conformal blocks.

3.2 Hartle-Hawking state from the Liouville ZZ boundary states

With the partition function of non-rotating BTZ written as a transition amplitude in (3.4), it
is natural to slice open the path integral and expect an identification of the Hartle-Hawking
state with the evolved Liouville ZZ boundary states

Niwll
NS

~ Lo_ < Lo _ ¢ =5
(WhJ) = q2 " %|Z2)q2 w|Z7)

7 (3.18)
= e P 72V PHIY 7 7)

5We will use |P’) to denote the states related to the normalized primary operators V.
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Figure 5. The transition amplitude of the ZZ boundary states, as shown in (3.4), has the topology
of a cylinder and is equal to the identity character defined on the torus via the doubling trick.

chiral (anti-chiral)

22 (22

Figure 6. As shown, the chiral(anti-chiral) and anti-chiral(chiral) sectors of e=#H/4|Z Z)(|ﬁ))
live on the outer and inner circle of the Hartle-Hawking state respectively. The ZZ boundaries are
indicated by the orange S* circle in the angular direction. The two chiralities move in opposite thermal
directions, hence, we see a mixing of chiralities between the two boundaries on a constant time slice.

where = is used as the two states live in different Hilbert spaces, i.e. one being a gravitational
bulk state and the other being a boundary Liouville state. With |ZZ) as one of the copies
of the boundary states that lives on the spatial circle S, e ##/4 evolves the ZZ boundary
state such that the chiral and anti-chiral sectors of |ZZ) live on the outer and inner circle
respectively, as shown in figure 6. This also applies to |Z7 ), but e PH/A eyolves the moving
sectors with opposite chirality. Hence, there is a mixing of left and right-moving sectors
between the two copies of Liouville theories on the two asymptotic boundaries of the torus.

The relation between gravity and Liouville theory has been anticipated in [21, 66], where
Liouville theory was argued to be living on the kinematic space of Schwarzian theory, and
observables in JT gravity take the form of certain limits of Liouville quantities. In fact, the
Hartle-Hawking state in JT gravity follows a similar logic, and can be derived from considering
the near extremal limit of our result in 3d gravity [67, 68].° In this paper, we show why this
duality is naturally manifested from a geometrical point of view in 3d gravity, provided we
view Euclidean BTZ as a “two-boundary wormhole” and use techniques developed in [32] to
match the large ¢ behavior of Liouville quantities to results of semiclassical 3d gravity. The

SWe thank Henry Lin for mentioning this to us.
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further exact identification between 3d gravity and Liouville at finite ¢ will be a consequence
of formulating 3d quantum gravity as quantization of the cotangent bundle of Teichmiiller
space, i.e. “Virasoro TQFT” [14].

Before we move on, we want to make an important comment. The Hartle-Hawking
state was famously shown to be holographically dual to the thermofield double state of the
holographic boundary CFT [29]:

(WESS) = > e PE 2B |En)s (3.19)
n

We clearly see a similarity in expression between (3.18) and (3.19), as |ZZ), being constructed
from a superposition of Ishibashi states, have the same left and right-moving energies, both
for the primaries and all of the descendents. However, Liouville theory is not the holographic
CFT dual of 3d gravity, and (3.18) is not the thermofield double state for 3d gravity. For one
thing, Liouville theory has a flat spectrum and gravity exhibits a Cardy spectrum [34]. In
addition, the identity operator is absent in the spectrum of normalizable operators in Liouville
theory [69]. However, we later will see that the ZZ boundary state in Liouville encodes the
Cardy behavior in addition to projecting onto the identity module in the dual channel.

3.3 BTZ as a Maldacena-Maoz wormbhole

In the absence of matter sources, Einstein equations in 3d gravity can be satisfied if we
use the “wormbhole slicing” ansatz

ds? = dp? + cosh? pe®*?dzdz (3.20)

where ®(z, z) satisfies the Liouville equation

0% = - . (3.21)

In [32, 35] and illustrated in figure 7, the above “wormbhole slicing” allows us to get an
identification between the semiclassical two-boundary wormhole gravitational path integral
and Liouville correlators. By solving 3d gravity with “Virasoro TQFT”, the exact matching
between the two theories beyond large ¢ follows naturally [14].

Here, in matching Liouville quantities with results from 3d gravity with boundaries, we
make one further identification between the ZZ boundary condition in Liouville theory and
the Hartle-Hawking “no boundary” condition in gravity [70].

We use the BTZ partition function as a concrete example. The upper half-space con-
struction for non-rotating Euclidean BTZ was studied in [71, 72]. The metric is given by

dr? 95,9
e + r2d¢?, (3.22)

ds* = (r? — ri)dﬁ% +
where ¢ ~ ¢ + 27 is the periodic identification of the spatial circle, and the Euclidean time is
also identified, i.e. 7g ~ 7 + 3, such that we have a smooth metric near the horizon. f is
the inverse temperature of the black hole and is related to the horizon radius r4 through

= 4T /Tr. € Spacetime metric 1S 10Ca 1sometric to € €rpolic space aln ence,
8 = 2m/ry. The spaceti tric is locally i tric to the hyperbolic space H? and h
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Figure 7. The wormholes in [32, 35] have two asymptotic boundaries. The Maldacena-Maoz
(Fuchsian) wormhole with three defects on the two spherical boundaries calculates the variance of the

three-point functions in the CFT ensemble.

we can perform a coordinate transformation to bring the Euclidean BTZ metric to the upper

half-space metric of H? in Poincare coordinates,

2.2
r2—r
T=\—F ter+? cosry TR,
r
2 _ 2
r2—r
y=N\ e T+l sinrTy,
r
w=-—Te+?
r

We further introduce spherical coordinates (R, ), x) for the upper half-space
(z,y,w) = (Rcoscosy, Rsincosy, Rsinx),

where the Euclidean BTZ metric becomes

1 1
ds? = E(dgg2 + dy? 4 dw?) = 72X(dex2 + R%cos? ydy?® + dR?), (w>0) .

R?sin

~ 18 —
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9

Figure 8. Although BTZ black holes have only one asymptotic boundary, they have a “wormhole
description as the ZZ boundaries (indicated by the disconnected orange lines) are glued together.

The periodic identification of ¢ requires R ~ Re>™+, whereas the periodic identification of 75
requires ¢ ~ 19 + 27. Hence, as shown in figure 8, the BTZ black hole is the region between
the two domes in the upper half plane. To see the connection with the “wormhole slicing”

in (3.20), we introduce the following coordinate transformation

tan 1) = tan (%Im(z)) tanh p,

2m

R=¢s @ (3.26)

2
sin x = sechp sin (;Im(z)) ,
where Re(z) ~ Re(z) + 27 and Im(z) € [0, g]
The BTZ metric takes the following form,

ds® = dp? + cosh? pe® 3 dzdz | (3.27)
with the Liouville field being

o 472 1

B sin? (%’rlm(z)) - (3:28)
We also like to point out the connection between the solid torus picture in figure 5 and the
upper half-space construction in figure 8. The radial direction R in spherical coordinates is
the Schwarzschild angular coordinate ¢ of non-rotating BTZ. The polar angle x is the radial
direction r, where y = 7/2 is the location of the horizon r = r; and v is the azimuthal angle
that is responsible for the thermal direction. The ZZ boundaries are located at ¢ = 0; m, as
indicated by the disconnected orange lines (They are S! circles because of the identification

in the spatial direction.) in the figures.
As shown in figure 9, the ZZ boundaries are located at Im(z) = 0 and Im(z) = g on
the cylindrical surface respectively and they glue the “two” copies of cylinder along their S'
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Figure 9. (Left): each Im(z) = constant leaf is a hyperbolic cylinder, with its two ends living on the
“two” asymptoticaly AdS boundaries respectively. (Right): each p = constant leaf is also a hyperbolic
cylinder, with the ZZ boundaries (orange S* circles) lying at both ends at Im(z) = 0 and Im(z) = 3/2
respectively.

Figure 10. (Left): the asymptotic boundary region of the upper half-space construction has the
topology of a torus where the concentric circles are identified with each other. (Right): using the
folding trick [37, 38], we can fold the anti-chiral half of the partition function in the lower half plane
onto the upper half plane, allowing us to have a non-chiral Liouville transition amplitude (one SL(2, R)
factor in gravity) on the upper half plane. We can also use the folding trick to fold the chiral half in
the upper half plane onto the lower half plane, getting another copy of non-chiral Liouville theory
(another SL(2,R) factor in gravity) in the lower half plane. In the end, there is a full Liouville theory
in the upper and lower half plane respectively, which corresponds to the two SL(2, R) factors in gravity.

at the asymptotic boundary. Furthermore, the periodicity of the thermal circle is restored
through the gluing. As shown in figure 9, with each constant p slice as a hyperbolic cylinder
on H?, we can think of the upper half-space construction of the bulk being composed from
constant p slices where p acts as an angle that rotates the hyperbolic cylinder e®dzdz around
the ZZ boundaries.
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Figure 11. Geometric description of holographic thermal 2n-point functions in section 4 from
wormbhole slicing (n = 2 in the diagram).

Figure 12. Geometric description of Wheeler-DeWitt wavefunction in the ® basis in section 5 from
wormbhole slicing.

For the computation of BTZ 2n-point functions in section 4, we show that there are
two ZZ boundaries residing on the ends of each p — 4oc cylindrical surface, in addition
to n operators inserted in each cylindrical region. This is illustrated in figure 11. Similar
to the BTZ partition function, the dual description of 2n-point function is just Liouville
correlators between two copies of ZZ boundaries.

For the study of Wheeler-DeWitt wavefunctions, we just need to impose the ZZ boundary
condition on one end and another boundary condition that corresponds to some bulk quantum
states on the other end of the cylindrical surface. We show an example of the ®y-states in
section 5.1, where through a direct calculation, the gravitational path integral matches the
transition amplitude between the ZZ boundary state and another state in Liouville. This
wormbhole description for the wavefunction is illustrated in figure 12 and 13.
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Figure 13. (Left): the corresponding domain of the wavefunction at the asymptotic boundary.
(Right): the corresponding cylindrical region of the wavefunction on the upper half plane.

3.4 Gluing of AdS boundaries by ZZ boundary condition

In the above discussion for BTZ black hole, we like to avoid a naive geometrical contradiction

143 [3

on viewing BTZ as a “wormhole”. Namely, the “wormhole slicing” is used to describe
geometries that have two asymptotic boundaries at p — +o0o respectively (figure 7) [32, 35],
whereas the BTZ black holes have only one asymptotic boundary (figure 8).” The reason for
this discrepancy is that when we impose the ZZ boundary conditions at the two ends of the
asymptotic cylindrical surface, the ZZ boundaries at p — +o0o respectively are automatically
glued together. This is Cardy’s doubling trick [36] in the language of CFT, where we can
view correlation functions on the upper half plane with conformal boundary conditions on
the real axis as correlation functions for a chiral theory on the whole plane, which also comes
naturally from the Ward identity. In gravity, this corresponds to the “transparent boundary
condition” [35], and the gluing of the ZZ boundaries can be seen through the shrinking of the
codimension one cap formed by the ZZ cutoff ey.8 As a result, the distance between the “two”
halves goes to zero and the ZZ state being a “no boundary” state is justified.

The “wormhole” construction of BTZ has the topology annulus times interval Sé X
I, x I, = Ay p X I, which is what we expect from canonical quantization in section 2.
The spatial S! circles of constant p slices are identified at 7z = 0 and 75 = 5 respectively,
resulting in the geometry formed by foliation of constant p slices to be a solid torus. From
the CFT point of view, the ZZ boundary condition ensures only the identity module runs in
the dual open channel and with the doubling trick, we get the vacuum conformal block in the
7 channel of the torus. Using the language of Chern-Simons theory, this ensures only the

trivial Wilson loop exists in the 75 cycle, which further corresponds to contractibility in the

A similar problem has been addressed in [35] for the hyperbolic slicing of global AdS.

8Geometrically, the gluing is seen through the extrinsic curvature contribution on the codimension-one
cap formed in the bulk by the ZZ boundary conditions. The contribution is equivalent to the bulk+AdS
boundary terms of the cylindrical region that we carve out in regulating divergences near the ZZ boundaries.
As a consequence, there seem to be “two” asymptotic regions but the “two” halves are glued together by the
zero-size cap formed by ZZ. This is demonstrated in appendix E.
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bulk of Euclidean black holes. In [73], it is stated that holographic duality has been taken
into account when we require a contractible Euclidean time cycle in ensuring a smooth near
horizon metric. Contractibility in the bulk plays an important role in quantum gravity, in
particular in the Euclidean path integral derivation of the Bekenstein-Hawking entropy [74].
In section 6, we see how this condition is related to the definition of trace in gravity and
its interplay with modular invariance.

4 Correlation functions and the identity block

We have shown in section 3 that the overlap between the ZZ boundary states on a finite
cylinder gives the chiral identity character in the dual channel, agreeing with what we expect
from holography duality and doubling trick. In this section, we further show that the ZZ
boundary states provide an easy way to capture the 2n-point functions for below black hole
threshold scalar operators (we will also call them scalar probe operators) in holographic CFTs.
From the doubling trick, we expect the expression to be given by the corresponding Virasoro
identity block in certain channel, just as what we obtain from modular transformation on
vacuum characters in one-loop partition function.
We propose the equivalence of the following three equations

g(Qn)

a1,y ,Oln(zh T Z”)
= (Ohay hay (21,21)Oh by (21,21) -+ O, (205 20) Oty ey (05 20)) 8BTZ

= (Val (Zla 5l) e Van (Zna 5'IL)>['3/2,ZZ<‘A/UQ (217 Zl) e Van(fE?u ZTL)>/3/2’2VZ )

= ¢, " (Oha, ho, (21,21) O oy (21, 21) - - - Oh ey (2105 Z0) Oh iy, (s z)) 317, -

In the first line, we have the expectation value of scalar fields Ohal,hal (#1,21) in gravity,
located at boundary points z; = ¢; 4 i7; in BTZ background where (-)g gtz indicates the
thermal expectation value in BTZ with inverse temperature §. In this paper, we will
consider below black hole threshold operators, with large conformal dimensions, such that
1 € hqg, < ¢/6 and m; &~ 2h,,. These fields in the bulk correspond to massive particles
that travel on geodesics. When they are heavy enough, they backreact on the geometry and
produce conical deficits, hence, we will also call them “defects” in such cases. We introduce
the defect strength n € [0,1/2] as in (A.3) following [32]. In the second line, we have the
rescaled Liouville operators

\% 1
N = ’ ne 07 210
v, = VSL(P)po(P) [ ] (4.2)

Ve P real .

VSL(P)’

where we use po(P) to denote the density of states, i.e.

2r P
po(P) = 42 sinh(27 Pb) sinh (%) , (4.3)
in this section. Notice in (4.2) that there is a further rescaling of the probe operators by

\/% compared to operators with real P, i.e. operators above the black hole threshold, and
o
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the reason will be clear later. The second line in (4.1) calculates the insertion of rescaled
Liouville operators between the Hartle-Hawking states, where more precisely (-)g /2,77 Teans
the expectation value obtained from the ZZ overlaps defined on a cylinder with height 5/2.
In other words, we propose to represent each pair of scalar probe operator insertions by
a product of two Liouville operators

Ohay by (21, 21)Ony ha, (31,21) — Vau (21, 21)Vay (21, 21) - (4.4)

In the third line of (4.1), we have the ensemble-averaged expression in large ¢ CFTs where
Ohaphal (21, 721) is a scalar operator with conformal dimension Ay = 2h,,. ¢ is an overall
constant that is independent of the conformal weights and its expression is given in appendix A.
In this work, we focus on operator insertions that are symmetric in time reflection, which
is the analogue of the two-boundary Fuchsian wormholes in [32]. The situation for more
general operator insertions and spinning operators are discussed in the end, and will be
left as future work.

To verify the relations in (4.1), we first compute the on-shell action that has 2n operator
insertions at the AdS boundary of BTZ. We adopt the “wormbhole slicing” metric in (3.27)
and with the associated Liouville solution from Einstein’s equations, we reproduce Liouville
correlators in the semiclassical limit, both for heavy and light probe operators. In doing so,
we have carefully taken into account the renormalization of operators with the associated
counterterms, generalizing results in [32] by considering regions with boundaries. To under-
stand the exact equivalence at finite ¢ [14], we study the two-point function as an example in
operator formalism in detail. We show the insertion of Liouville primary operators between
Hartle-Hawking states gives the corresponding CFT identity block in the dual channel. From
the doubling trick, the scalar one-point function of V,, between Ishibashi states is equal to
the chiral two-point Virasoro block on the torus. The product of the ZZ wavefunctions gives
the modular S-matrix and combining with the DOZZ structure constant, we get exactly the
conformal crossing kernel [42-44]. Hence, two copies of one-point function V,, between the
77 boundary states on a finite cylinder gives us the corresponding two-point identity block
on the torus in the dual channel. Finally, we also match Liouville correlators obtained from
77 overlaps with the ensemble averaged result of holographic CFTs.

4.1 Heavy probe operators

We first consider heavy probes” where o = 1/b is of order O(b~!) in the semiclassical limit.
Similar to [32], we use the wormbhole slicing ansatz (3.27), and the probe fields are inserted
at z=z; fori=1,--- ,n. In the presence of these fields, Einstein equations for a hyperbolic
metric require the Liouville field ® to satisfy the Liouville equation with sources

~ o
0P = % —4rGN zl: m¢5(2)(z - z), (4.5)

where m; = n;/2Gy is the local mass parameter that shows up in the worldline action
of the particle 1.

9The conformal weight for probe operators are all below the black hole threshold ¢/6, the “heavy” refers to
operators with h/c held fixed in the semiclassical limit.
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Figure 14. (Left): n = 2 operators are inserted on each cylindrical region of the asymptotic boundary.
With the ZZ boundaries (indicated by orange line) being glued together, we have a total of four
operator insertions on the asymptotic torus. (Right): with n = 2 operators between the ZZ boundary
states on the upper half plane, we view the correlation function as non-chiral Liouville transition
amplitudes.

The ADM mass of the particle is related to the conformal dimension of the dual operator
through [32]
Az’ = mi(l - 2GNmi) . (46)

The geometry for the solution is shown in figure 11, and we expect the answer to be given
by Liouville theory defined on the boundary as figure 14.
The properly normalized gravitational action is given by

—S9n = —Shulk — Sbdry — Szz — Saefect — Sct (1) » (4.7)

where the terms are defined as

\/§(R+ 2) )

_ S —
P 167Gy Jexr

_sbdryz%avongﬁ(@—lw;/mﬁ@) ,
VhEK, (4.8)

S, —
2z 87GN Js,,

1
—Sdefect = Z (167TGN

— See() :2G Z( —2m:) In(1 — 2n;) — 2 In € + 202 lnel+ln2—1) .

VIR — m; / dlZ) ,

D;xR

We define the regions B = {|z — 2| > €;; X = Re(z) € [0,27);Y = Im(2) € [ey, /2 — €]}
and D; = {|z — 2| < € }. Lzz is the surface that describes the ZZ boundary conditions that
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glue the “two” asymptotic halves together and is located both at Im(z) = €,;5/2 — €. €, is
introduced as a cutoff for the carved out cylindrical region to account for the divergences
from the ZZ boundary conditions and ¥ 7z glues the familiy of constant p leaves at the cutoff
surface. As argued in section 3, this is equivalent to studying the full BTZ background
without the carved out cylindrical region ¥ 7. We provide a careful analysis in showing the
equivalence of these two perspectives in gravity in section 5.

We follow a similar technique to [32] in determining Sc((7;) to renormalize the defect
operators and the steps are shown in appendix C. The Liouville field has the following
behavior as we approach the defects at z; and the ZZ boundary condition respectively,

B(2, %) —4n;In |z — z] Z = 2 (4.9)
2,Z) ~ )
—21n(ey) Im(z) = € B/2—¢, .

As mentioned, we want to relate the 2n-point function to correlators in the CFT. We choose
an AdS cutoff pg(z, z) that is dependent on the behavior of the Liouville field @,

n2-2 Z— Z| > €
O S I i (4.10)
InZ+2n;lne — 5 |z — 2| <€,

where C; are the O(1) terms of the expansion of the Liouville field around the defect. Away
from the defects, the induced metric at the asymptotic boundary p = +pg(z, 2) is flat,

1 e? 1 - 2
dspary ~ (62 + ;) dzdz + ; (0%dz + 0®dz) . (4.11)

The behavior of the particle in the bulk are given by geodesics. It is shown in [32] that
the worldline action of each particle i cancels the delta function concentrated at z; from
the scalar curvature due to defect and hence,

_Sdefect =0. (412)

The sum of the bulk and AdS boundary terms is given by
! /d iz (L0000 + ) - La@ow) - (1+1 6)
= _ = _c n<
Gy Jo T\ )7 2 2) )"
1 1 = 1=
== 7 ( (000D + e®) — ~0(P0D :
o Lz <4(a 00 + )~ (@0 )) (4.13)
- <1+1 6) Ly
e no )| — i
Gy 2 €y p "

where we have used the fact that fFl dzdze® is just the hyperbolic area of I'; in the second

—Sbulk — Sbdy = —

line of (4.13). The contribution by the ZZ boundary condition is given by

7 2 &
—Szz=— ]{ d (l f——>8<1>, 4.14
2z 277G N Jim(z)=¢, " e 2)°7° ( )
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which cancels some of the boundary terms in (4.13). The total gravitational action, including
the counterterms gives us

C C
_S2n = _gsLiouville + 6 zz: S(TH) ; (415)

where the renormalized Liouville action Spiouville and s(n;) are given by

1 1.5 1
—OLiouville = — 3 2| 7(0909 ? f @
SLiouville o /[dedz <4(8 00 +e )> + Amey Jim(z)=p/2—¢, e

1 % by 2y 2ng
JIm(z)=ey

€y €y (4.16)
+ Z L j{ dz®0® + 27 In¢; | |
3 4m lz—z;|=€;

s(n;) =21 —2n;)(In(1 — 2m;) + In2 — 1),
respectively. s(7;) is related to the semiclassical limit of the Liouville reflection amplitude

e 5% ~ S (P), (4.17)

matching the normalization of heavy probe operators that we introduced earlier and 1 ~ % +

iP \/g [32]. Hence, we have matched the semiclassical gravity calculation for heavy probe
operator insertions in BTZ to Liouville.

4.2 Light probe operators

The calculation in section 4.1 parallels the two-boundary Fuchsian wormhole calculation with
heavy defects in [32]. In our current situration, we can also consider light probe operator
insertions as in the absence of operator insertions, the BTZ black hole is a solution, unlike the
case for two-boundary sphere wormholes [32]. If we consider light probe operator insertions,
the 2n-point function of these operators is fully determined by the renormalized geodesic
lengths in BTZ background.

To be more specific, let us consider the defect strength to be small with o = bh ~ O(b)
in the small b limit [41]. As a result, there is no backreaction to the background metric.
From the Liouville overlap in (4.1), we obtain

((XQ;}) o (217 . 7zn) ~ ZBTZQ%GH 2-1) phay ®(21,21) ghay ®(21,21) | || phan ®(2n,2n) o ®(Zn,2n) ,

(4.18)
where ®(z;, ;) is now the background solution of the Liouville equation in (3.21) on a finite
cylindrical region and h,, is the associated conformal weights of the exponential Liouville
operator. In addition, we have taken into account the semiclassical behavior of the reflection
coefficient and density of states in the light defect regime, i.e. P = —ibh + 5 (% + b),

SL(P)po(P) ~ esl72) (4.19)

We can reproduce (4.18) from the gravitational action in (4.7) by shrinking the disks
D; such that the radius ¢; vanishes. The action becomes

S = ﬁ Vi(R+2) + ﬁ/ﬂgﬁ(@—n + 87T1GN/XJEK—Z<mi/dzi+Sct(0)>.

BxR zz i

(4.20)
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These light fields are dual to operators on the boundary CFT, with the usual mass-dimension
formula A; = 2h,, = 1+ 4/1+m? in AdS/CFT [75]. Note that the mass-dimension
formula for light proble operators is different from (4.6) due to absence of backreaction. We
immediately see that the first three terms give us the contribution to the thermal partition
function in (4.18) and the counterterm is exactly the normalization of Liouville operators
of the same defect strength

1 1
“agy D S (=ibh+ % (++0)) po (—ibh+ 5 (2 +0))

It remains for us to determine the renormalized geodesic length between the two operators of

(4.21)

the same local mass m;, which is given by the value of the Liouville field at z;

po(zi.Zi) 2
/ ,_/ dp—2In° = —B(z;,7) . (4.22)
€

pO Ziy 21

We therefore match the Liouville CFT calculation in (4.18) with the gravitational action
in (4.20) as we have m; = 2h,,.

If we set the defect strength to be zero, it is similar to inserting 2n identity operators
where the semiclassical limit of the correlation function is given by

Q(Zn) 021, 2n) ~ Zprze's 2N (4.23)

and the (S1(0)po(0))~" ~ e "2~ normalization factor matches the total counterterm
contribution from the gravity side. In the absence of defects, the gravitational action
reproduces the thermal partition function for Euclidean BTZ with the following on-shell
Liouville action

7T2

Sp = 7 (4.24)

As an explicit example, we further show that the above calculation matches with earlier

holographic computations [76, 77] on the thermal two-point function of scalar operators

Oh,, ho, With dimension Ay = 2hq,. More explicitly, from the AdS/CFT dictionary, the

thermal two-point function on S* x R in CFT is obtained by evaluating the regularized bulk
geodesic length L., between the two operators

(Oha, hay (21, 21)Ony | b, (21, 21)) 5817

_AlLreg
(%) (%)
B B
(

_sinh2 (% 21— 21)> _sinhQ (%( zZ1 — ))

= ZBTz€

hay hay (4.25)

= ZBTZ

Up to a normalization factor eé(lm_l), we match the correlation functions in (4.18) and (4.25)

1
G2 (z1) = €32 (Op, | hay (21 21)Ohey ey (21, 21)) 5,37 - (4.26)
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4.3 Torus identity block from crossing kernel and ensemble average
From [14], the matching between 3d gravity and Liouville is beyond the semiclassical limit.
Here, we use the simplest two-point function as an explicit example to illustrate this fact, i.e.

G2 (21) = <‘7a1(21751)>ﬁ/2,zz<‘7a1(517Zl)>5/25Z : (4.27)

From the doubling trick and Cardy behavior of the ZZ wavefunctions, we show that the final
expression takes the form of the two-point identity block on a torus.

Focusing on the chiral half, we have the following expression

(Vo (21, 21)) /2,22

oo A

- / dP'AQ" VY7 (P37, (Q){(P'| e P2, e Q) (4.28)
0 .
o0 A

= /(; dP/dQ/CDOZZ(PI>Pa17Q/) /ZZ(PI)\I/*ZIZ(Q/)I}LP/JLQ/(th»hoqul - 217 /8)7

where 71 = (21 — Z1)/2i is the location of the operator V,,(z1,21) on the thermal circle
and P,, = —i(a; — Q/2). CDOZZ is the normalized DOZZ structure constant defined in
appendix A. From the doubling trick, the insertion of V,,, (21, Z1) between overlaps of Ishibashi
states gives a torus conformal block, more explicitly,'®

<<PI| e—(ﬁ/Q—Tl)HVale—TlH |Ql>>
Cpozz(P', Pay, Q')
/ () ’
— eiﬂ'hal Z <P7N17N1|V0é1 |Q7N27N2>

Ni,N2 <Pl| Val |Ql>
X ex <—<§—7) <h +N —i)— (h +N —i)>
exp 5~ P 1= 5 ) — e 279, (4.29)
_ eiﬂ'hal Z <hP’7N1|Oha1 |hQ'7N2> <hQ/7N2|Oha1 |hp/,N1>
Ni,N2

X exp <— <§ —7'1) <hp/ + Ny — i) — T (hQr + Nog — i))

= fhp/,hQ/(tha hoqul - 217 ﬂ) .

where Ohal is a formal chiral operator with conformal weight h,, at the origin. The states
|hpr, N1) contain a whole orthonormal Virasoro module with conformal weight hp/. In
expressing the conformal block, we have chosen the normalization of the three point function
<h’P’|Ohal |hgr) to be unity.

Using the expression of the ZZ wavefunctions of rescaled Liouville operators labelled

0The phase in front of the sum is due to the phase difference of 7/2 between the z coordinate and Euclidean
time evolution [27].
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by P’, we obtain

A~

(Va, (21, 21)) /2,22

= [ aPa@ (Pl @)C022(P' Py Q) Fiprgy (s s 21 = 21.8),
o

Oh,, Oh,,,

(4.30)
= /OOC dPldQ/\/po(P/) pO(Ql)éDOZZ(P/7Pa17Q/)

Q/

The prefactor in front of the torus conformal block is exactly the crossing kernel [42—44],
which subsequently gives us the torus identity block in the dual channel,

)24 Ohw1 o
0 . Ohu Ohu 1
/OdP’dQ/\//m p0(Q")Cpozz(P', Pa,,Q") ;@7 =
Q' !

(4.31)

hay

This is indeed what we expect from the doubling trick.

It is known that gravitational observables have an ensemble-averaged interpretation in
large ¢ CFTs [14, 32]. We like to match the result obtained in (4.31) with the ensemble averaged
result. In particular, the thermal two-point function has the conformal block expansion

(Oha, oy (2,2)Ony 1o, (2,2)) g BT
= Z |Cp1q|2~7:}zp,lzq(ha17ha17 21— 21, ﬂ)F’Lﬁ,}lq(ha17ha1721 — 21, 6) ) (4.32)

p.q

where hy,, hq are the conformal weights of intermediate states. If we average (4.32) over
the large ¢ CFT ensemble introduced in [32], we can make the following replacement when
performing the average

Zﬁémmﬁwmwmmewm@>
p.q ’

lepagl® = Colhpr, hay, hgr)Co(hpr, hay s hey)
_ 2 Cpozz (P, Pa,,Q)Cp0z2 (P, Pay, Q')
Voo (Poo(P)po(@)p0(Q')
Fhphg(hars hays 21 = 215 8) = Fhps hgy (hans oy 21 = 21, 8)

(4.33)

where the density of states of the ensemble coincides with the modular S-matrix of Liouville
and Cj is the universal OPE function. We finally arrive at the expression of the averaged
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thermal two-point function

Cb_2 <Oha1 »hal (Z7 E)Ohcxl »hal (57 Z)>ﬁ,BTZ
oo A
~| [ aPaQ \Joo(P ) o0(Q)Co022(P', Py @) Ft iy ey s 21 = 1.9

= (Vau (21, 21)) /2,22 (Ve (21, %)) g9 77

2
. (4.34)

matching the result that we obtain from two copies of scalar one-point function inserted
between two ZZ overlaps on a finite cylinder.!! In contrast to the two-boundary wormhole
calculation in [32], the ensemble average calculation for BTZ correlation functions doesn’t
involve delta functions as we are performing the trace on a finite cylinder, and hence, the
intermediate states automatically have the same conformal weights.

4.4 77 boundary states for Virasoro conformal blocks on a sphere

We have been focusing on obtaining observables and Hartle-Hawking state at finite temperature
from the Liouville ZZ boundary states. In this subsection, we briefly illustrate on obtaining
Virasoro conformal blocks on the sphere from the ZZ boundary states.'? From section 3.1
and figure 3, the ZZ boundary condition on |z| = 1 of the Poincare disk can be mapped
to the real axis of the upper half plane using the holomorphic conformal transformation

w=f(z)= —zjj& In particular, we can compute the normalized two point function on the

upper half plane with only one ZZ boundary condition on the real axis (which can also be
interpreted as the overlap between the ZZ boundary state and vacuum) and obtain [33]

<Va1 (21, 21) Vs (22, 52)>ZZ
Voo (21, 51)>ZZ <Vaz (22, 52)>

Gahaz(x) = < s (4.35)

77
(21—22)(Z1—22)

(z1—22)(21—22)
Ga, .0, () is the chiral identity Virasoro block on the sphere in the dual channel

where x = is the cross ratio. This indeed matches with the doubling trick, as

Gal,az(iU) = (1 — $)2A1f <Za1 ZQZ ;1,1 — il?) . (436)
(o3 (e)

It’s interesting to point out that although Liouville theory is not chaotic and has a flat
spectrum, the information about gravitational scattering and quantum chaos is included
in Liouville data. For example, we can study the out-of-time-ordered correlation function
(OTOC) using the exact formula (4.36) in the context of quantum chaos in 2d CFTs [78].
As an exact formula, it doesn’t have the “forbidden singularity” that appears in approxima-
tions [79, 80]. More explicitly, the information that describes gravitational scattering and
scrambling behind the horizon is encoded in operator ordering and the monodromy properties
of CFT conformal blocks are all encoded in the R-matrix of Liouville theory [21, 81, 82].

Similar results have also been obtained in [31].
12We thank Tom Hartman for suggesting this to us.
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5 Wheeler-DeWitt wavefunctions

For 2d JT gravity, the Wheeler-DeWitt wavefunctions have been studied in [22, 23], and
the authors found two bases that correspond to fixing the renormalized geodesic length L
and fixing energy FE respectively. Following a similar spirit as previous works, we propose
the Wheeler-DeWitt wavefunctions to be represented by two bases: the (®q,J)-basis and
(E, J)-basis where ®( is the analogue of renormalized geodesic length. In addition, ®q
is related to the height and waist of a hyperbolic cylinder at a spatial slice in 3d, as we
demonstrate soon. F is the ADM energy and J is the angular momentum of the black hole.

5.1 Boundary value problem for the wavefunctions

In this subsection, we describe the boundary value problem for the study of Wheeler-DeWitt
wavefunctions where the geometry of the wavefunction (M, g,,) has two hypersurfaces as
its boundary: B and X. We generalize the machinery developed in [83-85] to Euclidean
signature to study the boundary value problem.

The gravitational action is given by

_ 1 3 1 2 -
Seeor = T /Md:c\/g(R+2)+787TGN/Bd 27 (0 - 1)

1 ' 1 ' s
d*zvVhK — /d Vor—,
t Gy /E wVh snGy Jr VT

(5.1)

where I' = BN X is composed of two disconnected codimension two joints and (or)ap is the
induced metric of I'. With v, as the induced metric of B and r* as the outward pointing
normal vector, the extrinsic curvature of B is given by O,, = Yy Vary. With hi; as the
induced metric of 3 and u* as the outward pointing normal vector, the extrinsic curvature is
given by K, = hy;Vau,. We soon clarify the last term of (5.1), which is added by hand in
defining the gravitational action for studying the wavefunction [22, 86].

Since we have the codimension two joints I'" from the intersection of B and 3, the
Hayward corner terms arise in terms of the local angle 6 at the joints when we smoothen
out the region near I' [85-87],

1 1
— SHayward = e /1“ dx\/orf = e /1“ dx+/or cos_l(r ‘) . (5.2)

When the local angle at the two disconnected joints I' are right angles respectively, the
contribution from the Hayward term is given by # = 7/2, thus cancelling the last term
n (5.1). After the smoothening procedure, the two GHY boundary terms can be expressed
as a sum of three terms, as shown in figure 15,

8771GN [/Bd%ﬁ(@_ 1)+/Ed2x\/ﬁK] -

gﬂgN [ ENGICERS /E VR + /F dm\/ﬁé)} : (5.3)

where B’ is the part of region B excluding I' at the AdS boundary. This applies too for ¥'.
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Bf

Figure 15. The geometry corresponding to the calculation of the 3d Wheeler-DeWitt wavefunctions.
B’ is the smooth part of the asymptotically AdS boundary, Y’ is where we impose the boundary
condition corresponding to the argument of the wavefunction and I is the codimension two intersection
between B and 3.

We rewrite (5.1) in terms of smooth extrinsic curvature components at the corresponding

boundary regions'3

1 3 2
—Ograv — v g 2 _— —1
S, 167TGN/ Pa/g(R+2) + /da«f(@ )

| de\fK+7/daz\E<9——> .

IrGn Jyy

(5.4)

+

The variation of the action 0Sgray With respect to a metric variation dg,, is given by [85]

~08gray = = / &z /g (G“” = 9") 09w — 5 / A2\ AT 6y

167G N (5.5)
2
E/d TPYSh;j + ——— & G / dx <9 — —) 5\/or
where G* is the Einstein tensor, 7% is the Brown-York stress tensor [84]
1
Tab — (_)ab _ abc_) ab )
87TGN( 1O +4) (5.6)
and P% is the momentum conjugate to h;;
P = i(Kii —-hWK) . (5.7)

167G N

For the variational terms on the X’ surface, we like to further perform an ADM splitting
for the induced metric h;;

hijda'dz? = M*dp? + o ap(d¢t + Wdp) (d¢P + WPdp), (5.8)

where M is the “radial” lapse function, W4 is the radial shift and o4 is the metric of a
codimension two surface that foliates ¥/. The normal vector to this foliation is n; = M D;p,
where D; is the covariant derivative compatible with h;;. The variation of the induced metric
dh;j follows a similar decomposition [85]

2
MnmjéM +

13Eq. (5.4) is similar to Trace K action defined in (1.2) of [85].

5h”: (SW -l—()'(Z )(SO’AB, (59)

]\4— T OAGT
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and we obtain the following equation
. 1 .
— | d*xPY5h;; = / d*x\/o (Z5M+jA6WA - —P”UfochUAB) , (5.10)
s > \/E

where [ is the normal momentum density and j4 is the tangential (angular) momentum
density of the codimension two surface oap
| = 2Pijninj
Vho

. 2Pijof4nj
JA 7\/5

With the variational terms written down explicitly in (5.5), we are ready to specify the

(5.11)

boundary conditions imposed for the study of wavefunctions.
B’ is the surface that describes the asymptotically AdS boundary and we impose the
usual Dirichlet boundary condition

| —

ds?|p = = (dtg + d¢?) + O(1), (5.12)
€

)

where ¢ is the AdS cutoff. The topology of B’ on the AdS boundary is a cylinder, where the
range of T is /2 and the spatial circle has periodicity ¢ ~ ¢ + 2.

On Y’ we first discuss boundary conditions corresponding to wavefunctions with zero
angular momentum. The boundary conditions on ¥’ that corresponds to the fixed ®y-basis
is given by

M=1, ja=0, Pigla? =0, (5.13)

where the last equation implies n* is a tangent vector for a geodesic curve in M, i.e.
ntV,n" = 0.* The range of p on X' is chosen to be 21n% — &y where —®( plays the role
of a renormalized geodesic length in the p direction.

The fixed (E,.J = 0)-states have the following boundary conditions on ¥/,!%

l,ja=0, oap= SGNECOSh2p5A7¢5B’¢, (5.16)

14To show n* being the tangent of a geodesic curve in M, we first note that from (5.7) and (5.13),
(rfafK“” —o*BK =0

(5.14)
K =d""V,u,,

where the second line of (5.14) comes from o4 p having only one component in 3d. From the original expression
of K,.,, we have
Kuw = hiVau,
= (op +n"nu)Vau,, (5.15)

. _pv Ie% %
K =0""V,u, —u,n”Vaon",

and immediately from the last line of (5.15), we see n®V,n" = 0 to satisfy boundary conditions on ¥'. In
deriving these relations, we have used the completeness relation, i.e. o = UZUEUAB, nt = hfni, -+ and the
Leibniz rule, i.e. nyn*Vau" = —u,n“Vant.

n writing down the boundary conditions, a gauge has been chosen. This is similar to the 2d case [22].
We like to clarify that lhere = Gohere in [45] as we use ¢ for something else in this paper.
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where the horizon with r; = /8GN E is located at p = 0 and p = Fln (ﬁ) — +00
is where the AdS boundary resides. [ = 0 implies that the codimension two surface I" that

foliates Y/ is extremal in the direction parallel to u* and j4 = 0 implies the absence of

angular momentum.'%

On T', we impose Dirichlet boundary condition such that the induced metric is
1
ds’|p = —d¢* + O(1), (5.17)
€

where ¢ € [0,27) parameterizes the spatial circle on T.
We can also study wavefunctions with fixed non-zero angular momentum. We need to
further add the following boundary term to the action in (5.4) [45, 83],

—/ aojawh, (5.18)
2/
such that the following variational term on ¥’ in (5.10) becomes
/ ParJajadWA = — [ PaWAS(Vaja) - (5.19)
3l b3l
We can thus impose the following boundary conditions for the (g, J)-basis
. —iJ ij A _B =
M=1, \oja=—0a4 Poic] =0, (5.20)
2 J

where J is imaginary for Euclidean solutions. For the (E,.J)-basis in [45], the following
boundary conditions are imposed on X/,
—iJ

=0, Voja= 5040, 0aB = r3 (B, J) cosh? pda 4054, (5.21)

where 72 (E,J) = 4GN(E + VE? — J?).

5.2 Geometry for the ®¢-basis

We first show the solution for the ®g-basis, and it takes the following metric parametrization

ds? = dp* + cosh? pe®dzdz (5.22)
where )
e? = (ﬁm) ! , (5.23)
21 ) gin? (%Im(z))

and the parameter ry is determined by the following implicit equation

2

T 1

= () (5.24)
21 ) sin2 (ﬂ%)

15T his differs from the E-states studied in [45], where W# = 0 is chosen instead of j4 = 0 here. W# =0

allows ja to take any value in the path integral, and at the saddle-point, j4 = 0. On the other hand, we
choose to study the state that corresponds to ja = 0 and subsequently, match it with Liouville.
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Figure 16. (Left): X' is a hyperbolic cylinder with renormalized height —®, and waist 4w2e®0 /f.
(Right): each constant p slice of the Hartle-Hawking wavefunction is a hyperbolic cylinder with
ZZ-boundary conditions (indicated by orange line) at one end and on the other end at Im(z) = 7/2,
the Liouville field takes a constant value ®q. The spatial circle is identified as X ~ X + 472 / B.

We like to emphasize that 8 # 27/r, in general, but the relation 5 = 27 /r, only holds at
the peak of the wavefunction, or at the saddle-point when we use overlaps of the wavefunction
to compute the partition function. The range of z is given by Re(z) € [0,472%/3);Im(z) €
[0,7/2],'" whereas p has the range of p € [—po(®), po(®)] with po(®) =In2 — 2. In fact,
this geometry is a portion of a BTZ black hole solution with inverse temperature 27/r, that
has thermal length §/2 at the asymptotic boundary. We remind ourselves that there are
“two” halves of the AdS boundary slices defined by p = +po(P) respectively when we use the
wormhole slicing to describe the spacetime geometry of non-rotating BTZ. We demonstrate
the gluing of the “two” halves in gravity in a moment.

The B’ surface, which is the asymptotically AdS boundary, is given by the union of
the p = £po(P) surfaces with

1 e® 1 - 2
2 i = =
ds®|p = (6_2 4+ 7) dzdz + 1 <6<I>dz 3+ 8<I>dz> . (5.25)

The X' slice is given by the Im(z) = % surface, and the induced metric is

ds®|sr = dp? + cosh? pe®0dX? (5.26)

such that the boundary value problem in (5.13) is satisfied and X = Re(z). The Liouville field
® takes a constant value of &g on the ¥’ surface. Geometrically and as shown in figure 16, ¥’
is a hyperbolic cylinder with waist 472e®0 /3 and renormalized length —®.

The geometry of the solution is given in figure 12. Similar to the geometric picture we
had in section 3.3 in using the wormhole slicing to describe the BTZ partition function, the
d(-basis Hartle-Hawking wavefunction can also be thought as being composed from constant

In principle, we have to further rescale the AdS cutoff € to match with the cylindrical region defined
in (5.12). However, with the conformal ratio of the boundary cylinder being fixed to /47, we choose not to
keep track on the overall rescaling of the cylindrical region.

18We thank Tom Hartman for useful discussions.
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Figure 17. We illustrate the Wheeler-DeWitt wavefunction in the ®,-basis as a portion of non-
rotating BTZ. With the cutoff surface formed from the ZZ boundary conditions, we see that the “two”
disconnected AdS boundaries B” are reduced to a connected B’ surface when we shrink the ZZ surface
to zero size. This justifies the fact of the ZZ boundary condition in Liouville being a “no-boundary”
condition in gravity.

p slices, where each p =constant leaf is a part of a hyperbolic cylinder, as shown in figure 16.
p acts as an angle that rotates the p =constant leaf around the ZZ boundaries.'?

We are now ready to evaluate the on-shell action. First of all, we like to explain the
problem related to the gluing of the ZZ boundaries in gravity. In using the wormbhole slicing,
we see that our solution for the metric diverges near Im(z) = 0. This is an artifact in
the choice of parametrizing the solution, which follows from our discussion on the BTZ
partition function in section 3.3. We impose a cutoff at Im(z) = €, and study the geometry
in figure 17 in calculating the action. This corresponds to carving out a cylindrical region
M — M’ in the bulk and we soon show the contribution of the bulk+AdS boundary terms
of M — M’ to be given by the boundary term at the Im(z) = ¢, cutoff surface. As shown
in figure 18, with the Im(z) = ¢, surface formed from ZZ boundary conditions, we see the
gluing of the “two” halves being manifested by shrinking M — M’ to zero size. The on-shell
action in (5.4) is then simplified to®"

1 3 1 2
~Sgeae(@0) = g [ deyaREN 4 [ dyTO - 1) .
N , :
SWGN/ dx\fK—i—i/da:\ﬁop(ﬁ——)

where B” is the part of B’ with Im(z) > €, at p = £po(®). We introduce the shorthand
notation fEE'zz to indicate [5, — fE/Z ; where X', , is the surface at Im(z) = ¢,. M’ is the bulk

19We thank Tom Hartman for useful discussions.

20The extrinsic curvature contribution at the surface formed from ZZ boundary conditions excludes the
Hayward term contribution at the spacelike joint BN Xzz. This is indicated through the prime label in X7 ,.
We later will see with the gluing of the ZZ boundaries, there is no Hayward contribution at B N ¥ zz.
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Figure 18. The cross section of the carved out cylindrical region M — M’ is shown. The bulk+AdS
boundary terms of the cylindrical region is equivalent to the GHY contribution at the ZZ cutoff surface
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region enclosed by the boundaries X, B” and Xzz. In appendix E, we show that

: 6W1GN ( Jo o devaren ez [ daAe- 1)) - —87T1GN / | PV
(5.28)
such that the on-shell actions (5.4) and (5.27) are indeed the same. In fact, when we compute
the local angle ¢ at the joint B” N X7z in the €, — 0 limit, we see that it vanishes when we
shrink the carved out cylindrical region to zero size. Hence, in the ¢, — 0 limit, the “two”

boundaries at +p(®) are glued together, and they combine into the smooth surface B’. If we
start with the action in (5.27) in defining the gravitational action for the study of wavefunction,
we would have imposed the Dirichlet boundary condition for a disconnected B” and this is
equivalent to the connected “no-boundary” AdS boundary condition, as argued in section 3.3.

Performing a similar calculation to section 4.1, we obtain the following expression from
the bulk and AdS boundary terms

: g IR
67Cin /M/d /g (R+2) + G o dPzy7 (0 —1) .
_ 1 (1 o 1- B . .

T 4Gy /B dzdz (4(6¢6¢ +e”) 23((13(9(13) 0P <1 +In 2>> .

where B is the cylindrical domain: Re(z) € [0,47%/f], Im(z) € [e,, 7/2]. For the contribution
from the smooth components of K on the X surfaces, we obtain

1 by
/ d*avVhK

8GN Jsi,,

i 2 @ 2 @
= ! 7{ dz (lnf - J) 9,® — dz <lnf - ﬂ) 9.0 . (5.30)
47TGN Im(z)=m/2 € 2 Im(z)=¢y € 2

Given that I' is composed from two disconnected joints, the corresponding 6 is given by

the sum of the two contributions. With rff being the outward unit normal to the p = py(P)
surfaces respectively and u,, to be the forward pointing normal vector to the Im(z) = constant
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surface, we obtain the Hayward term

[ N L - )
8tG N /Fdx\/o-ir (9 2> - 8nGye ﬁm(z):ﬂ./g dz (COb (r" - u) +cos  (r - u) 7T) )
)
=- dz0,P . 5.31
drGy jém(z):wﬂ =0 ( )

One can check that the local angle 6 between B” and Xz vanishes in the ¢, — 0 limit as
—rE. ulprnn,, = 1 when M — M’ is of zero size, hence, Hayward term is absent at this joint.

Summing the terms above, we obtain the expression for the on-shell action in the
d-basis as

_ 1 (1 = @ T
—Sgrav(®o) = yrre. /dedz <4(6<I>6<I> +e )) + Gnpey’ 5
_ Bri(®o) | re(Po) B (Do) '
16G N 2G N 4 ’

where r4(®p) is given by the implicit function in (5.24). Hence, the semiclassical Hartle-
Hawking wavefunction in the ®g-basis is given by

Bri(®0) | ry(®g) _, Bri(Pg)
cot 1

W (Do) ~ e 00N 20N : (5.33)

Similar to JT gravity, we see that the peak of the wavefunction occurs when the thermal
length 3/2 takes half the value of the inverse temperature of the black hole, i.e. 8 = 27/r4.

5.3 ®(-basis wavefunction from Liouville theory

As our gravitational solution takes the form of the wormhole slicing, we expect the gravity

calculation to be directly connected with Liouville theory, similar to correlation functions in

section 4. At p — £po(®P), we see from figure 19 that the boundary geometry can be viewed

as a transition amplitude on a cylinder in Liouville theory, where on one end of the cylinder,

we have the ZZ boundary condition and on the other one, we have a constant ® = ® slice.
More explicitly, we consider the Liouville action

1 7{ Ao 2mlne, 2771' _
dmey Jim(z)=¢, Bey Bey
(5.34)

1 1 -
—SLiouville(®0) = or /dedi (1(8'198@ + e‘I’)> +

With the expression of Liouville field obtained from Einstein’s equations in (5.23), the on-shell
Liouville action (5.34) takes the following finite value

2
_SLiouville((I)O) = %@(]) + r+(q)0) cot ﬂr-i_T((DO) ’ (535)

and the gravitational Wheeler-DeWitt wavefunction is related to the on-shell Liouville
action by

_ — 38— SLiouville (®
e Sgrav(q)()) ~ e 26N L 11 ( 0) . (536)
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Figure 19. (Left): the asymptotic boundary region of the wavefunction wormhole with the cutoff ¢,.
(Right): using the folding trick, the anti-chiral (chiral) half of the Wheeler-DeWitt wavefunction is
folded onto the upper half plane. Slicing the partition function open in half of the thermal direction is
equivalent of having the height of the finite cylinder to be /2, in addition to having the conformal
ratio to be /4.

Besides the on-shell Liouville action, we like to obtain the gravitational Wheeler-DeWitt
wavefunction from Liouville overlaps. We consider the following state,

20) = [ ~ 4P(P|3o) |P)) (5.37)

where (®y|P) is the Liouville zero mode wavefunction, which is obtained by solving the
Liouville Hamiltonian for the eigenfunctions in the mini-superspace approximation where
only the zero mode is kept, and we get [40],2!

9 (Lé")_ip/b S
Ty

The semiclassical Wheeler-DeWitt wavefunction in the ®(p-basis can be obtained by
considering the semiclassical limit of the overlap

(®ole™PHI4| 2 2) (®g|ePHI*| 2 Z)

= 22 [ aBwr (P 52 5.39
:W/o APV, (P)yp(®o)e P /2/0 dP\II*ZAE(P)wﬁ(q)O)e—ﬂP 2, (5.39)

To get the small b limit of the above expression, we first consider the integral formula for K;, (x)

1 |
Ko (2) = / de e oS E=ing (5.40)
—00

21There is a rescaling of 27/ to e?9/2 comparing to ¢ p(®o) in [40]. This comes from how the classical
Liouville field varies when we perform a holomorphic coordinate transformation in changing the circumference

of the spatial circle from 27 to 472/.
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and the semiclassical limit is contributed from primary fields,

00 00 2xp_ 2x 20 _8P%_ 2ipg
d¢ | dppe v Tws¢ 7 O T (5.41)
)

(@ole PH/4 22) ~ —25/4 /
0

Performing a similar semiclassical analysis to the other copy, the saddle point result of the
two copies of Liouville overlap is given by

L 2 52 5 5
(®ole PRI 2 2) (@l PP/ 2 Z) ~ exp(ﬁp* + 25 cot(bp*ﬁ>—|— BP, + 2P, cot (bP,ﬁ)) ,

2 b 2 2 b 2
(5.42)
where P*,IB* satisfy the following relations at the saddle point
bP, ~ bP,
P, = %e%ﬂ sin ( 26) , P.= %e%ﬂ sin <2ﬁ> . (5.43)

To match with the gravity and Liouville on-shell actions in (5.36), it remains for us
to identify the saddle point value of the Liouville momenta with the horizon radius via
P.(®g) = r(Pg)/2b, which is similar to the relation found in [88]. We subsequently have

<¢0|6_ﬁH/4|ZZ> <¢0|6_5H/4|ZNZ> ~ e_gsLiouville(q)O) ~ B_Sgrav(q)o) , (544)

where ¢ = b% — 4o in the semiclassical limit. The last equation is obtained through the
Brown-Henneaux central charge formula, ¢ = %

In short, we have shown that the ®¢-state gravitational wavefunction can be viewed as
two copies of ZZ-®( Liouville transition amplitudes, which is similar to having two copies
of Liouville observables as BTZ correlation functions in section 4.

5.4 (®g,J)-basis Wheeler-DeWitt wavefunction

In this section, we study the Wheeler-DeWitt wavefunction in the (®g,J) basis, which
corresponds to the boundary conditions in (5.20).
The solution takes the form of a quasi-Fuchsian wormhole metric [32]%2

_ 1 _ .
ds? = dp? + cosh? pe‘b(z’z)|dz + 5(1 + tanh p)t(E)e_cI)(Z’z)diy2 , (5.45)
where ®(z, Z) is again the Liouville solution (5.23) on a finite cylinder and @ is given by (5.24).
In general, with the Beltrami coefficient y = #(2)e™®, the complex structure on the
“right” boundary is deformed, as

dp? + Le=201®|dz? — —00
ds?~ {0 T =1 p (5.46)
dp? + 122z + pdz?,  p— +oo.
If we choose a similar z-dependent AdS cutoff p = — ln% + % for the “left” boundary, we
have a flat induced metric at leading order in ¢
1
dsty = €—2|dz|2 . (5.47)

22We thank Tom Hartman for helpful discussions on the quasi-Fuchsian wavefunction.
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We put quotes for “left” and “right” since the Hartle-Hawking wavefunction has only one
asymptotic boundary, and the “two” boundaries are glued together, as shown in section 3.4
and section 5.2.

For the “right” boundary, we first let w(z, Z) be a solution to the Beltrami equation,

dw

B=g (5.48)

such that
Ow | —2
—12 2
|dz + pdz|” = ‘—az ‘ |dw]|* . (5.49)

If we choose a different cutoft p = ln% - % +1In |g—f| for the “right” boundary, the metric
is again flat,

1
ds%ignt = 6—2|dw|2 : (5.50)

The solution to our boundary value problem has ¢(z) = it = 8GyJ and the solution to
the Beltrami equation is given by

2i cot ™! >
V() s
w(z,2) =z + - (5.51)
(62::) + it
Close to X7z, i.e. Im(z) = ¢, the Beltrami coefficient vanishes and we obtain
w(z,é)hm(z):ey =Zz. (5.52)

We are ready to compute the gravitational action with the quasi-Fuchsian metric as
our solution for the Wheeler-DeWitt wavefunction. The on-shell action takes a similar
form as (5.27)

__ ! 3 EELI _
Sgrav(@0,.]) = 167TGN/ oG (R2)+ o | dryi (O - 1)
1 ¥ 2 A L m
K- : A deyer(0-T).
+87TGN/E/ZZd aVh /X:'d o jaAW +87TGN/Fda: or («9 2)

(5.53)

As mentioned, a z dependent cutoff for p is chosen such that the induced metric at the
asymptotic boundary B’ is flat. The cutoff surfaces are defined as p = — ln% + % for the
“left” boundary and p = ln% — % + In |‘g—1§| for the “right” boundary.

For Y/, the induced metric is given by

1
ds®|sy = dp?® + cosh? pe® <1 + Z(l + tanh p)2t2€_2¢> ax?, (5.54)

such that the boundary conditions in (5.20) are satisfied.
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We can simplify the computation using the decomposition of the Ricci scalar in (D.5)
and extrinsic curvature splittings in (D.7), and the action in (5.53) becomes (D.6)

1
_Sgrav((I)Op J) - 167TGN (/M’ d3$\/§ (R(2) + K2 — K#VKNV + 2)

(5.55)
+ 2/ d%ﬁ(%k -1 t“V#oz) + 2/ dx+/or (9 — g) ) ,
B T

where the boundary terms on ¥’ and ¥/, , cancel with the total derivative contribution from
the bulk and the added boundary term vanishes as W4 = 0.
Using the quasi-Fuchsian metric in (5.45), we obtain

1 _ 1 5 @ 4
_Sgrav((I)Ov J) = _]_67'('GN /B dZdZ <W8¢8¢) + e > + GNBGy )
7+(Po) dimt -1 dim?t pr+(®o)
_ 14 ot 1 t 5.56
T [ ey \V T Eeeg )] O
r4(Pg) Bry(®o)
+ 2 cot 1 )

Next, we want to reproduce this gravity result from Liouville theory. With different moduli
between the “two” asymptotic boundaries, we remind ourselves that we must take into
account a mixing of moduli between the “two” asymptotic boundaries [9, 32]. This suggests
us to propose the following matching between 3d gravity and Liouville theory if the two
asymptotic boundaries have different moduli

C &
_Sgrav(q)o«, J) = _ESLiouv(z,'zD) (q)Ov J) - ESLiOUV(w,E)(@O? J) ) (557)

where Stiouy(z,m)(Po, J) is the Liouville action that governs a Liouville field ®_ in a flat
complex metric of dzdw. Stiouy(w,z)(Po,J) is the complex conjugate of Stiguy(z,a)(Po; J)-
The actions for the two Liouville fields & are given by

_SLiouv(z,w)((I)Oa =~ 5 / dZdU’( 8 D_0gzP_ +P ))
?g d=P +2i+27rlney7
dmey Jim(z)=¢, Bey Bey (5.58)
_SLiouv(w,Z)(q)Ov == 7/ dwdz < 0 b, 0:P4 + €¢+))
7{ dw¢++2—w+27rln€y,
Amey Jim(w)=e, €y Pey
where the two Liouville fields satisfy the following classical equations
o
0.050_ = ‘37
oo (5.59)
(9w35(1’+ - T .
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Figure 20. The “Pacman” geometry that corresponds to fixed (E,.J)-basis Wheeler-DeWitt wave-
functions in 3d gravity.

If we use the solution to the Beltrami equation in (5.51), we obtain

IPOP 1 27 2mlne
Stion(e) (@0, T) = ——— [ dzdz @ j{ ded 4 2F 4 T
Llouv(z,w)( 0,/ / : (1— ite~ c )+ 47T€y Im(z)= eyz * BEy * ﬂey ’
IDOP 1 2r  27lne,
_S'V)7®7 :_7/d ¢ f dz® y7
Liouv(u ,z)( 0 z <1+ it + e )+ 471’6,, Im(z):eyz + ﬁEy + ny
(5.60)
where we have used the solutions to the Liouville equation in (5.59)
®_(z,0(2,7)) = ®+In(1 —ite?), (5.61)
D (w(z,2),2) = &+ In(1 +ite”?) . '
In addition, we use d® = —0® to simplify some relations. Combining the two Liouville

actions with permuted moduli in (5.60), we match the gravitational action as in (5.57).

5.5 (E,J)-basis Wheeler-DeWitt wavefunction

The boundary value problem in (5.21) and its higher dimensional analogue is studied in detail
in [45]. As shown in figure 20, the solutions are given by the “Pacman” geometry, which is
a wedge of rotating BTZ black holes,? labeled by ADM mass E and angular momentum
J, generalizing the 2d result in [22]. If we choose J = 0, it will be the “Pacman” geometry
of non-rotating BTZ, corresponding to the study of (5.16).

The semi-classical wavefunction in the (F,.J)-basis is given by,

ﬁ/Q(E J) NPS(E J)/2— 5E/2 (5.62)

where S(E,J) and E are the entropy and ADM energy of the corresponding black hole
respectively. The physical meaning of the boundary condition in (5.21) corresponds to fixing
energy and angular momentum of a black hole and hence, we expect to reproduce the gravity

23 Although our Hartle-Hawking state corresponds to a “ket state” of non-rotating black holes, the geometry
for wavefunctions in general (F,.J) basis is a portion of rotating black holes, as the “bra state” has non-zero
angular momentum.
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wavefunction from the overlap of the Hartle-Hawking state with Liouville primary states
|P').24 Tndeed, the on-shell gravitational result can be reproduced from the large c limit of

(P'le PHIY 2 Z2)(P'|le PHINZZ) = Wy, (P)e PP /2w ﬁ(ﬁ’)e—ﬁﬁ”ﬂ, (5.63)

where we analytically continue the Liouville momenta [92], with P™* = P, and P, P are
related to the energy E and angular momentum J through

21 (P' + P')

E=P?+P? J=P?-P? S(EJ)= ;

. (5.64)
In fact, the ¥ slice is composed of two constant time slices at 7g = 0 and 75 = 8/2 in rotating
BTZ, and the two slices are glued at the horizon [45]. The rotating BTZ metric is given by [89]

2 —2)

— 2 . _
ds® = (— +97° + ~7 cosh? p) dré + =)

~\2
] o + dp*+ (W + ¥ sinh? p> g2,

(5.65)
where 72 = (% + 47 sinh? p) is the radial direction of the black hole and r — +o0
denotes the location of the asymptotic boundary. On each fixed time 7p slice, the spatial
metric is exactly (2.22) if we identify 72 = %P’Zﬁz = %]3’2 where 7,7 are finite in the
semiclassical limit. This aligns with our claim in identifying quantum states using spatial
geometries in section 2.1 as the overlap with (P’| (P’| extracts individual contribution from

the superposition of geometries in the Hartle-Hawking state.

5.6 Reduction to 2d JT gravity

It has been shown that we can reproduce the corresponding results in section 3 and section 4
for JT gravity by considering the Schwarzian limit of a chiral half of 3d gravity [17, 21, 27].
This can be achieved by performing an S-wave dimensional reduction [17, 93] or taking
the near extremal limit [27]. For the partition function, the vacuum character xq(—1/7)
becomes the Schwarzian disk partition function [27], and as shown in section 7.1, the character
of nondegenerate representations of weight hy, xa(—1/7), becomes the trumpet partition
function with geodesic length A (figure 21). This is because the modular S-matrices, Syp
and Sy p, are reduced to the density of states of the disk and trumpet partition functions
in JT gravity respectively. For correlation functions, the Liouville correlators also reduce to
Schwarzian correlators in the Schwarzian limit. In particular, the DOZZ formula is reduced
to matrix elements of bilocal operator insertions in JT gravity, as shown in (B.6). Further
using the Schwarzian limit of the 6j symbol, we can reproduce the out-of time ordered
correlation functions in JT gravity [21].

24In principle, by considering general Banados solutions, we can also try to get geometries that correspond
to the overlap of the Hartle-Hawking state with descendent states [89-91]. Banados geometries are related
to rotating BTZ black hole solutions through large diffeomorphisms, which can be interpreted as boundary
graviton excitations. The large diffeomorphisms will also provide the uniformization coordinate to match
the gravity calculation with Liouville overlaps on a finite cylinder. We leave a more detailed analysis on this
problem to the future.
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Figure 21. (Left): disk partition function (Right): trumpet partition function with geodesic boundary
that has length A, and the geodesic is indicated by the dashed line.

In this subsection, we like to provide the recipe for recovering the Wheeler-DeWitt
wavefunctions in 2d JT gravity. Through dimensional reduction, we show that the gravitational
action, boundary value problem and the classical solution for the fixed ®g-basis correspond to
the geodesic length basis wavefunction in 2d [22]. In [45], the dimensionally reduced E-states
of 3d gravity is shown to be the energy basis wavefunction in JT gravity.

Starting from the gravitational action in (5.4) where the dimension of the quantities
are specified for clarification purposes, we have

—Soray = ﬁ(l(]\i) /M dsl’\/ﬁ (R(3) + 2) + SW;GSS;) /, de\/ﬁ (@(2) _ 1)

+ 1 d2aVhOK®@ L 1 / dxy/or <9 — g) .
r

87rG§\?;) ¥ 87rGS\?7’)

(5.66)

To dimensionally reduce the theory, we take the following ansatz for the 3d metric [17, 93]
ds? = g@)da®da”® + B3y (x*)dg?, (5.67)

where ¢ ~ ¢ + 27 is the spatial circle. Non-rotating Euclidean BTZ, i.e. (3.22), automatically
satisfies this ansatz. With the metric parametrization in (5.67), we have the following
relations for the Ricci scalar and extrinsic curvature

R® = R® —28.1v28y;, 0@ =0W + 8,119,899, K =KW 4 &, u*0,Pq .

(5.68)
and we arrive at the 2d JT action from (5.66)
1
_S.]T = — / d2a'; 9(2)(1)2(1 (R(z) + 2) + 5 dx ry(l)q)zd (@(1) — 1)
167G Jm snGQ o -
0 !
+ ;2 deVhMPyq KD + (1)2(12 (0 +0_—m),
8nGQ) Jo 8r G

where the spacetime manifold M and boundary surfaces are in 2d and 1d respectively. 64
are the local angles at the two disconnected joints respectively. The Newton’s constant
are related through Gg\'?) = 27TG§\2,). ®Y, is the value of the dilaton and 6 is the local angle
at B N X respectively.
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The variation of the above action —§Sjr with respect to the metric and dilaton is
given by [22]

Sy = 1677(; { ( (B +2)®2qg™ — B ®oq + VIV ®aq — g“”V2@2d> Gy
+(R+ 2)5%4
1
- 8GN /3/ dry/y [( — 1)d®2q + (T”V Doq — Pog)y 0‘85%5]
1 5By,
Kod ~uhv,® aBsp ] - . .
+87TGN/ZIdx\/E|: d 2d+2u V,u®2ah* 6hag S7On d 0, +6_—m), (5.70)

where we have dropped the indices labelling the dimensions. We now review the boundary
conditions for the study of Hartle-Hawking wavefunction in the length basis in JT gravity.
At B’, the AdS boundary condition is imposed by introducing the AdS cutoff ¢ such that
the induced metric and dilaton are equal to

1
d52|Bl ?dT% + O(].) s
1
Qoq|p = o

(5.71)

where the range of 7 is 8/2. On the ¥’ surface, the following boundary conditions are imposed

K|E’207

5.72
ds?|sy = dp?, (5:72)

where the range of p is taken to be 2111% + Lieg and Lyeg is the regularized geodesic length.
At the point where B and X coincides, we fix the value of the dilaton
0 1
‘I’2d|BmE = ‘I’zd = E’ (5-73)

such that B and ¥ are connected at the AdS boundary.
The equations of motion are satisfied by the following parametrization of the AdSs>
black hole metric and dilaton

2 h2
dsdy = dp? + 0 Lar?.
sin“ry T (5.74)
r4 cosh p
Poqg = ——F
sinry T

where 74 is the horizon radius of the black hole located at p = 0. Introducing the following
coordinate transformation

_ rycoshp
sinry T (5.75)
tan(ry7g) = tan(ryT') tanh p,
the AdS2 black hole metric in Schwarzschild coordinates is given by

2 2 .2y72 dr?
dst = (7" — T+)dTE —+ ﬁ y (576)
r ry
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where the thermal circle is given by 7 ~ 7 + 27 /r4. For the solution to the L-basis Hartle-
Hawking wavefunction, we adopt the metric parametrization and dilaton in (5.74). The AdS

boundary condition is achieved by introducing a T-dependent cutoff po(T") = In (%@)
such that the induced metric on B’ is given by
ds?|p ~ L cot?(ry T) + i dT? (5.77)
2t + 2sin?(r, T) ' '

T € [0,3/4] as we have the “two” halves of the AdS boundary defined from p = £po(7T)
respectively. Lyce is related to the horizon radius ry by
2

_Lreg —
e = —7"
2 Bry

4

- (5.78)
sin
The boundary conditions on ¥’ in (5.72) can be achieved by considering T' =constant slices,
where in particular on X', T'= /4 such that the end points of ¥ hits the AdS boundary.
Before moving on to compute the on-shell action, we like to show the boundary conditions
on the ¥/ surface in 3d gravity reduces to the 2d version. From (5.20), fixing the radial
lapse function M = 1 is aligned with ds® = dp? in JT gravity and p is the parameter that
parametrizes the geodesic. j4 = 0 is satisfied automatically through the metric parametriza-
tion that we consider in (5.67). For P¥ O'ZAO';B = 0, we first relate the extrinsic curvature
components on the 2-dimensional ¥’ slice to the dilaton field

K'90007 = ®33u"0,®aq . (5.79)

and using the decompositon of the trace of extrinsic curvature in (5.68), we further simplify
the last relation in (5.20) to

g Ly at))
Pigfo] = _7322(120(2) =0, (5.80)
™UN

reproducing the boundary conditions on the bulk slice (5.72) in JT gravity. In short, after
dimensional reduction, the boundary value problem for the ®(-basis in 3d gravity is related
to the one for the L basis in JT gravity [22] through
M =1=ds®=dp?,
Jja=0, (5.81)
Pigle? =0=KY =0,
The semiclassical Hartle-Hawking wavefunction of JT in the L-basis can be obtained
from (5.32)
\I/g/%((l)()) = W%}‘Q(Ll'eg)v

2 Lre Te; Te; 582
~ exp <[3r+( (;) I 7’+(L(2g)) cot (57'+(L g)>> 7 ( )
327Gy, 4nGy 4

where the relation %’Te%/ 2 = ¢ Lres/2 from (5.24) and (5.78) respectively is a consequence
of dimensional reduction [22].
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6 Factorization in 3d gravity and defect operator from the ZZ boundary
states

In this section, we consider the factorization of the two-sided Hartle-Hawking state into two
single-sided Hilbert spaces, as required from the calculation of the entanglement entropy.
Following a similar spirit to [24], where the factorization in JT gravity was studied, we study
the case for 3d gravity. In 3d gravity, a local boundary condition factorizes each Liouville
state into a direct sum of entangled left and right-moving Alekseev-Shatashvili states. The
superselection sectors in the direct sum are labeled by the holonomies around the horizon.
The local boundary condition at the horizon allows us to define a Liouville thermofield double
state, however, we like to emphasize that it is not the holographic CFT thermofield double
state dual to eternal BTZ [29]. To get an isometric factorization map, we need to insert a
“defect operator” to account for the contractibility condition in the bulk gravitational theory.
This operator insertion also modifies the definition of trace and matches with trace in gravity
in the language of algebraic quantum field theory considerations [25, 46]. We subsequently
reproduce the Bekenstein-Hawking entropy formula from the left-right entanglement entropy.

6.1 Factorization map in 3d gravity

As shown in figure 22, we factorize the bulk Hartle-Hawking state into two copies of single-
sided states by allowing the states on the inner and outer annulus to share a common “horizon
boundary”. From the Hilbert space identification in section 2, we expect to get the thermofield
double state in terms of Alekseev-Shatashvili theories [24, 29]. We obtain this factorization

by imposing the following boundary conditions on the horizon boundary
A =A,=0. (6.1)

This is parallel to the local boundary conditions imposed in the 2d case where the BF
formulation of JT gravity is studied [24]. We further impose

DAs =0 As =0, (6.2)

to freeze the graviton degrees of freedom in the bulk such that only boundary graviton
excitations are present, similar to the scenario in section 2. With these boundary conditions,
we again obtain four copies of coupled Alekseev-Shatashvili theories, where the chiral action
of the outer annulus is coupled with the antichiral action of the inner annulus and vice versa.

We subsequently obtain the thermofield double state [29] for Alekseev-Shatashvili theories
from the “cutting map” Z : H — Hp x Hg

o0 — y - 7 —~— P
TN = [CaPap 3 e e 02 N N b ) @ [ N g, N
Ni,N;
(6.3)

where E(hp/, N1) = hpr + N1 — 5, and Nl,]\Nfl are labels for the descendents with unit

normalization

<Pl7 N1|Q,v N2> = 5(P/ - Q/)5N1,N2 . (64)
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Figure 22. The spatial annulus is split into two annuli through a trivial topological interface. With
the Hilbert space on the inner and outer annulus as the two single-sided Hilbert spaces, we compute
the left-right entanglement entropy.

However, this local boundary condition is not isometric, which further implies that the new
boundary is not contractible after the trace is performed, which is required for a smooth
geometry in gravity. To get an isometric factorization map 7, we need to insert the square
root of the two-sided defect operator D through J = /DT : H — M1, x Hg after applying 7.
Applying the isometric factorization map J to the Hartle-Hawking state gives us

TIVE) / T AP AP Y e PBhpnN) /2B N2
0 N1, N

X \/S1p Sy lhpr, Nijlhpr, N1) @ [hpr, Nij|hpr, Ni)

_/ ap'dp’ Z o~ BE(hps N1)/2,~BE(hz,N1)/2 (65)
N1, N
<\ po(P)po(P")|hpr, N1) |hP' Ni) ® |hP/ N1)lhpr, N1,
where the explicit expression of the two-sided defect operator D is given by
D= / dP'dP’ Z S1pS, 5| hpr, N1>|hp/ Ny) |hp/ Ny)|hpr, N1)
N1, N
& (hpr, Ni|(p, Ni|(pr N1 |hpr, N7 | (6.6)

Tracing out the degrees of freedom of one side of the factorized Hilbert space, we naturally
have the reduced density matrix p produced by 7,

p=Try, TIWH ) (WE5TT

/ dP'AP’ Y7 e PR e PPN G 8 e, N hpr N1) ® (hipr, N | (s V|

]].P'
Ni, Ny
oo - —
= [Capap s e e N0 IR oy (1) (P g, Ny s V1)
0 Ni,Ny
®<hP/,N1|<hP/,N1| . (67)
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Furthermore, the trace over Alekseev-Shatashvili states of Hg of the reduced density matrix
p readily gives us the partition function of Euclidean BTZ, which is also given by the norm
of the Hartle-Hawking state,

Z(B) = (W51 VE5)
:T‘r'Hva

o / > 5/ — (68)
:/0 dpP S]lP’XP'(T)/O dP S,JU;,XI;,(—T)
= [P (P xe ) [ AP oo (=)
where 7 = —7 = % is the modular parameter of the asymptotic torus and we have used
the relation for the non-degenerate Virasoro character
> (hpr Nile PECe N0 ho Ny = xp, (T)0(P' = Q) (6.9)

Np

On the other hand, we have the reduced density matrix p associated to the local boundary
condition, which is produced by the cutting map Z,

p= TYHLI|‘I’a/2>< /3/2|I

‘/ dP'ap’ y 7 e PEe e BN |y Ny s N1 @ (R, N (s D
N17N1
(6.10)

6.2 Modification of trace, area operator and entanglement entropy

To compute the entanglement entropy of the reduced density matrix, we need to modify
the notion of trace by inserting the one-sided defect operator D = Try, D on the one-sided
Hilbert space, and it fills the gap formed by the local boundary condition at the horizon, as
shown in figure 23. The one-sided defect operator D takes the following form

D= TI"HLD /) dP/dP, Z Snp/ ]lP’|hP/ N1>|hp/ N1> <hp/ N1|<hp/ N1| (6.11)
Ny, N1

which is a projector onto trivial flux as in compact Chern-Simons theories [95]. In gravity,
this projection means that we only have vacuum Wilson loops?® in the dual 75 cycle, implying
contractibility in the bulk. In other words, the modular S-matrix Syp imposes a topological
constraint such that we only have vacuum contribution in the dual channel. This is the
higher-dimensional analogue of the one-sided defect operator in JT gravity [24], and in
topological string theory [96, 97].27 In short, modular invariance in 2d CFT gives us a natural
way to capture the topological constraint in the dual gravity theory, which is of the similar
spirit as the original derivation of the Cardy formula [34].

25We choose not to keep track of the infinite volume factor coming from (hps, Ni|hps, N1) = 6(0), and only
focus on the part that depends on temperature. We can also reabsorb the constants into the definition of
entropy as in [24, 30, 94] for JT gravity.

20The holonomy is actually in the center of SL(2, R), and trivial in PSL(2,R) = SL(2,R)/Z> [9].

?"In topological string theory, the insertion of the defect operator changes the Euler characteristic such that
the Calabi-Yau condition is preserved.
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Figure 23. Figure shows the cross section of the constant ¢ slice after performing the trace. In
the absence of the defect operator insertion, the blue hole, which is formed by the local boundary
condition at the horizon, is not contractible.

In particular, the nth Renyi partition function is given by
Zn = Tryy, D" = Try, D7"p" . (6.12)

We have seen throughout this paper that the current 3d gravity setup is very similar to what
has been done in 2d JT gravity [24]. Hence, it is also natural to expect that we also obtain
a Type Il algebra with a trivial center [25] for 3d gravity coupled to the probe matter
fields. For such algebras, there is a unique trace up to multiplicative constants, and in fact,
the modification of trace we have matches with the unique trace from algebraic quantum
field theory considerations [25, 46]. To see this, we can consider a one-sided Hilbert space
operator Og, and the unique trace is given by

lim (WEL ORIV = Tew,onn (T 122) |22) © (22| (ZZ] T'OR)
= Traup ((TrHL(J|ZZ> 1ZZ)®(ZZ| <ZVZ|jT)) OR) (6.13)
= Tr,(DOg) .

For our Hartle-Hawking state, the nth Renyi partition function is
Zp = TI'HR Dﬁna
o / 2 sy —
= /O dP SI[P’XhP/ (nT>/O aP S]lﬁ/Xh'ﬁ,(_nT) s (614)

() (8).

where the thermal length is changed from S to nf, matching exactly the expectation from
Euclidean path integral in gravity. The calculation of entanglement entropy Sgg follows suit

_ Zn Tryp [(InD)p] — Tryp plnp
SEE = _an G E
(Zu)"

— +InZ
n=1 Z ' (6.15)

= —Try,pInp+ Try,pInD .

where p = Z% is the normalized density matrix and the expression takes the form of Faulkner-
Lewkowycz-Maldacena (FLM) relation [47]. The first term of the entanglement entropy
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formula is just the usual von Neumann entropy for the normalized density matrix, and the
second term gives the expectation value of the defect operator. It’s actually tempting to
interpret the defect operator as a “quantum area operator”, as

oo ~ —~— P
IH(D) = /0 dP,dP/ Z hl(S]lp/S]lﬁ,) |hp/,N1> |hp/,N1> <hp/,N1| <hp/,N1| 5 (616)
N1,

where

/ D/
In(SyprS, =) = In [ 32sinh(27 P'b) sinh <27TP ) sinh (27 P'b) sinh | 7L
" b b (6.17)

P + P
- 2T— .
b—0 b

27713,%15, is proportional to the minimal geodesic length (“area” in 3d) of the spatial wormhole
geometry (2.22). As shown, the gravitational state is a superposition of all the worm-
hole geometries, and hence, the operator In(D) precisely measures the area in all of these
microscopic configurations.

The expectation value of this operator is

&) [S SR ~
SEE, defect =/0 dP'p(P")1n Sy pr +/O dP'p(P')In S, 5,

~ 111(5]1]345
- 27T7'+

b2
4

- 2GN ’

)
i (6.18)

where p(P’) = Wj}:ﬂw and P/ = P, = Z5 = 5 are the saddle point values of
the Liouville mo(r)nenta.

The notion of trace defined above can be interpreted as a “quantum trace”, with S1p
playing the role of the Plancherel measure of the quantum semi-group SL;F(Q, R). This
is aligned with the one-to-one mapping between Virasoro module and representations in
SL}(2,R) found by Ponsot and Teschner [31, 42, 43, 53-55].28 This perspective also provides
a canonical interpretation for the observation made in [56] in relating the Bekenstein-Hawking
formula to topological entanglement entropy [98, 99].

We want to comment on some structural differences between 3d and 2d gravity, although
the two computations in factorizing Hilbert space follow a similar spirit. The single-sided
Hilbert space is well-defined in 3d but not 2d [22] as the Hilbert space of two boundary JT
gravity describes single-particle quantum mechanics. This can be understood as JT gravity
being related to the chiral half of 3d gravity. In 3d gravity, we can directly perform analytic

28We like to mention the difference between our Hilbert space description and [31, 55]. Our Hilbert space is
based on Alekseev-Shatashvili theories or Liouville theory and is not the same as the formal Hilbert space
constructed from representation theory on quantum groups. The local boundary condition that is imposed
has insufficient degeneracy of “edge modes” and hence, we must insert a defect operator by hand in the
computation of trace to account for the degeneracy of states and non-local contractibility condition in the bulk.
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continuation to study the kinematics in Lorentzian signature, whereas for JT gravity, the
kinematics between Fuclidean and Lorentzian signature is very different. Hence, we can use
the advantage of analytic continuation in 3d gravity to understanding some of other puzzles
in quantum gravity, which is typically a hard approach in JT gravity.

Finally, we like to mention that the above definition of trace can’t be reproduced purely
from an edge mode calculation, which is also the case in gauge theories [100-102], although
summing of superselection sectors is involved in both calculations of the trace. In edge mode
language, each superselection sector is specified by constant holonomies K = Lo, K= ﬁi}
as above. However, in the computation of trace, we are missing the “modes” that account for
the huge degeneracy po(P) in each superselection sector. From a topological consideration, we
add the degeneracy to each sector by hand using the defect operator (6.11). To get an edge
mode interpretation for the area term in gravity as suggested in [30, 31, 94, 101, 103, 104],
we need to have a UV complete theory of quantum gravity that has a vast amount of states
near the edge. The inclusion of these states also provide a local contractible boundary
condition [73, 105]. In such cases, the low energy approximation for the trace over high
energy degrees of freedom produces (6.11). Hence, in the gravitational low energy effective
field theory, we can modify the definition of trace through the insertion of the defect operator.

7 Late time two-point function and “baby universe” operators

All the discussion above involves only on-shell geometries. In this section, we like to mention
briefly on off-shell computations in 3d gravity as these geometries are relevant in resolving
Maldacena’s version of information paradox [20, 28, 29, 106]. As an explicit example, the
forever decaying behavior of the semiclassical spectral form factor and holographic thermal
two-point function fails to reproduce the “ramp” and “plateau” features at late times. In
particular, the “ramp” feature of the late time two-point function in JT gravity was argued
to be governed by considering off-shell wormhole contributions [28].

We first show that the off-shell 3d torus spectral form factor [10] can be calculated using
our Hilbert space formalism for gravity with two asymptotic boundaries, generalizing the
results in JT gravity [28]. The off-shell wormhole, also known as the “double-trumpet”, is
obtained by modifying the ZZ boundary state to FZZT boundary state through insertion
of Verlinde loop operators [107-113]. Similar to the 2d case, we propose the Verlinde loop
operators to be the 3d “baby universe” operators [20, 25] and hence, we have provided another
ingredient in relating gravity observables with Liouville CFT. We like to mention that we
decide to leave a careful analysis on the off-shell path integral measure for the future.

7.1 3d double-trumpet from FZZT boundary states and Verlinde loop operators

In JT gravity, the ramp contribution to the spectral form factor comes from trading a baby
universe between two Hartle-Hawking states before returning to their original states [25, 28].
As shown in figure 24, the baby universe takes the topology of a cylinder and together
with the two AdS boundaries of the Hartle-Hawking states, the Euclidean geometry of the
whole system is viewed as a “double-trumpet”. The trumpet partition function with geodesic
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B/2

Figure 24. (Left): the trumpet partition function in JT gravity has a circular geodesic boundary of
length A in addition to an asymptotic boundary of thermal length B (Right): the “double trumpet”
spectral form factor in JT gravity is obtained by gluing two trumpet partition functions along the
geodesic boundaries.

boundary whose circumference is A is given by the overlap?

Zerumpet (B, A) = (V5 U2, A) = (V53] Ox [053) (7.1)

where Oy, can be interpreted as an operator that initiates the emission of the baby universe
with geodesic length A [25, 28]. The double-trumpet can be obtained by gluing two copies of
trumpet partition function along the geodesic boundary that takes all possible length values

Zdouble trumpet (617 BQ) = /0 /\d/\Ztrumpet(Bl» )‘)Ztrumpet (62, /\) . (72)

Similar to JT, we like to apply the Hilbert space formalism in obtaining the double-
trumpet partition function in 3d gravity. As an early spoiler for the 3d version of (7.1),
the Verlinde loop operators in Liouville are the “baby universe” operators that modify the
77 boundary states to FZZT-boundary states.

As shown in figure 25, the 3d double-trumpet that has a topology of torusxinterval,
takes the following summation [10, 59]

Zryxr(rim) = > Z(ri,gm), (7.3)
4ePSL(2.2)

where the sum is over preamplitudes Z (11, 972) with relative modular transformation on
the two asymptotic tori. Z(r1,72) is given by
Z(T], TQ) = /DM Ztrumpet (7-17 71, /\a X)Ztrumpet (7-27 T2, /\7 X) (74)

where the integration measure is®"

VIm(r)Tm(73)
/ pm — gYm(r)m(m) / AdA / AN (7.5)

|T172

29We have used a different notation to [25, 28] to prevent possible confusion with other parts of the paper.
More explicitly, Anere = bihere is the geodesic length of the trumpet and |1/1§I/Hz> denotes the Hartle-Hawking
state in JT gravity.

30Compared to [10], we have chosen a different preamplitude for the modular sum, hence, obtaining a
different measure. The final result is still (7.3) due to modular invariance. This choice is made to parallel the
calculation done in JT gravity [20, 28].
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Figure 25. (Left): the trumpet partition function in 3d gravity is given by the product of characters
of nondegenerate representations x(—1/7) with conformal weight hy (Right): the double trumpet
partition function in 3d gravity where the asymptotic tori have moduli 7y and 75 respectively.

Verlinde
loop operator

Figure 26. (Left): the trumpet partition function can be calculated as a transition amplitude between
77 boundary states and FZZT boundary states. (Right): the FZZT boundary states can be obtained
through acting Verlinde loop operators on the ZZ boundary states.

v/ Im(71)Im(m2)

Up to an overall S—IW— factor, the measure is just two copies of the Weil-Petersson
measure. As illustrated in figures 26 and 27, the trumpet partition function is given by

Ztrumpet(’ra T, /\> X) = <\I}g}{2| @)\@'ﬂ\l}g}—;) s
(22) Oxgho=/?*|22) (22| Ozq~~/**|2Z) , (7.6)

w(Du(l).

where @A is the Verlinde loop operator that carries a similar label to primaries in Liouville
theory [107-113]. On the other hand, the product of characters xx (—%) X5 (é) can be

obtained by performing a trace on half of the geometry that is obtained from cut7t-ing along
the minimal geodesic of the waist on a similar spatial slice to (2.22) [10].3} We will make
a comment on this at the end of this subsection.

The holomorphic Virasoro character y (—%) with conformal weight hy = % + A% is

defined by the following overlap

1 —c
o (-3) = Bl 22) (77)

31We like to clarify what we meant by similar spatial slice. The ¢ direction in (2.22) is actually the 75
direction of the spatial geometry of the trumpet partition function where 75 ~ 75 + . Hence, the constant
spatial slice here is a constant ¢ slice, and the trace is performed in the ¢ direction where ¢ ~ ¢ + 27.
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Figure 27. The preamplitude can be obtained by gluing two trumpet partition functions along
the baby universes (indicated by the blue tori). Each trumpet partition function can be calculated
using the overlap between the Hartle Hawking state |'</JE/H2) and the Hartle Hawking state with a baby
universe emission @'\@K l¥g)5)-

where )
(O s (79)
X T) = ) .
g n(7)
and |Bsy) is the FZZT-boundary state [40, 57]
Bos) = 02[22) = [~ aP¥L(P)IP)) (7.9
The FZZT-wavefunction is related to the ZZ wavefunction through
U,z (P 27 P
w,(P) = vzz(P) cos(2rPA) (7.10)

2 sinh(27 Pb) sinh(2X)

In addition, we have used the relation n(—1/7) = n(7)v/—ir after performing modular
transform.

In terms of normalized operators in (3.15), the FZZT-boundary state can be expressed as

|Bay) / AP U3, (P')|P')) / dP’\f%W’)), (7.11)
where
Sypr = 22 cos(4nP')), (7.12)

is the modular S-matrix relating two non-degenerate representations in Liouville theory
and (7.11) takes a similar form as the Cardy states in rational CFTs [38, 65]. The Schwarzian
limit of the chiral half of (7.6) reproduces the trumpet partition function in JT gravity [25, 28].

Similar to 2d JT gravity, we again interpret the holographic dual of the operator that
initiates the emission of the baby universe as creating a wormhole in the bulk. In hindsight, the
“baby universe operators” introduced in JT gravity gets uplifted to natural loop observables
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in 2d CFT, which are the Verlinde loop operators [107-113]. We can understand this duality
using the fact that the Verlinde loop operators are shown to be equivalent to topological
defects in Liouville theory [108-110], which in turn are equivalent to Wilson loops in the bulk,
similar to the situation in rational CFTs [62]. The appearance of Verlinde loop operators in
our currrent situation stems from the connection between Liouville theory, 3d gravity and
quantum Teichmiiller theory [11, 53, 54, 108, 109].

Finally, we like to make a comment regarding the differences between on-shell and
off-shell calculations. Naively, we expect the double-trumpet partition function to be obtained
through a similar computation as the calculation for the two-boundary torus wormholes in
appendix B, i.e. inserting a complete basis of Alekseev-Shatashvili states on the boundaries of
the annulus and taking trace of the whole Hilbert space. This is a reasonable approach as the
two situations have the same topology of torusxinterval which is equivalent to annulus X circle.
The difference is that the two-boundary torus wormholes are sourced by operator insertions,
making it an on-shell geometry whereas the double-trumpet is completely off-shell. If we
directly perform a similar trace to obtain the double-trumpet partition function, we end
up with the wrong measure, i.e.

~ o ~ ~ ~ ~
Z,(Th 7_2) = /0 dXdA Ztrumpet (7-17 T, A, /\)Ztrumpet (7-2: T2, >‘7 )‘) 7’& Z(Tla 7'2) . (7-13)

As shown, each trumpet partition function computes the trace for half of the spatial geometry
in (2.22). For on-shell geometrical observables, we can simply glue the two halves together
with a flat measure [;° dAd). For off-shell configurations, we have to use the measure
in (7.5), which comes from two copies of the Weil-Petersson measure that is proportional
to [y~ dAdA AN, in performing the gluing. This discrepancy exists too in JT gravity where
the identity operator limit of the two-point function in JT gravity is divergent and doesn’t
reproduce the double-trumpet partition function.?? We provide a possible resolution to
this puzzle. In the off-shell calculation, the extra A and X in the gluing measure can be
viewed as coming from an integration over relative twists on the two trumpets, similar to JT
gravity [20, 28], as there is no gravitational saddles to fix their values. For on-shell calculations,
there are extra operator insertions (as shown in appendix B) or the ZZ boundaries that act
as sources in stabilizing the geometry through a specific twist angle. Hence, the integral
over twist angles will be trivial and the gluing measure is flat. We leave a more detailed

understanding on the discrepancies between on-shell and off-shell calculations for the future.

7.2 Late time thermal two-point function

If we analytically continue the thermal two-point function to Lorentzian time, (4.27) has the
forever decaying behavior. However, this decaying behavior can’t persist as it is in conflict
with the AdS/CFT correspondence, and this is the version of information paradox proposed
in [29]. We expect to see a ramp and plataeu following the decaying behavior, similar to
what is observed in the spectral form factor [20, 28, 106], as the dual theory is highly chaotic.

Following a similar spirit to what has been done in JT gravity in reproducing the linear
ramp [28], as shown in figure 28, we propose the following computation for the late time

32 Arguments have been made in [114] to attribute the discrepancy on the sum over windings in JT gravity.
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O,
Figure 28. By cutting along the geodesic (red dashed line) that connects the two operators Oy, ,
the late time two-point function in JT gravity is similar to the “double trumpet” geometry.

Figure 29. The off-shell wormhole contribution to the preamplitude of the late time two-point
function. The preamplitude can be viewed as coming from two copies of Liouville operator insertions,
indicated by the yellow line, sandwiched between FZZT boundary states that are responsible for the
emission of baby universes. The baby universes, indicated by the blue tori, are glued together, forming
a “double trumpet” geometry.

thermal two-point function

—_~

gy = Y G (g2 gr) (7.14)
9ePSL(2,2)

where the preamplitude, as shown in figure 29, is given by,

S asm) = NG m) [ INIA Vo (21,2003 Vo (200, e
oo A

= N(z1,7) / dA X (Boy| e”B2=mHY =Tl | B,y (7.15)
0

o0
Y 1 ,—(B/2+T1)HY; nH _
x/o XX (B e~O/2mHY, ontl |B
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where 71 = (21 — 21)/2i is the location of the operator V,, (z1,21) on the thermal circle.
<>g J2.FzzT IS the expectation value between two FZZT-boundary states |Bsy) on a finte
cylinder of length 3/2 and N (z1,7) is an overall constant from the integration measure that
is related to the moduli of the asymptotic torus. We obtain the following expression for
the chiral half of the late time two-point function

/ A (Bo| e~ B/2=m)HY o=l | B,y

=, d)\)\ T araQ’ Cpoz2(P', Pay, Q") Wor(PVWENQ) Frp by (hays hays 21 — 21, )

ox
— 8c; ! / A / dP'dQ Co(hpr, ha,, hoy) cos(AmP'A) cos(4mQ'A)
0 0

X ]:hp/,hQ/(hauhOtuzl —Z1, ) .
(7.16)
The A integral doesn’t converge, but we immediately see that the integrand takes a similar
form to the density of states for the ramp in random matrix theory. Following [20], we
perform the A integral using analytic continuation for the correlator of resolvents

P/2 4 QIQ
167T2 (PIZ _ Q/2)2 ’

pramp(P', Q / d\ Acos(4P' ) cos(4rQ'\) = (7.17)
where pramp(P’, Q') encodes the level repulsion in random matrix theory and details on this
calculation can be found in appendix F.

To summarize, the preamplitude for the late time thermal two-point function is given by

—_~—

S m) = 64N (21, 7)ey
2

o

/0 AP'AQ) pravup(P's @) Colhpr by ) Fipr iy (g By 21 — 21, )
(7.18)
Provided that we have the correct measure, we expect to get the ramp behavior from (7.14)
in the low temperature, late-time limit, similar to [10, 28]. In contrast to on-shell gravitational
quantities that was argued to capture statistics of OPE coefficients [32], the off-shell quantities
capture statistics of density of states and are responsible for the chaotic random matrix
behavior [10], as seen from (7.17). Similar to on-shell gravitational quantities, the Schwarzian
limit of the chiral half of the late time thermal two-point function in (7.18) reproduces the

contribution from “double-trumpet” geometries in JT gravity [28].

8 Future directions

8.1 Rotating BTZ and spinning operators

In this paper, we focused on Hartle-Hawking state related to non-rotating BTZ. It’s natural
to expect that for rotating BTZ, we have the following Hartle-Hawking state

WK, o) = a2 |22)q 2| Z2) = e el 2 2)e 51 77, (8.1)
where ¢ = ™7 7 = 9'2:[3 = ig—?f, T = 9;5 = —%, 0 is the twist angle and H is the total

Hamiltonian in Liouville theory.
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For correlation functions in terms of Liouville overlaps, it is natural to consider spinning
probe operators at asymmetric insertion points

G i (P12 200 20)
= <V0ll (Z], Zi) T Van (Zn, Z;z)>ﬁ/2;0/2,ZZ< ai (Eiv 21) T V&n (2':17 271)>6/2;9/272'Z . (82)

where (-) /2:0/2,zz vepresents ZZ overlaps on a finite cylinder /2 and via the doubling
trick, one of the ends of the cylinder at the ZZ boundaries is glued with a twist angle 6.
We use Liouville scalar operator insertions to represent spinning operators in holographic
CFTs through

O’la17]l&1 (Zh El)ohal,hal (Ziv Ei) — Val (217 Zi)vtil (237 E1) . (8'3)

To justify these identifications, we need to consider the quasi-Fuchsian wormhole slic-
ing (5.45) [12] as our metric ansatz for computing gravitational actions with spinning probe
operator insertions. This is along the lines of obtaining rotating BTZ partition function
using (5.45) [115].

We leave a more detailed analysis on these problems for the future.

8.2 Universal Type II algebra in 2d large ¢ CFTs

As argued in section 6 and following similar arguments in [25, 116], similarity in obtaining
the trace formula between 3d gravity and JT gravity strongly hints that we get a Type
11, algebra when 3d gravity is coupled to probe matter fields. It is definitely worthwhile
to understand this algebra better.

Moreover, we can understand this universal algebra from large ¢ chaotic CFTs. Motivated
by the eigenstate thermalization hypothesis and CFT ensemble proposal in [32, 117, 118], it
seems reasonable to make the following conjecture: in any large ¢ chaotic CF'Ts, if we perform
a coarse graining procedure, i.e. averaging heavy operators over a small energy window above
the black hole threshold, we get a universal Type 11, algebra that’s related to the universal
CFT ensemble in general cases, and in particular, Liouville theory in the presence of two
boundaries. Partial support of this conjecture comes from taking into account universal
dynamics of heavy operators in 2d CFTs [44, 80, 119], arguments similar to [120] to extend
the regime of validity of these formulas in large ¢ CF'Ts, and Tauberian theorem to control
the size of the averaging energy window [121-127]. Tt is the universal sector of algebra for
heavy operators that provides emergence of universal dynamics in 3d gravity. The emergence
of geometry from algebra is similar to what has been observed in higher dimensions where
the algebra is given by the cross product of algebra generated by generalized free fields and
the modular automorphism group [128, 129].

We also like to point out one more approach in seeing the emergence of geometry from
algebra, especially from the perspective of open CFTs. It has been known that we can
use the modular tensor category of Moore-Seiberg data [130, 131] to construct TQFTs
that characterizes rational CFT observables [132-137]. More explicitly, [138-140] generalize
insights made in [141-143] through constructing an explicit real space renormalization group
(RG) operator using the 6j symbols that are related to the open CFT three point functions.
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Upon applying the RG procedure, a TQFT in one higher dimension and its associated
geometry will be emergent via an exact MERA-like tensor network [144-147]. Using this
method, we hope that we can see the emergence of 3d gravity from the universal algebraic
data in 2d large ¢ CFTs [140].

8.3 3d topological recursion, 3d gravity from topological M-theory and random
matrices from conformal bootstrap

As mentioned in section 7, we need a better understanding in obtaining the integration measure
for the gluing of off-shell gravitational quantities in 3d gravity. If we have a more systematic
way of obtaining the integration measure, we can use the building blocks in this paper to
construct path integrals that compute genus g partition function with n boundaries, similar to
what has been done in JT gravity, and probably show the corresponding “topological recursion
relation” in 3d gravity [20], thus, obtain a better understanding on the averaged dual theory.
We want to point out another potential approach to address this problem. It is understood
that we can understand JT gravity from the worldsheet theory of topological B-model on
certain fibration over the spectral curve of the matrix model [148-150]. It is natural to expect
that 3d gravity is related to the membrane theory of “topological M theory” [151].
Finally, regarding the CF'T ensemble, we also like to point out that the ensemble for OPE
coefficients is proposed based on bootstrap considerations (identity block dominance in certain
channels) [44]. However, we expect the random matrix behavior, i.e. level repulsion in the
density of states (7.17) and its associated ramp behavior, to be universal in chaotic theories.
In this paper, it comes from the gluing measure related to the Weil-Petersson form in gravity.

It would be interesting to understand this universality from a bootstrap point of view.?3
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A Liouville basics

In this appendix, we list out the basics for Liouville theory that we used in this paper. The
conformal weights of primary fields are related to Liouville momentum P through
c—1

_ 2
hp = o + P° . (Al)

33Papers along this direction appeared [152, 153] when we are on the final stage of preparing this paper.
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The central charge c is related to the Liouville background charge ) or Liouville parameter

b through
c—1 -1

where the semiclassical behavior of CFT quantities are studied by taking the large ¢ limit or

small b limit. In studying the semiclassical limit, we consider heavy probe operators with
large conformal dimension, and for these operators, it is convenient to adopt the following
parametrization of conformal weights

h=cn(l—n), (A.3)

where we call 7 the defect strength as in [32], and 7 € [0, 1/2] for below black hole threshold
operators.

In the main text, we compute correlation functions by inserting vertex operators Vi (z) =
e22®(2) between the ZZ boundary states. The conformal weight of V,,(z) is given by

ha = a(Q — a), (A.4)

where « is related to the Liouville momentum through a = % + iP,. The 2-point function
determines the normalization of vertex operators

<V0é1 (O)Vaz(1)>L = 5(P041 + Pa2) + SL(POQ)(S(POQ - Paz) > (A5)
where Sy (P) is the Liouville reflection amplitude given by

oippy U (14 22) T (1 + 2iPb)

Sp(P) = — (v (0?) : : (A.6)
( ) T (1-Z2)r(1 - 2iPY)
The DOZZ structure constant is given by [41, 169]
CDOZZ(Pa17Pa27 Pa3) = <V01 (O)Vaz(l)vag (OO)> ) (A7)

and is related to the universal OPE coeflicient Co(Pa,, Pasy, Pas) through [44]

Q
(FM’Y(bz)bQ_sz) ” Fb(2Q) CDOZZ(Pal ’ Pag» Pa3)
3 )
2% To(@) Ty SL(Pay)po(Pay) (A8)
= CDOZZ(PCn?Paz?Pag)
VT SL(Pa,)po(Pay)

where ¢, is a constant that is independent of the primary conformal weights and cancels the

OO(Pa17Pa27Pa3) =

dependence on the cosmological constant . More explicitly, the universal OPE function
Cy takes the following expression [44]

Co(Pay, Pay, Pay) = 22 s T (§ 1 1P 22172, £1i82) (A.9)
P e Tl T ATW(Q) Ty To(Q + 2iPay ) Th(Q — 2iPay) '
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where [] 1 55 represents all possible sign permutations in the product of the eight terms.
T'y(x) is the “double” gamma function with poles at 2 = —mb — nb~! where m,n being
non-negative integers. In the main text, we use V to denote a different normalization for
Liouville operators that are below and above the black hole threshold respectively,

e nel0,3]
o ) /Su(P)po(P) T2
V, = (A.10)
\/% , P real .
L

In the main text, |P’) is used to denote primary states correspond to normalizable primary
operators V., such that

CA(DOZZ(]DQUJDO&Z? Pa3) = <V011 (O)Vaz(l)f/oa (OO)> ) (A'll)

where the normalized DOZZ structure constant C’DOZZ is given by

) = Cp0zz(Pays Py, Pas) _
VI ctigne St (Pa,)p0(Pa,) Tieheavy S2.(Pay.)

(A.12)

Cpozz(Peay s Payy Poy

B Two-boundary torus wormhole and its Schwarzian limit

In this appendix, we show that the two-boundary Hilbert space defined on an annulus in
3d gravity is useful for calculating certain exact two-boundary torus wormhole correlators.
In the Schwarzian limit, we reproduce the two-boundary disk wormholes with heavy probe
operator insertions in JT gravity that describes quantum noise [26].

As an explicit example, we compute the preamplitude of the wormhole contribution for
the product of torus two-point functions (figure 30), i.e.

Gal.az (7-7 %)Gal.ag (7-/7 77-/)

- <Oha1 7h041 Ohag 7h042 >T2(T,77') <Oha1 7hoq Ohag yhag >T2(7_/77t/) ’

Z C1pqC2pqClp'q' C2p' ¢/
. .q,q'

p p 4 '
Oha, C : Ohay  Oha, C : Ohay  Oha, ( : Ohay  Oha, ( : Oh,,
X )
q q q/ q/

(B.1)

where the last line comes from the usual Virasoro conformal block expansion.

In particular, through inserting a complete basis of Alekseev-Shatashvili states on each
boundary of the annulus and taking trace, we reproduce the wormhole contribution that has
a topology of torusxinterval with operator insertions. This comes from the idenfication of
Hilbert space in section 2, and identification of the two pairs of probe particle insertions across
boundaries as four Liouville operators Va, Va, Vi, Va, in section 4. Following this identification,
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Figure 30. The two-boundary torus wormhole that is constructed from product of torus two-point
functions.

we compute the trace in the coupled Alekseev-Shatashvili theories/Liouville theory and obtain

P’ P’
Bt s / nA / / Ohal Ohaz Ohal Oh,,Q ’
/O dP'dQ'Cpozz(P, Pay, @)Cpozz(P', Pag, @)
@ @

(B.2)

The above answer matches with what we expect from the CFT ensemble in [32], as the

ensemble average sets p = p’,q¢ = ¢', and

GO&L,OQ (T= ’T_)Galﬂz (T,7 ’7_,)

hal : : (12 al : : a2
P’ P’
% Oh, Oh, Oha, Ohe, |?
~4 /O dP'dQ po(P)po(Q')Co(P', Pay, Q')Co(P', Py, Q')
@ @

P’ P’
o0 . . O, Ohay Oha, Ohey |*
—4 /0 dP'dQ'Cpozz(P', Pay, @)Cpoz2(P', Pay, @)
Q Q

(B.3)

We like to emphasize that in the presence of two boundaries, the extra factors of py coming

=4 Z Cplq p2q

from the difference of Cy and éDOZZ cancel with the py from the Cardy spectrum, further
leading to a Liouville result. In this paper, we hope that we have been clear on addressing that
the relation between Liouville and 3d gravity with two boundaries is not simply a coincidence.

We also want to point out the connection to the wormholes that describes quantum
noise in JT gravity [26]. We just need to take the Schwarzian limit of the correlated torus
two-point function, which is given by f; = —2miT — 400 and fr = 27T — 0. In doing so,
the contribution from the right-movers is given by the vacuum block and we choose not to
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&/ Oy,

o2
. o4 M s 1 h] 1 11 s Tm oy aal! s s . L
rigure o51. 10e two-boundary disK wormnole 1 .J 1 gravity. l1here are two operator 1nsertions on

each boundary that are separated in Lorentzian time ¢ and Euclidean time E /2.

keep track of it as it only contributes as an overall normalization factor to the Schwarzian
correlators [27]. In the Schwarzian limit, the OPE coefficents of descendants are suppressed
as the black-hole states are given by P’ = b\/E|, Q' = b\/Ey where E;, E> are held fixed. For
the external operators, a = bh ~ O(b). We finally have

/ AP'AQ po(P)po(Q') / "~ dEydEy sinh(2m/FL) sinh(2r v B3)
0 0

(Q [Ti12 D (hay +1iVET £29VED)
Co (3WELi (3 = bhay ) DVER) - T ,

P’ P’
O, Ohey,  Ohg, Oh,, -
s ePEI+E)
Q' Q'

where we have taken zp, 2] = 21‘_/3;; 23,7y = 0and B = b8 = b23; in reproducing the last

(B.4)

relation. In principle, the moduli of the two boundaries are different but the identification
between the prime and unprime parameters is for computing the variance of the wormhole
contribution in JT gravity coupled to matter. We subsequently obtain

H
2

fﬂ _A
al (1,7) = 'Tr {eid 2 Ohal(t)e A

ay,02

2
O, 0] "
= / dEydE, sinh(2m/E) sinh (2 Ep)e PEE) (B |G | Es) (B2 |Ga, |EL)
0
(B.5)

where
T4 2T (ha £1 iV EL 2 iV ED)
B T'(2ha)

(E1|Go|Es) . (B.6)

-B

ol

As shown in figure 31, e represents a Euclidean time evolution of /3 /2 on the disk and the
two operators Op,, ,Op,, are also separated in Lorentzian time ¢. <E1|éa|E2> is the matrix
element of the operator insertion G, that acts on the Hilbert space of a diskxinterval in

JT gravity. This is exactly the result obtained in [26].
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C Counterterms in renormalizing the action

In this appendix, we like to derive the counterterms needed in normalizing the defect action.
A detailed procedure in normalizing the wormhole action has been demonstrated in [32].
The result is given by
c
—Se(m) = 3 Z ((1 —2n;) In(1 — 2m3;) + (1 — 2n;) Ine — In R4 21? In e,;) , (C.1)
i
where their Liouville field lives on a disk with cutoff radius R. We notice that (C.1) is not

local as it depends on R due to the chosen normalization of the wormhole action. It was
mentioned that the following GHY term at |z| = R

1 1 2
SNGN/\/EK—E<2111R+IHE>, (C.2)

was not included in the computation of the action. Had we included it in normalizing the
defect action and adding the relevant terms such that —S¢¢(0) = §(In2 — 1), the counterterm
is given by

C
~See(m) = 5 > (1= 2m) (1 = 20) — 2l + 207 e + 2 —1) . (C3)

7

which is what we have in (4.8). The reason of requiring —S¢;(0) = §(In2 — 1) is because
each massless operator inserted in the gravitational action is related to the identity operator
in Liouville by the following normalization factor

1

~ ,<(In2-1)
. — XL , C4
S (P) S1p (©4)

where P = %(b—i—%).

D ADM decomposition

In this appendix, we like to compute the gravitational action in (5.27) by performing an
ADM split on the scalar curvature and extrinsic curvature components. We find that this
decomposition is convenient for the (®g, J)-basis Wheeler-DeWitt wavefunction computation
in section 5.4 and here, we use the ®g-states as an exercise on this machinery.

As shown in figure 32, with the outward pointing normal vector of B” to be r, and the
forward pointing normal of ¥, %', , surfaces, which we now denote as X surfaces, to be
uy, we have the following boost relations between vector fields

Ty = YoMy — YoVUy = COS any, — sin auy, ,

) (D.1)
ty = YUy + YpUny, = COs Quy, + sinany, ,
where 7t = 0,n-u =0, 3, = (1 +v*)~Y2 and v = tanc.
The wormbhole slicing of the hyperbolic metric is in ADM form
ds? = cosh? pe®dY? 4 dp? + cosh? pe®dX?, (D.2)
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Figure 32. Figure shows the cross section of the spacetime geometry of the wavefunction, M.

where X = Re(z) and Y = Im(z) is the chosen direction for “time” evolution. The unit
normal u, to X is given by u, = NV,Y where N = cosh ,oe‘I’/2 is the lapse function. With
n, being the outward unit normal to the constant p surface, we obtain the projection o,
onto the intersection between the X slices and p =constant slices

Ty = Gpw — BTty — Uy = Qpp — Ty — bily - (D.3)

We are ready to compute the following gravitational action using ADM decomposition

1 A TR
 Syran(®0) = m/ @%@(Rﬂﬂm/”dzmﬁ(@—m

1 A Vi 1 m Be2)
d“zvVhK dz./ 0——) .
+87TGN/§;'ZZ . +87rGN/F v UF( 2)
Using the following decomposition of the Ricci scalar
R®) =R 4+ K2 — K, K" — 2V ,(Ku" — a"), (D.5)
where K, = hﬁvauy and @’ = vV, u”, we obtain
- — 1 3 (2) 2 %
Sgrav(®0) = (| doyg(R®+ K- K, K" +2)
= 167G N \ J (D.6)
+ 2/ d*z /7 (wk — 1 — "V ,,a) + 2/ dxz./or (9 — g) ) .
B 3
In deriving this result, we have used the following splittings of © and K
O =,k — vl —vyn-a+ you-b—t'V,a,
g g 7 7 I (D.7)
K=Il-u-b,
where
1
k = o**N i, = ﬁn"@,”/g,
1
l ="V, = ﬁu"@w/g, (D.8)

b’ = ntVv,n",
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and the decomposition of the extrinsic curvature components is derived in [85]. There are
sign differences between [85] and us due to analytic continuation from Lorentzian signature
to Euclidean signature. To prevent possible confusion, we rederive the splittings here.

Given that the induced metric of the X} slices to be h;; and the forward pointing normal
to be uy, the extrinsic curvature is given by

Ky = hyVauy, . (D.9)
The induced metric h;; can be expressed as
hij = o5 +nin;j , (D.10)

where o;; is the projection onto a codimension-2 surface with outward normal n; that foliates
Y. This allows the following decomposition of the trace of extrinsic curvature K

K=Il—-u-b. (D.11)

We have used Leibniz rule n*V,u, = —u#V,n, in deriving this expression.
Similarly, the extrinsic curvature of B” embedded in M is given by

@p,l/ - '73Vo/ry 5 (D12)

where r,, being the outward unit normal and 74 being the induced metric of B”. To arrive
at the splitting of © in (D.7), we use the identity

Vuu, = Ky +upa,, (D.13)
to obtain
Vury = %V, — YK — yovuga, — 6,V o (D.14)
Finally, using
O = Yk — vl (D.15)

and
MYy = Yot ut V= o0 ik eV, — yiv® — 'V
tHt'N iy = yottu" Vo ny, — vt nf ntVu, — v (na) -tV

D.16
= —yn-a+yvu-b—tI'V,a, ( )

we obtain (D.7).

We notice that the gravitational action in (D.4) simplifies as there is some total derivative
terms from the bulk that cancels with the boundary terms of the X, slices, reducing to (D.6).
With R?) = —2, the bulk term in (D.6) vanishes and we automatically reproduce (5.32)

1
4rGpN

— Sran () = /B dzdz G(acpécp + e<1>)) 4 (D.17)

Gnpey’

where we consider the same Liouville solution in (5.23).
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E Gluing of ZZ boundaries in gravity

In this subsection, we show the bulk+AdS boundary contribution of the small cylindrical
region M — M’ that is carved out due to the presence of the ZZ boundary conditions (as shown
in figure 17 and 18) is equal to the extrinsic curvature contribution at the codimension-one
carved out surface ¥, ,. The contribution of the carved out surface to the on-shell action
of the Hartle-Hawking wavefunction is given by

S = 1673GN (/M_M P JGR+2)+ 2/3_3/ P /7(0 — 1)) . (E.1)

Using (D.5) for the ADM splitting of the Ricci scalar
R®) =R® 4+ K? — K, K" — 2V, (Ku! — a"), (E.2)
and (D.7) for the extrinsic curvature components

O = Yk — Vvl — Yyn - a+ yvu - b — 'V o,

E.3
K=Il—u-b, (E3)
Eq. (E.1) becomes
= o fewtovio=n)
S 167G M_M,d /(R +2) + g /(O -1)),
_ 1 . 3 (2) 2 pv
- e ( /M_Md oy/G(R + K2— K, K™ +2)
(E4)
+2 / Pk —1 -1V ,a) — 2 d%x/ﬁK)
BB’ =,
1
— Py (KF-u)—7-a),
S | VA ) —7a)

where 7 is the normal vector to the spherical cap around the joint (B’ — B”) N X7z, as shown
in figure 33. In shrinking the cap to zero size, /7 — 0, and with the term (K(7-u) —7 - a)
being regular around the cap, the last term in (E.4) vanishes. In the limit M — M’ becomes
a zero size region, the bulk+AdS boundary term of (E.4) vanish both for the ®y-basis and
(®g, J)-basis Wheeler-DeWitt wavefunction. Hence, we have shown

1 . , 1 ,
-8 = (/ dBr/g(R+2 +2/ d*z @—1):— / d*zVhEK .
167G N \JMm-m vl ) B-B' 'l ) 8GN Jx,,
(E.5)
F Density of states for the ramp
In this appendix, we provide details in evaluating the following integral
oo
pramp (P, Q) = / )\ A cos(4P'\) cos(4m Q') . (F.1)
0
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Figure 33. Figure shows the cross section of the small cylindrical region M — M’. We regulate the
codimension two surface ¥z N (B’ — B”) with a spherical cap surface that has unit normal 7.

We first notice that cos(4mP’'\) is the density of states for the trumpet partition function
in JT gravity [25, 28]
74#2A2

B o0 /
Zyrumpet (81, A) = \/7726—\/ﬂ_1l = /0 dP’ COS(47TP,/\)6781P2 , (F.2)

and the double-trumpet partition function is given by [25, 28]

Z(ﬁl: 52) = /Ooo dA X Ztrumpet(ﬂl, /\>Ztrumpet (62: /\> = % ¢ (F?’)

Assuming Eq, Es < 0, we compute the contribution to the correlator of resolvents [20]

VBB 1 1
320(B1+ ) 64 =EIV=E; (V=Ei +V=E)°
(F.4)
Next, we continue (F.4) to positive energy, thus obtaining the density of states for the ramp
from the analytical continued R(+,4) = R(E; + i€, Ey + i€) on the corresponding branch?*

e cos(4my/—E1\) cos(4my/—EL )\
pramp(El,E2>=/ iy CSUTV=E) cos(dmy/=E3\)
0 4\/_lal\/ —EQ
_ B+ R, o) = Rl o) = R 4) (F.5)
(—27i)2 .
_ 1 E+ Es
T 64 VE By (By — E2)?

Using the relation F; = P, B, = Q' and taking into account the Jacobian, we obtain?>

P12 + QIQ
o 1672 (P12 _ Q/Q)Q ?

R(EI,EQ) - /O dﬁldﬁ26’31E1+52E2

PRamp(P', Q") = (F.6)

and pramp(P’, Q') is responsible for level repulsion in random matrix theory.

34The denominator comes from the Jacobian when we perform a change of variables.

35In principle, we can apply Cauchy’s integral theorem to deform the integration contour from real to
imaginary axis on the four exponential oscillatory integrals of (F.1). After Wick rotation, the integral is
exponentially damped and we obtain (F.6).
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