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Abstract—Determining the minimum operating voltage (V;,in,)
of chip designs is critical for low power dissipation and assurance
of quality and functional safety during manufacturing tests
and in-field monitoring. We demonstrate how on-chip monitor
data can be leveraged to provide accurate minimum operating
voltage prediction using a domain-specific machine learning
approach. Given limited measured chip data, the key challenge
in developing a machine learning approach is to provide an
accurate prediction while addressing overfitting and selecting a
subset of optimal features. To this end, we propose to utilize
a novel monotonic lattice neural network architecture that is
geared towards accurate prediction by imposing domain-specific
monotonic relationships between the input sensor data and
Vimin. Furthermore, we perform an effective feature selection by
considering both the correlation between each feature and V,,,;n,
as well as the co-linearity between the features. Experiments
demonstrate superior performance in comparison with linear
regression and conventional neural networks.

Index Terms—Chip performance prediction, On-chip monitor,
Machine learning, Monotonicity

1. INTRODUCTION

The minimum operating voltage (V,,;,,) is a critical per-
formance metric for chips, ensuring low power dissipation,
quality, and functional safety during manufacturing testing,
and in-field monitoring. Excessive energy consumption occurs
when the operating voltage exceeds V,,,;, [1], and inadequate
power supplies may lead to customer returns. Moreover, V,,i,
tests using structural test patterns like SCAN and SRAM
Built-In Self Test (MBIST), have become more effective and
important at detecting subtle defects during manufacturing
testing, especially on advanced technology nodes [2].

However, chip performance measurements require complex
instrumental setups and long test times, rendering them costly
to apply in the production flow and inapplicable to in-field
monitoring. Even in production test flow, measuring V;,,;,, for
each test pattern, i.e., running each test pattern at multiple
decreasing voltage steps until it fails, will take a huge amount
of test time which will become cost-inhibiting. Typically, in
current industry practice, the V,,,;, search will be run only on
limited sample size for a product during the characterization
phase to determine a static fixed voltage level V,,,;,, for each
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Figure 1: System-level DC scan V,,,;,, regression

test pattern, and then in the production test, the V,,,;,, test will
be performed at that fixed voltage level V,,;, as a pass / fail
test on all chips for that product. Due to the inherent part-
to-part process variation, such static fixed V,,;, voltage will
inevitably over-reject some chips, i.e., Vi, test voltage is too
low, resulting in unnecessary yield loss; while on some chips it
will under-reject, i.e., V,,;, test voltage is too high, resulting
potential quality escapes. Therefore, it will be desirable to
dynamically adjust the V,,;,, test voltage, i.e., V,,;,, prediction,
for each chip based on on-chip monitors.

At a high level, there are two types of on-chip monitors: 1)
Domain sensors, which typically are a set of Ring Oscillator
(RO) based sensors [3]. They are built with the representative
devices and logic gates used in each chip such that they will
have a good correlation to the chip-level performance and
aging degradation when stressed together with the rest of the
chip. 2) In-situ critical path margin sensors, which can be
implemented also as RO-based sensors or even more light-
weight Flip-Flop (FF) based delay margin sensors [4]. They
are placed into the selected critical paths on each chip to
provide the measurement of the critical path delay margin and
degradation over stress directly, i.e., in-situ. In [5], a good
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correlation of the on-chip monitor data and chip-level V,,;,
has been demonstrated and linear regression is used to predict
Vinin from on-chip monitor data with limited accuracy.

To this end, ML approaches using on-chip monitor data are
more promising for V,,;, prediction. However, ML methods
encounter challenges of limited expensive measured chips and
high-dimensional input features: a typical artificial neural net-
work could easily overfit. Thus, previous approaches seldom
adopted neural networks as their predictors but employed less
capable alternatives instead, including linear regression [6],
[7], Gaussian process [8], and support vector machine [9].
However, none of them have domain knowledge embedded.
On-chip data features, such as measurements of RO delay
and path-based RO delay [4], are correlated with the chip
performance in a specific way, as a degraded chip unit never
leads to better performance. For instance, an increased RO
delay cannot yield a decreased V,,;,,. This physical constraint
can be mathematically formulated as monotonicity between the
input features and the targeted V,,;,,, and its rigorous definition
is presented in Section III-C. Fig. 1 shows the DC scan V,,;y,
prediction by linear regression, a conventional neural network,
and a monotonic neural network model based on the proposed
approach using one RO delay as an input feature. As the
RO delay increases, Vi, should be non-decreasing, but the
conventional neural network violates this rule. On the other
hand, linear regression has inferior performance because of
its limited predictive capacity.

In this paper, we introduce a novel domain-specific frame-
work for predicting V,,;, using a lattice network [10] that
embeds monotonic constraints to address overfitting issues.
Furthermore, to eliminate redundancies in highly correlated
on-chip data while retaining useful information, we present
a feature selection approach that selects features with high
monotonic correlations to V,;, and low linear dependencies
among themselves. We demonstrate the superior performance
of our method on 5nm automotive microprocessor chips.
In addition to on-chip RO monitors capturing chip-level
properties, multiple in-situ critical path delay monitors are
implemented to provide local aging degradation of chips. The
results demonstrate the effectiveness of our approach, and the
main contributions of our work are summarized as follows:

e We propose a domain-knowledge embedded monotonic
lattice network based V/,,,;,, predictor, which avoids over-fitting
due to limited training data from tested chips.

» We present a feature selection method that is specifically
designed for our monotonic lattice network approach, selecting
effective features based on their correlations with V,,,;, and
linear independence among themselves.

e We show through empirical evidence that critical path
delays are effective features for V,,,;, prediction.

II. BACKGROUND

Estimating chip performance, including V;,,;,, and F},,, (the
maximum operating frequency), has been a topic of intense
research. Lin proposed a V,,;, prediction flow that includes
multiple guard bands to account for both underprediction and
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overprediction [1]. The authors employed linear regression
to predict the system Vj,;,, logistic regression to classify
chips into different bins based on prediction error, and guard
bands to each bin. Kuo proposed a robust framework to
predict V,,;,, taking into account the variations from lot
to lot [6]. The authors trained an initial linear regression
model for the prediction of V,,;, and updated it on chips
from new lots by accumulative learning when the prediction
accuracy fell below a certain threshold. Although effective,
the aforementioned approaches had limited capacity compared
to neural networks, and none of them took into account the
domain-specific monotonicity constraints between features and
chip performance.

Several methods have been proposed to embed monotonic-
ity constraints into neural networks [11]-[13]. However, the
model in [11] was only able to serve a single input, and
no strict monotonicity constraint was guaranteed in [12],
thus limiting their usages. In contrast, the monotonic lattice
network [13] is a better choice: it strictly follows monotonic
constraints and is able to deal with multiple input features.
Hence, we adopt it as the V,,;, predictor in our framework.

III. PROPOSED METHOD
A. Problem Formulation

We suppose that the features of each chip collected by
on-chip monitors are the same and their number is D. This
assumption is valid when all chips have the same design. For
every chip, its features are represented as a vector x € X C
RP, and its corresponding V},;, value is represented as a
scalar y € Y C R. Here, X and ) indicate the input and
output spaces, respectively.

We aim to build an ML-based V},,;,, predictor g(+;0) : X —
Y, parameterized by 6. To achieve this objective, a training
dataset of N tested chips D = {(x;,y;)}Y, is used, where
x; represents the features of the ¢-th chip, and y; represents
its corresponding V;,,;, value. The optimal parameters 8* are
obtained by minimizing the mean of a loss function £ on D

0" = argmin%Z?;lﬁ(g(xi;e)yi). (1)
0

B. Overview of Proposed Framework

In order to leverage the power of neural networks while
avoiding overfitting on a limited number of tested chips, we
propose a novel framework for V,,,;,, prediction that incorpo-
rates domain knowledge that the chip performance is mono-
tonically correlated to some features. Specifically, we adopt a
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monotonic lattice network as a V,,,;, predictor to fulfill these
constraints. Furthermore, we trick the conventional Correlation
Feature selection [14] to eliminate redundant inputs while
maintaining features monotonically correlating to V,ip.

C. Monotonic Lattice Network

Domain knowledge states the monotonicity between specific
features and V,,;,,. The rigorous definition of monotonicity is
presented below.

Definition 1: A function f : X — ) is said to be
monotonically increasing with respect to a feature set S if
f(x;) > f(x;) holds for all input points x;,x; € X such that

x;[k] > x[k], V k€S,
xilk] = x;[k], V k ¢ S,

where x;[k] and x;[k] represent the kth feature of point x;
and x;, respectively.

We provide a concise overview of the monotonic lattice
network, built upon lattice regression [15]. Lattice regression
applies multilinear interpolation to fit a function. For a D
dimensional input space [0, 1]”, a D dimensional unit lattice is
used to regress via its 20 vertices, whose values are denoted
by a vector @ € R2”. Given input x € [0,1]7, the output
of the lattice is 67 (x), where 9(-) is a kernel function.
¥ 1 [0,1]P — [0,1]>" is a non-linear function whose jth
entry ¢(x)[j] satisfies

D] =TT [ 1 (1 = x[i]) =1, 2

where v;[i] € {0,1} is the ith entry of the jth vertex whose
coordinate is represented by the vector v;.

Gupta proved what constraints are sufficient and necessary
for lattice regression to become monotonic with respect to
some features [13]:

Proposition 1: Lattice regression in Eq. (2) is monotonically
increasing with respect to the feature set S if and only if for
all verteices v;, vj, i,j € {1,2,---,2P}, feature x[k] € S,
0[i] > 6[;] holds such that v;[k] =1, v;[k] =0, and v;[k'] =
v;[k] for all &' € {1,2,--- D} \ k.

The aforementioned lattice regression requires input within
the unit cube [0, 1]”, which limited its usage. Thus, a mono-
tonic piecewise calibrated transformation ¢; : R — [0,1] is
applied to each feature x[i|, i € {1,2,---,D} [13]. The
monotonicity is preserved after the transformation. An exam-
ple of a lattice network with two monotonically increasing
features is depicted in Fig. 2.

Given the training dataset D, the best parameters 6* can
be derived from Eq. (1) by minimizing a Mean Square Error
(MSE) loss.

D. Feature Selection

Feature selection techniques are commonly used when input
features exhibit high redundancy. By selecting a representative
subset of features, we can improve prediction accuracy and
mitigate the problem of overfitting. we first review a well-
known feature selection method named Correlation Feature
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Selection (CES) [14], then we propose an adjusted variant to
better facilitate monotonic predictors.

CFS picks good representative features regarding the out-
put with small redundancy. Given the ith feature vector
x[i] = [x1]i],x2[i], - ,xn[i]]T, the target vector y
[V1,¥2, - ,yn]T in dataset D, and a correlation metric s, a
feature subset S of K features are selected by CES via solving
an optimization problem

S o ZjeSS(Y7X[j])
— arg max .
[S|=K K+Zi,j€s 28(X[l],X[]D

One is able to filter a set of linear and non-linear features
by applying the Pearson Correlation Coefficient (PCC) [16]
and Mutual Information (MI) [17], respectively.

Even though theoretically all critical path delays and RO
delays are monotonic to V,;,, the empirical data do not
strictly obey this rule because of manufacturing variations and
measurement errors. Thus, selected features are supposed to
have better monotonicity to V,,;, However, features selected
by vanilla CFS with PCC or MI are not guaranteed to have
good monotonic correlations to V.

To this end, we propose Monotonic CFS (M-CFES), which
adopts Spearman Correlation Coefficient (SCC) [18], a mono-
tonic metric, for feature-V,,,;,, correlations.

SCC sg(y,x[i]) computes the PCC score sp between the
rank of variables x[i| and y:

3)

“4)

where the rank function r projects each sample to its ascending
order: 7(y;) = {y: 1 yi <yj, i €{L,--- ,N}\ j}.

Finally, we present M-CFS. Unlike simply choosing SCC as
the correlation metric in CFS, we utilize SCC for feature-V/,,;,,
correlations and PCC for feature-feature correlations:

g — Zjes SS(Y7X[j])
= arg max .
ISI=K \JK + 3, e 2sp(x[i], x[4])

ss(y,x[i]) = sp(r(y), r(x[d)),

®)

The inspiration is that we want to maximize the monotonicity
between features and the target, but minimizing the mono-
tonicity between the features is too strict. Therefore, we relax
the objective of minimizing the linear dependency among
features.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

We make use of 96 advanced 5Snm automotive test chips
to demonstrate how our ML-based method can leverage on-
chip monitor data to predict V,,,;,,. This Snm automotive test
chip contains two types of on-chip monitors: 168 RO-based

Table I: Industrial Chip Dataset

Stress # Sample # CPD #ROD # V,,;, # Timestamp
Dhrystone 72 10 168 9 5
HTOL 24 10 168 9 4
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Figure 3: Degradation of 10 critical path delays through
Dhrystone stress and HTOL stress.

Delay (ROD) domain sensors, and 10 FF-based in-situ Critical
Path Delay (CPD) sensors. After passing structural tests and
functional tests on Automotive Test Equipment (ATE), 72
chips have gone through Dhrystone stress while the other
24 chips encounter High-Temperature Operating Life (HTOL)
stress. Both Dhrystone and HTOL stress are performed at
elevated voltage and temperature on Burn-In (BI) boards inside
the BI oven to accelerate the aging of devices.

At specific stress timestamps, we pause the stress and then
measure chips. For Dhrystone stress, we test V,,,;,, at 0 hours,
24 hours, 48 hours, 168 hours, and 504 hours read points,
while 24 hours read point was skipped in the test of HTOL
stress. Vi,in and RO-based domain sensor data are measured
at 25°C on ATE, while the CPD sensor data are only collected
in-situ within BI at around 80°C. Table I summarizes our
industrial dataset.

B. Benefits of Critical Path Delay for V., Degradation

In this section, we use experimental results to demonstrate
the benefits of on-chip in-situ CPD monitors. Firstly, we
illustrate that CPD monitors are able to capture the aging
degradation of chips. In Fig. 3, delay shifts of 10 critical
paths through Dhrystone and HTOL stress are depicted as
box plots. Each box plot is corresponding to the scaled delay
distribution for each selected critical path from 72 chips
that received Dhrystone stress and 24 chips that received
HTOL stress, in which the bar inside the box represents the
median. The box shows the quartiles of the dataset while
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Figure 4: Pearson correlation heatmap of critical path delays.
The lower and upper triangular matrix represents the correla-
tions under Dhrystone stress and HTOL stress, respectively.
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Figure 5: Visualization of the pair-wise correlation among
critical path delay, RO delay, and DC scan V,,;,, of 72 chips
under Dhrystone stress.

the whiskers extend to show the rest of the distribution. The
lower whisker extends to 1.5 times interquartile outside Q1
(25th percentile), and the upper whisker extends to 1.5 times
interquartile outside Q3 (75th percentile). The square dots are
corresponding to the means of the scaled delay distribution
for each critical path. The mean and median delay of each
path is monotonically increasing with respect to the stress,
and it satisfies the domain constraint. Moreover, the rate of
delay increase gets slower when the stress time gets longer,
indicating a chip-level aging property. It is also noteworthy
that the CPD shifts over stress are different among different
critical paths which are expected as those different critical
paths consist of different types of devices and logic gates. In
Fig. 4, we plot the Pearson correlations among CPDs through
Dhrystone and HTOL stress, where the linear dependency is
low for most critical paths. Hence, CPD monitors capture
the aging characteristics of each selected critical path with
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Table II: V,,,;,, Degradation Prediction RMSE of LR

Table IV: Configurations of V,,;,, Predictor

Test Pattern 1 ROD 2RODs 3 RODs 2 RODs + mean CPD Model  Training epochs  Batch size =~ Optimizer  Learning rate
DC Scan 143mV  142mV  14.5mV 12.0mV MLP 3000 64 Adam 0.001
AC Scan 9.97mV  9.8ImV  10.0mV 9.52mV MLN 8000 64 Adam 0.01
MBIST 139mV ~ 13.3mV ~ 13.3mV 13.2mV

Table III: The Percentage of CFS-selected Features Containing
at least 1 CPD for V,,,;,, Degradation Prediction

Test Pattern 1 Feature 2 Features 3 Features
DC Scan 58.3% 91.7% 100%
AC Scan 48.6% 75.0% 91.7%
MBIST 0% 0% 33.3%
robustness.

Secondly, we show that CPDs provide additional informa-
tion on V,,;, degradation to RODs. In Fig. 5, we depict the
relationship between 1 CPD, 2 RODs, and the DC scan Vi,
tested at 125°C, where the CPD is the average scaled delay
among the 10 critical paths and ROD 1 and ROD 2 are selected
by CFS with the PCC score. As shown in Fig. 5, CPD has
an apparent correlation with DC Scan V,,,;,, while there is
less correlation between CPD and ROD 1 and no correlation
between CPD and ROD 2.

Thirdly, we demonstrate the effectiveness of CPD in pre-
dicting V,,;, degradation from the 72 chips going through
Dhrystone stress. We use on-chip monitor data collected at
one stress timestamp to predict V,,;, measured at the same
timestamp for all test patterns. In order to ensure a fair
comparison, we compare the prediction accuracy of linear
regression using different on-chip monitor data sets, including
RODs and CPD. RODs are determined by CES in Eq. (3)
using PCC. The CPD here is the mean delay among 10 critical
paths. In order to avoid random fluctuation, we perform 4-Fold
cross-validation, train the linear predictors on 54 random chips
(75%), and test them on the remaining 18 chips (25%).

We report the Root Mean Square Error (RMSE) of Vi,
prediction averaged across temperatures and timestamps in
Table II. If we only use RO-based domain monitor data,
2 selected RODs can be adequate to train a linear Vj,;,
predictor, and adding one more ROD will even induce a worse
performance. However, Our results show that adding CPD
data improves the prediction accuracy for DC Scan Vi,
AC Scan V,,;,, and MBIST V,,,;, by 15.7%, 2.98%, and
0.76%, respectively. This indicates that critical path delay is
a useful feature in addition to RO delay for V,,,;,, degradation
prediction, especially for DC Scan V,,;,, which is expected
as the CPD sensors add visibility of performance margin at
each local critical path level on top of the chip-level process
feedback from the RO-based domain sensors.

Furthermore, we present evidence that CPDs can be chosen
as useful features for V,,,;,, degradation prediction by CFS. We
apply CFS with Pearson correlation sp as the score function
in Eq. (3) to determine the first, the second, and the third
feature from CPDs and RODs. We define a successful pick if
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Figure 6: V,,,;, prediction RMSE.

a selected feature set contains at least one CPD, and display
the successful pick percentage for each V,,;, test pattern in
Table III. Our results show that CPD has a high chance of
being selected as the second or the third feature for DC Scan
Vinin and AC Scan V,,,;,,. However, CPDs are less compatible
for MBIST V,,,;n, which is consistent with the result shown
in Table II that 2 linear models using 3 RODs or 2 RODs +1
CPDs have similar performance. To this end, we empirically
demonstrate that CFS can determine beneficial CPDs for V,,,;,,
degradation prediction.

C. Effectiveness of the Proposed V,,;, Prediction Framework

We compare our domain-specific ML approach to two
baselines: a linear regression model (LR) and a conventional
neural network, the latter of which is a multilayer perceptron
(MLP). In order to mitigate the overfitting phenomenon, we
instantiate a shallow MLP that has one hidden layer including
16 neurons, whose activation functions are Rectified Linear
Units (ReLU). Moreover, a Lo penalty of model parameters
with a weight of 0.1 is added to the optimization objective
in Eq. (1). Detailed hyper-parameters of the MLP and the
monotonic lattice network (MLN) are summarized in Table IV.

We demonstrate that embedding domain-specific mono-
tonicity constraints are beneficial for overfitted neural net-
works when the dataset is small via two experiments: predict-
ing Vi, of unstressed chips tested at 0 hours, and modeling
Vinin degradation over stress.

Table V: Prediction R? for DC Scan V,,,;,, Tested at 0 hours
Using 3 On-chip Monitor Data Selected by CFS

Testing Temperature LR MLP MLN MLN with M-CFS
25°C 0.688  0.645 0.711 0.716
125°C 0.688  0.686  0.695 0.699
-45°C 0382 0.336 0.393 0.397
Mean 0.586  0.561  0.599 0.604
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Table VI: V,,;, Degradation Prediction RMSE

Test Pattern LR MLP MLN with M-CFS DK Gain
DC Scan 11.9mV  12.1mV 11.6mV 4.13%
AC Scan 9.56mV  9.70mV 9.46mV 2.47%
MBIST 13.ImV  13.6mV 13.0mV 4.42%

Firstly, we present empirical results of predicting DC Scan
Vinin 10 96 chips using LR, MLP, and MLN models. To select
input features, we apply CFS with Pearson correlation sp as
the score function in Eq. (3) to choose three on-chip monitor
data for each V,,,;,, from all on-chip monitor data including 168
RODs and 10 CPDs. In addition, we employ M-CES in Eq. (5)
to select three different on-chip monitor data for the MLN.
Each predictor is evaluated via a 4-Fold cross-validation.

As shown in Table V, the MLP has lower accuracy for
DC scan V,,;, than the LR due to overfitting. However,
our proposed MLP predictor that leverages monotonicity con-
straints provides superior performance. Furthermore, the M-
CFS method further improves the performance of the MLP.
The results show that our domain-specific ML framework
helps improve the accuracy of predicting V;,,;, even with a
small number of chips tested.

In addition, we demonstrate that our approach is effective in
modeling the V,,,;, degradation of 72 chips under Dhrystone
stress. For each V,,,;, test pattern, we perform CFS to select
3 features from the on-chip monitor data. Similar to previous
experiments, we use 4-Fold cross-validation to validate the
results.

The Vi,in degradation prediction RMSE averaged on times-
tamps is depicted in Fig. 6. In general, the domain-specific
MLN shows higher prediction accuracy than MLP, particularly
for DC Scan V,,,;, and MBIST V,,,;,,. Furthermore, we report
the average V,,;, prediction RMSE of each test pattern, i.e.,
average from three temperatures, in Table VI, in which the last
column is the improvement percentage of embedding Domain
Knowledge (DK gain) using our proposed MLN with M-CFS
method comparing to MLP. The results suggest that embedding
monotonicity constraints in neural networks is a promising
technique for modeling V,,;, degradation even when using
only a limited number of measured chips.

V. CONCLUSION

We introduce a novel framework for predicting V;,,;,, and
its aging degradation using machine learning based on on-chip
monitor data. By incorporating domain-specific monotonicity
constraints, the accuracy and robustness of the predictions can
be significantly improved when measured chips are limited
(due to long duration of the stress). Experimental results on
advanced 5Snm automotive test chips with both on-chip domain
sensors and critical path delay monitors have demonstrated the
effectiveness of the proposed MLN method. In the future, we
will further validate the effectiveness of our approach once a
larger volume of industrial stress data is available. Moreover,
we will develop an advanced V,,,;,, degradation predictor based
on our proposed MLN method, which is able to predict future
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Vinin shifts using past and present on-chip monitor data. It
will help enable the prediction of future aging-induced failure,
indicated by abnormal V,,;, shift, with a shorter duration of
stress needed.
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