
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

A Computational Governor for Maintaining
Feasibility and Low Computational Cost in

Model Predictive Control
Jordan Leung, Frank Permenter, and Ilya V. Kolmanovsky, Fellow, IEEE

Abstract— This paper introduces an approach for re-
ducing the computational cost of implementing Linear
Quadratic Model Predictive Control (MPC) for set-point
tracking subject to pointwise-in-time state and control con-
straints. The approach consists of three key components:
First, a log-domain interior-point method used to solve
the receding horizon optimal control problems; second, a
method of warm-starting this optimizer by using the MPC
solution from the previous timestep; and third, a com-
putational governor that maintains feasibility and bounds
the suboptimality of the warm-start by altering the refer-
ence command provided to the MPC problem. Theoretical
guarantees regarding the recursive feasibility of the MPC
problem, asymptotic stability of the target equilibrium, and
finite-time convergence of the reference signal are provided
for the resulting closed-loop system. In a numerical ex-
periment on a lateral vehicle dynamics model, the worst-
case execution time of a standard MPC implementation is
reduced by over a factor of 10 when the computational
governor is added to the closed-loop system.

Index Terms— Interior-point methods, model predictive
control (MPC), quadratic programming, stability analysis.

I. INTRODUCTION

Model Predictive Control (MPC) is a broadly used feedback
strategy capable of providing high-performance control in the
presence of system constraints [1]. MPC has been successfully
applied in settings such as industrial process control [2], hybrid
electric vehicle energy management [3], vehicle stabilization
at the limits of handling [4], and spacecraft rendezvous maneu-
vers [5]. Moreover, theoretical properties of MPC have been
extensively studied [1], [6]–[9].

Stability guarantees for MPC are often established through
the choice of the terminal penalty, the terminal set constraint,
and the prediction horizon length in the receding horizon
Optimal Control Problem (OCP) [6]. In such formulations,
the region of attraction (ROA) of the closed-loop system
corresponds to the set of states for which the OCP is feasible
[6]. It is well known that the size of this ROA is directly related
to the length of the prediction horizon. However, lengthening

Toyota Research Institute (TRI) provided funds to assist the authors
with their research but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity. The
third author acknowledges support by the National Science Foundation
award number CMMI-1904394.

J. Leung and I. Kolmanovsky are with the University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: {jmleung, ilya}@umich.edu).

F. Permenter is with the Toyota Research Institute, Cambridge, MA
02139 USA (email:frank.permenter@tri.global).

the prediction horizon has the undesirable consequence of
increasing the computational cost of solving the OCPs. Thus,
it is often challenging to implement MPC in a way that is both
computationally efficient and supported by strong guarantees
of closed-loop stability and recursive feasibility.

The development of efficient optimization algorithms de-
signed to solve these OCPs has helped address this issue
[10]–[15]; nevertheless implementing MPC in applications
with fast sampling rates and/or limited computing power
still remains challenging. A common approach to reduce the
computational burden of MPC is to approximate the OCP
solutions by performing a limited number of optimizer iter-
ations per timestep — a procedure referred to as suboptimal
MPC. However, careful consideration must be given to the
stability of the closed-loop system when suboptimal MPC is
used, since the guarantees provided by optimal MPC do not
necessarily hold. The stability and robustness of such methods
has been studied in generalized theoretical frameworks (e.g.,
[16]–[18]). However, computable certification bounds are of-
ten somewhat conservative and limited to simple cases (e.g.,
input constrained linear systems [19]–[21]), and more complex
cases often require significant modification of the OCP (e.g.,
constraint tightening [22], stabilizing constraints [23], and the
use of relaxed barrier functions [24]).

Alternatively, the computational cost of MPC can be re-
duced by shortening the prediction horizon and employing
other methods for enlarging the ROA. One such method
involves including a parameterization of the terminal set
constraint as an optimization variable in the OCP [25]. How-
ever, this results in increased dimensionality of the OCP. An
alternative method is to replace the terminal set constraint
with a contractive sequence of sets that are computed offline
[26]. The feasibility governors proposed in [27] and [28] are
add-on units that expand the ROA of MPC by altering the
reference (set-point) command supplied to the OCP. Under this
paradigm, the structure and complexity of the OCP remains
unchanged and only the supplied set-point command is altered.

The strategy proposed in this paper for reducing the compu-
tational cost of MPC consists of three key components: First,
a log-domain interior-point method used to solve the receding
horizon OCPs; second, a method of warm-starting this opti-
mizer by using the MPC solution from the previous timestep;
and third, a computational governor (CG) that alters the MPC
reference command so that the suboptimality of the warm-
start is bounded and the resulting OCP is feasible. The warm-

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

start suboptimality bound enforced by the CG ensures that the
ensuing OCP is well-initialized and can be solved with low
computational cost. Meanwhile, the OCP feasibility constraint
ensures recursive feasibility of the MPC problem and thus
results in an expansion of the closed-loop ROA. Thus, the CG
can reduce the computational cost of implementing MPC by
simultaneously ensuring that the OCP is well-initialized and
by allowing for the use of a shorter prediction horizon. To the
authors’ best knowledge, this scheme is unique in its ability
to simultaneously ensure good initialization of the OCP while
also expanding the closed-loop ROA.

This paper is an extension of [29], which only explored the
use of the CG to ensure good initialization of the OCP. The
utility of the CG is expanded in this paper by also considering
the effect of expanding the closed-loop ROA. Specifically,
the new contributions introduced in this paper are theoretical
guarantees regarding the recursive feasibility of the MPC
problem, asymptotic stability of the target equilibrium, ex-
pansion of the closed-loop ROA, and finite-time convergence
of the computationally governed reference signal. Numerical
experiments are reported which demonstrate the effectiveness
of the CG when it is used as a means of both expanding the
ROA and ensuring good initialization of the OCP.

The paper is organized as follows. Section II introduces the
MPC formulation used to generate control inputs. Section III
discusses how the log-domain interior-point method (LDIPM)
is used to solve the receding horizon OCP. Section IV intro-
duces the computational governor and Section V establishes
the theoretical properties of the resulting closed-loop system.
Section VI discusses implementation aspects of the computa-
tional governor and Section VII demonstrates the efficacy of
the computational governor through numerical experiments.

Notation: Let Rn
>0 denote the set of real n × 1 vectors

with strictly positive elements (define Rn
≥0 accordingly). Let N

represent the natural numbers including 0. Given a, b ≥ 0, let
N[a,b] = N∩[a, b]. Given x ∈ Rn and W ∈ Rn×n with W ≻ 0,
the W -norm of x is ∥x∥W =

√
xTWx. Let ∥ · ∥ represent

the 2-norm when no subscript is specified. Given A ∈ Rm×n

and p ∈ [1,∞], let ∥A∥p represent the induced p-norm. Let
λmin(A) and λmax(A) denote the minimum and maximum
eigenvalues of A ∈ Rn×n. Let B(x, δ) ⊂ Rn represent a
closed 2-norm ball of radius δ > 0 centered at x ∈ Rn. Given
ρ ∈ R and X ⊂ Rn, let ρX = {ρx | x ∈ X}. Given x ∈ Rn

and y ∈ Rn, let (x ⊙ y) ∈ Rn denote the elementwise
multiplication and x−1 ∈ Rn denote the elementwise inverse.
Let (x, y) = [xT yT]T . If f : R → R and x ∈ Rn, then
f(x) ∈ Rn is understood to be an elementwise operation.
Given x ∈ Rn, let diag(x) = diag(x1, ..., xn) denote the n×n
diagonal matrix containing xi in the ith diagonal element for
all i ∈ N[1,n].

II. PROBLEM SETTING

We consider a linear time-invariant discrete-time system
given by

xk+1 = Axk +Buk, (1a)
yk = Cxk +Duk, (1b)
zk = Exk + Fuk, (1c)

where k ∈ N is the discrete-time index, xk ∈ Rn is the state,
uk ∈ Rnu is the control, yk ∈ Rny is the constrained output,
and zk ∈ Rnz is the tracking output1. The control objective is
to drive the tracking output zk to a desired reference r ∈ Rnz

subject to pointwise-in-time constraints

yk ∈ Y, ∀k ∈ N, (2)

where Y ⊆ Rny is a specified constraint set.
Assumption 1: The pair (A,B) is stabilizable and Y is a

compact polyhedron that contains the origin in the interior.
Equilibria of (1) satisfy Z[x̄T ūT z̄T]T = 0, where

Z =

[
A− I B 0
E F −I

]
.

Moreover, these equilibria can be parameterized by a reference
v ∈ Rnv according tox̄vūv

z̄v

 =

Gx

Gu

Gz

 v, (3)

where GT = [GT
x GT

u GT
z]

T is a basis for the nullspace
of Z and Assumption 1 ensures that Null(Z) ̸= {0} [25],
[27]. The following assumption excludes ill-posed reference
tracking problems, e.g., Gz = 0, and ensures that the target
reference r uniquely determines the target equilibrium.

Assumption 2: The matrix Gz is full rank and nz = nv .
Remark 1: It is also possible to formulate reference track-

ing problems with Gz full rank and nz < nv [27]. The
assumption nz = nv is made to simplify the computational
governor introduced in Section IV.

A reference tracking MPC strategy similar to [25] is em-
ployed to solve the specified control problem. The following
OCP is used to generate the MPC feedback law:

min
(x̂,û)
||x̂N − x̄v||2P +

N−1∑
i=0

||x̂i − x̄v||2Q + ||ûi − ūv||2R (4a)

s.t. x̂0 = x, (4b)
x̂i+1 = Ax̂i +Bûi, i ∈ N[0,N−1], (4c)
Cx̂i +Dûi ∈ Y, i ∈ N[0,N−1], (4d)

(x̂N , v) ∈ T , (4e)

where N ∈ N is the prediction horizon, x̂ = (x̂0, . . . , x̂N)
and û = (û0, . . . , ûN−1) are the predicted state and control
sequences, P ∈ Rn×n, Q ∈ Rn×n, R ∈ Rnu×nu are weight-
ing matrices, and T ⊆ Rn+nv is a terminal set. The initial
state x and reference command v are parameters in this OCP.
We use the notation PN (x, v) to refer to problem (4) specified
with parameters (x, v). The following assumption ensures that
PN (x, v) can be used to generate a stabilizing feedback law.

Assumption 3: The cost matrices satisfy Q ≻ 0, R ≻ 0, and
P is the positive-definite solution to the Discrete Algebraic
Riccati Equation: P = Q + ATPA − ATPBK, where K =
(R + BTPB)−1(BTPA) is the Linear Quadratic Regulator
(LQR) gain.

1The constrained output yk and the tracking output zk may share common
elements. In this case, the matrices C and D will share common rows with
E and F respectively.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

We define T = O∞, where O∞ ⊆ Rn+nv is the maximum
constraint admissible set for the closed-loop system under
LQR feedback [30]. That is, O∞ is the maximal set of pairs
(x, v) such that if LQR is applied to (1) with x0 = x and
a constant reference v, then (2) is satisfied. Since O∞ is
polyhedral under Assumption 1 [30], then PN (x, v) can be
written in the following condensed form

min
û

1

2
ûTH û + ûTWθ (5a)

s.t. M û + Lθ + ℓ ≥ 0, (5b)

where θ = (x, v) and H ≻ 0,W,M,L, ℓ are defined in [27] as
a function of the problem data in (4) and the parameterization
in (3). We define the cost function J , feasible set map F , and
value function V of PN (x, v) as

J(x, v, û) =
1

2
ûTH û + ûTWθ, (6a)

F(x, v) = {û | M û + Lθ + ℓ ≥ 0}, (6b)
V (x, v) = min

û∈F(x,v)
J(x, v, û). (6c)

The set of feasible parameters for (5) is

ΓN = {(x, v) ∈ Rn+nv | F(x, v) ̸= ∅},

which is equivalent to the N -step backwards reachable set to
O∞. Note that both O∞ and ΓN are polyhedral sets with
representations that can be computed offline [27], [30]. The
following set-valued maps are defined for convenience:

O∞(v) = {x ∈ Rn | (x, v) ∈ O∞},
ΓN (v) = {x ∈ Rn | (x, v) ∈ ΓN}.

The closed-loop system under MPC feedback is defined by

xk+1 = Axk +Bu∗(xk, vk), (7a)
u∗(xk, vk) = Ξû∗(xk, vk), (7b)

where {vk} is a sequence of reference commands, û∗(x, v)
is the optimal solution to PN (x, v), and Ξ = [Inu

0 ... 0]
is a matrix that selects the first control input. The following
theorem details the stability and convergence properties of the
closed-loop MPC system for a constant reference vk ≡ v.

Theorem 1: ([9, Theorem 4.4.2], [27, Theorem 1]) Let
Assumptions 1-3 hold and consider the closed-loop system (7)
starting from an initial condition x0 with a constant reference
vk ≡ v. Then ∀(x0, v) ∈ ΓN :

• (xk, v) ∈ ΓN for all k ∈ N;
• yk ∈ Y for all k ∈ N;
• limk→∞ xk = x̄v .

If, in addition, v ∈ Int V then x̄v is asymptotically stable,
where V = {v | Gyv ∈ Y} is the set of constraint admissible
references and Gy = CGx +DGu.

Assumption 4: The target reference r is constant and sat-
isfies r ∈ Vϵ, where Vϵ = {v ∈ Rz | Gyv ∈ (1− ϵ)Y}, and
0 < ϵ≪ 1 is a parameter chosen to ensure r ∈ Int V .

Remark 2: The target reference r is assumed to be constant
to simplify statements of closed-loop stability. However, the
results herein can naturally be applied to time-varying refer-
ence sequences {rk} where for every i ∈ N there exists an

interval Ii ⊂ N of non-zero length and a reference ri such that
i ∈ Ii and rk = ri for all k ∈ Ii. The reference changes can
then be interpreted as new instances of a constant reference
as long as these intervals Ii are sufficiently long.

In theory, the stated control problem can be solved by
simply specifying vk ≡ r if (x0, r) ∈ ΓN . In this case,
x̄r = Gxr is an asymptotically stable equilibrium of (7).
However, if x̄r is far from x0, it may be necessary for N to be
very large to enforce (x0, r) ∈ ΓN . As previously discussed,
the computational cost of solving (5) increases with increased
N . Therefore, choosing N to satisfy (x0, r) ∈ ΓN may make
solving (5) computationally infeasible.

To this end, we propose a computational governor for select-
ing {vk} that removes the requirement that (x0, r) ∈ ΓN and
also ensures good initialization of the optimization algorithm
used to solve PN (xk, vk). The computational governor can
then reduce the computational cost of implementing MPC by
allowing for the use of shorter prediction horizons and by
expediting the convergence of the optimization algorithm used
to solve PN (xk, vk).

The computational governor proposed in this paper is de-
rived by exploiting properties of the log-domain interior-point
method (LDIPM) used to solve (5). In Section IV, we will
show that the Newton step of the LDIPM can be directly
parameterized by the reference command vk. This observation
facilitates the development of an optimization-based strategy
that selects the reference command vk so that a primal-
dual feasible solution to (5) with bounded suboptimality is
obtained upon warm-starting the LDIPM. As a preamble
to this development, the following section describes some
important properties of the LDIPM that are used to derive
the computational governor.

III. APPLICATION OF THE LOG-DOMAIN INTERIOR-POINT
METHOD TO MPC

In this section, we describe how the log-domain interior-
point method (LDIPM) from [31] can be used to solve (5).

A. Properties of the LDIPM

Consider the QP in (5) for a fixed parameter θ = (x, v) ∈
ΓN . For ease of notation, we define c = Wθ, b = Lθ + ℓ,
p = Nnu, and m ∈ N as the number of rows of M ∈ Rm×p.
Consider the following central-path equations for (5)

MTλ = H û + c, s =M û + b, (8a)
λ ≥ 0, s ≥ 0, siλi = η, i ∈ N[1,m], (8b)

where η > 0 is a fixed homotopy parameter, s ∈ Rm is
the constraint slack, and λ ∈ Rm is the vector of dual
variables. Note that when η = 0, these equations reduce to
the Karush-Kuhn-Tucker (KKT) optimality conditions for (5).
Next, consider the following logarithmic change-of-variables.
Let γ ∈ Rm and define λ =

√
ηeγ and s =

√
ηe−γ , such that

the log-domain central-path equations are
√
ηMT eγ = H û + c,

√
ηe−γ =M û + b. (9)

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Note that the conditions in (8b) are satisfied for all γ ∈ Rm

by definition. We define the central-path as the graph of the
map η 7→ (û, γ) such that (û, γ, η) satisfy (9).

The LDIPM solves (5) by applying Newton’s method to
(9) with a decreasing sequence of η. The Newton direction
d = d(γ, η) ∈ Rm and the primal variable update û = û(γ, η)
of the LDIPM satisfy

√
ηMT (eγ + eγ ⊙ d) = H û + c, (10a)
√
η(e−γ − e−γ ⊙ d) =M û + b. (10b)

The following theorem establishes uniqueness of d(γ, η) and
û(γ, η), and provides a method of computing both.

Theorem 2: ([31, Theorem 2.1]) For all γ ∈ Rm and η > 0,
the Newton direction d = d(γ, η) and the decision variable
update û = û(γ, η) satisfy

d = 1− 1
√
η
eγ ⊙ (M û + b), (11a)

(MTD(γ)M +H)û = 2
√
ηMT eγ − (c+MTD(γ)b),

(11b)

where 1 ∈ Rm is a vector of ones and D(γ) = diag(e2γ).
Moreover, MTD(γ)M +H ≻ 0.

Iterates generated by the update rule

γi+1 = γi +
1

αi
d(γi, η), (12a)

αi = max
{
1, ∥d(γi, η)∥2∞

}
, (12b)

are globally convergent to the central-path point (û, γ, η)
[31, Theorem 2.3]. The following lemma describes conditions
under which iterates are primal-dual feasible with bounded
suboptimality.

Lemma 1: ([31, Lemma 3.3]) For η > 0 and γ ∈ Rm, let
d = d(γ, η) and û = û(γ, η). Let λ =

√
η(eγ + eγ ⊙ d) and

s =
√
η(e−γ − e−γ ⊙ d). If ∥d(γ, η)∥∞ ≤ 1, then (û, s, λ)

satisfy the primal-dual feasibility conditions

M û + b = s, MTλ = H û + c, λ ≥ 0, s ≥ 0.

Further, ∥s⊙ λ∥1 = η(m− ∥d∥2).
The condition ∥d(γ, η)∥∞ ≤ 1 also implies that the update

in (12) decreases the divergence2 by a factor of 1
2 [31, Theorem

3.2]. In other words, if the Newton step satisfies ∥d(γ, η)∥∞ ≤
1, then the iterate resulting from (12) is primal-dual feasible,
has a suboptimality bounded by η, and reduces a measure of
convergence by (at least) a factor of 1

2 . These observations
motivate the longstep implementation of the LDIPM [31,
Section 3.2] described by Algorithm 1.

The longstep procedure reduces η by computing

η∗(γ) := inf{η > 0 | ∥d(γ, η)∥∞ ≤ 1}, (13)

where η∗(γ) := ∞ when (13) is infeasible. In other words,
Algorithm 1 performs the largest possible reduction of η that
ensures the condition ∥d(γ, η)∥∞ ≤ 1 holds. The procedure
used to compute η∗(γ) is given in [31, Section 3.2].

2A metric-like function that is used to establish convergence of the LDIPM
in [31]. Specifically, the divergence of γ ∈ Rm and a centered-point γ̂ ∈ Rm

is defined by h(γ, γ̂) = ⟨eγ , e−γ̂⟩ + ⟨e−γ , eγ̂⟩ − 2m, where ⟨·, ·⟩ is the
Euclidean inner-product [31, Definition 2.3].

Algorithm 1 LDIPM(x, v, γinit, ηinit, ηfinal)
1: γ ← γinit, η ← ηinit, ηtol ≤ ηfinal
2: θ = (x, v), c =Wθ, b = Lθ + ℓ
3: while η > ηfinal or ∥d(γ, η)∥∞ > 1 do
4: η ← min{η, inf{η > 0 | ∥d(γ, η)∥∞ ≤ 1}}
5: η ← max{η, ηtol}
6: α← max{1, ∥d(γ, η)∥2∞}
7: γ ← γ + 1

αd(γ, η)
8: end while
9: û← (MTD(γ)M+H)−1[2

√
ηMT eγ−(c+MTD(γ)b)],

10: return (û, γ, η)

The following theorem states that Algorithm 1 terminates
globally.

Theorem 3: ([31, Theorem 3.2]) For any inputs (x, v) ∈ ΓN

and (γinit, ηinit, ηfinal) ∈ Rm ×R>0 ×R>0, Algorithm 1 termi-
nates and returns (û, γ, η) such that η ≤ ηfinal, ∥d(γ, η)∥∞ ≤ 1,
and

û ∈ F(x, v), J(x, v, û) ≤ V (x, v) +mη,

where F , J , and V are defined in (6).

B. Warm-starting the LDIPM

Next, we discuss how the LDIPM can be warm-started at
timestep k given the solution to the OCP PN (xk−1, vk−1)
at the previous timestep. Let (ûk, γk, ηk) denote the output
of Algorithm 1 applied to PN (xk, vk) at timestep k ∈ N.
We label the block elements of ûk using the notation ûk =
(û0|k, . . . , ûN−1|k) and define x̂k = (x̂0|k, . . . , x̂N |k) as the
corresponding state trajectory, where x̂0|k = xk. The warm-
started primal decision variable at timestep k is generated by

ũk = (û1|k−1, . . . , ûN−1|k−1, ūv −K(x̂N |k−1 − x̄v)), (14)

where K is the LQR gain. Note that ũk ∈ F(xk, vk−1)
since ûk−1 ∈ F(xk−1, vk−1) by definition of the terminal set
T = O∞ [6]. Thus, if vk = vk−1, then the corresponding
slack variable satisfies s̃k := M ũk + Lθk + ℓ ≥ 0, where
θk = (xk, vk). The log-domain variable used to initialize
Algorithm 1 is then generated by

γ̃k = − log

(
max

{
s̃k√
ηk−1

, ϵs1
})

, (15)

where ϵs > 0 is a small tolerance and max{x, y} :=
(max(x1, y1), ...,max(xn, yn)) ∈ Rn for x, y ∈ Rn. The
first argument in the max operator is a rearrangement of
the parameterization in (9), whereas the second argument is
included to ensure that (15) is defined when s̃k has elements
that are equal to zero.

Once initialized with γ̃k, Algorithm 1 begins by computing
η∗(γ̃k) in (13). That is, it finds the smallest η that ensures
that the warm-start γ̃k is within a neighborhood of the cor-
responding central-path point. In this sense, the warm-started
solution only needs to be sufficiently close to some point on
the central-path.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

IV. A COMPUTATIONAL GOVERNOR FOR THE
LOG-DOMAIN INTERIOR-POINT METHOD

Consider the closed-loop system (7) with an auxiliary
reference sequence {vk} and a target reference command r.
As discussed in Section II, one could attempt to complete
the control task by setting vk ≡ r, but this poses two
potential problems. First, if (xk, r) /∈ ΓN , then the OCP
will be infeasible. Second, if the commanded reference r is
changed (see Remark 2), then warm-starting may be ineffec-
tive since the solutions to PN (xk, vk) and PN (xk−1, vk−1)
may be substantially different. The computational governor
(CG) discussed in this section addresses both of these issues.
Specifically, the CG selects the auxiliary reference vk such that
the (parameterized) distance from r is minimized subject to
constraints on the feasibility and suboptimality of the warm-
start in (15).

Before describing the CG, we first establish closed-loop
stability for a constant reference signal vk ≡ v in the case
where MPC solutions are computed using Algorithm 1 with a
non-zero final homotopy parameter η.

Theorem 4: Let Assumptions 1-3 hold. Let û : ΓN →
F(x, v) be a function that generates a feasible solution to
PN (x, v) satisfying

J(x, v, û(x, v)) ≤ V (x, v) + β∥x− x̄v∥2Q, (16)

where J and V are defined in (6) and β ∈ (0, 1) is a constant.
Consider the closed-loop dynamics

xk+1 = Axk +BΞû(xk, v),

starting from an initial condition x0 with a constant reference
v. Then for all (x0, v) ∈ ΓN , all solutions satisfy:

• (xk, v) ∈ ΓN for all k ∈ N;
• yk ∈ Y for all k ∈ N;
• limk→∞ xk = x̄v .

If, in addition, v ∈ Int V then x̄v is asymptotically stable.
Proof: The result is a direct consequence of [25, Theorem

1] and [7, Theorem 13.1].
Corollary 1: Consider the output (ûk, γk, ηk) of Algo-

rithm 1 applied to PN (xk, v) and suppose that ηk satisfies

mηk ≤ β∥xk − x̄v∥2Q, (17)

where m ∈ N is the number of constraints in (5). Then, ûk
satisfies (16), i.e. J(xk, v, ûk) ≤ V (xk, v) + β∥xk − x̄v∥2Q.

Proof: The solution ûk generated by Algorithm 1 is
feasible and satisfies J(xk, v, ûk) − V (xk, v) ≤ mηk by
Theorem 3. Then, (16) is satisfied by the bound in (17).

Assumption 5: At all timesteps k, the tolerance ηfinal in
Algorithm 1 satisfies mηfinal ≤ β∥xk − x̄v∥2Q.

We will now describe the strategy that the CG uses to
select vk at each timestep. First, we define the following
parameterization of the reference command vk:

vk = vk−1 + κk(r − vk−1), (18)

where r is the target reference and κk ∈ [0, 1] is a time-
varying parameter that dictates the rate at which vk converges
to r. Note that κk = 1 implies vk = r and that κk = 0 implies
vk = vk−1. The CG developed in this section chooses κk at

each timestep subject to restrictions on the suboptimality and
feasibility of the warm-start. This is accomplished by selecting
κk using the following optimization problem:

max
η,κk

κk (19a)

s.t. ∥d(γ̃k, η, κk)∥∞ ≤ 1, (19b)
η ∈ [ηmin, ηmax], (19c)
κk ∈ [0, 1], (19d)

where d(γ̃k, η, κk) denotes the Newton step of the QP defined
by PN (xk, vk), where vk = vk−1 + κk(r− vk−1), at the log-
domain variable γ̃k ∈ Rm in (15) and a homotopy parameter
η > 0. We denote the solution of (19) given γ̃k as (η∗k, κ

∗
k).

Remark 3: Throughout the rest of this paper, the notation
d(γ, η, κ) is used to refer to the Newton step of the LDIPM
applied to PN (x, v + κ(r − v)) for some state-reference pair
(x, v), log-domain variable γ, and homotopy parameter η. The
dependence on (x, v) is suppressed, but made clear through
context throughout the paper. Note that the notation d(γ, η)
used in Section III is equivalent to d(γ, η, 0).

Recall from Lemma 1 that a point (û, s, λ) is primal-
dual feasible when generated by a Newton step satisfying
∥d(γ, η, κ)∥∞ ≤ 1. Moreover, the resulting iterate has a
suboptimality bounded by η and will reduce a measure of
convergence by a factor of 1

2 . In other words, the CG looks for
the largest parameterized reference step κ∗k towards the target
that ensures the first iterate of the warm-started LDIPM is
primal-dual feasible, has suboptimality bounded by η∗k ≤ ηmax,
and is contained in a region of fast convergence. Thus, if ηmax
is chosen to be relatively small, then feasible solutions to (19)
correspond to reference steps κk that ensure PN (xk, vk) is
feasible and can be solved using relatively few iterations of
the LDIPM.

So, we propose the following computationally governed
MPC procedure:

1) Warm-start: Compute γ̃k according to (15),
2) Computational governor: Compute (η∗k, κ

∗
k) using (19)

when feasible, otherwise define (η∗k, κ
∗
k) = (ηconst, 0)

where ηconst > 0 is a constant,
3) Update Reference: Set vk using (18) with κk = κ∗k,
4) LDIPM: Solve PN (xk, vk) using Algorithm 1 with inputs

x = xk, v = vk, γinit = γ̃k, ηinit = η∗k, and some ηfinal
satisfying Assumptions 5 and 6.

Remark 4: This procedure can also be interpreted as a
time-distributed homotopy method. The CG increments vk
towards r under the restriction that PN (xk, vk) can be solved
efficiently using the solution to PN (xk−1, vk−1). In this sense,
vk is a time-distributed homotopy parameter since it is incre-
mented once per timestep. In contrast, the LDIPM homotopy
parameter η is incremented several times per timestep to solve
PN (xk, vk).

The procedure used to formulate and solve the optimization
problem in (19) will be discussed in Section VI. The following
section analyzes the closed-loop properties of (7) when the
reference vk is chosen using the CG.

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

V. ANALYSIS OF THE COMPUTATIONALLY GOVERNED
CLOSED-LOOP SYSTEM

Consider the closed-loop system

v0 = v̄0 + κ0(r − v̄0), (20a)
vk = vk−1 + κk(r − vk−1), ∀k ∈ N[1,∞), (20b)

xk+1 = Axk +BΞûk(xk, vk), ∀k ∈ N, (20c)

where ûk(xk, vk) is the output of the LDIPM applied to
PN (xk, vk) and v̄0 is a reference initialization. This section is
devoted to analyzing the dynamics of (20) when κk is chosen
using the CG. In particular, we show that under reasonable
assumptions (20) has the following characteristics when κk is
chosen using the CG:

• recursive feasibility of PN (xk, vk), i.e. (x0, v̄0) ∈ ΓN

implies that (xk, vk) ∈ ΓN for all k ∈ N,
• asymptotic stability, i.e. (x̄r, r) is a Lyapunov stable

equilibrium and ∃R ⊆ ΓN such that ∀(x0, v0) ∈ R
limk→∞(xk, vk) = (x̄r, r),

• finite-time convergence of the reference, i.e. ∃k∗ ∈ N
such that vk = r for all k ≥ k∗.

To begin, we establish conditions under which the CG
advances the reference vk towards r. To this end, the following
lemma provides conditions under which (19) is strictly feasible
and the optimal solution is bounded away from zero. The proof
of Lemma 2 is found in Appendix I. The following assumption
is stated first to simply the statement of Lemma 2.

Assumption 6: Let η̄ > 0, κ̄ ∈ (0, 1], and ϵ̄s > 0 be
the constants defined in Lemma 2. The constants ηfinal in
Algorithm 1, ηmin and ηmax in (19), and ϵs in (15) are chosen
so that ηfinal ≤ η̄, (ηmin, ηmax) ∋ η̄, and ϵs ≤ ϵ̄s.

Lemma 2: Let Assumptions 1-5 hold and consider the
closed-loop system in (20). There exist constants η̄ > 0,
κ̄ ∈ (0, 1], ϵ̄s > 0, and δV > 0 such that if Assumption 6
holds, vk−1 ∈ Vϵ, and V (xk−1, vk−1) ≤ δV , then the CG
optimization problem (19) is strictly feasible and the optimal
solution satisfies κ∗k ≥ κ̄.

In other words, if the algorithmic parameters ηfinal, ηmin, and
ϵs are chosen to be sufficiently small, then a non-zero reference
step κ∗k ≥ κ̄ is selected by (19) whenever xk−1 is sufficiently
close to Gxvk−1. The result in Lemma 2 constitutes most of
what is needed to analyze the closed-loop stability of (20).
The following lemma provides the last result required to prove
Theorem 5.

Lemma 3: Let Assumptions 1-5 hold and consider the
closed-loop system

xk+1 = Axk +BΞûk(xk, vk),

where ûk(xk, vk) is the output of the LDIPM applied to
PN (xk, vk) and {vk} is any reference sequence satisfying
vk ∈ Vϵ and (xk, vk) ∈ ΓN for all k ∈ N. Then, the error
signal xk−Gxvk is input-to-state stable (ISS) [32] with respect
to the reference change ∆vk = vk+1 − vk, i.e. there exists
ρ ∈ KL and ζ ∈ K such that

∥xk −Gxvk∥Q ≤ ρ(∥x0 −Gxv0∥, k) + ζ

(
sup
j≥0
∥∆vj∥

)
,

where the classes of K and KL functions follow the usual
definition in [32].

Proof: ISS of the closed-loop system under the optimal
MPC feedback policy was proven in [27, Lemma 5]). In con-
trast, the control sequence û(xk, vk) in Lemma 3 corresponds
to an LDIPM output with non-zero suboptimality proportional
to ηk. However, Lemma 3 can easily be proven using the same
steps as [27, Lemma 5]) by noting that

V (xk+1, vk)− V (xk, vk) ≤ −(1− β)∥xk −Gxvk∥2Q,

for all (xk, vk) ∈ ΓN according to Theorem 4 and Assump-
tion 5. Then, since f(·) = (1−β)∥ · ∥2Q is a class K function,
the rest of the proof follows directly from [27, Lemma 5]).

The results of Lemma 2 and Lemma 3 can then be combined
to analyze the closed-loop system (20) when κk is selected
using the CG. The following theorem, which is the main result
of this paper, demonstrates that the MPC problem PN (xk, vk)
is recursively feasible, (x̄r, r) is an asymptotically stable
equilibrium point, and the size of the closed-loop ROA of
(20) is expanded relative to a standard MPC implementation.

Theorem 5: Let Assumptions 1-6 hold and consider the
closed-loop system (20) with v̄0 ∈ Vϵ and (x0, v̄0) ∈ ΓN .
Let κk be the optimal value of (19) when feasible, otherwise
let κk = 0. Then, limk→∞ (xk, vk) = (x̄r, r) and ∀k ∈
N, (xk, vk) ∈ ΓN and yk ∈ Y . Moreover, (x̄r, r) is an
asymptotically stable equilibrium point of (20).

Proof: To begin, we prove that (xk, vk) ∈ ΓN for
all k ∈ N. First, consider timestep k = 0 as its treatment
differs slightly from the later timesteps. If κ0 = 0, then
(x0, v0) = (x0, v̄0) ∈ ΓN by assumption. Whereas if κ0 >
0, then for some γ ∈ Rm and η > 0 the Newton step
satisfies ∥d(γ, η, κ0)∥∞ ≤ 1 since κ0 is the optimal value
of (19). Thus, there exists a feasible solution to PN (x0, v0)
by Lemma 1, and so (x0, v0) ∈ ΓN . Next, we prove by
induction that (xk, vk) ∈ ΓN for all k ∈ N. Let k ∈ N and
assume (xk, vk) ∈ ΓN . If κk+1 = 0, then (xk+1, vk+1) =
(xk+1, vk) ∈ ΓN by Theorem 4. Whereas if κk+1 > 0, then
(xk+1, vk+1) ∈ ΓN by the same argument as the case where
κ0 > 0. So, (xk, vk) ∈ ΓN for all k ∈ N. Additionally, note
that yk ∈ Y is implied by (xk, vk) ∈ ΓN .

Next, we prove that limk→∞(xk, vk) = (x̄r, r). Consider
the non-trivial case where v̄0 ̸= r and let ek = ∥r−vk∥. Note
that by definition ek = (1 − κk)ek−1 and so ek converges
since it is monotone nonincreasing and lower bounded. So,
define e ≥ 0 such that limk→∞ ek = e. For every k ∈ N, a
parameter3 ωk ∈ [0, 1] can be defined such that vk = v̄0 +
ωk(r − v̄0). Define ω := 1− e

∥r−v̄0∥ ≥ 0, then

lim
k→∞

vk = v̄0 + ω(r − v̄0) =: v.

In other words, since vk is constrained to follow a line between
v̄0 and r, then it must converge to the unique point on this
line where ∥vk − r∥ = e.

To prove that v = r, we first use Lemma 3 to state that

lim
k→∞

∥xk −Gxvk∥ = 0, (21)

3The parameter ωk is different (but related) to the parameter κk in (18).
More specifically, ωk is a function of (κ0, ..., κk).

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

since vk converges and ρ ∈ KL. Thus,

lim
k→∞

xk = lim
k→∞

Gxvk = Gxv = x̄v. (22)

Next, let δV > 0 and κ̄ > 0 be defined as per Lemma 2. Since
∃σ ∈ K such that V (x, v) ≤ σ(∥x−Gxv∥) [25], then ∃k′ ∈ N
such that ∀k ≥ k′, V (xk, v) ≤ δV by (22). Thus, κk ≥ κ̄ for
all k ≥ k′ according to Lemma 2.

Assume, for the sake of contradiction, that v ̸= r (and
equivalently e ̸= 0). Note that limk→∞ ∥vk−vk−1∥ = 0 since
vk converges. However, by definition of vk:

lim
k→∞

∥vk − vk−1∥ ≥ lim inf
k→∞

∥κk(r − vk−1)∥ ≥ κ̄e > 0,

where the second inequality follows from monotonicity of
ek and the fact that κk ≥ κ̄ for all k > k′. Therefore,
we have arrived at a contradiction. Thus, we must have that
limk→∞ vk = r since we know that vk converges. Moreover,
limk→∞ xk = x̄r by (22).

Last, we show that (x̄r, r) is Lyapunov stable. Let
∥(x0, v0)−(x̄r, r)∥ ≤ δθ. Then ∀k ∈ N, ∥vk−r∥ ≤ ∥v0−r∥ ≤
δθ by definition of vk. Next, we note that

∥x0 −Gxv0∥ ≤ ∥x0 − x̄r∥+ ∥x̄r −Gxv0∥
≤ δθ + ∥Gx∥∥r − v0∥ ≤ (1 + ∥Gx∥)δθ,

and ∥∆vk∥ = κk∥r− vk−1∥ ≤ δθ for all k ∈ N. Thus, by the
triangle inequality and Lemma 3 we have that

∥xk − x̄r∥Q ≤ ∥xk −Gxvk∥Q + ∥Gx(vk − r)∥Q
≤ ρ(p1δθ, k) + ζ(δθ) + p2δθ,

for some constants p1, p2 > 0, where the second inequality
follows by ρ ∈ KL and ζ ∈ K. Thus, it is possible to
bound ∥(xk, vk) − (x̄r, r)∥ arbitrarily small given δθ suffi-
ciently small; hence (x̄r, r) is a Lyapunov stable equilibrium.
Moreover, (x̄r, r) is an asymptotically stable equilibrium since
limk→∞(xk, vk) = (x̄r, r).

Remark 5: Theorem 5 does not require that (x0, r) ∈ ΓN .
In fact, there are no requirements on the target reference aside
from Assumption 4. Moreover, the ROA of the closed-loop
system (20) is expanded to

ΥN = {x ∈ Rn | ∃v ∈ Vϵ s.t. (x, v) ∈ ΓN} =
⋃

v∈Vϵ

ΓN (v).

Thus, the size of the ROA of (20) is expanded relative to
ΓN (r) — the ROA of the closed-loop system when the
feedback law in (7) is implemented with vk ≡ r. As discussed
in the introduction, the expansion of the closed-loop ROA
allows for the use of a shorter prediction horizon N , which
reduces the computational cost of solving PN (xk, vk).

Remark 6: The core principle of the CG differs from the
feasibility governor (FG) of [27] and [28] due to the additional
restriction imposed on the warm-start suboptimality in the CG.
To understand the difference between the two approaches, sup-
pose a (potentially infeasible) set-point command r is supplied
to FG/CG. The FG will return the closest possible reference
command that maintains feasibility of the OCP, whereas the
CG will return a reference command that maintains feasibility
of the OCP and ensures that the OCP is well-initialized (i.e.
∥d(γ, η, κ)∥∞ ≤ 1).

Finally, the following theorem demonstrates that the refer-
ence signal vk converges to the target reference r in finite-time.
The proof of this theorem is given in Appendix II.

Theorem 6: Let Assumptions 1-6 hold and consider the
closed-loop system (20) described in Theorem 5. There exist
constants k∗ ∈ N, η̄′ > 0, and ϵ̄′s > 0 such that if k > k∗,
ηk ≤ η̄′, and ϵs ≤ ϵ̄′s, then vk = r.

Remark 7: The strategy described in this paper could also
be applied to problems with an arbitrarily time-varying target
reference sequence {rk} with no changes to the approach. In
this scenario, the CG will return auxiliary references vk that
ensure PN (xk, vk) remains feasible by the same arguments as
in the proof of Theorem 5. Of course, there is no guarantee that
vk will converge to rk for an arbitrary sequence {rk}. However
if, roughly speaking, the changes in rk are slower than the
speed at which vk converges, then it may be possible for
the closed-loop system to track the target reference sequence.
Alternatively, if the reference sequence {rk} is such that
rk = r for all k > k′ for some r and k′ ∈ N, then it can
easily be shown that lim(xk, vk) = (x̄r, r) using Theorem 5
and that vk will converge to r in finite-time using Theorem
6. In other words, the CG possesses all of the conventional
convergence properties of a standard reference governor [33].

VI. IMPLEMENTATION OF THE COMPUTATIONAL
GOVERNOR

In this section, the computational procedure used to imple-
ment the CG will be addressed. To facilitate this development,
an affine parameterization of the Newton step d(γ, η, κ) is
defined in the following proposition.

Proposition 1: Consider the condensed OCP (5) for
PN (x, v′), where v′ = v + κ(r − v) for some κ ∈ [0, 1] and
v ∈ Vϵ. Suppose (x, v′) ∈ ΓN and let d = d(γ, η, κ) represent
the LDIPM Newton step for PN (x, v′) at a given γ ∈ Rm and
η > 0. Then, there exist d0(γ), d1(γ), d2(γ) ∈ Rm such that

d(γ, η, κ) = d0(γ) + d1(γ)
1
√
η
+ d2(γ)

1
√
η
κ. (23)

Proof: Equation (11) can be rewritten as

d = 1− 1
√
η
eγ ⊙ (M û + Lxx+ Lvv

′ + ℓ),

(MTD(γ)M +H)
1
√
η

û = 2MT eγ − 1
√
η
(Wxx+Wvv

′)

− 1
√
η
MTD(γ)(Lxx+ Lvv

′ + ℓ),

where L = [Lx Lv] and W = [Wx Wv]. Then by considering
the parameterization v′ = v+κ(r−v) and observing that 1√

η û
is affine with respect to (1√

η ,
1√
ηκ) and d is affine with respect

to (1√
η û, 1√

η ,
1√
ηκ), it follows that d is affine with respect to

(1√
η ,

1√
ηκ).

An efficient procedure for computing d0(γ), d1(γ), and d2(γ)
is described in Appendix III.

The observation in Proposition 1 allows for the optimization
problem in (19) to be written as a 2-dimensional linear

8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

program (LP) in the variable ξ = [κ
√
η]T . Thus, the CG

is implemented by solving the following 2-dimensional LP:

max
ξ∈R2

cTξ ξ (24a)

s.t. Π(γ̃k)ξ ≤ π(γ̃k) (24b)
ξmin ≤ ξ ≤ ξmax, (24c)

where cξ = [1 cη]
T , ξmin = [0

√
ηmin]

T , ξmax = [1
√
ηmax]

T ,
and

Π(γ) =

[
d0(γ)− (1− ϵd)1 d2(γ)
−d0(γ)− (1− ϵd)1 −d2(γ)

]
,

π(γ) =

[
−d1(γ)
d1(γ)

]
.

Note that (24) is equivalent to (19) with the exception of two
minor practical modifications. First, the constraint (24b) is
equivalent to ∥d(γ̃k, η, κ)∥∞ ≤ (1 − ϵd), where 0 < ϵd ≪ 1
is a small tolerance. Second, the cost in (24a) contains a
weighting parameter cη ≥ 0 on

√
η. This parameter allows

one to trade-off the size of the reference step (as measured
by κ) with the suboptimality of the warm-start (as measured
by η). If ϵd = cη = 0, then (24) is equivalent to (19) and the
largest reference step κk satisfying the constraints (19b)-(19d)
is selected. The use of a non-zero ϵd and cη is not necessary
to solve (24), but these additions have been found to improve
the efficacy of the CG in experiments.

Seidel’s algorithm [34] is employed to solve the resulting
LP. The application of this algorithm to the 2-variable LP in
(24) is shown in Algorithm 2. Seidel’s algorithm is adopted
here since it is an efficient method designed for solving
low-dimensional LPs [34]. The expected execution time of
Algorithm 2 is O(m), where m is the number of constraints
in (5). This expected execution time is derived by noting that
line 6 only executes when the current solution estimate violates
the randomly sampled constraint in line 4 [34]. Moreover,
line 6 can be solved by explicitly eliminating one of the
decision variables using the equality constraint ΠT

i ξ = πi and
by iterating over the m′ constraints defined by (Π′, π′), where
π′ ∈ Rm′

and m′ < m for all j < m.

Algorithm 2 Seidel(cξ,Π, π, ξmin, ξmax)
1: ξ ← Project cξ onto the box defined by ξmin and ξmax
2: Define (Π′, π′) such that Π′ξ ≤ π′ ⇐⇒ ξmin ≤ ξ ≤ ξmax
3: for i = 1 : length(π) do
4: (Πi, πi)← Random unchosen constraint in (Π, π)
5: if ΠT

i ξ > πi then
6: ξ ← argmax cTξ ξ s.t. Π′ξ ≤ π′ and ΠT

i ξ = πi
7: end if
8: (Π′, π′)← Update to include (Πi, πi)
9: end for

10: return ξ

Remark 8: The computational governor proposed in this
paper is derived by exploiting properties of the LDIPM.
It may be possible to develop computational governors for
other optimization algorithms by replacing the condition
∥d(γ̃k, η, κk)∥∞ ≤ 1 with a similar condition. For example,

the path-following algorithms described in [35, Chapter 5]
ensure that primal-dual iterates are contained in a neighbor-
hood denoted as Nq(θ) where θ ∈ [0, 1) is a fixed parameter
related to the size of the neighborhood. One could attempt
to derive a computational governor that ensures a primal-dual
warm-start is contained in Nq(θ) with a bounded duality gap.
However, it is not immediately clear whether this would lead
to an optimization problem that is as tractable as (24). Further
investigation of primal-dual computational governors and more
general computational governors is left to future work.

VII. EXAMPLES

This section demonstrates the application of the computa-
tionally governed MPC strategy to the lateral dynamics of
a passenger vehicle moving forward at a constant speed of
Vx = 30 m/s. The model is taken directly from the example
in [27], which is based on the model in [36] and roughly
represents a 2017 BMW 740i sedan.

The system states are x = (s, ψ, β, ω), where s is the lateral
position of the vehicle, ψ is the yaw angle, β is the sideslip
angle, and ω is the yaw rate. The control input is the steering
angle u = δ and the tracking output is the lateral position
z = s (i.e. E = [1 0 0 0] and F = 0). The continuous-time
state-space matrices (Ac, Bc) are


0 Vx Vx 0
0 0 0 1

0 0 − 2Cα

mVx

Cα(ℓr−ℓf)
mV 2

x
− 1

0 0
Cα(ℓr−ℓf)

Izz
−Cα(ℓ2r+ℓ2f)

IzzVx

 ,


0
0
Cα

mVx
Cαℓf
Izz


 ,

where m = 2041 kg is the vehicle mass, Izz = 4964 kg ·m2 is
the yaw moment of inertia, ℓf = 1.56 m and ℓr = 1.64 m are
the moment arms of the front and rear wheels relative to the
center of mass, and Cα = 246994 N/rad is the tire stiffness.
The system is discretized using a sampling time of T = 0.01.

The following case studies compare the performance of a
standard MPC (S-MPC) implementation, i.e. executing the
feedback law in (7) with vk ≡ r, with the computationally
governed MPC (CG-MPC) implementation described in the
previous sections. In each case, the MPC weight matrices are
specified as Q = diag(1, 0.1, 0.1, 0.1) and R = 0.1 and the
resulting OCPs are solved using the LDIPM in Algorithm 1
with a final tolerance of ηfinal = 10−8. The CG is implemented
by solving (24) with parameters cη = 1, ηmin = 10−10,
ηmax = 10−2, and ϵd = 10−2.

Case 1: Sideslip angle and steering angle constraints

The first case corresponds to a simple maneuver where
constraints are imposed on the sideslip and the steering angles.
The constrained output is y = (β, δ), such that

C =

[
0 0 1 0
0 0 0 0

]
, D =

[
0
1

]
.

The constraint set is Y = π
180◦ [−5

◦, 5◦] × π
180◦ [−30

◦, 30◦].
The first constraint represents a conservative limit on the
sideslip angle to prevent tire slip, while the second constraint
represents the mechanical limits of the steering angle. The

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

0 1 2 3
0

2

4

6

0 1 2 3
-0.1

-0.05

0

0.05

0.1

0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

(a) Standard MPC (S-MPC)

0 1 2 3
0

2

4

6

0 1 2 3
-0.1

-0.05

0

0.05

0.1

0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

(b) Computationally governed MPC (CG-MPC)

Fig. 1. Case 1: Closed-loop trajectories of each MPC implementation.
The grey dotted lines represent the constraint limits of each output.

system is commanded to track a constant set-point command
of r = 5 starting from an equilibrium of x0 = 0. The S-
MPC implementation uses a horizon length of N = 48, which
corresponds to the minimum N ∈ N satisfying x0 ∈ ΓN (r).
The CG-MPC implementation uses a smaller horizon length
of N = 15 to demonstrate the expansion of the ROA provided
by the CG. In both cases, the solution of PN (x0, 0) is used
to warm-start4 the LDIPM at k = 0 (i.e. we assume that the
system was being stabilized at the origin for k < 0).

Figure 1 shows the closed-loop trajectories that arise when
each MPC implementation is used to accomplish the control
task. In the CG-MPC implementation, the auxillary reference
vk is incremented towards r = 5 over a window of 0.57 sec-
onds. As a result, the system operates slightly more conserva-
tively and the outputs β and δ do not dwell on their constraint
boundaries as much as in the S-MPC implementation.

Figure 2 shows a comparison of the performance of each
MPC implementation. In the S-MPC case, the warm-start
procedure described in Section III-B is mostly ineffective
in the transient phase of the maneuver and many iterations
are required for the LDIPM to terminate. In contrast, the
CG-MPC implementation only requires a maximum of 6
LDIPM iterations. The second plot in Figure 2 shows the
initial homotopy parameter η∗k chosen by the CG is less than
10−5 at each timestep. Thus, the LDIPM is initialized so
that only a few iterations are needed to obtain a primal-dual
feasible solution with η ≤ ηfinal = 10−8. Moreover, individual
iterations of the LDIPM are also much cheaper in the CG-
MPC implementation due to the use of the smaller prediction
horizon of N = 15. As previously discussed, this combination
of ensuring good warm-starting of the OCP and reducing the
horizon length N is the key contribution of the CG.

Last, we note that the CG does not introduce a dramatic
degradation in closed-loop performance and the settling time

4The provided warm-start is only used in the S-MPC implementation if
η∗(γ̃k) < ∞ is found. Otherwise, the LDIPM is initialized with ηinit = 108

and γinit = 0 to avoid providing the LDIPM with a very poor warm-start.

0 1 2 3
0

20

40

60

0 1 2 3
0

0.5

1

0 1 2 3
10

-10

10
-5

0 1 2 3
0

200

400

600

800

1000

Fig. 2. Case 1: The CG-MPC implementation only requires a maximum
of 6 iterations for the LDIPM to terminate since the CG initializes the
LDIPM so that the initial homotopy parameter η∗

k is close to ηfinal. How-
ever, the cumulative cost of the maneuver is increased by approximately
20% as a consequence of altering the auxiliary reference vk.

of s. To quantify the closed-loop performance of each imple-
mentation, the cumulative cost defined by

Cumulative cost at k :=

i=k∑
i=0

∥xi −Gxr∥2Q + ∥ui −Gxr∥2R,

is shown in the third plot of Figure 2 for both MPC imple-
mentations. The CG-MPC implementation results in a total
cumulative cost that is 20% greater than the S-MPC imple-
mentation due to the alteration of the auxiliary reference vk.

Case 2: Front and rear slip angle constraints
In the second case, the constrained output is y = (αf , αr, δ),

where αf and αr are the front and rear slip angles of the
vehicle, and

C =

0 0 −1 − ℓf
Vx

0 0 −1 ℓr
Vx

0 0 0 0

 , D =

10
1

 .
The constraint set is Y = π

180◦ [−8
◦, 8◦] × π

180◦ [−8
◦, 8◦] ×

π
180◦ [−30

◦, 30◦]. The first two constraints are angular limits
that prevent tire slip, while the third constraint represents the
mechanical limits of δ. These constraints are slightly more
complex than in Case 1 and constitute a more principled
approach of preventing tire slip. The control task is the same as
in Case 1. The S-MPC implementation uses a horizon length
of N = 66, which corresponds to the minimum N ∈ N to
enforce x0 ∈ ΓN (r) for the new set of constraints. The CG-
MPC implementation uses N = 15 as in Case 1.

Figures 3 and 4 show comparisons of the closed-loop
trajectories and performance when the new constraints are
imposed on the maneuver. The end result is similar to Case 1,
but the CG-MPC implementation is forced to operate slightly
more conservatively in Case 2. For example, the CG-MPC
implementation does not operate near the constraint boundary
of αr and it operates near the constraint boundary of αf for
less time than in the S-MPC implementation. Moreover, the
auxiliary reference vk takes longer to converge (1.02 seconds
as opposed to 0.57 seconds in Case 1) and the increase in the
cumulative cost of the CG-MPC implementation relative to the
S-MPC implementation is higher in Case 2 (a 30% increase
as opposed to a 20% increase in Case 1).

Nevertheless, the CG-MPC implementation still achieves its
intended purpose and a maximum of 5 iterations are required
for the LDIPM to terminate. However, these computational

10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 1 2 3
0

2

4

6

0 1 2 3
-0.2

0

0.2

0.4

0.6

0 1 2 3
-0.15

-0.1

-0.05

0

0.05

0.1

0 1 2 3
-0.2

-0.1

0

0.1

0.2

0 1 2 3
-0.2

-0.1

0

0.1

0.2

0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

(a) Standard MPC (S-MPC)

0 1 2 3
0

2

4

6

0 1 2 3
-0.2

0

0.2

0.4

0.6

0 1 2 3
-0.15

-0.1

-0.05

0

0.05

0.1

0 1 2 3
-0.2

-0.1

0

0.1

0.2

0 1 2 3
-0.2

-0.1

0

0.1

0.2

0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

(b) Computationally governed MPC (CG-MPC)

Fig. 3. Case 2: Closed-loop trajectories of each MPC implementation.
The grey dotted lines represent the constraint limits of each output.

0 1 2 3
0

20

40

0 1 2 3
0

0.5

1

0 1 2 3
10

-10

10
-5

0 1 2 3
0

500

1000

1500

Fig. 4. Case 2: The computational comparison of both MPC imple-
mentations remains similar to Case 1, however there is a larger (30%)
increase in the cumulative cost of the CG-MPC implementation.

savings come at a slightly higher cost in closed-loop perfor-
mance in this case. The decrease in closed-loop performance
of the CG-MPC implementation in Case 2 relative to Case 1
is likely a consequence of the increased complexity of the
constraints.

Case 3: Varying initial conditions
The final case study compares the performance of both MPC

implementations when applied to solve the control task in
Case 2 for several initial conditions. The simulations shown
in Case 2 are repeated for 10 initial conditions of the form
x0 = (s0, 0, 0, 0), where s0 ∈ {−5,−4, ..., 4}. For each initial
condition, the S-MPC implementation uses the minimum

TABLE I
THE S-MPC HORIZON LENGTH N FOR EACH INITIAL CONDITION s0 IN

CASE 3.

s0 -5 -4 -3 -2 -1 0 1 2 3 4
N 101 95 89 82 74 66 55 44 30 16

-4 -2 0 2 4
0

20

40

60

-4 -2 0 2 4
0

2000

4000

6000

8000

10000

-4 -2 0 2 4
1

1.5

2

2.5

3

3.5

Fig. 5. Case 3: Performance metrics for both MPC implementa-
tion when applied to simulations with varying initial conditions x0 =
(s0, 0, 0, 0). The settling time is defined as the time tk = Tk at which
∥Gxxk−1 − r∥ > 0.01 and ∀k′ ≥ k ∥Gxxk′ − r∥ ≤ 0.01.

horizon length N ∈ N necessary to enforce x0 ∈ ΓN (r)
(see Table I). Meanwhile, the CG-MPC implementation uses
N = 15 for all simulations. The solution to PN (x0, s0) is
used for warm-starting at k = 0.

Figure 5 compares the performance of each MPC implemen-
tation over the varied initial conditions. As one might expect,
the S-MPC strategy requires more iterations when the initial
position s0 is varied away from the reference of r = 5. In
contrast, the CG-MPC implementation never requires more
than 5 iterations for termination of the LDIPM in any of
the simulations. As seen in the previous cases, the CG-MPC
implementation reduces the worst-case number of LDIPM
iterations at the expense of increasing in the total cumulative
cost and settling time of the maneuver. However, the difference
in settling time between the two methods is less than 1 second
even in the most extreme case of s0 = −5.

Figure 6 compares the worst-case execution times of both
MPC implementations. The S-MPC procedure was imple-
mented using a variety of quadratic programming algorithms
(including the LDIPM in Algorithm 1) to give additional points
of comparison. The following algorithms were used:

• QP-AS and QP-IP: The active set and interior-point meth-
ods implemented in MATLAB’s quadprog function.

• ADMM: The alternating direction method of multipliers
in [37, Algorithm 8].

• PDIP: The primal-dual IPM in [38, Algorithm 16.4].
• QPKWIK: The dual active set method in [39].
• GPAD: The dual gradient-projection algorithm in [11].
• FBRS: The Fischer–Burmeister method in [40].
• FBStab: The semismooth algorithm in [12].
Remark 9: Each algorithm (except for QP-IP) was imple-

mented using native MATLAB functions and compiled into
mex functions using MATLAB’s codegen toolbox. The QP-
IP algorithm was implemented using a standard MATLAB
function since quadprog’s interior-point option does not
support code generation. The experiments were executed using
MATLAB 2022b on a 2018 MacBook Pro with a 2.2 GHz 6-
Core Intel Core i7 processor and 16 GB RAM. The tolerance
of each algorithm’s respective truncation criteria was set to m·
ηfinal, where m is the number of constraints and ηfinal = 10−8,

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

-4 -2 0 2 4
10

-4

10
-2

10
0

-4 -2 0 2 4
10

-2

10
0

10
2

10
4

Fig. 6. Case 3: The maximum execution times (ET) for the simulations
in Figure 5. Each legend entry corresponding to a QP algorithm (i.e.
LDIPM through FBstab) corresponds to an S-MPC implementation
where PN (xk, r) is solved using the respective QP algorithm. The
right-side plot shows the ETs in the left-side plot normalized by the
maximum ET of the CG-MPC implementation for each s0 (i.e. a y-axis
value of 10 means that the maximum ET of the S-MPC implementation
was 10 times longer than the CG-MPC implementation).

which corresponds to the cost suboptimality upon truncation
of the LDIPM (Theorem 3). Each simulation was averaged as
necessary to obtain consistent timing.

Remark 10: The reported execution times of the S-MPC
implementations correspond to the maximum amount of time
required to solve PN (xk, r) for any k ≥ 0. The reported
execution times of the CG-MPC implementation correspond to
the maximum time required to solve both the CG optimization
problem in (24) and the resulting MPC problem.

Remark 11: We emphasize that Figure 6 is not meant to
constitute a conclusive comparison of these algorithms. The
relative performance of each algorithm will depend strongly on
the given problem. For instance, the QP-IP algorithm exhibits
comparable performance to the PDIP, QPKWIK, and FBRS
algorithms in the “Asteroid” example shown in [40, Table
2]. In contrast, the QP-IP algorithm is much slower in the
example shown in Figure 6. A variety of algorithms are shown
in Figure 6 to give a rough upper and lower bound on the
performance of a reasonable S-MPC implementation.

The CG-MPC implementation results in a significantly
lower worst-case computational cost than all of the S-MPC
implementations for all of the simulations with s0 ≤ 2.
In the most extreme example of s0 = −5, the CG-MPC
implementation is 15 to 777 times faster than the S-MPC
implementations. In a less extreme example of s0 = 0, the
CG-MPC implementation is 9 to 251 times faster. Note that
the LDIPM-based S-MPC implementation exhibits mediocre
performance relative to the rest of the S-MPC implementa-
tions. Thus, the CG-MPC implementation may exhibit even
higher performance when applied to an example where the
LDIPM performs particularly well.

VIII. CONCLUSIONS

This paper introduced a supervisory scheme for computa-
tionally efficient implementation of Linear Quadratic MPC for
reference tracking with state and control constraints. The key
component of this scheme is a computational governor that
maintains feasibility and bounds the suboptimality of a warm-
starting strategy by adjusting the reference command supplied
to the MPC problem. Theoretical guarantees regarding the
recursive feasibility of the MPC problem, asymptotic stability

of the target equilibrium, and finite-time convergence of the
supervised reference signal were provided. In a numerical ex-
periment, the computational governor was shown to reduce the
worst-case execution time of a standard MPC implementation
for control of lateral vehicle dynamics by over a factor of 10.

APPENDIX I
PROOF OF LEMMA 2

Appendix I-A derives properties of the LDIPM and the
closed-loop system (20) that are required to prove Lemma 2.
Appendix I-B uses these results to complete the proof.

A. Preliminary results
This subsection proceeds as follows: First, Lemma 4 and

Corollary 2 establish properties of the Newton step d when
constraints are inactive at optimality. Second, Propositions 2
and 3 describe characteristics of the set O∞ — the relevance
being that the constraints of PN (x, v) are inactive at optimality
when x ∈ Int O∞(v). Third, Lemma 5 and Corollary 3 derive
bounds on the suboptimality of the warm-start γ̃k in (15) when
xk−1 ∈ Int O∞(vk−1) and vk−1 = vk.

Lemma 4: Consider the QP in (5) for a fixed parameter
θ = (x, v) ∈ ΓN and define c = Wθ, b = Lθ + ℓ, p = Nnu,
and m ∈ N as the number of rows of M ∈ Rm×p. Let û∗ ∈ Rp

be the optimal solution of (5). Suppose that the optimal slack
s∗ = M û∗ + b satisfies s∗ > 0 and let η > 0, γ ∈ Rm,
s =

√
ηe−γ , and q = s∗ ⊙ s−1. Then, the LDIPM Newton

step is

d(γ, η) = 1− q − 2Ψ(γ)TΦ(γ)−1Ψ(γ)(1− 1

2
q),

where Φ(γ) = H +MTD(γ)M , Ψ(γ) = MTdiag(eγ), and
D is defined in Theorem 2.

Proof: Let û = û(γ, η) represent the primal variable
update and define ∆û = û− û∗. Rewrite (11a) as

d = 1− 1
√
η
eγ ⊙ (M û∗ +M∆û + b)

= 1− q − 1
√
η
eγ ⊙ (M∆û). (25)

Observing that

H û∗ = −c, D(γ)s∗ = eγ ⊙ (eγ ⊙ s∗) = √ηeγ ⊙ q,

and writing (11b) in terms of ∆û and Φ(γ) yields

Φ(γ)∆û = 2
√
ηMT eγ − (c+MTD(γ)b)

− (MTD(γ)M +H)û∗

= 2
√
ηMT eγ −MTD(γ)s∗

= 2
√
ηΨ(γ)(1− 1

2
q).

where Ψ(γ) =MTdiag(eγ). Substituting ∆û into (25) proves
the claim.

For a given s > 0, there are infinitely many pairs (γ, η)
satisfying s =

√
ηe−γ . The next corollary shows that a pair

that makes ∥d(γ, η)∥∞ arbitrary close to ∥1 − q∥∞ can be
chosen if s∗ > 0. Hence, if we know an s that is close to s∗,

12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

we can pick (γ, η) satisfying ∥d(γ, η)∥∞ < 1, ensuring good
initialization of Algorithm 1.

Corollary 2: Let û∗ ∈ Rp be the optimal solution to (5) for
some θ ∈ ΓN and define c, b, p,m as in Lemma 4. Suppose
that s∗ = M û∗ + b satisfies s∗ > 0. Fix s ∈ Rm

>0 and let
q = s∗ ⊙ s−1. Finally, define γ(α) := −(log s + α1) and
η(α) = e−2α for a parameter α ∈ R. Then s =

√
η(α)e−γ(α)

for all α, and

lim
α→∞

∥d(γ(α), η(α))∥∞ ≤ ∥1− q∥∞.

Proof: That s =
√
η(α)e−γ(α) is trivial. Letting g(γ) =

∥2eγ ⊙MΦ(γ)−1MT eγ(1− 1
2q)∥∞ we have by the triangle

inequality and Lemma 4 that

∥d(γ, η)∥∞ ≤ ∥1− q∥∞ + g(γ).

We will show that limα→∞ g(γ) = 0. First, note that

g(γ) ≤ 2∥eγ∥2∥M∥2∥(H +MTD(γ)M)−1∥∥1− 1

2
q∥

≤ 2k1e
−2α∥(H +MTD(γ)M)−1∥,

where k1 is a constant depending on log s, M , and q. Further,

lim
α→∞

∥(H +MTD(γ)M)−1∥ = ∥H−1∥.

Hence, for some k2, we have limα→∞ g(γ) ≤
limα→∞ k2e

−2α = 0, proving the claim.
The previous lemma and corollary give additional insight

into the behavior of the LDIPM when constraints of (5) are
inactive at optimality. Next, we derive some properties of the
set O∞, since the constraints of PN (x, v) are inactive when
x ∈ Int O∞(v).

Proposition 2: Let Assumptions 1-3 hold. Then, ∃δ̄ > 0
such that B(x̄v, δ̄) ⊂ O∞(v) for all v ∈ Vϵ, where x̄v = Gxv.

Proof: Consider system (1) under LQR feedback with a
constant reference v ∈ Vϵ:

x̃k+1 = Ãx̃k, ỹk = C̃x̃k,

where x̃k = xk − x̄v , ỹk = yk − ȳv , Ã = A − BK, and
C̃ = C − DK. Further, consider the tightened constraint set
in the modified coordinate system (1 − ϵ)Ỹ = {y − ȳv | y ∈
(1− ϵ)Y}. Note that v ∈ Vϵ ⇐⇒ ȳv ∈ (1− ϵ)Y ⇐⇒ 0 ∈
(1− ϵ)Ỹ . As noted in [30, Theorem 2.1], there exists δ1 > 0
such that ∀x̃ ∈ Rn ∥C̃Ãkx̃∥ ≤ δ1∥x̃∥ for all k ∈ N since Ã
is stable. Next we define δ2 = dist(Y, (1 − ϵ)Y) > 0, where
dist(A,B) is the minimum 2-norm distance between sets A
and B defined in the usual manner. Then, B(ȳv, δ2) ⊂ Y .
Thus, if δ1∥x̃∥ ≤ δ2 this implies that C̃Ãkx̃ ∈ Ỹ for all
k ∈ N. Hence, B(x̄v, δ2/δ1) ⊂ O∞(v) and the statement is
proven for δ̄ = δ2/δ1.

Proposition 3: Let Assumptions 1-3 hold and define con-
stants δ and δ′ such that 0 < δ < δ′ < δ̄, where δ̄ is defined
in Proposition 2. Let v ∈ Vϵ, κ ∈ [0, 1], and v′ = v+κ(r−v).
Then,

1) B(x̄v, δ) ⊂ Int O∞(v) and B(x̄v′ , δ′) ⊂ Int O∞(v′),
2) ∃κ̄ ∈ (0, 1] such that B(x̄v, δ) ⊂ B(x̄v′ , δ′) if κ ≤ κ̄,

where x̄v = Gxv and x̄v′ = Gxv
′ = Gx[v + κ(r − v)].

Proof: Let δ and δ′ be such that 0 < δ < δ′ < δ̄.
Thus, B(x̄v, δ) ⊂ Int O∞(v) and B(x̄v′ , δ′) ⊂ Int O∞(v′) by

Proposition 2. To prove the second statement in Proposition 3,
let x ∈ B(x̄v, δ) and κ ≤ κ̄ = δ′−δ

cr∥Gx∥ , where cr = sup {∥r−
v∥ | v ∈ Vϵ}. Next, we use the triangle inequality and the
definition of v′ to write

∥x− x̄v′∥ ≤ ∥x− x̄v∥+ ∥Gxκ(r − v)∥,
≤ δ + κcr∥Gx∥ ≤ δ′.

So, x ∈ B(x̄v′ , δ′) and thus B(x̄v, δ) ⊂ B(x̄v′ , δ′).
Proposition 2 states that the volume of the maximal con-

straint admissible set O∞(v) has a uniform lower-bound for
every v ∈ Vϵ. Proposition 3 states that the interiors of O∞(v)
and O∞(v + κ(v − r)) have an intersection with non-zero
volume for every v ∈ Vϵ if κ is smaller than a constant κ̄.

Next, we use these results to characterize the suboptimality
of the warm-start ũk when the state is in the interior of
O∞(vk). Note that the value function V (·, v) in (6) is a
Lyapunov function for the closed-loop system (20c) for a static
reference v by Theorem 4 and Corollary 1. Moreover, sublevel
sets of V (·, v) are forward invariant. Define the set-valued map
Ω : Vϵ×R>0 ⇒ Rn such that Ω(v, a) is the largest sublevel set
of V (·, v) contained in B(x̄v, a). Note that ∀(v, a) ∈ Vϵ×(0, δ̄)
Ω(v, a) has non-zero volume and Ω(v, a) ⊂ Int O∞(v) by
Proposition 2.

The following lemma and corollary demonstrate that if the
state xk is sufficiently close to the equilibrium x̄v , then the
primal suboptimality of the warm-start in (14) is bounded
by the homotopy parameter ηk−1 of Algorithm 1 when the
reference is held constant.

Lemma 5: Let Assumptions 1-5 hold. Suppose v ∈ Vϵ and
xk−1 ∈ Ω(v, δ̄) where δ̄ is defined in Proposition 2, and let
ûk−1 be the output of the LDIPM applied to PN (xk−1, v).
Then, the warm-start ũk in (14) satisfies

∥û∗(xk, v)− ũk∥2 ≤ c1ηk−1 + c2
√
ηk−1,

for xk = Axk−1 + BΞûk−1, where û∗(x, v) is the optimal
solution of PN (x, v) and c1, c2 > 0 are constants only
dependent on the problem data of the QP in (5).

Proof: By Theorem 3, ûk−1 satisfies

J(xk−1, v, ûk−1)− V (xk−1, v) ≤ mηk−1.

Note that for all û ∈ F(x, v) and (x, v) ∈ ΓN

λmin(H)

2
∥û∗(x, v)− û∥2 ≤ J(x, v, û)− V (x, v), (26)

by strong convexity of J and optimality of û∗. Combining
these two inequalities yields

∥û∗(xk−1, v)− ûk−1∥2 ≤ 2λ−1
min(H)mηk−1.

The restriction xk−1 ∈ Ω(v, δ̄) ⊂ O∞(v) implies that
û∗(xk−1, v) is a sequence of LQR control inputs due to the
specification of the terminal penalty in (4) [1, Section 2.5.3].
Moreover, the following state also satisfies xk ∈ Ω(v, δ̄) since
sublevel sets of V (·, v) are invariant under Assumption 5. So,
the optimal cost at xk−1 and xk can be evaluated using the
cost-to-go of the LQR feedback law [1, Section 2.5.3]. Then,
by using standard procedures in MPC stability analysis (e.g.,
[7, Equation 12.19]), one can show that

J(xk, v, ũk) = J(xk−1, v, ûk−1)− l(xk−1, uk−1, v),

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

where l(x, u, v) = ∥x− x̄v∥2Q + ∥u− ūv∥2R is the stage cost.
Define ek−1 = J(xk−1, v, ûk−1)− V (xk−1, v) ≤ mηk−1 and
use fact that V (xk−1, v) = ∥xk−1 − x̄v∥2P to write

J(xk, v, ũk) = ∥xk−1− x̄v∥2P + ek−1− l(xk−1, uk−1, v).

Then, let σk−1 = uk−1 − (ūv −K(xk−1 − x̄v)) be the error
in the control input uk−1. Substituting this into the previous
equation gives

J(xk, v, ũk) ≤ ∥xk−1 − x̄v∥P−Q−KTRK + ∥σk−1∥2R + ek−1.

Next, we again make use of the LQR cost-to-go to write

V (xk, v) = ∥Axk−1+B(ūv−K(xk−1− x̄v)+σk−1)− x̄v∥2P .

We now combine these two equations and use the identity

∥(A−BK)x∥2P = ∥x∥2P−Q−KTRK ,

to write

J(xk, v, ũk)− V (xk, v)

≤ ∥σk−1∥2R+BTPB + ek−1 − 2(xk−1 − x̄v)TPBσk−1

≤ ∥σk−1∥2R+BTPB + ek−1 + a∥xk−1 − x̄v∥∥σk−1∥,

where a > 0 is a constant. Note that ∥xk−1 − x̄v∥ ≤ δ̄
since xk−1 ∈ Ω(vk−1, δ̄), ek−1 ≤ mηk−1, and ∥σk−1∥2 ≤
2λmin(H)−1mηk−1. Then, ∃c′1, c′2 > 0 such that

J(xk−1, v, ũk)− V (xk, v) ≤ c′1ηk−1 + c′2
√
ηk−1.

Then, the proof is completed by using (26).
Corollary 3: Under the same conditions as Lemma 5, the

warm-started slack variable s̃k in (15) satisfies

∥s∗(xk, v)− s̃k∥2 ≤ c3ηk−1 + c4
√
ηk−1,

where xk = Axk−1 +BΞûk−1, c3, c4 > 0 are constants only
dependent on the problem data of (5), s∗(xk, v) is the optimal
slack variable at θk = (xk, v), and s̃k =M ũk + Lθk + ℓ.

Proof: The proof is completed by simply noting that

∥s∗(xk, v)− s̃k∥2 ≤ ∥M∥2∥û∗(xk, v)− ũk∥2,

and using Lemma 5 to bound ∥û∗(xk, v)− ũk∥2.

B. Proof of the Lemma
The sketch of the proof is as follows. We define the

constants δV and κ̄ so that xk−1 ∈ Int O∞(vk−1) is enforced
by the assumption V (xk−1, vk−1), and xk ∈ Int O∞(vk) for
all κk ≤ κ̄. Lemma 4 is then used to analyze the Newton
step d(γ̃k, ηk−1, κk) since the optimal slack of PN (xk, vk) is
bounded away from zero since xk ∈ Int O∞(vk). The proof is
completed by using the results in Appendix I-A to show that
the constants η̄ and ϵ̄s can be selected sufficiently small so that
∥d(γ̃k, ηk−1, κk)∥∞ < 1 for all κk ≤ κ̄ and ηk−1 ≤ η̄. Thus,
(19) is strictly feasible and the solution must satisfy κ∗k ≥ κ̄.

To begin, we specify the constants δV > 0 and κ̄ > 0
that appear in the statement of the lemma. First, define a
constant δ ∈ (0, δ̄), where δ̄ is defined in Proposition 2.
Then, let δV be defined so that xk−1 ∈ Ω(vk−1, δ) is satisfied
by the assumption that V (xk−1, vk−1) ≤ δV , where the set-
valued map Ω is defined in Appendix I-A. Moreover, note

that Ω(vk−1, δ) ⊂ Int O∞(vk−1) by Proposition 2, and that
the following state satisfies xk ∈ Ω(vk−1, δ) by invariance of
sublevel sets of V (·, vk−1). Next, define a constant δ′ ∈ (δ, δ̄).
Then by Proposition 3, ∃κ̄′ > 0 (proportional to δ′ − δ) such
that κk ≤ κ̄′ implies that xk ∈ B(x̄vk , δ′) ⊂ Int O∞(vk).
Thus, let κ̄ ≤ κ̄′ and note that κk ≤ κ̄ by assumption.
Moreover, note that δV , δ, δ′, and κ̄ are all independent of
the state, reference, and timestep.

Next, we show that the norm of the warm-started constraint
slack s̃k is lower bounded by a constant. Note that the norm of
the optimal slack s∗(xk, vk−1) is lower bounded since xk ∈
Ω(vk−1, δ) ⊂ Int O∞(vk−1). So, define cs > 0 such that
∥s∗(x, v)∥∞ ≥ cs for all (x, v) ∈ Ω(v, δ)× Vϵ. Then,

∥s̃k∥∞ ≥ cs −
(
c3ηk−1 − c4

√
ηk−1

) 1
2 ,

by Corollary 3. Thus for any c̄s ∈ (0, cs), ∃η̄1 > 0 such
that ηk−1 ≤ η̄1 implies that ∥s̃k∥∞ ≥ c̄s. So henceforth, fix
c̄s ∈ (0, cs), define η̄1 accordingly, and let η̄ ≤ η̄1 such that
ηk−1 ≤ η̄1.

Lemma 4 can then be used to analyze the Newton step
d(γ̃k, ηk−1, κk) of PN (xk, vk), since xk ∈ Int O∞(vk)
implies that s∗(xk, vk) > 0. So, we use Lemma 4 with
s∗ = s∗(xk, vk) > 0 and s = s̃k > 0 to write

d(γ̃k, ηk−1, κk) = 1− q(κk)

− 2Ψ(γ̃k)
TΦ(γ̃k)

−1Ψ(γ̃k)(1−
1

2
q(κk)),

where Φ(γ) = H +MTD(γ)M , Ψ(γ) = MTdiag(eγ), and
q(κk) = s̃−1

k ⊙ s∗(xk, vk). Thus,

∥d(γ̃k, ηk−1, κk)∥∞ ≤ ∥1− q(κk)∥∞ + g(γ̃k), (27)

where

g(γ̃k) = 2∥eγ̃k∥2∥M∥2∥Φ(γ̃k)−1∥∥1− 1

2
q(κk)∥. (28)

We proceed by bounding both terms in (27). Consider the
following bound for the first term:

∥1− q(κk)∥∞ = ∥s̃−1
k ⊙ (s̃k − s∗(xk, vk))∥∞

≤ ∥s̃−1
k ∥∞(∥s̃k − s∗(xk, vk−1)∥∞
+ ∥s∗(xk, vk)− s∗(xk, vk−1)∥∞).

The factor ∥s̃−1
k ∥∞ can be upper bounded using the previously

established lower bound on ∥s̃k∥∞. Meanwhile, the first term
in the bracket can be bounded directly by Corollary 3. To
bound the second term, note that for any v ∈ Vϵ and x ∈
O∞(v), the optimal control sequence is a sequence of LQR
inputs and can thus be written as

û∗(x, v) = Sx+ Tv,

where S and T are matrices dependant on A, B, K, N , Gx,
and Gu. Then,

∥s∗(xk, vk)− s∗(xk, vk−1)∥∞
= ∥M(û∗(xk, vk)− û∗(xk, vk−1)) + Lv(vk − vk−1)∥∞
≤ ∥M∥∥T (vk − vk−1)∥+ ∥Lv∥∥vk − vk−1∥
≤ (∥M∥∥T∥+ ∥Lv∥)∥r − vk−1∥κ
≤ cmcrκ

14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

where cm = ∥M∥∥T∥ + ∥Lv∥ and cr is defined in Proposi-
tion 3. So,

∥1− q(κk)∥∞ ≤
1

c̄s

[
(c3ηk−1 + c4

√
ηk−1)

1
2 + cmcrκ

]
,

and thus for any constant c′q > 0, η̄′2 ∈ (0, η̄1) such that
ηk−1 ≤ η̄′2 implies

∥1− q(κk)∥∞ ≤
cmcr
c̄s

κk + c′q. (29)

Next, we will bound g(γ̃k) in (27). Define the parameter ϵ̄s
that appears in the statement of the lemma as ϵ̄s = csη̄

−1/2.
Then, s̃kη

−1/2
k−1 ≥ ϵs1 since ϵs ≤ ϵ̄s by assumption. The

expression for γ̃k in (15) can then be reduced to eγ̃k =
s̃−1
k

√
ηk−1. One can show that limηk−1→0 g(γ̃k) = 0 using

the same steps as in the proof of Corollary 2, but we will
go a step further here and show that g(γk) can be bounded
by a constant if ηk−1 satisfies a time-independent bound. We
proceed by bounding each factor in (28) that depends on k.
Consider first

∥eγ̃k∥ ≤ ∥es̃
−1
k ∥∥e

√
ηk−1∥ ≤ ec̄

−1
s
√
m∥e

√
ηk−1∥.

Next,

∥1− 1

2
q(κk)∥∞ ≤ ∥1− q(κk)∥∞ +

1

2
∥q(κk)∥∞,

where

∥q(κk)∥∞ ≤ ∥s̃−1
k ∥∞∥s

∗(xk, vk)∥∞ ≤ cy/c̄s,

where we have used the fact that ∃cy > 0 such that
∥s∗(x, v)∥∞ ≤ cy for all (x, v) ∈ ΓN since the constraint set
Y is compact. Then, by using the bound in (29), we can state
that for any constant cq > 0, ∃η̄2 > 0 such that if ηk−1 ≤ η̄2,
then

∥1− 1

2
q(κk)∥ ≤

√
m(cmcr/c̄s + cq + cy/c̄s).

where we have also used the fact that κk ≤ 1 here.
Last, consider the term

∥Φ(γ̃k)−1∥ = ∥(H +MTD(γ̃k)M)−1∥.

To bound this term, we use the Sherman–Morrison–Woodbury
formula and the triangle inequality to write that

∥Φ(γ̃k)−1∥ ≤ ∥H−1∥+ b1∥(D(γ̃k)−1 +MH−1MT)−1∥,

for a constant b1 dependant on H and M . Note that

D(γ̃k)−1 = diag(e2γ̃k)−1 = diag(s̃2k/ηk−1).

Moreover, note that the matrix D̃ = D(γ̃k)−1 +MH−1MT

is diagonally dominant if ηk−1 is sufficiently small. More
specifically, for any constant cϕ > 0 there exists η̄3 > 0 such
that ηk−1 ≤ η̄3 implies that

∆i(D̃) := |D̃ii| −
∑
j ̸=i

|D̃ij | ≥ cϕ, ∀i ∈ N[1,m],

where D̃ij denotes the (i, j) element of the matrix D̃. To see
this, let H̃ =MH−1MT and note that

∆i(D̃) = |(s̃k)2i /ηk−1 + H̃ii| −
∑
j ̸=i

∥H̃ij∥

≥ |c̄2s/ηk−1 + H̃ii| −
∑
j ̸=i

∥H̃ij∥,

since ∥s̃k∥∞ ≥ c̄s. So, fix a constant cϕ > 0 and let η̄3 be
such that ηk−1 ≤ η̄3 implies that mini ∆i(D̃) ≥ cϕ. Next, we
use [41, Corollary 2] to state that if ηk−1 ≤ η̄3, then

∥(D(γ̃k)−1 +MH−1MT)−1∥ ≤ c−1
ϕ ,

and thus ∥Φ(γ̃k)−1∥ ≤ ∥H−1∥+ b1c
−1
ϕ .

These bounds can be combined with (28) to state that if
ηk−1 ≤ min{η̄1, η̄2, η̄3}, then

g(γ̃k) ≤ b0∥e
√
ηk−1∥, (30)

for some constant b0 > 0 independent of k. Thus, for any
cg > 0 there exists η̄4 > 0 such that g(γ̃k) ≤ cg if ηk−1 ≤ η̄4.

Then, by considering the bound for the Newton step in (27)
and the bounds in (29) and (30), one can conclude that for
any constants c̄s ∈ (0, cs) and c0 > 0, ∃η̄ > 0 such that if
ηk−1 ≤ η̄, then

∥d(γ̃k, ηk−1, κk)∥∞ ≤
cmcr
c̄s

κk + c0. (31)

Thus, one can define constants, κ̄ ∈ (0, κ̄′], c̄s ∈ (0, cs), and
c0 > 0 and such that

cmcr
c̄s

κ̄+ c0 < 1,

and define η̄ accordingly. Thus, ∥d(γ̃k, ηk−1, κk)∥∞ < 1 for
any κ ≤ κ̄ and ηk−1 ≤ η̄. Thus, κk = κ̄ and η = ηk−1 strictly
satisfies the constraints (19b)-(19d). So, (19) is strictly feasible
and the optimal solution must satisfy κ∗k ≥ κ̄. ■

APPENDIX II
PROOF OF THEOREM 6

Begin by defining a constant δ satisfying 0 < δ < δ̄, where δ̄
is defined in Proposition 2. By Theorem 5, ∃k1 ∈ N such that
xk ∈ Ω(r, δ) for all k ≥ k1. So, consider the warm-started
Newton step at a timestep k > k1. Note that s∗(xk, r) >
0 since xk ∈ Ω(r, δ), and so the warm-started Newton step
given a reference vk = r can be analyzed using Lemma 4 and
Corollary 2. So, we write

d(γ̃k, ηk−1, 1) = 1− q(1)

− 2Ψ(γ̃k)
TΦ(γ̃k)

−1Ψ(γ̃k)(1−
1

2
q(1)),

where and q(1) = s̃−1
k ⊙ s∗(xk, r), with Φ and Ψ following

the definitions in Lemma 4. Thus,

∥d(γ̃k, ηk−1, 1)∥∞ ≤ ∥1− q(1)∥∞ + g(γ̃k),

where g(γ̃k) is defined in Appendix I-B. Then, by retracing the
steps in Appendix I-B, one can derive that for any c̄′s ∈ (0, cs)

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 15

and c′0 > 0, there exists η̄′ > 0 and ϵ̄′s > 0 such if ηk−1 ≤ η̄′
and ϵs ≤ ϵ̄′s, then

∥d(γ̃k, ηk−1, 1)∥∞ ≤
cm
c̄′s
∥r − vk−1∥+ c′0,

where cm is the constant in (31). In addition, since vk
converges to r, then for any ϵr > 0, ∃k2 ≥ k1 such that
k ≥ k2 implies ∥r − vk−1∥ ≤ ϵr. Thus, define c̄′s, c′0, and ϵr
such that

cmϵr
c̄′s

+ c′0 ≤ 1,

and define η̄′ and k2 accordingly. Thus if k > k2 and ηk−1 ≤
η̄′, then ∥d(γ̃k, ηk−1, 1)∥∞ ≤ 1 and so κ = 1 and η = ηk−1

will be a feasible solution to the CG optimization problem
(19). ■

APPENDIX III
COMPUTATION OF (d0, d1, d2)

Let γ ∈ Rm be a fixed log-domain variable and define
constants η1, η2 > 0, κ1, κ2 ∈ [0, 1], η1 ̸= η2, κ1 ̸= κ2. Let
(x, v) ∈ ΓN and consider the Newton directions d(γ, ηi, κi)
corresponding to PN (x, v + κi(r − v)) for each of the four
permutations of the parameters ηi and κi for i ∈ {1, 2}. These
Newton directions satisfy

√
η1M

T eγ ⊙ (1+ d̂1) = H û1 +Wθ1,
√
η1M

T eγ ⊙ (1+ d̂2) = H û2 +Wθ2,
√
η2M

T eγ ⊙ (1+ d̂3) = H û3 +Wθ1,
√
η2M

T eγ ⊙ (1+ d̂4) = H û4 +Wθ2,

where θi = (x, v + κi(r − v)) for i ∈ {1, 2}. By combining
these four equations and performing some algebraic manipu-
lation, one can arrive at the equation,
√
ηMT eγ ⊙ (1+ d) = H û +Wxx+Wv[v + κ(r − v)],

where

κ = pκ1 + (1− p)κ2, û = qŪ1 + (1− q)Ū2,

d = qd̄1 + (1− q)d̄2,
1
√
η
= q

1
√
η1

+ (1− q) 1
√
η2
,

d̄1 = pd̂1 + (1− p)d̂2, Ū1 = pû1 + (1− p)û2,
d̄2 = pd̂3 + (1− p)d̂4, Ū2 = pû3 + (1− p)û4, (32)

and p, q ∈ R are free constants that we will specify later.
Repeating the exact same procedure, but instead starting with
the four equations for (10b) gives
√
ηe−γ ⊙ (1− d) =M û + ℓ+ Lxx+ Lv[v + κ(r − v)].

One can observe that û and d defined in (32) solve the Newton
step equations (10a) and (10b) for the parameters κ and η
defined in (32).

Thus, one can compute d(γ, η, κ) for a desired (η, κ) by
defining p = a0 + a1κ and q = b0 + b1η

−1/2, where a0 =

−κ2(κ1 − κ2)−1, a1 = (κ1 − κ2)−1, b0 = −η−1/2
2 (η

−1/2
1 −

η
−1/2
2)−1, b1 = (η

−1/2
1 −η−1/2

2)−1. Substituting these expres-
sions for p and q into the equation for d in (32) yields, after
some algebraic manipulation is performed,

d = d0 + d1
1
√
η
+ d2

κ
√
η
+ d3κ,

where

d0 = b0c1 + (1− b0)c3, d1 = b1(c1 − c3),
d2 = b1(c2 − c4), d3 = b0c2 + (1− b0)c4,
c1 = a0d̂1 + (1− a0)d̂2, c2 = a1(d̂1 − d̂2),
c3 = a0d̂3 + (1− a0)d̂4, c2 = a1(d̂3 − d̂4). (33)

Further, we must have that d3 = 0 according to (23), so we can
eliminate the need to directly compute one Newton direction
(e.g., d̂4) by using the equality d3 = 0 to obtain

d̂4 = b0(1− b0)−1(d̂1 − d̂2) + d̂3. (34)

Thus, d0(γ), d1(γ), and d2(γ) in Proposition 1 can be
computed using the following procedure:

1) Define η1 > 0, η2 > 0, κ1 ∈ [0, 1], and κ2 ∈ [0, 1] such
that η1 ̸= η2 and κ1 ̸= κ2,

2) Compute a factorization of the matrix (MTD(γ)M+H),
3) For three permutations of η1, η2, κ1, and κ2, compute

the corresponding Newton directions d̂1, d̂2, and d̂3 by
solving (11) using the factorization of (MTD(γ)M+H),

4) Compute d̂4 using (34),
5) Compute d0, d1, d2 using (33).

ACKNOWLEDGMENT

The authors thank Dominic Liao-McPherson for providing
implementations of the optimization algorithms used to pro-
duce Figure 6.

REFERENCES

[1] J. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Madison, WI: Nob Hill Publishing, 2009.

[2] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic
control: Applications to industrial processes,” Automatica, vol. 14, no. 5,
pp. 413–428, 1978.

[3] H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kolmanovsky,
and S. Di Cairano, “MPC-based energy management of a power-
split hybrid electric vehicle,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 3, pp. 593–603, 2012.

[4] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle
stabilization at the limits of handling,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1258–1269, 2013.

[5] S. DiCairano, H. Park, and I. Kolmanovsky, “Model predictive control
approach for guidance of spacecraft rendezvous and proximity maneu-
vering,” International Journal of Robust and Nonlinear Control, vol. 22,
no. 12, pp. 1398–1427, 2012.

[6] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[7] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

[8] B. Kouvaritakis and M. Cannon, “Model predictive control: Classical,
robust and stochastic,” Switzerland: Springer International Publishing,
2016.

[9] G. C. Goodwin, M. M. Seron, and J. A. De Doná, Constrained Control
and Estimation: An Optimisation Approach, 1st ed. Springer Publishing
Company, Incorporated, 2010.

[10] A. Domahidi, E. Chu, and S. P. Boyd, “ECOS: An SOCP solver for
embedded systems,” 2013 European Control Conference (ECC), pp.
3071–3076, 2013.

16 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[11] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[12] D. Liao-McPherson and I. Kolmanovsky, “FBstab: A proximally stabi-
lized semismooth algorithm for convex quadratic programming,” Auto-
matica, vol. 113, p. 108801, 2020.

[13] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020, 21st IFAC World
Congress.

[14] Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267–278, 2010.

[15] C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: a para-
metric active-set algorithm for quadratic programming,” Mathematical
Programming Computation, vol. 6, pp. 327–363, 2014.

[16] M. Diehl, R. Findeisen, F. Allgower, H. G. Bock, and J. P. Schloder,
“Nominal stability of real-time iteration scheme for nonlinear model
predictive control,” IEE Proceedings - Control Theory and Applications,
vol. 152, no. 3, pp. 296–308, May 2005.

[17] D. Liao-McPherson, M. Nicotra, and I. Kolmanovsky, “Time-distributed
optimization for real-time model predictive control: Stability, robustness,
and constraint satisfaction,” Automatica, vol. 117, p. 108973, 2020.

[18] A. Zanelli, Q. Tran-Dinh, and M. Diehl, “A Lyapunov function for
the combined system-optimizer dynamics in inexact model predictive
control,” Automatica, vol. 134, p. 109901, 2021.

[19] D. Liao-McPherson, T. Skibik, J. Leung, I. V. Kolmanovsky, and M. M.
Nicotra, “An analysis of closed-loop stability for linear model predictive
control based on time-distributed optimization,” IEEE Transactions on
Automatic Control, pp. 1–1, 2021.

[20] J. Leung, D. Liao-McPherson, and I. V. Kolmanovsky, “A computable
plant-optimizer region of attraction estimate for time-distributed linear
model predictive control,” in 2021 American Control Conference (ACC),
2021, pp. 3384–3391.

[21] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1391–1403, 2011.

[22] M. Rubagotti, P. Patrinos, and A. Bemporad, “Stabilizing linear model
predictive control under inexact numerical optimization,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 6, pp. 1660–1666, June 2014.

[23] M. N. Zeilinger, D. M. Raimondo, A. Domahidi, M. Morari, and
C. N. Jones, “On real-time robust model predictive control,” Automatica,
vol. 50, no. 3, pp. 683–694, 2014.

[24] C. Feller and C. Ebenbauer, “A stabilizing iteration scheme for model
predictive control based on relaxed barrier functions,” Automatica,
vol. 80, pp. 328–339, 2017.

[25] D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “MPC for tracking
piecewise constant references for constrained linear systems,” Automat-
ica, vol. 44, no. 9, pp. 2382–2387, 2008.

[26] D. Limon, T. Alamo, and E. Camacho, “Enlarging the domain of
attraction of MPC controllers,” Automatica, vol. 41, no. 4, pp. 629–635,
2005.

[27] T. Skibik, D. Liao-McPherson, T. Cunis, I. Kolmanovsky, and M. M.
Nicotra, “A feasibility governor for enlarging the region of attraction
of linear model predictive controllers,” IEEE Transactions on Automatic
Control, vol. 67, no. 10, pp. 5501–5508, 2022.

[28] T. Skibik, D. Liao-McPherson, and M. M. Nicotra, “A terminal set fea-
sibility governor for linear model predictive control,” IEEE Transactions
on Automatic Control, pp. 1–7, 2022.

[29] J. Leung, F. Permenter, and I. V. Kolmanovsky, “A computationally gov-
erned log-domain interior-point method for model predictive control,” in
2022 American Control Conference (ACC), 2022, pp. 900–905.

[30] E. G. Gilbert and K. T. Tan, “Linear systems with state and control
constraints: the theory and application of maximal output admissible
sets,” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008–
1020, 1991.

[31] F. Permenter, “Log-domain interior-point methods for convex quadratic
programming,” Optimization Letters, 2023.

[32] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

[33] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and com-
mand governors for systems with constraints: A survey on theory and
applications,” Automatica, vol. 75, pp. 306–328, 2017.

[34] R. Seidel, “Small-dimensional linear programming and convex hulls
made easy,” Discrete & Computational Geometry, vol. 6, no. 3, pp.
423–434, 1991.

[35] S. J. Wright, Primal-dual interior-point methods. Society for Industrial
and Applied Mathematics, 1997.

[36] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering using
nonlinear model predictive control,,” in 2018 American Control Confer-
ence (ACC), 2018, pp. 4772–4777.

[37] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternat-
ing direction optimization methods,” SIAM Journal on Imaging Sciences,
vol. 7, no. 3, pp. 1588–1623, 2014.

[38] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New
York, NY: Springer, 2006.

[39] C. Schmid and L. Biegler, “Quadratic programming methods for reduced
hessian sqp,” Computers Chemical Engineering, vol. 18, no. 9, pp.
817–832, 1994, an International Journal of Computer Applications in
Chemical Engineering.

[40] D. Liao-McPherson, M. Huang, and I. Kolmanovsky, “A regularized
and smoothed fischer–burmeister method for quadratic programming
with applications to model predictive control,” IEEE Transactions on
Automatic Control, vol. 64, no. 7, pp. 2937–2944, 2019.

[41] J. Varah, “A lower bound for the smallest singular value of a matrix,”
Linear Algebra and its Applications, vol. 11, no. 1, pp. 3–5, 1975.

Jordan Leung is a Ph.D. candidate in the de-
partment of aerospace engineering at the Uni-
versity of Michigan, Ann Arbor, MI, USA. He
received his MASc. in aerospace engineering
from the University of Toronto, ON, Canada in
2019, and his BASc. in engineering physics from
Queen’s University, Kingston, ON, Canada in
2017. His research interests include constrained
control and real-time optimization with applica-
tions in aerospace and autonomous systems.

Frank N. Permenter is a Staff Research Sci-
entist at the Toyota Research Institute (TRI),
Cambridge MA, USA, with research interests in
optimization and control. He received his Ph.D.
degree in electrical engineering and computer
science from MIT in 2017. Prior to joining TRI,
he worked at NASA Johnson Space Center on
the International Space Station and Robonaut
programs.

Ilya V. Kolmanovsky is a professor in the de-
partment of aerospace engineering at the Uni-
versity of Michigan, Ann Arbor, MI, USA, with
research interests in control theory for sys-
tems with state and control constraints, and in
control applications to aerospace and automo-
tive systems. He received his Ph.D. degree in
aerospace engineering from the University of
Michigan in 1995. Prior to joining the University
of Michigan as a faculty in 2010, Kolmanovsky
was with Ford Research and Advanced Engi-

neering in Dearborn, Michigan for close to 15 years. He is a Fellow
of IEEE and a Senior Editor of IEEE Transactions on Control Systems
Technology.

