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Abstract—Determining the minimum operating voltage (Vmin)
of chip designs is critical for low power dissipation and assurance
of quality and functional safety during manufacturing tests
and in-field monitoring. We demonstrate how on-chip monitor
data can be leveraged to provide accurate minimum operating
voltage prediction using a domain-specific machine learning
approach. Given limited measured chip data, the key challenge
in developing a machine learning approach is to provide an
accurate prediction while addressing overfitting and selecting a
subset of optimal features. To this end, we propose to utilize
a novel monotonic lattice neural network architecture that is
geared towards accurate prediction by imposing domain-specific
monotonic relationships between the input sensor data and
Vmin. Furthermore, we perform an effective feature selection by
considering both the correlation between each feature and Vmin

as well as the co-linearity between the features. Experiments
demonstrate superior performance in comparison with linear
regression and conventional neural networks.

Index Terms—Chip performance prediction, On-chip monitor,
Machine learning, Monotonicity

I. INTRODUCTION

The minimum operating voltage (Vmin) is a critical per-

formance metric for chips, ensuring low power dissipation,

quality, and functional safety during manufacturing testing,

and in-field monitoring. Excessive energy consumption occurs

when the operating voltage exceeds Vmin [1], and inadequate

power supplies may lead to customer returns. Moreover, Vmin

tests using structural test patterns like SCAN and SRAM

Built-In Self Test (MBIST), have become more effective and

important at detecting subtle defects during manufacturing

testing, especially on advanced technology nodes [2].

However, chip performance measurements require complex

instrumental setups and long test times, rendering them costly

to apply in the production flow and inapplicable to in-field

monitoring. Even in production test flow, measuring Vmin for

each test pattern, i.e., running each test pattern at multiple

decreasing voltage steps until it fails, will take a huge amount

of test time which will become cost-inhibiting. Typically, in

current industry practice, the Vmin search will be run only on

limited sample size for a product during the characterization

phase to determine a static fixed voltage level Vmin for each

Figure 1: System-level DC scan Vmin regression

test pattern, and then in the production test, the Vmin test will

be performed at that fixed voltage level Vmin as a pass / fail

test on all chips for that product. Due to the inherent part-

to-part process variation, such static fixed Vmin voltage will

inevitably over-reject some chips, i.e., Vmin test voltage is too

low, resulting in unnecessary yield loss; while on some chips it

will under-reject, i.e., Vmin test voltage is too high, resulting

potential quality escapes. Therefore, it will be desirable to

dynamically adjust the Vmin test voltage, i.e., Vmin prediction,

for each chip based on on-chip monitors.

At a high level, there are two types of on-chip monitors: 1)

Domain sensors, which typically are a set of Ring Oscillator

(RO) based sensors [3]. They are built with the representative

devices and logic gates used in each chip such that they will

have a good correlation to the chip-level performance and

aging degradation when stressed together with the rest of the

chip. 2) In-situ critical path margin sensors, which can be

implemented also as RO-based sensors or even more light-

weight Flip-Flop (FF) based delay margin sensors [4]. They

are placed into the selected critical paths on each chip to

provide the measurement of the critical path delay margin and

degradation over stress directly, i.e., in-situ. In [5], a good
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correlation of the on-chip monitor data and chip-level Vmin

has been demonstrated and linear regression is used to predict

Vmin from on-chip monitor data with limited accuracy.

To this end, ML approaches using on-chip monitor data are

more promising for Vmin prediction. However, ML methods

encounter challenges of limited expensive measured chips and

high-dimensional input features: a typical artificial neural net-

work could easily overfit. Thus, previous approaches seldom

adopted neural networks as their predictors but employed less

capable alternatives instead, including linear regression [6],

[7], Gaussian process [8], and support vector machine [9].

However, none of them have domain knowledge embedded.

On-chip data features, such as measurements of RO delay

and path-based RO delay [4], are correlated with the chip

performance in a specific way, as a degraded chip unit never

leads to better performance. For instance, an increased RO

delay cannot yield a decreased Vmin. This physical constraint

can be mathematically formulated as monotonicity between the

input features and the targeted Vmin, and its rigorous definition

is presented in Section III-C. Fig. 1 shows the DC scan Vmin

prediction by linear regression, a conventional neural network,

and a monotonic neural network model based on the proposed

approach using one RO delay as an input feature. As the

RO delay increases, Vmin should be non-decreasing, but the

conventional neural network violates this rule. On the other

hand, linear regression has inferior performance because of

its limited predictive capacity.

In this paper, we introduce a novel domain-specific frame-

work for predicting Vmin using a lattice network [10] that

embeds monotonic constraints to address overfitting issues.

Furthermore, to eliminate redundancies in highly correlated

on-chip data while retaining useful information, we present

a feature selection approach that selects features with high

monotonic correlations to Vmin and low linear dependencies

among themselves. We demonstrate the superior performance

of our method on 5nm automotive microprocessor chips.

In addition to on-chip RO monitors capturing chip-level

properties, multiple in-situ critical path delay monitors are

implemented to provide local aging degradation of chips. The

results demonstrate the effectiveness of our approach, and the

main contributions of our work are summarized as follows:
• We propose a domain-knowledge embedded monotonic

lattice network based Vmin predictor, which avoids over-fitting

due to limited training data from tested chips.
• We present a feature selection method that is specifically

designed for our monotonic lattice network approach, selecting

effective features based on their correlations with Vmin and

linear independence among themselves.
• We show through empirical evidence that critical path

delays are effective features for Vmin prediction.

II. BACKGROUND

Estimating chip performance, including Vmin and Fmax (the

maximum operating frequency), has been a topic of intense

research. Lin proposed a Vmin prediction flow that includes

multiple guard bands to account for both underprediction and

Figure 2: An lattice network with 2 input features.

overprediction [1]. The authors employed linear regression

to predict the system Vmin, logistic regression to classify

chips into different bins based on prediction error, and guard

bands to each bin. Kuo proposed a robust framework to

predict Vmin, taking into account the variations from lot

to lot [6]. The authors trained an initial linear regression

model for the prediction of Vmin and updated it on chips

from new lots by accumulative learning when the prediction

accuracy fell below a certain threshold. Although effective,

the aforementioned approaches had limited capacity compared

to neural networks, and none of them took into account the

domain-specific monotonicity constraints between features and

chip performance.

Several methods have been proposed to embed monotonic-

ity constraints into neural networks [11]–[13]. However, the

model in [11] was only able to serve a single input, and

no strict monotonicity constraint was guaranteed in [12],

thus limiting their usages. In contrast, the monotonic lattice

network [13] is a better choice: it strictly follows monotonic

constraints and is able to deal with multiple input features.

Hence, we adopt it as the Vmin predictor in our framework.

III. PROPOSED METHOD

A. Problem Formulation

We suppose that the features of each chip collected by

on-chip monitors are the same and their number is D. This

assumption is valid when all chips have the same design. For

every chip, its features are represented as a vector x ∈ X ⊂
R

D, and its corresponding Vmin value is represented as a

scalar y ∈ Y ⊂ R. Here, X and Y indicate the input and

output spaces, respectively.

We aim to build an ML-based Vmin predictor g(·;θ) : X →
Y , parameterized by θ. To achieve this objective, a training

dataset of N tested chips D = {(xi, yi)}Ni=1 is used, where

xi represents the features of the i-th chip, and yi represents

its corresponding Vmin value. The optimal parameters θ∗ are

obtained by minimizing the mean of a loss function L on D
θ∗ = argmin

θ

1
N

∑N
i=1L

(
g(xi;θ), yi

)
. (1)

B. Overview of Proposed Framework

In order to leverage the power of neural networks while

avoiding overfitting on a limited number of tested chips, we

propose a novel framework for Vmin prediction that incorpo-

rates domain knowledge that the chip performance is mono-

tonically correlated to some features. Specifically, we adopt a
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monotonic lattice network as a Vmin predictor to fulfill these

constraints. Furthermore, we trick the conventional Correlation

Feature selection [14] to eliminate redundant inputs while

maintaining features monotonically correlating to Vmin.

C. Monotonic Lattice Network

Domain knowledge states the monotonicity between specific

features and Vmin. The rigorous definition of monotonicity is

presented below.

Definition 1: A function f : X → Y is said to be

monotonically increasing with respect to a feature set S if

f(xi) ≥ f(xj) holds for all input points xi,xj ∈ X such that

xi[k] ≥ xj [k], ∀ k ∈ S,

xi[k] = xj [k], ∀ k /∈ S,

where xi[k] and xj [k] represent the kth feature of point xi

and xj , respectively.

We provide a concise overview of the monotonic lattice

network, built upon lattice regression [15]. Lattice regression

applies multilinear interpolation to fit a function. For a D
dimensional input space [0, 1]D, a D dimensional unit lattice is

used to regress via its 2D vertices, whose values are denoted

by a vector θ ∈ R
2D . Given input x ∈ [0, 1]D, the output

of the lattice is θTψ(x), where ψ(·) is a kernel function.

ψ : [0, 1]D → [0, 1]2
D

is a non-linear function whose jth

entry ψ(x)[j] satisfies

ψ(x)[j] =
∏D

i=1x[i]
vj [i](1− x[i])1−vj [i], (2)

where vj [i] ∈ {0, 1} is the ith entry of the jth vertex whose

coordinate is represented by the vector vj .

Gupta proved what constraints are sufficient and necessary

for lattice regression to become monotonic with respect to

some features [13]:

Proposition 1: Lattice regression in Eq. (2) is monotonically
increasing with respect to the feature set S if and only if for

all verteices vi, vj , i, j ∈ {1, 2, · · · , 2D}, feature x[k] ∈ S,

θ[i] ≥ θ[j] holds such that vi[k] = 1, vj [k] = 0, and vi[k
′] =

vj [k
′] for all k′ ∈ {1, 2, · · · , D} \ k.

The aforementioned lattice regression requires input within

the unit cube [0, 1]D, which limited its usage. Thus, a mono-

tonic piecewise calibrated transformation ci : R → [0, 1] is

applied to each feature x[i], i ∈ {1, 2, · · · , D} [13]. The

monotonicity is preserved after the transformation. An exam-

ple of a lattice network with two monotonically increasing

features is depicted in Fig. 2.

Given the training dataset D, the best parameters θ∗ can

be derived from Eq. (1) by minimizing a Mean Square Error

(MSE) loss.

D. Feature Selection

Feature selection techniques are commonly used when input

features exhibit high redundancy. By selecting a representative

subset of features, we can improve prediction accuracy and

mitigate the problem of overfitting. we first review a well-

known feature selection method named Correlation Feature

Selection (CFS) [14], then we propose an adjusted variant to

better facilitate monotonic predictors.

CFS picks good representative features regarding the out-

put with small redundancy. Given the ith feature vector

x[i] = [x1[i],x2[i], · · · ,xN [i]]T , the target vector y =
[y1, y2, · · · , yN ]T in dataset D, and a correlation metric s, a

feature subset S of K features are selected by CFS via solving

an optimization problem

S = argmax
|S|=K

∑
j∈S s(y,x[j])√

K +
∑

i,j∈S 2s(x[i],x[j])
. (3)

One is able to filter a set of linear and non-linear features

by applying the Pearson Correlation Coefficient (PCC) [16]

and Mutual Information (MI) [17], respectively.

Even though theoretically all critical path delays and RO

delays are monotonic to Vmin, the empirical data do not

strictly obey this rule because of manufacturing variations and

measurement errors. Thus, selected features are supposed to

have better monotonicity to Vmin However, features selected

by vanilla CFS with PCC or MI are not guaranteed to have

good monotonic correlations to Vmin.

To this end, we propose Monotonic CFS (M-CFS), which

adopts Spearman Correlation Coefficient (SCC) [18], a mono-

tonic metric, for feature-Vmin correlations.

SCC sS(y,x[i]) computes the PCC score sP between the

rank of variables x[i] and y:

sS(y,x[i]) = sP (r(y), r(x[i])), (4)

where the rank function r projects each sample to its ascending

order: r(yj) = |{yi : yi ≤ yj , i ∈ {1, · · · , N} \ j}|.
Finally, we present M-CFS. Unlike simply choosing SCC as

the correlation metric in CFS, we utilize SCC for feature-Vmin

correlations and PCC for feature-feature correlations:

S = argmax
|S|=K

∑
j∈S sS(y,x[j])√

K +
∑

i,j∈S 2sP (x[i],x[j])
. (5)

The inspiration is that we want to maximize the monotonicity

between features and the target, but minimizing the mono-

tonicity between the features is too strict. Therefore, we relax

the objective of minimizing the linear dependency among

features.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

We make use of 96 advanced 5nm automotive test chips

to demonstrate how our ML-based method can leverage on-

chip monitor data to predict Vmin. This 5nm automotive test

chip contains two types of on-chip monitors: 168 RO-based

Table I: Industrial Chip Dataset

Stress # Sample # CPD # ROD # Vmin # Timestamp

Dhrystone 72 10 168 9 5
HTOL 24 10 168 9 4
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(a) Dhrystone stress

(b) HTOL stress

Figure 3: Degradation of 10 critical path delays through

Dhrystone stress and HTOL stress.

Delay (ROD) domain sensors, and 10 FF-based in-situ Critical

Path Delay (CPD) sensors. After passing structural tests and

functional tests on Automotive Test Equipment (ATE), 72

chips have gone through Dhrystone stress while the other

24 chips encounter High-Temperature Operating Life (HTOL)

stress. Both Dhrystone and HTOL stress are performed at

elevated voltage and temperature on Burn-In (BI) boards inside

the BI oven to accelerate the aging of devices.

At specific stress timestamps, we pause the stress and then

measure chips. For Dhrystone stress, we test Vmin at 0 hours,

24 hours, 48 hours, 168 hours, and 504 hours read points,

while 24 hours read point was skipped in the test of HTOL

stress. Vmin and RO-based domain sensor data are measured

at 25°C on ATE, while the CPD sensor data are only collected

in-situ within BI at around 80°C. Table I summarizes our

industrial dataset.

B. Benefits of Critical Path Delay for Vmin Degradation

In this section, we use experimental results to demonstrate

the benefits of on-chip in-situ CPD monitors. Firstly, we

illustrate that CPD monitors are able to capture the aging

degradation of chips. In Fig. 3, delay shifts of 10 critical

paths through Dhrystone and HTOL stress are depicted as

box plots. Each box plot is corresponding to the scaled delay

distribution for each selected critical path from 72 chips

that received Dhrystone stress and 24 chips that received

HTOL stress, in which the bar inside the box represents the

median. The box shows the quartiles of the dataset while

Figure 4: Pearson correlation heatmap of critical path delays.

The lower and upper triangular matrix represents the correla-

tions under Dhrystone stress and HTOL stress, respectively.

Figure 5: Visualization of the pair-wise correlation among

critical path delay, RO delay, and DC scan Vmin of 72 chips

under Dhrystone stress.

the whiskers extend to show the rest of the distribution. The

lower whisker extends to 1.5 times interquartile outside Q1

(25th percentile), and the upper whisker extends to 1.5 times

interquartile outside Q3 (75th percentile). The square dots are

corresponding to the means of the scaled delay distribution

for each critical path. The mean and median delay of each

path is monotonically increasing with respect to the stress,

and it satisfies the domain constraint. Moreover, the rate of

delay increase gets slower when the stress time gets longer,

indicating a chip-level aging property. It is also noteworthy

that the CPD shifts over stress are different among different

critical paths which are expected as those different critical

paths consist of different types of devices and logic gates. In

Fig. 4, we plot the Pearson correlations among CPDs through

Dhrystone and HTOL stress, where the linear dependency is

low for most critical paths. Hence, CPD monitors capture

the aging characteristics of each selected critical path with
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Table II: Vmin Degradation Prediction RMSE of LR

Test Pattern 1 ROD 2 RODs 3 RODs 2 RODs + mean CPD

DC Scan 14.3mV 14.2mV 14.5mV 12.0mV
AC Scan 9.97mV 9.81mV 10.0mV 9.52mV
MBIST 13.9mV 13.3mV 13.3mV 13.2mV

Table III: The Percentage of CFS-selected Features Containing

at least 1 CPD for Vmin Degradation Prediction

Test Pattern 1 Feature 2 Features 3 Features

DC Scan 58.3% 91.7% 100%
AC Scan 48.6% 75.0% 91.7%
MBIST 0% 0% 33.3%

robustness.

Secondly, we show that CPDs provide additional informa-

tion on Vmin degradation to RODs. In Fig. 5, we depict the

relationship between 1 CPD, 2 RODs, and the DC scan Vmin

tested at 125°C, where the CPD is the average scaled delay

among the 10 critical paths and ROD 1 and ROD 2 are selected

by CFS with the PCC score. As shown in Fig. 5, CPD has

an apparent correlation with DC Scan Vmin, while there is

less correlation between CPD and ROD 1 and no correlation

between CPD and ROD 2.

Thirdly, we demonstrate the effectiveness of CPD in pre-

dicting Vmin degradation from the 72 chips going through

Dhrystone stress. We use on-chip monitor data collected at

one stress timestamp to predict Vmin measured at the same
timestamp for all test patterns. In order to ensure a fair

comparison, we compare the prediction accuracy of linear

regression using different on-chip monitor data sets, including

RODs and CPD. RODs are determined by CFS in Eq. (3)

using PCC. The CPD here is the mean delay among 10 critical

paths. In order to avoid random fluctuation, we perform 4-Fold

cross-validation, train the linear predictors on 54 random chips

(75%), and test them on the remaining 18 chips (25%).

We report the Root Mean Square Error (RMSE) of Vmin

prediction averaged across temperatures and timestamps in

Table II. If we only use RO-based domain monitor data,

2 selected RODs can be adequate to train a linear Vmin

predictor, and adding one more ROD will even induce a worse

performance. However, Our results show that adding CPD

data improves the prediction accuracy for DC Scan Vmin,

AC Scan Vmin, and MBIST Vmin by 15.7%, 2.98%, and

0.76%, respectively. This indicates that critical path delay is

a useful feature in addition to RO delay for Vmin degradation

prediction, especially for DC Scan Vmin, which is expected

as the CPD sensors add visibility of performance margin at

each local critical path level on top of the chip-level process

feedback from the RO-based domain sensors.

Furthermore, we present evidence that CPDs can be chosen

as useful features for Vmin degradation prediction by CFS. We

apply CFS with Pearson correlation sP as the score function

in Eq. (3) to determine the first, the second, and the third

feature from CPDs and RODs. We define a successful pick if

Table IV: Configurations of Vmin Predictor

Model Training epochs Batch size Optimizer Learning rate

MLP 3000 64 Adam 0.001
MLN 8000 64 Adam 0.01

Figure 6: Vmin prediction RMSE.

a selected feature set contains at least one CPD, and display

the successful pick percentage for each Vmin test pattern in

Table III. Our results show that CPD has a high chance of

being selected as the second or the third feature for DC Scan

Vmin and AC Scan Vmin. However, CPDs are less compatible

for MBIST Vmin, which is consistent with the result shown

in Table II that 2 linear models using 3 RODs or 2 RODs +1

CPDs have similar performance. To this end, we empirically

demonstrate that CFS can determine beneficial CPDs for Vmin

degradation prediction.

C. Effectiveness of the Proposed Vmin Prediction Framework

We compare our domain-specific ML approach to two

baselines: a linear regression model (LR) and a conventional

neural network, the latter of which is a multilayer perceptron

(MLP). In order to mitigate the overfitting phenomenon, we

instantiate a shallow MLP that has one hidden layer including

16 neurons, whose activation functions are Rectified Linear

Units (ReLU). Moreover, a L2 penalty of model parameters

with a weight of 0.1 is added to the optimization objective

in Eq. (1). Detailed hyper-parameters of the MLP and the

monotonic lattice network (MLN) are summarized in Table IV.

We demonstrate that embedding domain-specific mono-

tonicity constraints are beneficial for overfitted neural net-

works when the dataset is small via two experiments: predict-

ing Vmin of unstressed chips tested at 0 hours, and modeling

Vmin degradation over stress.

Table V: Prediction R2 for DC Scan Vmin Tested at 0 hours

Using 3 On-chip Monitor Data Selected by CFS

Testing Temperature LR MLP MLN MLN with M-CFS

25°C 0.688 0.645 0.711 0.716
125°C 0.688 0.686 0.695 0.699
-45°C 0.382 0.336 0.393 0.397
Mean 0.586 0.561 0.599 0.604
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Table VI: Vmin Degradation Prediction RMSE

Test Pattern LR MLP MLN with M-CFS DK Gain

DC Scan 11.9mV 12.1mV 11.6mV 4.13%
AC Scan 9.56mV 9.70mV 9.46mV 2.47%
MBIST 13.1mV 13.6mV 13.0mV 4.42%

Firstly, we present empirical results of predicting DC Scan

Vmin in 96 chips using LR, MLP, and MLN models. To select

input features, we apply CFS with Pearson correlation sP as

the score function in Eq. (3) to choose three on-chip monitor

data for each Vmin from all on-chip monitor data including 168

RODs and 10 CPDs. In addition, we employ M-CFS in Eq. (5)

to select three different on-chip monitor data for the MLN.

Each predictor is evaluated via a 4-Fold cross-validation.

As shown in Table V, the MLP has lower accuracy for

DC scan Vmin than the LR due to overfitting. However,

our proposed MLP predictor that leverages monotonicity con-

straints provides superior performance. Furthermore, the M-

CFS method further improves the performance of the MLP.

The results show that our domain-specific ML framework

helps improve the accuracy of predicting Vmin even with a

small number of chips tested.

In addition, we demonstrate that our approach is effective in

modeling the Vmin degradation of 72 chips under Dhrystone

stress. For each Vmin test pattern, we perform CFS to select

3 features from the on-chip monitor data. Similar to previous

experiments, we use 4-Fold cross-validation to validate the

results.

The Vmin degradation prediction RMSE averaged on times-

tamps is depicted in Fig. 6. In general, the domain-specific

MLN shows higher prediction accuracy than MLP, particularly

for DC Scan Vmin and MBIST Vmin. Furthermore, we report

the average Vmin prediction RMSE of each test pattern, i.e.,

average from three temperatures, in Table VI, in which the last

column is the improvement percentage of embedding Domain

Knowledge (DK gain) using our proposed MLN with M-CFS

method comparing to MLP. The results suggest that embedding

monotonicity constraints in neural networks is a promising

technique for modeling Vmin degradation even when using

only a limited number of measured chips.

V. CONCLUSION

We introduce a novel framework for predicting Vmin and

its aging degradation using machine learning based on on-chip

monitor data. By incorporating domain-specific monotonicity

constraints, the accuracy and robustness of the predictions can

be significantly improved when measured chips are limited

(due to long duration of the stress). Experimental results on

advanced 5nm automotive test chips with both on-chip domain

sensors and critical path delay monitors have demonstrated the

effectiveness of the proposed MLN method. In the future, we

will further validate the effectiveness of our approach once a

larger volume of industrial stress data is available. Moreover,

we will develop an advanced Vmin degradation predictor based

on our proposed MLN method, which is able to predict future

Vmin shifts using past and present on-chip monitor data. It

will help enable the prediction of future aging-induced failure,

indicated by abnormal Vmin shift, with a shorter duration of

stress needed.
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