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Abstract—Wafer map analysis is essential for process issue de-
tection and yield improvement in semiconductor manufacturing.
Accurate wafer map pattern recognition facilitates root-causing
of abnormal chip fabrication conditions. However, manually
annotating wafer map data is expensive and time-consuming,
which drives up the demand for exploring label-efficient methods
for wafer analysis. This paper proposes a novel contrastive
learning framework for wafer map pattern feature extraction
and classification. Under the semi-supervised learning setting,
the proposed approach aims at learning from a large amount
of unlabeled data while efficiently exploiting a small amount
of expensive labeled data. Our method utilizes supervised con-
trastive learning on a small amount of labeled data to learn
a better latent space representation with well-separated wafer
pattern classes. Furthermore, a dual-encoder latent-space model
is incorporated to best optimize the simultaneous use of labeled,
unlabeled data, and varying types of data augmentations for
representation learning. Finally, we enrich the semantics of the
learned latent representation space by introducing a novel inter-
wafer data augmentation to synthesize data which are not present
in the given dataset. Experiments show that our method leads
existing wafer pattern recognition techniques including recent
contrastive learning based approaches by a large performance
gain, and suggest that superior accuracy may be achieved
simply by semi-supervised learning without resorting to labeling-
intensive supervised learning.

I. INTRODUCTION

In semiconductor manufacturing, wafer map analysis is a
key to detect process issues and improve yield of integrated
circuits (ICs). As a visualization of chip test failures on
wafers, wafer maps help engineers identify the root cause of
systematic chip fabrication issues when they show a certain
pattern. For example, clustered failing dies on the wafer may
∗
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indicate equipment and chemical stains, while a ring on the
edge of the wafer may signify problems in etching [16]. Fig. 1
shows examples of wafer maps and some types of failure
patterns. Thus, wafer map pattern recognition is one of the
most essential tasks in semiconductor manufacturing.

(a) Passed and failed dies on a wafer

(b) Common wafer map patterns

Fig. 1: Chips on a wafer and different wafer patterns.

Traditionally, wafer map pattern recognition relies on expe-
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rienced engineers for visual inspection and empirical judgment
[6], which are subjective and time-consuming. Hence, the
exploration of automatic and efficient approaches of wafer
pattern identification is highly desired in semiconductor man-
ufacturing.

Wafer map pattern recognition may benefit from the latest
computer-aided methods for improving the efficiency and
accuracy of wafer analysis. Various modern machine learning
techniques have been adapted for wafer map pattern recogni-
tion. [23] and [4] propose to extract geometric and Randon-
based features from wafer maps and utilize support vector
machine (SVM) to classify wafer patterns. A decision tree
ensemble-based method is introduced to recognize wafer map
patterns [16]. Recently, deep convolutional neural networks
(CNNs) have been used as the feature extractor for wafer
pattern recognition. [14] is the first to propose a systematic
approach to leverage CNNs for feature extraction by combin-
ing data mining and machine learning. Following CNN-based
works [9], [18] improves supervised learning accuracy in wafer
map pattern classification.

A major drawback of these previous methods is that all
these supervised data-driven approaches require a significant
amount of accurately labeled wafer map data, which is a
time-consuming and expensive process. To respond to the
above issue, unsupervised and semi-supervised methods of
wafer map recognition have emerged. [8] proposes to train
a variational autoencoder (VAE) on unlabeled data for wafer
map pattern clustering. [12] and [17] also incorporate VAE in
their framework to learn wafer pattern latent representations
and classify them in a semi-supervised manner. However, these
methods require a large proportion of the overall training data
to be labeled in order to achieve satisfying performance in
pattern classification. As a state-of-the-art deep learning frame-
work, generative adversarial network (GAN) is adopted to give
rise to unsupervised learning in wafer pattern recognition [15],
but the proposed training process heavily relies on manual
tuning and human intervention. [20] also incorporates GANs
for pattern recognition; however, this approach also requires
large amounts of labeled data to achieve high accuracy in
wafer pattern classification.

In recent years, contrastive learning has emerged as a
promising semi-supervised approach to learn powerful rep-
resentations of visual and language data. Among contrastive
learning approaches, SimCLR [2] is one of the most renowned
frameworks for learning visual representations. At the core
of SimCLR are augmentations that are applied to unlabeled
images to get different views of them. By maximizing the
agreement between features extracted from the same data’s
different views, SimCLR learns clustered data representations
from unlabeled data. A classifier is then trained on labeled
data upon the pre-trained feature extractor to learn the classi-
fication. [7] adapts SimCLR to wafer map pattern recognition
by proposing domain-specific augmentations. Although this
framework gives rise to label-efficient training where models
trained on small amount of labels achieve comparable perfor-
mance with fully-supervised training, it is unable to recognize

all patterns accurately. In other words, the approach exhibits
relatively low accuracy in identifying some specific wafer
map patterns. Furthermore, we believe that more effective
utilization of the small amount of labeled data can further
improve the performance of contrastive learning in wafer
pattern recognition.

To this end, we propose a novel contrastive learning frame-
work of wafer map pattern recognition. Fig. 2 illustrates the
architecture of our proposed framework. First, we propose
to train the encoder by Supervised Contrastive learning for
Wafer Maps (SCWM) on the labeled portion of the data.
Leveraging labels, SCWM contributes to learning better clus-
tered representations of wafer patterns. Alternating between
supervised and conventional unsupervised contrastive training
can effectively take advantage of both the unlabeled data
and the small amount of expensive labeled data. Second,
we propose a dual-encoder model consisting of a ‘key’ and
‘query’ encoder for learning wafer map representations. The
moving-averaged ‘key’ encoder, which is updated faster in
SCWM than in unsupervised contrastive learning, can help
the ‘query’ encoder learn better-clustered representations by
placing ‘anchors’ in the feature space. Finally, we introduce
Inter-Wafer Data Augmentation (IW-DA) as a novel data aug-
mentation method of synthesizing new wafer pattern classes
that are not present in the given training dataset. Unlike
conventional data augmentation techniques that create different
views of a given input instance, IW-DA superimposes two
existing instances to create realistic wafer which contains
wafer patterns from both of its components.

Experiments show that SCWM greatly improves classi-
fication accuracy compared to existing supervised learning
approaches. Our overall framework integrating supervised con-
trastive learning (SCWM), dual-encoder model architecture,
and Inter-Wafer Data Augmentation (IW-DA) outperforms
existing supervised and semi-supervised approaches for wafer
pattern recognition.

II. BACKGROUND

A. Problem Formulation

As shown in Fig. 1a, each wafer map can be represented
by a matrix x ∈ X = {−1, 0, 1}W×H , where W and H are
the wafer width and height, respectively, and each chip (die)
is denoted by a pixel in the matrix. 0 is used to denote good
dies, 1 is for bad dies, and -1 means that there is no dies at
the location. For a labeled wafer map, there is a corresponding
label y ∈ Y which specifies the pattern type of the wafer map,
while no label is attached to an unlabeled wafer map.

In deep learning, to classify wafer maps, a deep neural
network fθ(·) parameterized by θ is trained to extract key
features from wafer maps and to predict their pattern type,
such that ŷ = fθ(x), where ŷ ∈ Y is the prediction.

B. Existing Contrastive Learning Methods in Wafer Pattern
Recognition

Following [2], [7] proposes a semi-supervised contrastive
learning framework for wafer pattern recognition. The frame-
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Fig. 2: An overview of the proposed framework.

work contains two steps, unsupervised representations learn-
ing and classifier training.

1) Unsupervised Representations Learning: The major goal
of the first step is to learn an encoder gθg (·) that can extract
the most distinctive features v for further classification, i.e.,
v = gθg (x), v ∈ RM .

To achieve this goal on unlabeled data, two random data
augmentations Aug1, Aug2 : X → X are sampled from an
augmentation set A to provide different views of each wafer
map, as shown at the top of Fig. 3:

x1 = Aug1(x), x2 = Aug2(x) (1)

The augmentations are designed to ensure the identity of the
original wafer pattern is maintained in the augmented views.
An encoder (CNN) gθg (·) is then used to encode the views. A
projection head (MLP) hθh(·) projects the encoded views to
a lower dimensional feature space Z = RN , N < M .

z1 = hθh(gθg (x1)), z2 = hθh(gθg (x2)) (2)

In each training iteration, a batch of B wafer map
data {x1,x2, . . . ,xB} is sampled and then go through
the above process to form a batch of feature vectors
{z11, z12, . . . , zB1, zB2} in the Z space where a contrastive
loss ℓCL [2], [7] is applied:

ℓCL(zi1, zi2) = −log
exp(sim( zi1

∥zi1∥ ,
zi2

∥zi2∥ )/τ)∑
zj∈B′

zi

exp(sim( zi1

∥zi1∥ ,
zj

∥zj∥ )/τ)
(3)

where B′
zi = {z11, z12, . . . , zB1, zB2}\{zi1, zi2} is the set of

feature vectors of the batch excluding the zi1 and zi2, sim(·)
calculates the cosine similarity of two normalized vectors, and
τ denotes a temperature parameter.

Note that in (3), the numerator is formed by a pair of
views from the same raw instance, while the denominator
is a summation over pairs formed by views from different
instances. The pairs in the numerator and denominator are
referred to as positive pairs and negative pairs, respectively. By
minimizing ℓCL(zi1, zi2), the similarity between positive pair
instances is maximized, while the similarity between negative
pair instances is minimized. The overall loss function of this
step can be written as:

LCL =
B∑
i=1

(ℓCL(zi1, zi2) + ℓCL(zi2, zi1)) (4)

2) Classifier Training: After the unsupervised training of
the encoder, the projection head is discarded. A linear classifier
sθs(·) is then connected to the parameter-frozen encoder to
learn the classification of representations on labeled data.

ŷ = sθs(gθg (x)) (5)

The linear classifier is trained by minimizing a cross entropy
loss to match the model’s predictions ŷ to true labels y. Fig. 3
illustrates the overall pipeline of this method.
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Fig. 3: Pipeline of the existing contrastive learning method [7]
for wafer recognition.

C. Drawbacks of Existing Contrastive Learning Work [7]

Despite the highly label-efficient manner displayed by this
semi-supervised method, the classification accuracy of the
trained model is imbalanced among classes, i.e., this method
has difficulties in identifying some specific wafer patterns.
This model’s failure in recognizing these wafer patterns may
be attributed to the fact that plenty of instances from some
classes exhibit similar geometrical features. For example, as
it is shown in Fig. 4, the three wafer maps from three
different classes share a similar appearance. Without human
supervision, it is difficult for a black-box machine learning
model to categorize them correctly.

Fig. 4: Examples of wafer patterns from different classes that
share similar appearance.

III. METHODOLOGY

To this end, we propose a novel contrastive learning frame-
work for wafer recognition. We believe that, by more effec-
tively leveraging the information provided by the small amount
of labels in the dataset, contrastive learning has the potential to
further enhance the performance of semi-supervised learning
methods in wafer pattern recognition.

A. Supervised Contrastive Learning for Wafer Recognition

As it has been analyzed in Section II-C, contrastive learning
may mis-classify instances from those classes which share
similar geometric features. Addressing this issue on unlabeled
data is challenging, which highlights the importance of human
supervision.

To address the above challenge, here our key idea is to uti-
lize labeled data for training the encoder in addition to the use
of unlabeled data. This would allow for more reliable learning
of key features that can distinguish similar but differently
annotated wafer maps. Inspired by self-supervised contrastive
learning [2], supervised contrastive learning (SupCon) [10]
proposes to learn good visual representations of image data
by forming positive pairs between all instances with the same
label in computer vision.

In a similar spirit, we propose Supervised Contrastive
learning for Wafer Maps (SCWM) to help the encoder better
separate those classes with similar geometric features in the
feature space. We form positive pairs between all wafer maps
that share the same label. It is noteworthy that the denomi-
nator of loss (3) used in the more conventional unsupervised
contrastive learning contains ‘fake’ negative pairs in which
the two views have the same label. However, these views
are not supposed to be pushed apart in the feature space
because instances with the same label have similar semantics.
Therefore, we also filter out those fake negative pairs in the
denominator of (3). We define A(i) = {1, 2, . . . , 2B}\{i} as
the set of all but the ith indices of feature vectors in a training
data batch. The loss function LSCWM to achieve these goals
in SCWM is:

LSCWM =
2B∑
i=1

−1
∥P (i)∥

∑
p∈P (i)

log
exp(sim( zi

∥zi∥ ,
zp

∥zp∥ )/τ)∑
a∈Q(i) exp(sim( zi

∥zi∥ ,
za

∥za∥ )/τ)
,

(6)

where P (i) = {p ∈ A(i) : yi = yp} is the set of feature vector
indices that have the same label of zi, Q(i) = A(i)\P (i) is
the set of indices whose labels are different from that of zi,
and only the instances from different classes are used to form
negative pairs.

Fig. 5: The conventional contrastive learning is instance-based
which maximizes the agreement between feature vectors of
the same instance’s views on the unit hypersphere in the
feature space but misplace views without considering their
class labels. By leveraging labeled data, SCWM maximizes
the agreement among all instances of the same class.
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As shown in Fig. 5, benefiting from the reformulated
loss function, SCWM can help better cluster together feature
vectors from a same class. Meanwhile, clusters of representa-
tions of distinct classes are more separated, which makes the
downstream classification of them easier.

In the proposed overall semi-supervised learning frame-
work, we alternate between the conventional unsupervised
contrastive learning on the unlabeled portion of the dataset
and SCWM on the labeled portion during the representation
learning step. This allows us to best exploit the whole semi-
supervised dataset.

B. Dual-encoder Model

It is important to note that the representation learning
processes of conventional contrastive learning and SCWM
are not in full concordance of each other. As discussed in
Section III-A, SCWM tends to learn representations clustered
according to labels. However, conventional unsupervised con-
trastive learning may blur the boundary between those clusters
which have similar appearance but different labels. Therefore,
when alternating between SCWM and conventional contrastive
learning, these two processes may not be able to complement
each other in learning a better representation distribution. To
address this issue, we propose a dual-encoder model that
optimizes the interactions between unsupervised and super-
vised contrastive learning (SCWM) during the representation
learning phase as shown in Phase 1 of Fig. 2.

Fig. 6: The architecture of dual-encoder model.

While bearing some resemblance to Momentum Contrast
(MoCo) [5], which enhances the vanilla contrastive learning
for computer vision applications by introducing a momentum-
updated encoder, the proposed dual-encoder model operates
under a rather different training mechanism and for a very
different goal.

In our proposed framework, we use the dual-encoder model
as the feature extractor of wafer maps to best orchestrate
SCWM and unsupervised contrastive learning.

The dual-encoder model comprises two encoders and pro-
jection heads with identical architecture as shown in Fig. 6. For
each positive pair, the two views are fed to the two encoders
respectively. The ‘query’ model is updated by the gradient it
receives, while the ‘key’ model, which receives no gradient,

evolves by using a weighted sum of its own parameters and
the query model’s parameters:

θk ← mθk + (1−m)θq, (7)

where θk and θq denote the parameters of the key and query
model, respectively, m ∈ [0, 1) controls the key model’s
evolving rate. A larger m slows down the update of the key
model.

The supervised (SCWM) and unsupervised contrastive
learning phases are orchestrated by setting different values
of m in the dual-encoder model. We use a relatively small
m for the key model’s update in SCWM and a large m in
unsupervised contrastive learning. During SCWM, a small m
enables the key model to quickly learn well-separated repre-
sentations for different classes leveraging the available class
labels. While processing unlabeled data in the unsupervised
contrastive learning phase, a larger m slows down the update
of the key model and preserves the representation distribution
learned from SCWM. Since the key model receives no gradient
from the contrastive loss, the query model always pulls query
representations closer to key representations. Specifically, for
the two views generated for each unlabeled input, the view
generated by the key model places an ‘anchor’ in the feature
space to which the view of the query encoder gets pulled.
By pulling its view closer to the anchor provided by the
key model, the query encoder learns the rich semantics pre-
sented in the unlabeled data while maintaining the separations
between different classes. After the overall representation
learning phase, the query encoder is used as the encoder for
training the classifier.

C. Exploring Strong Data Augmentations for Wafer Maps

Data augmentations play a crucial role in contrastive learn-
ing as they guide the training process of the encoder by
creating additional views of the input data while allowing
to learn more robust and discriminative representations with-
out requiring class labels. Therefore, carefully selecting and
applying appropriate augmentations can greatly improve the
utilization of large amounts of unlabeled data and hence the
quality of the learned representations.

In [7], 5 random data augmentations are used to form
the random augmentation strategy which includes visual aug-
mentations and augmentations designed specifically for wafer
maps. Empirical studies on wafer maps show that random
resized-crop provides the most significant performance boost
for wafer map representation learning. Similarly, in visual
contrastive learning, empirical experimental results suggest
that random resized-crop is the most crucial data augmentation
[2], [5], [19].

For wafer pattern recognition, we believe that it is in-
strumental to explore random resized-crop as a strong data
augmentation by adapting it to wafer data because of intrinsic
geometrical features of wafer patterns. Unlike natural images,
the location of bad die clusters on a wafer may determine the
category to which the wafer belongs. For example, the major
difference between ‘Loc’ and ‘Edge-Loc’ is where a cluster of
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bad dies is located. A wafer map is classified as ‘Edge-Loc’
if the cluster is on the edge, otherwise it is ‘Loc’.

Therefore, we propose to form positive pairs between a
cropped view and an uncropped view to learn representations.
Specifically, when applying the augmentations in (1), Aug1
consists of a sequence of basic augmentations including ran-
dom resized-crop while Aug2 contains all basic augmentations
of Aug1 except random resized-crop.

Furthermore, random resized-crop is properly exploited
under our dual-encoder architecture, where the key encoder
is used to encode uncropped views. Since the key encoder is
responsible for mapping anchor views, distinguishable wafer
pattern features must be captured by it. Hence, the uncropped
views of the essential bad die locations are fed to the key
encoder during training.

D. Inter-wafer Data Augmentation

Recent works in visual representation learning demonstrate
that including more views in the feature space can enhance
the performance of the encoder in classification tasks [1],
[21], [22]. Increasing the number of diverse views of the
data presented to the encoder can enhance the semantics
of the feature space, resulting in improved representational
generalization capabilities.

Mixco [11] considers mix-up as a data augmentation for
contrastive learning for computer vision applications, where a
convex combination of two images is encoded and projected
to the feature space. The similarity between the mixed image
and the original images in the feature space is then constrained
by a loss function.

Motivated by the success of mix-up for visual data, we
propose Inter-wafer Data Augmentation (IW-DA) as a method
to synthesize wafer map data. However, naive convex com-
bination of wafer maps will result in unrealistic wafer maps
since the values used to represent wafer dies are discrete. Thus,
IW-DA is formulated as follows:

sIWij =

{
w1

ij , w1
ij ≥ w2

ij

w2
ij , w1

ij < w2
ij

(8)

where sIWij , w1
ij , and w2

ij are the die at the ith row and jth
column of the synthesized new wafer map and those of the
two original wafer maps used in synthesis, respectively. Since
a value of 1 indicates a bad die and 0 represents a good die,
IW-DA is equivalent to a ‘logic or’ operation that preserves
the bad die patterns from both wafer maps. An example of the
IW-DA operation is illustrated in Fig. 7.

Different from [13], which uses superimposed wafer maps
to learn mutli-label classification under supervised learning
setups, we propose to utilize synthesized wafer maps to
enhance the quality of learned representations. To achieve this,
we propose a loss function that constrains the mapping of
the synthesized data. We synthesize a set of new wafer maps
XIW = {xIW1 ,xIW2 , . . . } by randomly combining data from
each training batch. Let the new map xIWp

be generated from

Fig. 7: An example of IW-DA operation on two wafer maps.

xi and xj, the loss function to constrain the encoding of xIWp

is:
ℓIWp

= |sim(zIWp
, zi)− sim(zIWp

, zj)|

+
∑
k ̸=i,j

log(exp(sim(zIWp
, zk)/τ)) (9)

where the first term requires zIWp to be located at the middle
point between zi and zj in the feature space, while the second
term forms negative pairs between zIWp

and all other instances
in the batch. IW-DA introduces realistic wafer patterns, which
are not present in the training dataset, to the feature space.
The IW-DA loss ℓIW (9) constrains the representation of the
synthesized wafer pattern to the middle point between the two
original maps in the feature space as shown in Fig. 8.

The total loss on synthesized wafer map data in a batch is:

LIW =
∑

p:xIWp∈XIW

ℓIWp . (10)

The overall loss to be minimized on unlabeled data is the sum
of (4) and (10):

Lu = LCL + LIW . (11)

The overall representation learning phase proceeds by alternat-
ing between the minimization of the unsupervised contrastive
loss (11) and SCWM loss (6).

Fig. 8: The IW-DA loss ℓIW (9) constrains the representation
of the synthesized wafer pattern to the middle point between
the two original maps in the feature space.
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TABLE I: Comparison of balanced accuracy on WM-811K between various methods.

Labeled Data Percentage

5% 10% 20% 50% 100%
Type Method Balanced Accuracy

SVM 41.57% 45.88% 48.66% 46.99% -
Supervised Weighted SVM 46.99% 54.72% 55.40% 48.76% -

CNN(cross-entropy) 66.10% 66.74% 77.90% 74.20% 90.59%
SimCLR [2] 80.22% 80.19% 82.42% -

Semi-supervised 5TCLWMPR [7] 77.41% 83.44% 82.35% 84.57% -
CLLD (ours) 81.35% 87.51% 86.34% 90.56% -

TABLE II: Comparison of accuracies of CLLD and 5TCLWMPR [7] in recognizing each category of wafer pattern. 10% of
labeled data is used for training.

None Edge-Ring Center Edge-Loc Loc Random Scratch Donut Near-Full

5TCLWMPR [7] 92.94% 95.86% 94.44% 50.64% 92.02% 30.72% 82.33% 32.19% 65.66%
CLLD (ours) 80.97% 93.44% 95.32% 74.31% 95.88% 57.72% 88.87% 60.21% 63.33%

TABLE III: Dataset details.

Wafer patterns Training testing

None 33051 3679
Edge-Ring 7735 819

Center 3113 349
Edge-Loc 2150 267

Loc 1458 162
Random 546 63
Scratch 446 54
Donut 372 37

Near-Full 49 5

Total 48920 5435

IV. EXPERIMENTS

A. Implementation Details

a) Details of the dataset: We adopt the most widely used
public wafer map dataset, WM-811K [23], for training and
testing our models. The dataset contains 811,457 wafer maps
collected from real IC manufacturing processes. Following
[7], we use 54,355 labeled wafer maps from the dataset to
build our training and testing datasets. The numbers of wafer
maps contained in the training and testing datasets are shown
in Table III. To conduct experiments under semi-supervised
setups, we use all 48,920 wafer maps to build the unlabeled
training dataset, and take out a small portion pl% of them
and their corresponding labels to construct a labeled training
dataset. We experiment with a wide range of pl% for a
comparison between our proposed method and other existing
supervised methods including support vector machine (SVM),
weighted SVM, and convolutional neural network (CNN),
and semi-supervised contrastive learning approaches including
SimCLR [2] and [7].

TABLE IV: Balanced accuracy comparison between cross-
entropy loss based supervised learning and SCWM.

Supervised (cross-entropy) SCWM

Acc (Balanced) 90.59% 92.89%

It can be seen from Table III that the original WM-811K
dataset [23] is highly imbalanced, e.g., the most dominant
class ‘None’ has approximately 674 times more instances
than the least dominant class ‘Near-Full’. Thus, it is not fair
to use the conventional accuracy metric to evaluate model
performance, as a model’s ability to recognize different classes
has a highly imbalanced contribution to the final result. For
example, a model that predicts all samples as ‘None’ can
achieve approximately 67.6% accuracy. To deal with this
issue, we use balanced accuracy (BAC) [7] to evaluate model
performance:

BAC =

∑N
i=1 wi1[ŷi = yi]∑N

i=1 wi

, (12)

where yi is the true label of a wafer map xi, and ŷi is the
prediction made by a model. wi = 1

Nyi
, Nyi

denotes the
number of instances with the same label yi, used to balance
the accuracy. In (12), a method’s capability to recognize each
class in the testing dataset has equal contribution to BAC.

Since the wafer maps in WM-811K are of different sizes,
which is intractable for CNNs, we resize all wafer maps to
the size of 1× 128× 128.

b) Details of model setups: For the SVM based models,
we used Randon-based and geometric-based feature extractor
[23] and a radial basis function kernel. Fig. 9 illustrates the
neural network architectures adopted in the proposed method.
The encoder contains three convolutional layers each of which
is followed by a max pooling layer. A flatten layer and a fully
connected layer project the output of the last convolutional
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TABLE V: Ablation study results of the proposed IW-DA data augmentation.

labeled Data Percentage

5% 10% 20% 50%
Configurations Balanced Accuracy

CLLD (IW-DA removed) 80.86% 86.58% 85.89% 90.48%
CLLD 81.35% 87.51% 86.34% 90.56%

layer to a 256 dimensional vector. The projection head is a
two-layer MLP that projects the output of the encoder to a 64-
dimensional Z space, and the linear classifier is constructed
by a single fully-connected layer. The dual-encoder model
consists of two encoders with identical architecture and the
associated projection heads follow the architecture in Fig. 9.
For the sake of a fair comparison with other CNN-based
methods, we adopt the same CNN architecture for all other
semi-supervised and supervised learning methods. Specifically,
the supervised model trained with a cross-entropy loss consists
of a CNN-based encoder followed by a linear classifier.

Fig. 9: Details of neural network architectures of our method.

c) Details of hyperparameters: As discussed in Sec-
tion III-C, we use two differently composed data augmen-
tations in our framework. One is formed by combining
commonly used basic augmentations of random resized-crop,
random noise, random horizontal flip, random rotate, and
random rotate-twist [7]. On the other hand, the other one
contains only random noise, random horizontal flip, random
rotate, and random rotate-twist.

In the proposed framework, network parameters are updated
by gradient descent [3], [24], [25]. An Adam optimizer with
a cosine scheduler is used to update all neural networks.
A starting learning rate of 10−3 is chosen for updating the
encoder and the projection head, while the linear classifier’s

starting learning rate is 5× 10−4. The optimizer has a weight
decay of 10−4. The batch size of the unlabeled data is
256, and that of the labeled data is 64. The temperature
hyperparameter is set to τ = 0.1 for unsupervised training
and τ = 0.7 for supervised training. For the cross-entropy loss
based supervised CNN training, similarly, an Adam optimizer
with a learning rate of 10−3 and a weight decay of 10−4 is
used to update the network. The batch size of the cross-entropy
based supervised training is 64. All of the experiments are
implemented on an NVIDIA GeForce RTX 3090 GPU.

For semi-supervised training methods, models are trained on
unlabeled data for 100 epochs and are tuned on labeled data
every 5 epochs. For our proposed method, where the dual-
encoder model is used, m = 0.999 is used for updating the
query model on unlabeled data and m = 0 is used for updating
the query model on labeled data. It takes around 2.5 hours to
complete the 100-epochs training of our proposed method.

B. Performance of the proposed supervised contrastive learn-
ing (SCWM)

First, we focus on evaluating only the performance of
SCWM, the proposed supervised contrastive learning tech-
nique. For this, we make use of all labels in the WM-811K
dataset for training a model using SCWM, and contrast it
with a CNN-based model trained with the standard cross-
entropy based supervised learning on the same dataset as a
fair comparison. Note that the SCWM model is trained without
any unsupervised contrastive learning phase and the proposed
inter-wafer data augmentation (IW-DA).

Table IV presents a comparison of balanced accuracy be-
tween the two models which are all based on supervised
learning. SCWM achieves a balanced accuracy of 92.89%,
which is more than 2% higher than the performance of the
cross-entropy based method. This demonstrates that by making
use of the proposed SCWM loss in Equation 6, contrastive
learning in the supervised manner can train the encoder to
better capture the desired distinguishing features, enabling
learning latent representations well clustered within the class
boundaries.

C. Proposed Semi-supervised Learning Performance

The balanced classification accuracies of our method and
other methods are shown in Table I. There are three pure su-
pervised learning methods included in the comparison, which
are SVM, weighted SVM, and a cross-entropy loss based
CNN training method. It can be seen from the table that
the CNN-based wafer map pattern recognition gains a large
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improvement over the more conventional machine SVM based
approach.

We integrate our proposed supervised contrastive learn-
ing (SCWM), dual-encoder model, and inter-wafer data aug-
mentation (IW-DA) and refer to the resulting approach as
Contrastive Learning with optimized Latent representation
learning and Data augmentation (CLLD). CLLD can more
effectively leverage a small amount of labeled data with
the dual-encoder model and SCWM. Learning representations
with the novel IW-DA based data augmentation can further
improve classification accuracy by creating a more semanti-
cally meaningful feature space. As seen in Table I, CLLD
significantly outperforms SimCLR and 5TCLWMPR in terms
of accuracy by up to 8.14%, and 5.99%, respectively. Notably,
when trained on a dataset containing only 50% labeled data,
our approach achieves an accuracy comparable to that of
conventional supervised CNN-based methods trained on the
fully labeled dataset, demonstrating the great potential of semi-
supervised learning.

Table II reports the models’ performance of recognizing
each pattern in the WM-811K dataset. Compared with [7], our
method improves the accuracy in recognizing pattern classes
such as ‘Donut’ and ‘Edge-Loc’, which makes the model’s
performance more balanced among classes.

D. Ablation Study on Inter-Wafer Data Augmentation (IW-DA)

Enriching semantics of the feature space is shown to be
an effective way of enhancing representation learning perfor-
mance. We run experiments on our proposed framework with
and without the proposed inter-wafer data augmentation (IW-
DA) to validate its effectiveness.

Table V shows results of the ablation study. The use of
IW-DA leads to a performance boost of approximately 0.5%
across datasets with varying percentages of labeled data. With
different percentage of labeled data in the dataset, IW-DA
provides a performance boost of up to 0.93%. The semi-
supervised learning incorporating IW-DA outperforms the one
without it on all experiments, showing the effectiveness of the
proposed data augmentation in learning more powerful wafer
patterns representations.

V. CONCLUSION

We have proposed a novel semi-supervised contrastive
learning framework for wafer map pattern recognition. We
introduce supervised contrastive learning (SCWM) to improve
the quality of the learned latent representations by better
exploiting a given small amount of labeled data. A dual-
encoder model is employed to best manage the supervised
and unsupervised contrastive learning phases and augmented
data views used in our framework. By placing anchors in the
latent feature space, the key encoder helps the query encoder
learn clustered representations conforming to the boundaries
between different wafer pattern classes. Finally, the inter-
wafer data augmentation (IW-DA) is shown to be able to
enrich semantics of the latent feature space during the learning

process. Experiments show that our approach outperforms ex-
isting supervised and semi-supervised learning methods across
a wide range of labeled data proportions. Ablation studies on
SCWM and IW-DA indicate that these proposed techniques
are effective and worth further exploration.
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