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Abstract. A comprehensive study is carried out on the impact of strong magnetic fields on the deconfinement

phase transition inside massive neutron stars. The matter equation of state and the general relativity solutions,

which also fulfill Maxwell’s equations, are modified when taking magnetic-field effects into account. We ob-

serve that the maximum mass and canonical-mass radius of stars computed using spherically-symmetric TOV

equations and axisymmetric solutions obtained through the LORENE library differ significantly for large values

of magnetic dipole moment. The discrepancies depend on the stellar mass being studied, as well as the stiffness

of the equation of state. This indicates that the matter composition and interactions determine the magnetic field

thresholds for the acceptable approximation of isotropic stars and the appropriate application of TOV equations.

1 Introduction

One of the most prominent and intriguing areas of research

at the moment is the behavior of matter under extreme

densities, temperatures, and magnetic fields. For study-

ing physics in extreme conditions, neutron stars (NSs) are

the ideal environment. Intriguing conclusions about NSs

maximum mass, canonical mass, radius, tidal deformabil-

ity, and other characteristics have been drawn as a result of

recent advancements in observation. The equation of state

(EoS) of the dense matter is, nevertheless, still widespread

with uncertainty. Given that the density inside NSs is sev-

eral times that of nuclear saturation (ρ0≈1014 g cm−3), it is

challenging to ascertain their internal structure. Theoret-

ical models describing cold and dense matter, calibrated

around ρ0 for isospin-symmetric nuclear matter (SNM),

must be extrapolated in both density and isospin asymme-

try as stellar inner densities approach 1015 g cm−3. The

structure of NSs is computed starting with the energy-

momentum tensor, solving equations for hydrostatic equi-

librium, and comparing them to astrophysical observations

in order to evaluate these theories. The ability to explain

the maximum measured NS mass, which according to the

latest astrophysical data is above 2M�, is one criterion that

all NS models must achieve [1, 2].

NSs have been known to possess immensely strong

magnetic fields in addition to being extremely dense ob-

jects. Surface magnetic fields of∼ 1012−1013 G are already

generated by combining a straightforward magnetic dipole

model with known pulsar spin-down data [3]. The virial

theorem is widely used to estimate the maximum mag-

netic field in the core of magnetars because it is not possi-
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ble to measure it directly. According to most estimations,

the field will have a theoretical maximum of 1018 G [4].

Strong magnetic fields can affect NSs in a number of ways,

including changing the energy-momentum tensor, chang-

ing the EoS due to Landau quantization of the constituent

charged particles, and breaking stellar spherical symmetry.

It should be emphasized that the deviations from spheri-

cal symmetry for intense magnetic fields, however, can al-

ready be significantly below the threshold at which Landau

quantization effects on the EoS become non-negligible [5].

In this case, Spherically symmetric TOV equations can no

longer be used to describe the macroscopic structure of NS

configurations. In the following, we discuss what this limit

is in terms of the magnetic field strength and EoS.

2 Formalism

2.1 Nuclear Matter

For the description of hadronic matter, the DD-RMF

model is used with the Lagrangian density given by

Lm =
∑

b

ψ̄b

{

γμ

(

iDμ − gω(ρb)ωμ −
1

2
gρ(ρb)ρμτ

)

−

(

Mb − gσ(ρb)σ

)}

ψb +
1

2

(

∂μσ∂μσ − m2
σσ

2

)

−
1

4
WμνWμν +

1

2
m2
ωωμω

μ −
1

4
RμνRμν +

1

2
m2
ρρμρ

μ

+
∑

l

ψ̄l(iγμD
μ − ml)ψl , (1)

where b sums over the baryon octet and l over non-

interacting leptons. ψb and ψl represent the baryon and

lepton Dirac fields and Mb and ml the baryon and lep-

ton masses, respectively. The density-dependent coupling
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constants for the DD-RMF parameter set are written as a

function of baryon density ρB

gi(ρB) = gi(ρ0) fi(x) , (2)

where the function fi(x) is given by

fi(x) = ai

1 + bi(x + di)
2

1 + ci(x + di)2
, i = σ,ω . (3)

The coupling of the hyperons to the σ meson coupling

constants is determined at saturation from fitting the Λ hy-

peron optical potential for SNM to results obtained from

lattice calculations [6], reproducing the well-known poten-

tials.

2.2 Quark Matter

The vector-enhanced bag (vBag) model is used to describe

the quark matter while allowing hybrid stars to fulfill the

2M� maximum mass limit [8–10].

The Lagrangian density for the vBag model is given

by [7]

L =
∑

f=u,d,s

[ψ f (iγμ∂μ − m f − B)ψ f ]ΘH

−GV

∑

f

(ψ̄ fγμψ f )
2 +
∑

l

ψlγμ(i∂μ − ml)ψl , (4)

where B denotes the bag constant and ΘH is the Heaviside

step function that allows for a confinement/deconfinement

of the bag [11]. The vector interaction is introduced via

the coupling of vector-isoscalar meson to the quarks with

coupling constant GV .

The expressions for the energy density and pressure for

a single quark flavor are defined as

EvBag,f = E f (μ
∗
f ) +

1

2
Kνn

2
f (μ
∗
f ) + Bχ, f , (5)

PvBag,f = P f (μ
∗
f ) +

1

2
Kνn

2
f (μ
∗
f ) − Bχ, f . (6)

Here Bχ, f is the bag constant for a single quark flavor. The

vector interaction parameter Kν controls the stiffness of

matter [12].

2.3 Mixed Phase

Charge neutrality is achieved globally using a Gibbs con-

struction [13]. The extension of the mixed phase in density

depends on the stiffness of the phases undergoing chemical

equilibrium. Within the mixed-phase region, the expres-

sions for the chemical potential and pressure are defined

as

μB,H = μB,Q; μe,H = μe,Q , (7)

and

PH(μB, μe) = PQ(μB, μe) = PMP , (8)

with the subscripts H, Q, and MP representing the

hadronic phase, quark phase, and mixed-phase, respec-

tively.

3 Magnetic Field

To investigate the effects of magnetic fields on our micro-

scopic description of matter with a phase transition, we use

a chemical-potential dependent magnetic field that is fit-

ted from the solutions of the Einstein-Maxwell equations.

The magnetic field-chemical potential relationship is de-

pendent on the magnetic dipole moment and is provided

by the relation [14]

B∗(μB) =
(a + bμB + cμ2

B
)

B2
c

μ , (9)

where μB is the baryon chemical potential in MeV and

μ is the dipole magnetic moment in units of Am2, so

as to produce B∗ in units of the electron critical field

Bc = 4.414 × 1013 G. The coefficients a, b, and c taken

as a = −0.786 G2/(Am2), b = 1.24 × 10−3 G2/(Am2 MeV)

and c = −3.51 × 10−7 G2/(Am2 MeV2) are obtained from

a fit for the magnetic field in the polar direction of a star

with a baryon mass of 2.2 M�.

For the effective bag constant B
1/4

eff
= 130 and 150 MeV,

the magnetic field at the stellar center is 3 × 1017 G and

1 × 1018 G, respectively for μ = 5 × 1031 Am2. With

μ = 2×1032 Am2, the magnetic field goes upto 3.2×1017 G

and 1.2×1018 G for B
1/4

eff
= 130 and 150 MeV, respectively.

The expressions for the free quark matter energy den-

sity and pressure in the presence of the magnetic field are

shown in [15]. In presence of the magnetic field, the total

energy density is

E = Em +
B2

8π
, (10)

and the total pressure in transverse and polar directions to

the local magnetic field is

P⊥ = Pm −MB +
B2

8π
, P‖ = Pm −

B2

8π
, (11)

where the magnetization is calculated as

M = ∂Pm/∂B . (12)

To ascertain the stellar properties of magnetic NSs, we

employ the LORENE library [16, 17], which solves the

Einstein-field Maxwell’s equations with an axisymmetric

deformation. When instead pressure in the local perpen-

dicular direction to the magnetic field is applied in all di-

rections, the spherically symmetric solutions obtained by

solving the TOV equations lead to an overestimation of

the mass and an underestimation of the equatorial radius

and therefore cannot be used to determine stellar proper-

ties [5, 16]. In this work, we use both approaches for com-

parison.

4 Results and Discussion

To study the effect of a strong magnetic field on the

hadron-quark phase transition, we employed the DD-MEX

parameter set for the hadronic matter as it produces a very

stiff EoS. For quark matter, two values of the effective bag
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Figure 1. Energy density vs. transverse pressure at different

values of dipole magnetic moment for the EoS with effective bag

constant B
1/4

eff
= 130 MeV.

constant, B
1/4

eff
= 130 and 150 MeV are used, and the cou-

pling constant parameter Kν is fixed at 4 GeV−2.

Fig. 1 displays the NS EoS with quark deconfinement

with effective bag constant B
1/4

eff
= 130 MeV in the pres-

ence of the magnetic field profile for different values of

the magnetic dipole moment. For the lower effective bag

constant, the hadronic phase in the low-density region is

largely unchanged by the magnetic field, whereas the pure

quark phase in the high density is slightly stiffer than the

EoS without the magnetic field for the magnetic dipole

moment of μ = 5 × 1031 Am2, which corresponds to a

high-density magnetic field of ∼ 1017 G. Both the hadronic

phase and the pure quark phases stiffen up for the magnetic

dipole moment of μ = 2 × 1032 Am2, which is equivalent

to a ∼ 1018 G high-density magnetic field.

Fig. 2 displays the EoS for effective bag constant B
1/4

eff

= 150 MeV. The pure quark phase only comprises a min-

imal portion (if any) of NSs since it only appears at very

high densities. The beginning of the mixed phase and the

pure quark phase are both significantly impacted by the

increased effective bag constant. This is because the mag-

netic field is significantly greater at the densities where it

occurs. Consequently, it is clear that the inclusion of the

magnetic field and its strength have an impact on the tran-

sitions to the mixed phase and the pure quark phase. The

magnetic field also suppresses the hyperons that emerge

around the onset of mixed-phase due to an increased pro-

ton density.

The mass-radius diagram for hybrid stars computed for

effective bag constant B
1/4

eff
= 130 MeV without and with

magnetic field estimated for various values of the mag-

netic dipole moment is shown in Fig. 3. The left panel

displays the results obtained from solving Einstein and

Maxwell’s equations with an axisymmetric deformation

(LORENE library), and the right panel displays the results

using answers from spherically symmetric TOV equations.

For μ = B = 0, they are exactly equivalent, which should

be the case. The maximum mass star has a radius of 12.6

km is 2.13M� without a magnetic field. The canonical

mass has a radius of about 13 km, which satisfies the re-

cent NICER radius constraints. With increasing magnetic

dipole moment, the mass and radius of entire stellar se-
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Figure 2. Same as Fig. 1, but for B
1/4

eff
= 150 MeV.

quences increase. For μ = 5 × 1031 Am2, which corre-

sponds to a magnetic field of 3 × 1017 G in the center of the

maximum-mass star, the radius of low/intermediate-mass

stars obtained using the LORENE library differs signifi-

cantly from the radius obtained from TOV, 0.6 km for the

canonical mass when compared with 0.1 km for the max-

imum mass. In the left panel of Fig. 3, the radius shown

is the equatorial radius, and under the influence of strong

poloidal magnetic fields, stars become oblate.
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Figure 3. Mass-radius profile for hybrid stars with effective

bag constant B
1/4

eff
= 130 MeV shown at different values of mag-

netic dipole moment. The left panel shows results obtained us-

ing the LORENE library, while the right panel shows solutions

from TOV. Recent constraints on mass and radius are also shown

[1, 18–23].

Fig. 4 also displays the mass-radius profiles for hy-

brid stars but with effective bag constant B
1/4

eff
= 150 MeV.

For μ = 0, the maximum mass obtained lowers to 2.08

M� with corresponding radius of 12.76 km. The radius

at the canonical mass is 12.85 km. Our results are still

in agreement with NICER, LIGO/VIRGO, and mass con-

straints. Using LORENE, as the magnetic dipole mo-

ment increases, the maximum mass increases more than

for the previous effective bag constant considered. The

radius of the whole sequence also increases more. The

solutions from TOV, do not depend as much on the effec-

tive bag constant, and in this case, are farther from repro-

ducing low/intermediate mass results from LORENE. A

difference of around 0.5 km is observed in the radius at
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Figure 4. Same as Fig. 3, but for B
1/4

eff
= 150 MeV.

the canonical mass and −0.3 for the maximum mass with

measurements from LORENE and TOV. This implies that

the difference between the two approaches depends on the

EoS (particle composition and interactions) and the mass

of the star we are calculating the deformation for.

Considering the rotation along with the magnetic field,

the ratio between the polar and the equatorial radii would

increase and the resulting star would be deformed more.

The difference between these two radii would depend on

the star’s rotation rate, the strength of the magnetic field,

and the properties of the stellar matter.

5 Summary and Conclusion

We investigated how strong magnetic fields influence the

transition from baryons to quarks in NS cores. A magnetic

field profile with a quadratic relationship with the chemi-

cal potential is used to investigate the effects of magnetic

fields on the EoS. In this setup, the magnetic field only re-

ally depends on the magnetic dipole moment at high den-

sities, reaching 1018 G for the largest magnetic dipole mo-

ment studied. Magnetic fields cause the EoS to stiffen,

although the effects are more pronounced in the mixed

phase, which is wider in terms of energy density and oc-

curs at higher densities. Larger magnetic dipole moments

and effective bag constants have stronger impacts.

The poloidal magnetic field makes NSs oblate us-

ing the LORENE library, enlarging the equatorial radius.

While the magnetic field affects the mass and radius of all

stars in a family, this is not the case for TOV, which results

in the rise of only massive stars and an unreasonably huge

increase in their masses. The effective bag constant has no

bearing on this qualitative behavior. The mass and radii of

the entire family of stars defined by a lower effective bag

constant (softer EoS) utilizing LORENE are quantitatively

impacted by the strong magnetic field.

The difference in radius between LORENE and TOV

for particular constant stellar masses is interestingly higher

with lower values of μ and B. The canonical radius is

consistently smaller for TOV overall, and the disparity

grows with the effective bag constant. TOV can have a

smaller or larger radius than LORENE for the radius of

the maximum-mass star, depending upon whether the μ is

small or large. The sequence’s maximum mass is always

too large for TOV, and this disparity gets more as μ and the

effective bag constant increases.
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