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Abstract

The paper considers the application of feedback control to orbital transfer maneu-
vers subject to constraints on the spacecraft thrust and on avoiding the collision with
the primary body. Incremental reference governor (IRG) strategies are developed
to complement the nominal Lyapunov controller, derived based on Gauss Varia-
tional Equations, and enforce the constraints. Simulation results are reported that
demonstrate the successful constrained orbital transfer maneuvers with the proposed
approach. A Lyapunov function based IRG and a prediction-based IRG are compared.
While both implementation successfully enforce the constraints, a prediction-based
IRG is shown to result in faster maneuvers.
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1 INTRODUCTION

In this paper we consider the problem of spacecraft orbital transfer in a setting of a Two Body problem1,2. Our approach is
distinguished by using the reference governor3 to complement the nominal Lyapunov feedback controller and enforce pointwise-
in-time state and control constraints. Such constraints in orbital transfer problems could be imposed to maintain sufficient
separation distance to the planet (e.g., to avoid planetary collisions), to avoid the exceedance of the maximum thrust limit, and
to maintain trajectories in model validity range.

Orbital transfers are critical components of many space missions. For instance, an Earth orbiting spacecraft is often launched
into a parking orbit first and then must execute a transfer maneuver into a Geostationary Equatorial Orbit (GEO), which is the
primary destination for many communication and Earth observation satellites. A spacecraft flying to Mars has to execute an
Earth to Mars orbital transfer around the Sun.

Traditionally, the design of orbital transfer trajectories has been approached using the theory of optimal control, where a
typical objective is minimizing the cumulative fuel consumption. Once an optimal open-loop trajectory has been determined,
several Trajectory Correction Maneuver (TCM) points are defined at which orbital corrections could be made.

The feedback control for orbital transfers has also been investigated2,4,5,6, in particular, for missions that exploit the low thrust
propulsion. For instance, the Q-law7,4 has been proposed and extensively studied.

The advantages of feedback control laws are that they apply to continuously thrusting systems and provide a way to apply
systematic corrections all the time as opposed to only at pre-specified TCM points. As in other applications, the use of feedback
for orbital transfers is appealing due to improved robustness.

At the same time, nonlinear dynamics of spacecraft motion and constraints, such as limits on the thrust forces that are much
smaller as compared to the gravitational forces, complicate the development of effective feedback solutions. Many techniques,
such as feedback linearization, while formally applicable to spacecraft equations of motion, may not be practical due to large
thrust and fuel consumption they require.



2 SEMERARO ET AL.

In this paper we consider the application of reference governors to assist Lyapunov-based feedback controllers in satisfying
pointwise-in-time state and control constraints during orbital transfer maneuvers. Reference governors3 are add-on schemes to
nominal controllers that minimally modify reference commands (set-points) when it becomes necessary to satisfy the constraints.
For the nominal controller in our orbital transfer problem, we choose a Lyapunov-based controller2, derived based on Gauss
Variational Equations (GVEs), for which we highlight the connection between persistence of excitation conditions and closed-
loop trajectories rate of convergence to the target orbit; this connection is not made explicit in the prior literature2,8.

We then propose a modification of an incremental reference governor (IRG) strategy9 that we refer to as a multi-step multi-
mode incremental reference governor (m2IRG) to handle constraints on minimum radius of periapsis, thrust and eccentricity.
The IRG9 is a variant of the reference/command governor intended for situations where the available computational time is
insufficient to be able to perform the full optimization of the reference command (in our case, the reference command will be
defined by 5 orbital elements of the target orbit). The computational savings are gained as only admissibility of a single reference
command increment needs to be tested at a given time step. If found admissible/safe (will not lead to constraint violation), the
reference command is adjusted to the new value with this increment; if not, the previous value of the reference command is
maintained. While IRG reduces the computation time and effort needed for implementation, it may result in slower response
versus the conventional reference/command governor variants. In particular, as the reference command increment IRG tests must
be small to assure eventual admissibility, the conventional reference/command governor variants can provide larger reference
adjustments especially in the case of multi-dimensional reference commands.

The proposed m2IRG is different from IRG9 in that it takes advantage of time available for computations during the orbital
transfer to check safety of multiple increments of the reference at a given time step to provide faster response in the multi-
dimensional reference command setting. In this regard, m2IRG is closer to the command governor in which the optimization is
implemented inexactly10. Additionally, m2IRG exploits switching between a set of feedback gains (corresponding to multiple
modes) for the nominal Lyapunov controller. The simultaneous adjustment of the reference command and selection of the
controller gain has been previously considered11 but the treatment was limited to linear system setting while our equations of
motion are nonlinear.

Two implementations of m2IRG are considered and compared that are different in the way safety of an incremented reference
is checked. The first implementation exploits the knowledge of the Lyapunov function for the closed-loop system and invariance
of its sublevel sets; hence it checks whether the current state is in a safe sublevel set of the Lyapunov function to check the safety
of the incremented reference. This check requires that maximum of each constraint over a sublevel set around the incremented
reference be determined, and reduces to solving several low dimensional nonlinear optimization problems. For this Lyapunov
function based m2IRG switching between multiple feedback gains can help better align the sublevel sets of the closed-loop
Lyapunov function with the geometry of the constraints which enables larger reference increments. The second implementation
checks constraints based on the online prediction of the closed-loop response to incremented reference over a long prediction
horizon.

The paper is organized as follows: Section 2 presents the equations of motion in the form of GVEs. In Section 3 we describe
the nominal Lyapunov controller and highlight the need for persistence of excitation conditions to ensure closed-loop stability.
Section 4 introduces constraints as well as m2IRG to handle them. Section 5 reports the results of applying m2IRG to simulated
orbital transfers. Section 6 demonstrates the robustness of the proposed solution to changes in the mass of the spacecraft during
the maneuver that leads to constraints becoming time-varying. Section 7 introduces an online prediction-based m2IRG and
reports the corresponding simulation results. It is shown that the online prediction-based m2IRG leads to faster maneuvers as
compared to the Lyapunov function based m2IRG. Finally, Section 8 provides a summary and concluding remarks.

2 GAUSS-EULER VARIATIONAL EQUATIONS

The spacecraft translational dynamics in orbital transfer problems can be represented by different sets of equations. A common
approach relies on the direct application of 2nd Newton’s law leading to six differential equations of motion (EoMs) for three
components of spacecraft position vector, 𝑟, and three components of spacecraft velocity vector, 𝑣 based on

̇⃗𝑟 = 𝑣

̇⃗𝑣 = −
𝜇
𝑟3
𝑟 + 𝐹

𝑚
,

(1)
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where 𝜇 is the gravitational parameter of the primary body (398600.436 km3s−2 for Earth), 𝐹 is the net “perturbation” force (i.e.,
the net of all forces except for the ideal inverse distance squared gravity) applied to the spacecraft, and 𝑚 is the spacecraft mass.

An alternative approach is the use of Gauss-Euler Variational Equations (GVEs)2,1 derived by the method of variation of
constants of Lagrange. Such a formulation of EoMs applies to the six classical orbital elements of Keplerian two body problem in
presence of perturbation forces such as spacecraft thrust. These orbital elements are the semi-major axis 𝑎 [km], the eccentricity
𝑒, the inclination 𝑖 [rad], the Right Ascension of the Ascending node Ω [rad], the argument of periapsis𝜔 [rad] and the spacecraft
true anomaly 𝜃 [rad]. See Figure 1. The orbital elements 𝑎 and 𝑒 determine the size and shape of the orbit, the orbital elements
𝑖, Ω and 𝜔 determine the orbit orientation in an inertial frame and 𝜃 determines the current spacecraft position within the orbit.
Given the values of the six orbital elements one can uniquely reconstruct 𝑟 and 𝑣. The inverse transformation is not defined
everywhere, and this limits the applicability of GVEs to orbits with 𝑎 > 0, 𝑒 > 0 and 𝑖 ≠ 0. Variants of GVEs can be derived for
non-classical equinoctial orbital elements1 that can be used for zero inclination or eccentricity orbits; we leave the treatment of
such cases to future publications.

FIGURE 1 Classical orbital elements.

To model the evolution of the orbital elements, a moving STW frame is introduced with the origin at the center of mass of
spacecraft and with the unit vectors 𝑒𝑟, 𝑒𝜃 and 𝑒ℎ defined according to

𝑒𝑟 =
𝑟
𝑟
, 𝑒ℎ =

ℎ⃗
ℎ
, ℎ⃗ = 𝑟 × 𝑣, and 𝑒𝜃 = 𝑒ℎ × 𝑒𝑟,

where × denotes the vector product. Decomposing the thrust force per unit mass [km/s2] applied to the spacecraft as

𝐹
𝑚

= 𝑆𝑒𝑟 + 𝑇 𝑒𝜃 +𝑊 𝑒ℎ,
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where 𝑚 denotes the mass of the spacecraft, the GVEs take the following form:
𝑑𝑎
𝑑𝑡

= 2𝑎2√
𝜇𝑝
𝑒 sin 𝜃𝑆 + 2𝑎2√

𝜇𝑝
𝑝
𝑟
𝑇 ,

𝑑𝑒
𝑑𝑡

=
𝑝 sin 𝜃√
𝜇𝑝

𝑆 +
𝑝(cos𝜓 + cos 𝜃)√

𝜇𝑝
𝑇 ,

𝑑𝑖
𝑑𝑡

= 𝑟√
𝜇𝑝

cos (𝜃 + 𝜔)𝑊 , (2)

𝑑Ω
𝑑𝑡

= 𝑟√
𝜇𝑝

sin (𝜃 + 𝜔)
sin 𝑖

𝑊 ,

𝑑𝜔
𝑑𝑡

= −
𝑝 cos 𝜃
𝑒
√
𝜇𝑝
𝑆 +

(𝑟 + 𝑝) sin 𝜃
𝑒
√
𝜇𝑝

𝑇 − 𝑟 sin(𝜃 + 𝜔) cot 𝑖√
𝜇𝑝

𝑊 ,

𝑑𝜃
𝑑𝑡

=
√
𝜇𝑝

𝑟2
+
𝑝 cos 𝜃
𝑒

𝑆√
𝜇𝑝

−
𝑝 + 𝑟
𝑒

cos 𝜃 𝑇√
𝜇𝑝
,

where 𝑟 = 𝑝
1+𝑒 cos 𝜃

is the distance from the gravity center to the spacecraft center of mass, 𝑝 = 𝑎(1 − 𝑒2) is the orbit parameter

(also called semi-latus rectum), and 𝜓 = arccos
(

1
𝑒
− 𝑟

𝑎𝑒

)
is the eccentric anomaly.

Note that with 𝑆 = 𝑇 = 𝑊 = 0, the trajectories of 𝑎, 𝑒, 𝑖, Ω, 𝜔 are constants in time while 𝜃 will evolve as a function of time
corresponding to the motion of the spacecraft on an elliptic orbit under the ideal force of gravity only. Note also that the unit
vectors 𝑒𝑟, 𝑒𝜃 and 𝑒ℎ can be computed based on the current position and velocity vectors of the spacecraft; thus a thrust vector
specified on the basis of a feedback law for 𝑆, 𝑇 and 𝑊 components (i.e., in STW frame) can be transformed into an inertial
frame using the computed onboard Direction Cosine Matrix (DCM) between the two frames.

3 LYAPUNOV CONTROLLER AND NEED FOR PERSISTENCE OF EXCITATION

The reference governor augments a nominal controller which in this paper is a Lyapunov controller of Jurdjevic-Quinn damping
feedback type12. This nominal controller was chosen due to its close connection with the conventional Q-law7,4, while admitting
a quadratic Lyapunov function parameterized by the reference command, the form of which facilitates reference governor design.
Let

𝑋 = [𝑎 𝑒 𝑖 Ω 𝜔]𝖳, 𝑈 = [𝑆 𝑇 𝑊 ]𝖳.

Then the first five of GVEs (2) can be written in the following condensed form:

𝑋̇(𝑡) = 𝐺
(
𝑋(𝑡), 𝜃(𝑡)

)
𝑈 (𝑡), (3)

where 𝐺(𝑋(𝑡), 𝜃(𝑡)) ∈ ℝ5×3. Note that since the objective is to steer the spacecraft into a target orbit but not to a particular
location in that orbit (each location, once in the target orbit, will be visited eventually due to periodicity of the orbit) the true
anomaly 𝜃(𝑡) is not included into the state vector 𝑋(𝑡) and is treated as a time-varying parameter, the evolution of which is
determined by the sixth equation in (2). With a slight abuse of notation, and in order to shorten the expressions, in the sequel
we designate

𝐺(𝑡) = 𝐺(𝑋(𝑡), 𝜃(𝑡)).

The dynamics in (3) are drift-free. Hence any point in ℝ5 in the range of definition of (2) is an unforced equilibrium (i.e., an
equilibrium with 𝑈 = 0) and can be commanded as the target. Despite the system having only three inputs and five states, the
dynamics are small time locally controllable. This can be concluded from the original EoMs (1) that are based on Newton’s law
and can be feedback linearized into a system of three uncoupled double integrators, hence clearly controllable.

There is often a topological obstruction to stabilizability of drift-free systems with more states than inputs due to Brockett’s
necessary condition13. However, (3) is not a time-invariant system and turns out to be stabilizable.

Let 𝑃 ≻ 0 be a 5 × 5 positive-definite matrix and let

𝐸̃(𝑡) = 𝑃
(
𝑋(𝑡) −𝑋𝚍𝚎𝚜

)
, (4)

denote the weighted tracking error where 𝑋𝚍𝚎𝚜 is the vector of five orbital elements of the target orbit.
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We choose a Lyapunov function candidate as

𝑉 (𝐸̃) = 1
2
𝐸̃𝖳(𝑡)𝑃 −1𝐸̃(𝑡). (5)

Its time derivative along the trajectories of (3) is given by

𝑉̇ = 𝜕𝑉
𝜕𝐸̃

̇̃𝐸 = 𝐸̃𝖳𝑃 −1 ̇̃𝐸 = 𝐸̃𝖳𝑃 −1𝑃𝐺(𝑡)𝑈 = 𝐸̃𝖳𝐺(𝑡)𝑈.

Defining a feedback law as
𝑈 = −𝐺𝖳(𝑡)𝐸̃ = −𝐺𝖳(𝑡)𝑃

(
𝑋(𝑡) −𝑋𝚍𝚎𝚜

)
, (6)

we obtain,
𝑉̇ = −𝐸̃𝖳𝐺(𝑡)𝐺𝖳(𝑡)𝐸̃. (7)

While 𝑉̇ ≤ 0, implying the invariance of sublevel sets of 𝑉 , it is not sufficient to prove the convergence of 𝐸̃(𝑡) to zero as 𝑡→ ∞.
The use of the LaSalle’s invariance principle, as suggested in the prior work2, is complicated by the fact that the system is time-
varying and that the matrix 𝐺(𝑡)𝐺𝖳(𝑡) is 5 × 5 but is at most of rank 3 as 𝐺(𝑡) is 3 × 5. Hence it is not immediately clear how to
show that there are no closed-loop trajectories, except for 𝐸̃ = 0, that could evolve in the time-varying null space of 𝐺(𝑡)𝐺𝖳(𝑡).

We note that that there is a connection between the closed-loop convergence and the “persistence of excitation” assumption
which is revealed following the same lines as in adaptive control14. For completeness, given a slightly different form with the 𝑃
matrix in (8), and since the decay estimates of 𝑉 could be exploited in the construction and analysis of the reference governor
(e.g., in the selection of the prediction horizon for the online prediction-based reference governor) we summarize the details in
what follows. First, note that the closed-loop dynamics are linear time-varying and given by

̇̃𝐸 = −𝑃𝐺(𝑡)𝐺𝖳(𝑡)𝐸̃, (8)

and we let Φ(𝑡0, 𝑡) denote the state transition matrix of the linear time-varying system (8). Consider the change in the Lyapunov
function between time instants 𝜎0 and 𝜎0 + 𝛿0 > 𝜎0. We have

𝑉
(
𝐸̃
(
𝜎0 + 𝛿0

))
= 𝑉

(
𝐸̃
(
𝜎0
))

+

𝜎0+𝛿0

∫
𝜎0

𝑉̇
(
𝐸̃(𝜏)

)
𝑑𝜏 = 𝑉

(
𝐸̃
(
𝜎0
))

−

𝜎0+𝛿0

∫
𝜎0

𝐸̃𝖳(𝜏)𝐺(𝜏)𝐺𝖳(𝜏)𝐸̃(𝜏)𝑑𝜏 =

= 𝑉
(
𝐸̃
(
𝜎0
))

− 𝐸̃𝖳
(
𝜎0
) 𝜎0+𝛿0

∫
𝜎0

Φ𝖳
(
𝜏, 𝜎0

)
𝐺(𝜏)𝐺𝖳(𝜏)Φ

(
𝜏, 𝜎0

)
𝑑𝜏𝐸̃

(
𝜎0
)
= 𝑉

(
𝐸̃
(
𝜎0
))

− 𝐸̃𝖳
(
𝜎0
)
𝑂̃
(
𝜎0, 𝜎0 + 𝛿0

)
𝐸̃
(
𝜎0
)
,

where 𝑂̃
(
𝜎0, 𝜎0 + 𝛿0

)
designates the observability grammian for the system,

̇̃𝐸 = −𝑃𝐺(𝑡)𝐺𝖳(𝑡)𝐸̃, (9)
𝑦(𝑡) = 𝐺𝖳(𝑡)𝐸̃.

If there exists 𝜖 > 0 and 𝛿0 > 0 such that for all 𝜎0 > 0,

𝑂̃
(
𝜎0, 𝜎0 + 𝛿0

) ≥ 𝜖𝐼5×5, (10)

where 𝐼5×5 is the 5 × 5 identity matrix; then

𝑉
(
𝐸̃
(
𝜎0 + 𝛿0

)) ≤ 𝑉
(
𝐸̃
(
𝜎0
))

− 𝜖𝐸̃𝖳
(
𝜎0
)
𝐸̃
(
𝜎0
) ≤ 𝑉

(
𝐸̃
(
𝜎0
))

− 2𝜖
𝜆𝚖𝚊𝚡

(
𝑃 −1

)𝑉 (
𝐸̃
(
𝜎0
))

=
(
1 − 2𝜖𝜆𝚖𝚒𝚗(𝑃 )

)
𝑉
(
𝐸̃
(
𝜎0
))
,

where we used (4) in the second to last step. Applying this recursively leads to

𝑉
(
𝐸̃
(
𝜎0 + 𝑘𝛿0

)) ≤ (
1 − 2𝜖𝜆𝚖𝚒𝚗(𝑃 )

)𝑘𝑉 (
𝐸̃
(
𝜎0
))
. (11)

Note that 1 − 2𝜖𝜆𝚖𝚒𝚗(𝑃 ) < 1, while 1 − 2𝜖𝜆𝚖𝚒𝚗(𝑃 ) < 0 and 𝑉
(
𝐸̃
(
𝜎0
))

> 0 would imply 𝑉
(
𝐸̃
(
𝜎0 + 𝛿0

))
< 0, which is not

possible since 𝑃 −1 ≻ 0 in (4). Hence 𝑉
(
𝐸̃
(
𝜎0 + 𝑘𝛿0

))
→ 0 and 𝐸̃(𝑡0 + 𝑘𝛿0) → 0 as 𝑘 → ∞, where 𝑘 is an integer. For

𝑡 ∈
(
𝑡0 + 𝑘𝛿0, 𝑡0 + (𝑘 + 1)𝛿0

]
,

1
2
𝜆𝚖𝚒𝚗

(
𝑃 −1)‖‖𝐸̃(𝑡)‖‖22 ≤ 𝑉

(
𝐸̃(𝑡)

) ≤ 𝑉
(
𝐸̃
(
𝑡0 + 𝑘𝛿0

))
, (12)
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and hence 𝑉
(
𝐸̃(𝑡)

)
→ 0 and 𝐸̃(𝑡) → 0 as 𝑡 → ∞. The remaining step is to simplify (10). As the property of uniform complete

observability is invariant under output feedback14, a similar property to (10) must hold for

̇̃𝐸 = −𝑃𝐺(𝑡)𝐺𝖳(𝑡)𝐸̃ + 𝑃𝐺(𝑡)𝑦(𝑡) = 0, (13)
𝑦(𝑡) = 𝐺𝖳(𝑡)𝐸̃,

i.e., we can ensure that (10) holds by showing that there exists 𝜖 > 0 and 𝛿0 > 0 such that for all 𝜎0 > 0,

𝑂
(
𝜎0, 𝜎0 + 𝛿0

)
=

𝜎0+𝛿0

∫
𝜎0

𝐺(𝜏)𝐺𝖳(𝜏)𝑑𝜏 ≥ 𝜖𝐼5×5. (14)

The condition (14) is the persistence of excitation condition on the “regressor” matrix, 𝐺(𝑡). It is possible15 to obtain a relation
between 𝜖 in (14) and 𝜖 in (10) which determines the convergence rate of 𝑉

(
𝐸̃(𝑡)

)
to zero.

Verifying (14) analytically for (3), (6) has been attempted through symbolic computations but does not appear to be tractable
even for the case of the reduced order subsystem with states 𝑎, 𝑒, 𝜔, 𝜃 and control inputs 𝑆 and 𝑇 (i.e., 𝑊 = 0). However,
(14) can be checked by numerical integration. One approach is to choose 𝜈 > 0 small and compute 𝜆𝚖𝚒𝚗(𝑂(𝑘𝜈, (𝑘 + 1)𝜈)) for
𝑘 = 0, 1, 2,⋯ over a given orbit or trajectory. Noting that, by Weyl’s inequality,

𝜆𝑚𝑖𝑛(𝑂(𝑘𝜈, (𝑘 + 𝑚)𝜈)) ≥
𝑚−1∑
𝑗=0

𝜆𝑚𝑖𝑛(𝑂(𝑘𝜈 + 𝑗𝜈, 𝑘𝜈 + (𝑗 + 1)𝜈)),

the values of 𝛿0 and 𝜖 that verify (14) can be identified. Using this procedure for specific orbits and transient maneuvers in this
paper, we have not found even a single case where (14) does not hold. In Figure 2, we consider a (periodic) orbit with 𝑎 = 6878,
𝑒 = 0.02, 𝑖 = 𝜋

2
, Ω = 3𝜋

2
, 𝜔 = 𝜋 and plot 𝜆𝚖𝚒𝚗

(
𝑂̄(𝑘𝜈, (𝑘 + 1)𝜈)

)
, where 𝜈 = 5 sec. Then, for instance, 𝛿0 = 180 s, 𝜖 = 2⋅10−7

verify condition (14). By continuity, we also expect (14) to hold for trajectories in a neighborhood of this nominal orbit.

0 2 4 6 8

2.1

2.15

2.2

2.25

2.3
10

-7

FIGURE 2 Minimum eigenvalue of 𝑂(𝑘𝜈, (𝑘 + 1)𝜈)), 𝜈 = 5 sec versus time.

Note that (6) can be viewed as an approximate solution to an unconstrained minimization problem of a regularized variant of
𝑉
(
𝐸̃(𝑡 + Δ𝑡)

)
, for small Δ𝑡 > 0 with respect to 𝑈 (𝑡), i.e., of

𝑉
(
𝐸̃(𝑡 + Δ𝑡)

)
+ 1

2

𝑡+Δ𝑡

∫
𝑡

𝑈𝖳(𝜏)𝑈 (𝜏)𝑑𝜏 ≈ 𝑉
(
𝐸̃(𝑡)

)
+ 𝑉̇ (𝑡)Δ𝑡 + 1

2
𝑈𝖳(𝑡)𝑈 (𝑡)Δ𝑡 = 𝑉

(
𝐸̃(𝑡)

)
+ 𝐸̃𝖳(𝑡)𝐺(𝑡)𝑈 (𝑡)Δ𝑡 + 1

2
𝑈𝖳(𝑡)𝑈 (𝑡)Δ𝑡.

Since 𝑉
(
𝐸̃
)
= 1

2
𝐸̃𝖳𝑃 −1𝐸̃ = 1

2

(
𝑋 −𝑋𝚍𝚎𝚜

)𝖳𝑃 (𝑋 −𝑋𝚍𝚎𝚜
)
, the matrix 𝑃 in the controller calibration phase can be tuned to

assign higher penalty to those orbital elements the response of which needs to be sped up in a similar manner as state weighting
matrices are employed in Linear Quadratic or Model Predictive Control.
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4 CONSTRAINTS AND LYAPUNOV FUNCTION BASED INCREMENTAL REFERENCE
GOVERNOR

4.1 Constraints
Three constraints are imposed on the spacecraft translational motion during the orbital transfer maneuver.

The first constraint has the form,

𝑐1(𝑋) = 𝑟𝚙 − 𝑟𝚖𝚒𝚗 ≥ 0, 𝑟𝚙 = 𝑎(1 − 𝑒). (15)

It ensures that the radius of the periapsis of the spacecraft orbit, 𝑟𝑝 is larger than 𝑟𝚖𝚒𝚗. The orbital elements which evolve according
to GVEs (2) are that of the osculating orbit, that is of the Keplerian orbit which results if the perturbation force components are
set to zero, i.e., 𝑆 = 𝑇 = 𝑊 = 0. Thus the constraint (15) protects not only against the distance to the primary 𝑟 falling below
𝑟𝚖𝚒𝚗 at any given time instant and thus avoiding being too close to/colliding with the primary but also that 𝑟 will stay above 𝑟𝚖𝚒𝚗
even if there is a thruster failure and thrust becomes zero.

The second constraint is imposed on the spacecraft thrust magnitude not to exceed the values that the thruster can actually
deliver. This constraint has the following form,

𝑐2
(
𝑋,𝑋𝚍𝚎𝚜, 𝜃

)
= 𝑈 2

𝚖𝚊𝚡 − ‖𝑈‖22 ≥ 0, 𝑈 = −𝐺𝖳(𝑋, 𝜃)𝑃
(
𝑋 −𝑋𝚍𝚎𝚜

)
, (16)

and ensures that the spacecraft relative acceleration due to thrust, 𝑈 , remains below a specified value, 𝑈𝚖𝚊𝚡, in magnitude. This
constraint assumes that the spacecraft has a single orbital maneuvering thruster and that the attitude of the spacecraft is changed
by an attitude control loop to accurately realize the commanded thrust direction. We also assume that the standard pulse width
pulse frequency modulation16 is employed to realize continuous values of thrust magnitude if on-off thrusters are employed
onboard of the spacecraft. Furthermore, we neglect the minimum impulse bit lower limit on positive thrust magnitude as below
this limit the thrust is set to zero, while with our approach, based on GVEs and invariance, and given the drift-free form of (3),
the constraints will not be violated. In fact, this is an additional reason for why the minimum distance constraint (15) is imposed
on the radius of periapsis.

The third constraint limits the eccentricity of the spacecraft orbit d above a specified minimum value, 𝑒 ≥ 𝑒𝚖𝚒𝚗, where 𝑒𝚖𝚒𝚗 ≥ 0:

𝑐3(𝑋) = 𝑒 − 𝑒𝚖𝚒𝚗 ≥ 0. (17)

This constraint ensures that the eccentricity does not approach zero too closely where GVEs have a singularity, thereby preserving
the validity of the model.

Other constraints could be imposed depending on the mission objectives; such constraints can be similarly handled with the
proposed reference governor approach.

4.2 Multi-Step Incremental Reference Governor
The reference governor3 modifies the command 𝑋𝚍𝚎𝚜 in transients to enforce the constraints. That is, the reference command
𝑋𝚍𝚎𝚜 in the control law (6) is replaced by a modified reference command, 𝑋̃, which does not cause constraint violations. The
control law (6) thus becomes

𝑈 (𝑡) = −𝐺𝖳(𝑡)𝑃
(
𝑋(𝑡) − 𝑋̃(𝑡)

)
. (18)

The Incremental Reference Governor (IRG)9 is a variant of the reference governor that tests the feasibility of a sufficiently
small increment in 𝑋̃ towards𝑋𝚍𝚎𝚜 at each discrete-time instant. If feasible, i.e., it is possible to infer that the constraints will be
satisfied over a semi-infinite prediction horizon with 𝑋̃ being constantly applied, this increment is implemented. If not feasible,
𝑋̃ is kept unchanged. In the previously considered fuel cell application of IRG9, the constraints were imposed to keep the system
in the closed-loop region of attraction when the load was changing; the characterization of this region of attraction was computed
numerically offline based on the reduced order model.

To develop the IRG for our orbital transfer application, we let 𝑡𝑘 denote a time instant at which IRG modifies the reference
command and 𝑋

(
𝑡𝑘
)

denote the spacecraft state at that time instant. We re-write (5) as

𝑉
(
𝑋, 𝑋̃, 𝑃

)
= 1

2
(
𝑋 − 𝑋̃

)𝖳𝑃 (𝑋 − 𝑋̃
)
, (19)
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to make the dependence on the modified reference command, 𝑋̃, and the weight matrix 𝑃 explicit. The sub-level set of 𝑉 is
defined as

𝑄
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

=
{
𝑋 ∈ ℝ5 ∶ 𝑉

(
𝑋, 𝑋̃, 𝑃

) ≤ 𝑉
(
𝑋
(
𝑡𝑘
)
, 𝑋̃, 𝑃

)}
. (20)

Note that with the reference command maintained constant, 𝑋̃(𝑡) = 𝑋̃ for 𝑡 ≥ 𝑡𝑘, and given that 𝑉̇ ≤ 0 per (7) with 𝑋𝚍𝚎𝚜 = 𝑋̃,
the closed-loop trajectory of (3), (18) will remain within the sublevel set for all future times, i.e.,

𝑉
(
𝑋(𝑡), 𝑋̃, 𝑃

) ≤ 𝑉
(
𝑋
(
𝑡𝑘
)
, 𝑋̃, 𝑃

)
, for 𝑡 ≥ 𝑡𝑘.

If the sublevel set is constraint admissible (i.e., constraints are satisfied by all points of this set), then the trajectory is guaranteed
to satisfy the constraints.

Testing if the invariant set is constraint admissible can be accomplished using optimization. Given the state at the time instant
𝑡𝑘, 𝑋(𝑡𝑘), define,

𝑐∗1
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

= min
𝑋∈𝑄(𝑋̃,𝑃 ,𝑋(𝑡𝑘))

𝑐1(𝑋), (21)

𝑐∗2
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

= min
𝑋∈𝑄(𝑋̃,𝑃 ,𝑋(𝑡𝑘)), 0≤𝜃<2𝜋 𝑐2

(
𝑋, 𝑋̃, 𝜃

)
, (22)

and
𝑐∗3
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

= min
𝑋∈𝑄(𝑋̃,𝑃 ,𝑋(𝑡𝑘))

𝑐3(𝑋). (23)

We refer to a reference command 𝑋̃ as admissible at the time instant 𝑡𝑘 if 𝑐∗1
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
)) ≥ 0, 𝑐∗2

(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
)) ≥ 0 and

𝑐∗3
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
)) ≥ 0. In our implementation of m2IRG in this Section, given the high dimensionality of 𝑋̃ and 𝑋

(
𝑡𝑘
)

and
varying 𝑃 , we resort to checking admissibility of 𝑋̃ by solving the optimization problems (21)-(23) online rather than pre-
computing offline and storing approximations of 𝑐∗1

(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

, 𝑐∗2
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

and 𝑐∗3
(
𝑋̃, 𝑃 ,𝑋

(
𝑡𝑘
))

. We will also consider
the implementation of m2IRG using online predictions without solving (21)-(23) online in Section 7.

At each time instant 𝑡𝑘, 𝑘 > 1, the multi-step IRG evaluates the admissibility of 𝑛 > 0 reference commands, 𝑋̃𝑗(𝑡𝑘) 𝑗 =
1,⋯ , 𝑛, generated by the following rule,

𝑋̃0(𝑡𝑘) = 𝑋̃
(
𝑡𝑘−1

)
,

𝑋̃𝑗(𝑡𝑘) = 𝑋̃𝑗−1(𝑡𝑘) + Δ𝑗
𝑘𝐸

𝑗
𝑘

(
𝑋𝚍𝚎𝚜 − 𝑋̃𝑗(𝑡𝑘)), 𝑗 > 0, (24)

where Δ𝑗
𝑘 > 0 is a scalar step-size and 𝐸𝑗

𝑘 ∈ ℝ5×5 determines the direction of adjustment.
Note that if an admissible 𝑋̃(0) exists at the initial time (typically the choice 𝑋̃(0) = 𝑋(0) suffices), then the constraints

are guaranteed to be satisfied for all future times. Based on similar analysis as in the exactly implemented command governor
case10, it can also be shown that the choice 𝐸𝑗

𝑘 = 𝚍𝚒𝚊𝚐([1, 1, 1, 1, 1, 1]), 𝑋̃(0) = 𝑋(0) and strict constraint admissibility of all
points along the line segment 𝜆𝑋̃(0) + (1 − 𝜆)𝑋𝚍𝚎𝚜, 0 ≤ 𝜆 ≤ 1, are sufficient to ensure the convergence of 𝑋̃

(
𝑡𝑘
)

to 𝑋𝚍𝚎𝚜 in a
finite number of steps, provided the steps Δ𝑗

𝑘 > 0 are chosen to be sufficient small and the persistence of excitation condition
holds, which ensures closed-loop convergence to constant reference commands.

In practice, we adopt a more flexible version of the algorithm to mitigate situations in which the above “straight line” descent
results in slow convergence. In this case, 𝐸𝑗

𝑘 is chosen as

𝐸𝑗
𝑘 =

{
𝚍𝚒𝚊𝚐

(
𝑒𝑙
)

if 𝑘 𝚖𝚘𝚍 6 = 𝑙, 𝑙 = 0,⋯ , 4,
𝚍𝚒𝚊𝚐([1, 1, 1, 1, 1]) if 𝑘 𝚖𝚘𝚍 6 = 5, ,

where 𝑒𝑙 is the 𝑙th unit vector in ℝ5, 𝑙 = 1,⋯ , 5. This approach uses coordinate descent interlaced with periodic “straight line”
descent to 𝑋𝚍𝚎𝚜 which remains feasible given the geometry of the constraints in our problem, provided the reference commands
satisfying 𝑐1

(
𝑋̃𝑗(𝑡𝑘)) < 𝜖 and 𝑐3

(
𝑋̃𝑗(𝑡𝑘)) < 𝜖 for a sufficiently small 𝜖 > 0 (i.e., too close to the boundary of the constrained

region) are declared inadmissible.
The multi-step IRG algorithm functions as follows. Initially, a nominal step size is chosen, Δ1

𝑘 = Δ. If 𝑋̃1(𝑡𝑘) is inadmissible
then the step size is reduced, Δ2

𝑘 = 𝛾Δ1
𝑘, 0 < 𝛾 < 1. If 𝑋̃2(𝑡𝑘) is inadmissible then 𝑋̃

(
𝑡𝑘
)
= 𝑋̃

(
𝑡𝑘−1

)
is passed to the Lyapunov

controller and the algorithm stops. If 𝑋̃𝑗−1(𝑡𝑘) is admissible, we setΔ𝑗
𝑘 = Δ𝑗−1

𝑘 . If 𝑋̃𝑗(𝑡𝑘) is inadmissible then 𝑋̃
(
𝑡𝑘
)
= 𝑋̃𝑗−1(𝑡𝑘)

and the algorithm stops.
Note that the IRG algorithm is designed to gracefully handle convergence failures of the numerical optimizers used to solve

the low dimensional nonlinear optimization problems (21)-(23). Whenever failure to converge occurs (as detected by the solver),
the previous virtual target is chosen again, as 𝑋̃𝑗(𝑡𝑘) = 𝑋̃𝑗−1(𝑡𝑘) remains feasible by the construction of multi-step IRG.
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4.3 Multi-Step Multi-Mode Incremental Reference Governor
The m2IRG represents an extension of Multi-Step IRG to allow the choice of 𝑃 matrix in the Lyapunov function (19) and in
the Lyapunov controller (6) to vary. Specifically, assuming 𝑃 ∈  =

{
𝑃 1,⋯ , 𝑃 𝑚}, where 𝑃 𝑙 =

(
𝑃 𝑙)T ≻ 0, 𝑙 = 1,⋯ , 𝑚, the

criterion for admissibility of a reference command 𝑋̃𝑗 can be modified to existence of 𝑃 ∈  such that

𝑐∗𝑗
(
𝑋̃𝑗 , 𝑃 ,𝑋

(
𝑡𝑘
)) ≥ 0, 𝑗 = 1, 2, 3.

The use of  , however, increases the number of optimization problems which need to be solved onboard.
A different strategy that does not require as much computations is motivated by the observation that the primary constraints

are (15) and (17). This strategy involves identifying 𝑃 ∈  that best matches the current values of the semi-major axis 𝑎
(
𝑡𝑘
)

and eccentricity 𝑒
(
𝑡𝑘
)
. The basic idea is to choose 𝑃 ∈  so that the invariant set, the shape and orientation of which are

determined by 𝑃 , is stretched along the region allowed by the constraints so that to facilitate rapid progress of 𝑋̃ towards 𝑋𝚍𝚎𝚜.
This best 𝑃 is denoted by 𝑃𝚍𝚎𝚜

(
𝑡𝑘
)
. The IRG algorithm can then be modified so that its first step is to test whether 𝑃𝚍𝚎𝚜

(
𝑡𝑘
)

and 𝑋̃
(
𝑡𝑘−1

)
are admissible at the time instant 𝑡𝑘. If admissible, then 𝑃

(
𝑡𝑘
)
= 𝑃𝚍𝚎𝚜

(
𝑡𝑘
)

and the algorithm continues to search
for 𝑋̃

(
𝑡𝑘
)
. If not admissible, then 𝑃

(
𝑡𝑘
)
= 𝑃

(
𝑡𝑘−1

)
and the algorithm exits with 𝑋̃

(
𝑡𝑘
)
= 𝑋̃

(
𝑡𝑘−1

)
. Under the persistence of

excitation conditions, 𝑋(𝑡) → 𝑋̃(𝑡) if 𝑋̃ and 𝑃 do not vary; hence eventually, the switch to 𝑃𝚍𝚎𝚜
(
𝑡𝑘
)

becomes possible. In the
actual implementation, we found that continuing to search for an improvement in 𝑋̃

(
𝑡𝑘
)

even when 𝑃
(
𝑡𝑘
)

cannot be updated to
𝑃𝚍𝚎𝚜

(
𝑡𝑘
)

resulted in faster response; hence we adopted this latter choice.

5 NUMERICAL RESULTS WITH LYAPUNOV FUNCTION BASED INCREMENTAL
REFERENCE GOVERNOR

The m2IRG is first tested in orbital transfer maneuvers around Earth where the constraints (15)-(17) are defined with 𝑟𝚖𝚒𝚗 = 6628,
𝑈𝚖𝚊𝚡 = 1.25 × 10−3 km

s2
, 𝑒𝚖𝚒𝚗 = 10−6. Lower acceleration limit values could be handled similarly, however, the maneuver time

and simulation time will increase.
The m2IRG implementation uses Δ = 0.01, 𝛾 = 1

5
, 𝑛 = 12. The optimization problems (21)-(23) were solved using the

function fmincon of Matlab with the initial guess set to𝑋
(
𝑡𝑘
)
, 𝜃
(
𝑡𝑘
)

and maximum number of iterations set to 600. Additional
acceptance logic for the computed 𝑋̃𝑖(𝑡𝑘) has been added to handle occasional fmincon numerical convergence issues. This
logic checks that fmincon has (approximately) converged and that the constraint (16) at the current time instant 𝑡𝑘 is satisfied.
The reference command is updated by m2IRG every 𝑡𝑘+1 − 𝑡𝑘 = 15 min.

A set of matrices  =
{
𝑃 1, 𝑃 2, 𝑃 3} has been constructed as follows. First, consistently with our Lyapunov controller cali-

bration guidelines in Section 3, we manually tuned the diagonal entries of a single diagonal 𝑃 matrix to improve the speed of
transient response of individual orbital elements (larger diagonal element speeds up the transient response of the corresponding
orbital element) though simulations. This led to the matrix

𝑃 0 = 𝚍𝚒𝚊𝚐
([

5 × 10−11, 0.1, 5 × 10−3, 7.5 × 10−3, 5 × 10−4
])
.

Note that the magnitudes of these diagonal elements are quite different, but these differences are primarily attributed to
differences in the ranges of the orbital elements involved (e.g., 𝑎 is in 1000’s of km, while 𝑒 is less than 1).

We then considered rotations of the cross sections of the sublevel sets of the Lyapunov function by the 𝑎-𝑒 plane to orient
them along the boundary prescribed by the constraint (15) at three different values of 𝑎, 𝑎1 = 2 × 104, 𝑎2 = 1.5 × 104 and
𝑎3 = 1.1 × 104. See Figure 3. This reorientation of the cross sections facilitates larger changes in 𝑋̃

(
𝑡𝑘
)
. By characterizing

the tangent to the constraint boundary (15), the angle by which the cross section needs to be rotated is 𝛼𝑗 = arctan
(
𝑟𝚖𝚒𝚗
𝑎2𝑗

)
,

𝑗 = 1, 2, 3. If 𝑃 𝑗
(2,2) denotes the upper 2 × 2 block of the 𝑃 𝑗 matrix, 𝑗 = 1, 2, 3 then

𝑃 𝑗
(2,2) = 𝑅

(
𝛼𝑗
)
𝑃 0𝑅𝖳

(
𝛼𝑗
)
, 𝑅(𝛼) =

[
cos(𝛼) sin(𝛼)
− sin(𝛼) cos(𝛼)

]
.
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With this process we generated three matrices,𝑃 1,𝑃 2,𝑃 3:

𝑃 1 =

⎡⎢⎢⎢⎢⎢⎣

7.7456 × 10−11 −1.656999999 × 10−6 0 0 0
−1.656999999 × 10−6 0.099999999972544 0 0

0 0 5 × 10−3 0 0
0 0 0 7.5 × 10−2 0
0 0 0 0 5 × 10−4

⎤⎥⎥⎥⎥⎥⎦
,

𝑃 2 =

⎡⎢⎢⎢⎢⎢⎣

2.61856 × 10−10 −4.602777768 × 10−6 0 0 0
−4.602777768 × 10−6 0.099999999788144 0 0 0

0 0 5 × 10−3 0 0
0 0 0 7.5 × 10−2 0
0 0 0 0 5 × 10−4

⎤⎥⎥⎥⎥⎥⎦
,

𝑃 3 =

⎡⎢⎢⎢⎢⎢⎣

1.066157 × 10−9 −1.0080463648 × 10−5 0 0 0
−1.0080463648 × 10−5 0.099999998983843 0 0 0

0 0 5 × 10−3 0 0
0 0 0 7.5 × 10−2 0
0 0 0 0 5 × 10−4

⎤⎥⎥⎥⎥⎥⎦
.

The logic for selecting 𝑃𝚍𝚎𝚜
(
𝑡𝑘
)
∈  was as follows: If 1.5×104 ≤ 𝑎

(
𝑡𝑘
)

then 𝑃𝚍𝚎𝚜
(
𝑡𝑘
)
= 𝑃 1. If 1.1×104 ≤ 𝑎

(
𝑡𝑘
)
< 1.5×104

then 𝑃𝚍𝚎𝚜
(
𝑡𝑘
)
= 𝑃 2. If 𝑎

(
𝑡𝑘
)
< 1.1 × 104 then 𝑃𝚍𝚎𝚜

(
𝑡𝑘
)
= 𝑃 3.

FIGURE 3 Illustration of cross sections of sublevel sets of the Lyapunov function corresponding to 𝑃 1, 𝑃 2 and 𝑃 3.

5.1 Orbital transfer from higher orbit to lower orbit
The maneuver from a higher orbit to a lower orbit was simulated corresponding to the following initial state and desired state,

𝑋(0) =
[
21378, 0.65, 𝜋

10
, 0, 𝜋, 𝜋

]𝖳
, (25)

to the target

𝑋𝚍𝚎𝚜 =
[
6878, 0.02, 𝜋

2
, 3𝜋

2
, 𝜋, 0

]𝖳
. (26)

The time histories of the orbital elements, modified reference command, and of the Lyapunov function are shown in Figure 4.
The target orbit is successfully transferred to. Figure 5 shows that the constraints (15) and (16) are enforced during the maneuver.
From Figure 4b), the constraint (17) is enforced as well.
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FIGURE 4 Orbital transfer from a higher orbit to a lower orbit. The time histories of orbital elements are shown in blue,
compared with the final desired state (dashed, black) and the reference generated by the m2IRG (magenta, dash-dotted). Figure 4f
is the time history of the Lyapunov function.
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FIGURE 5 Orbital transfer from a higher orbit to a lower orbit. Left: The time histories of 𝑟𝚙, 𝑟 and 𝑟𝚖𝚒𝚗 showing that the
constraint (15) is enforced. Right: The time histories of ‖𝑈‖ (solid, blue) and of 𝑈𝚖𝚊𝚡 (dashed, red) showing the constraint (16)
is enforced.

5.2 Orbital transfer from lower orbit to higher orbit
With the same algorithm parameters, the maneuver from a lower orbit to a higher orbit was simulated corresponding to the
initial state and desired state that were interchanged as compared to the case in Subsection 5.1, i.e.,

𝑋(0) =
[
6878, 0.02, 𝜋

2
, 3𝜋

2
, 𝜋, 0

]𝖳
, (27)

𝑋𝚍𝚎𝚜 =
[
21378, 0.65, 𝜋

10
, 0, 𝜋, 𝜋

]𝖳
. (28)
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The time histories of the orbital elements and of the Lyapunov function are shown in Figure 6. The target orbit is successfully
transferred to. Figure 7 shows that the constraints (15) and (16) are enforced during the maneuver. From Figure 6b, the constraint
(17) is enforced as well. Figure 8 compares three dimensional orbital transfer trajectories from lower to higher orbit and vice
versa. It can be observed that m2IRG is more cautious in making adjustments to reference commands when closer to Earth.
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FIGURE 6 Orbital transfer from a lower orbit to a higher orbit. The time histories of orbital elements are shown in blue,
compared with the final desired state (dashed, black) and the reference generated by the m2IRG (dash-dotted, magenta). Figure 6f
is the time history of the Lyapunov function.
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FIGURE 7 Orbital transfer from a lower orbit to a higher orbit. Left: The time histories of 𝑟𝚙, 𝑟 and 𝑟𝚖𝚒𝚗 showing that the
constraint (15) is enforced. Right: The time histories of ‖𝑈‖ (solid, blue) and of 𝑈𝚖𝚊𝚡 (red, dashed) showing that the constraint
(16) is enforced.
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(a) (b)

FIGURE 8 Comparing three dimensional orbital transfer trajectories between a lower and a higher orbit. Initial orbit is shown
by green, target orbit by magenta.

6 VARYING SPACECRAFT MASS

During the orbital transfer maneuvers, fuel is consumed by the thrusters causing the spacecraft mass to decrease over time
according to

𝑚̇(𝑡) = − 𝐹 (𝑡)
𝐼𝚜𝚙𝑔0

,

where 𝑚(𝑡) is the mass of the spacecraft, 𝐹 (𝑡) is the magnitude of the thrust force, 𝐼𝚜𝚙 [sec] is the thruster specific impulse and
𝑔0 is the average Earth acceleration due to gravity at the sea level.

The constraint (16) sets an upper limit on the spacecraft acceleration usable for the maneuver. The thrusters are limited by a
maximum thrust force level, so, if the spacecraft mass is changing during the maneuver, the upper limit on the acceleration 𝑈𝚖𝚊𝚡
in (16) becomes time-varying. In the implementation of m2IRG, we set the upper acceleration limit at the time instant 𝑡𝑘 when
𝑋̃
(
𝑡𝑘
)

is decided on as

𝑈𝚖𝚊𝚡
(
𝑡𝑘
)
=

𝐹𝚖𝚊𝚡

𝑚
(
𝑡𝑘
) . (29)

In the simulations, we assumed that the spacecraft has Aerojet Rocketdyne MR-107T propulsion system17, with a maximum
thrust of (𝐹𝚖𝚊𝚡 = 0.125 kN) the tank of which can take up to 39.39 kg of hydrazine18. The spacecraft initial mass (dry mass plus
fuel mass) was assumed to be 100 kg, out of which 39.39 kg was the fuel mass.

The time histories of the orbital elements for the transfer between a higher orbit to a lower orbit are shown in Figure 9.
Figure 10 is showing the more interesting result of changing the limitation on acceleration with time. The increase is small, due
to reduced mass consumption rate - about 4% difference from the initial satellite overall mass, see Figure 11. The remarkable
outcome, although, is that the scheme can handle also time-varying constraints.

7 ONLINE PREDICTION-BASED INCREMENTAL REFERENCE GOVERNOR

A different approach to implementing m2IRG involves changing the method for checking the acceptability of a given 𝑋̃
(
𝑡𝑘
)
. The

use of sublevel sets of a Lyapunov function to bound the predicted trajectory and (21)-(23) based on such sublevel sets to check
for constraint violation can be replaced by an online prediction of the closed-loop spacecraft trajectory, through simulations over
a sufficiently long horizon, and verifying if this predicted trajectory satisfies the constraints (15)-(17). This approach has been
adopted in online prediction based reference governors19,3 and the initial variant of IRG9.

The simulations were performed with the same parameters as in Section 6. The prediction horizon was set to 10 hours with
constraints checked for violation every 20 sec over the predicted trajectory. The time histories of the orbital elements and the
three dimensional spacecraft trajectory are shown in Figure 12. In combination with Figure 13, it confirms that the constraints
(15)-(17) are satisfied.

As our simulation results show, the online prediction based m2IRG is less conservative and the closed-loop response in faster
as compared to Lyapunov function based m2IRG. This is confirmed by Figure 14 which shows the time history of the euclidean
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FIGURE 9 Orbital transfer from higher orbit to lower orbit with m2IRG when the spacecraft mass varies due to fuel consump-
tion. The time histories of orbital elements evolution are shown in blue, compared with the final desired state (black) and the
reference generated by the m2IRG (magenta). Figure 9f shows the three dimensional trajectory followed by the spacecraft from
the higher orbit (green) to the lower orbit (magenta).
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FIGURE 10 Orbital transfer from higher orbit to lower orbit with m2IRG when the spacecraft mass varies due to fuel consump-
tion. Left: The time histories of 𝑟𝚙, 𝑟 and 𝑟𝚖𝚒𝚗 showing that the constraint (15) is enforced. Right: The time histories of ‖𝑈‖ and
of 𝑈𝚖𝚊𝚡 showing the constraint (16) is enforced.

distance at time 𝑡 of the vector of orbital elements from the vector of their values on the target orbit, each normalized by their
maximum value. The normalization is performed to avoid bias induced by the significantly larger magnitude of the semi-major
axis.

As compared to the Lyapunov function based m2IRG, the computational footprint of the online prediction-based m2IRG can
actually be lower, as (21)-(23) are solved online using numerical optimization while our implementation of the online prediction-
based reference governor requires propagating forward EoMs, which is done using ode23s. However, given that the convergence
rate to the target equilibrium is determined by the “richness” of excitation provided by a particular trajectory, it is difficult to
provide theoretical guarantees on the sufficient prediction horizon such that if the constraints are satisfied up to that horizon with
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FIGURE 11 Fuel mass change during the maneuver.
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FIGURE 12 Orbital transfer from a higher orbit to a lower orbit with the online prediction-based m2IRG and with varying
spacecraft mass. The time histories of orbital elements are shown in blue, compared with the final desired state (dashed, black)
and the reference generated by the m2IRG (dash-dotted, magenta). Figure 12f shows the three dimensional trajectory followed
by the spacecraft from the initial (green) to the final (magenta) orbit.

constant 𝑋̃ and 𝑃 , then they will be satisfied for all future times. This issue is avoided by the Lyapunov function based m2IRG
that guarantees that the constraints are satisfied over the semi-infinite prediction horizon for the predicted trajectory if 𝑋̃ and 𝑃
are admissible.

The knowledge of the Lyapunov function and the invariance properties of its sublevel sets can be exploited to implement the
online prediction based m2IRG with the variable prediction horizon (as in the conventional reference governor case3). In this
approach, the constraints are checked up to a prediction horizon, 𝑡𝚁𝙶, which is the first time instant at which

𝑉
(
𝑋
(
𝑡𝑘 + 𝑡𝚁𝙶

)
, 𝑋̃

(
𝑡𝑘
)
, 𝑃

(
𝑡𝑘
)) ≤ 𝜀, (30)

where 𝑋
(
𝑡𝑘 + 𝑡𝚁𝙶

)
denotes the predicted state and 𝜀 > 0 is chosen sufficiently small so that all points in the set

{
𝑋 ∈

ℝ5 ∶ 𝑉
(
𝑋, 𝑋̃

(
𝑡𝑘
)
, 𝑃

(
𝑡𝑘
)) ≤ 𝜀

}
satisfy the constraints. The estimates (11)-(12) can in principle be exploited in estimating the

required 𝑡𝚁𝙶 but their use is not straightforward as the contraction rate of Lyapunov function depends on the richness of excita-
tion provided by a specific trajectory for which a priori analytical estimates are not available. Instead, an additional criterion for
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FIGURE 13 Orbital transfer from a higher orbit to a lower orbit with the online prediction-based m2IRG and with varying
spacecraft mass. Left: The time histories of 𝑟𝚙, 𝑟 and 𝑟𝚖𝚒𝚗 showing that the constraint (15) is enforced. Right: The time histories
of ‖𝑈‖ (solid, blue) and of 𝑈𝚖𝚊𝚡 (dashed, red) showing the constraint (16) is enforced.

deciding admissibility of 𝑋̃
(
𝑡𝑘
)

and 𝑃
(
𝑡𝑘
)

in the m2IRG algorithm can be added: If (30) is not satisfied for 0 ≤ 𝑡𝚁𝙶 ≤ 𝑡𝚖𝚊𝚡𝚁𝙶 for a
sufficiently large 𝑡𝚖𝚊𝚡𝚁𝙶 , then 𝑋̃

(
𝑡𝑘
)

and 𝑃
(
𝑡𝑘
)

are declared to be inadmissible in the m2IRG algorithm at the time instant 𝑡𝑘.
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FIGURE 14 Comparison between the convergence with Lyapunov Function (LF)-based m2IRG and online prediction-based
m2IRG.

8 CONCLUDING REMARKS

A multi-step multi-mode incremental reference governor (m2IRG) has been proposed and developed to satisfy state and control
constraints in feedback control of orbital transfer maneuvers. Such m2IRG augments a nominal Lyapunov controller which is
derived based on Gauss Variational Equations of spacecraft dynamics.

Two variants of m2IRG have been proposed. The first variant relies on the invariance properties of the sublevel sets of the
closed-loop Lyapunov function to ensure that constraints can be enforced over a semi-infinite prediction horizon. The second
variant relies on the online prediction of the closed-loop response over a finite and sufficiently long prediction horizon. Both
m2IRG variants adjust the reference command and accommodate switching of the Lyapunov controller gain. Both m2IRG vari-
ants have been able to successfully complete simulated orbital transfer maneuvers while satisfying the imposed state and control
constraints. The online prediction-based m2IRG is less conservative in accommodating constraint violations as it relies on the
actual trajectory predictions rather than their overbounds with the sublevel sets of the Lyapunov function. Consequently, the
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online predicting reference governor provides significantly faster closed-loop response. Both m2IRG variants showed robust-
ness in simulations to changes in the spacecraft mass due to fuel consumed during the maneuver, needing only recurrent updates
of the constraint (29) to account for the mass reduction, every time a new virtual target is tested.. Orbital perturbations, thrust
errors and navigational errors are some of the other uncertainty sources in orbital transfer problems. To illustrate robustness of
the approach, we have incorporated the 𝐽2 perturbations2 in the gravity force due to Earth oblateness effects (a dominant per-
turbation) into the simulations of the orbital transfer from a higher orbit to a lower orbit with the m2IRG and Lyapunov function
approach. These perturbations appear only in the closed-loop system simulation and are not reflected in either m2IRG or the
Lyapunov controller design. As shown from Figure 15, the constraints are never violated and the convergence (assessed in terms
of the time history of the euclidean distance at time 𝑡 of the vector of orbital elements from the vector of their values on the target
orbit, each normalized by their maximum value), is not significantly affected. The characterization of uncertainties in specific
orbital transfer missions, study of robustness and measures to mitigate the effects of these uncertainties deserve comprehensive
treatment and we relegate its further study to future research and publications. Furthermore, the effects of uncertainties can be
explicitly mitigated3 by constraint tightening, the use of Input-to-State Stable (ISS) Lyapunov functions instead of Lyapunov
functions and either scenario-based or worst-case (with respect to uncertainty) optimization in prediction.

The connections with the persistence of excitation conditions has been highlighted in the closed-loop stability and trajectory
convergence analysis. While extensive simulations have not found instances of non-convergence of closed-loop trajectories, the
convergence speed of the closed-loop trajectories can be affected by the “richness of excitation” as illustrated by the analysis in
Section 3. This suggests a possibility of the reference governor adjusting the reference command in such a way that enhances this
excitation and closed-loop convergence. Specific approaches for this will be considered in the future research. Note, furthermore,
that the prediction-based m2IRG can handle varying rate of convergence as described at the end of Section 7.

Analogs of GVEs have been derived1 for alternative sets of orbital elements, such as equinoctial orbital elements; these have
a similar drift-free form as GVEs, however, are advantageous in term of not having a singularity at 𝑒 = 0 and 𝑖 = 0 and hence
are suitable for handling circular and equatorial target orbits. Their treatment, while appears to be also tractable, is left as the
subject for future research.

While our development of m2IRG was specific to our spacecraft orbital transfer problem, similar m2IRG strategies could be
developed for other applications. The necessary ingredients include having a set of pre-stabilizing controllers along with the
corresponding closed-loop invariant sets parameterized by the reference command or the ability to predict closed-loop response
over a sufficiently long horizon within the time available for computations. In our case, the drift-free dynamics of the system
and the possibility of exploiting a large parameterized family of quadratic Lyapunov functions for a highly nonlinear system has
significantly facilitated m2IRG design. Such options may not be as readily available for other nonlinear systems.

Our development of m2IRG has been following two general paradigms in the reference governor literature using invari-
ance properties of sublevel sets of Lyapunov functions and using online model-based prediction, with the added possibility of
switching the controller gain. In a broader sense, our paper suggests pathways for applying reference governor based constraint
handling mechanisms in highly nonlinear spacecraft orbital transfer problems, as reflected in GVEs, to achieve novel capabilities
of constrained feedback stabilization of the target orbits. We believe these pathways could be explored also with other refer-
ence/command governor designs3. Machine learning methods could be applied to develop surrogate models to replace GVEs
in closed-loop response prediction, or to approximate constraint admissible invariant sets for the closed-loop system with other
nominal controllers for which a simple quadratic Lyapunov function is not available. They may also be used to approximate an
explicit mapping between state, previous reference command and updated reference command.
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