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Abstract— A parameter governor-based control scheme
is developed to enforce various constraints, such as the
Line of Sight (LoS) cone angle, the thrust limit, and the
relative approach velocity during rendezvous missions in
a near rectilinear halo orbit (NRHO) in the Earth-Moon
system. The parameter governor is an add-on scheme to
the nominal closed-loop system, which dynamically adjusts
controller parameters in order to enforce the constraints.
For the application to the rendezvous mission, we utilize
the Time Shift Governor (TSG) which time shifts the
target trajectory commanded to the Deputy spacecraft
controller. The time shift is gradually reduced to zero
so that the virtual target trajectory gradually converges
to the Chief spacecraft trajectory as time evolves, and
the rendezvous mission can be accomplished. Simulation
results are reported that demonstrate the effectiveness of
the proposed control scheme.

I. INTRODUCTION

Spacecraft rendezvous technology is vital to present
and future space missions. The rendezvous missions
make it possible to assemble, maintain, and repair satel-
lites and space stations. For example, the Lunar Gateway
mission involves multiple rendezvous maneuvers to as-
semble a space station that will enable human deep space
exploration in cislunar space [1].

The growing complexity of rendezvous mission re-
quirements also motivates a transition from human-
guided operations to autonomous rendezvous. For in-
stance, the ISS has been serviced by the SpaceX Cargo
Dragon spacecraft, Progress spacecraft, and Cygnus
spacecraft. More autonomous spacecraft rendezvous mis-
sions are planned including the National Aeronautics and
Space Administration’s On-Orbit servicing, Assembly,
and Manufacturing 1 (OSAM-1) mission [2] and the
European Space Agency’s ClearSpace-1 mission [3].

As the complexity of rendezvous missions increases,
many system constraints and limits, such as Line-of-
Sight (LoS) cone angle constraints and thrust limits,
need to be strictly enforced, because violation of these
constraints can lead to failure of the entire mission. The
goal of this paper is to propose an approach for enforcing
constraints in spacecraft rendezvous missions on halo
orbits based on the Time Shift Governor (TSG).
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In the restricted three-body problem (R3BP) setting
[4], [5], a halo orbit is a periodic, three-dimensional
orbit, where a third body’s motion is determined by
the gravitational pull of the two celestial bodies (called
primaries) assuming the third body has negligible mass.
Such halo orbits have received increasing attention for
actual missions because of their advantages, such as
remaining in a fixed position relative to a target body,
having an unobstructed view, and reducing fuel consump-
tion [6]. A spacecraft called the International Sun-Earth
Explorer-3 first entered a halo orbit near the L; Lagrange
point of the Sun-Earth system in November 1978 [7]. In
1996, the Solar and Heliospheric Observatory (SOHO)
also used the interior Sun-Earth L; point for a joint
ESA/NASA mission to study the Sun. Moreover, the
James Webb Space Telescope was placed into a halo
orbit near the Sun-Earth L, point in 2022.

In this paper, a near rectilinear halo orbit (NRHO),
which is a subclass of halo orbits near the Lo Lagrange
point in the Earth-Moon system, is considered as a
desired reference trajectory. Particular NRHOs have the
advantages of the existence of low-energy transfer orbits
[8], good stability properties, clear views of the Earth,
and favorable resonance characteristics that enable them
to avoid eclipses [9]. There is a growing interest in
NRHOs in the space community, as evidenced by the
NASA Artemis [10] and CAPSTONE [11], [12] mis-
sions.

The dynamics of relative motion have been previously
studied to address spacecraft rendezvous in proximity to
halo orbits. Scheeres and Vinh [13] have studied the
relative motion of two spacecraft and stabilization of
the secondary spacecraft to the primary spacecraft in an
unstable halo orbit; their analysis relied on linearized
dynamics and accounted for long-term and short-term
motions [13]. Bucchioni and Innocenti [14] describe a
dynamic model for the translational relative motion and
attitude relative motion in the elliptic restricted three-
body problem (ER3BP) and circular restricted three-body
problem (CR3BP). Colagrossi and Lavagna [15] present
a coupled orbit-attitude dynamical model that accounts
for the effects of large structural flexibility.

Several control approaches have been demonstrated for
station keeping [16], [17], orbit maneuvering [18], and
spacecraft rendezvous [19] in the Earth-Moon NRHOs.
A PD controller is implemented for the spacecraft ren-
dezvous in halo orbit near the Earth-Moon Lo point in



[20]. A chance-constrained MPC approach is proposed
to effect the spacecraft rendezvous in the Earth-Moon
NRHOs in [19].

In this work, we implement a Time Shift Governor
(TSG), an approach that had been previously applied
to constrained spacecraft formation control in circular
Earth orbits in the setting of a Two Body problem [21],
[22]. The TSG adjusts only one parameter, the time
shift, and is straightforward to implement. It belongs
to a larger class of methods for coordinating motions
by adjusting the space versus time assignments along
prescribed trajectories, see, e.g., [23] for a different
approach along these lines that has been applied to
multirotor unmanned aerial vehicles.

TSG is a variant of the parameter governor [24], i.e.,
it is an add-on scheme that alters parameters in the
nominal control system to satisfy pointwise-in-time state
and control constraints. Compared to more general non-
linear model predictive controllers, parameter governors
provide a solution with lower computational effort be-
cause they rely on solving online only a low-dimensional
optimization problem with a few parameters that can
take discrete values. In this paper, we apply the TSG
to a spacecraft rendezvous in a halo orbit in the Circular
R3BP (CR3BP) setting.

This paper is organized as follows: In Section II, we
summarize the spacecraft translational dynamics model
in the CR3BP setting, the nominal controller, as well
as the constraints considered during the rendezvous
mission. Then, in Section III, we introduce the TSG
to enforce the constraints. Simulation results of the
rendezvous mission are reported in Section IV, and
demonstrate the ability of the TSG to enforce constraints.
Finally, conclusions are drawn and future research direc-
tions are outlined in Section V.

II. PROBLEM FORMULATION

In this paper, we consider a spacecraft rendezvous
mission in a near rectilinear halo orbit (NRHO) sub-
ject to various mission-specific constraints. During the
rendezvous mission, the secondary (Deputy) spacecraft
locates in front of the primary (Chief) spacecraft in
the orbital track direction and is further away in the
orbital track at the initial point. The reverse situation (the
Deputy is behind the Chief) can be addressed similarly.
In this paper, we use subscripts ¢ and d to denote the
Chief spacecraft and the Deputy spacecraft, respectively,
and we use subscript ¢ to denote spacecraft that can either
be the Chief or the Deputy.

A. Coordinate systems

In this work, the barycentric frame and a local frame
(LVLH) are employed. The spacecraft dynamics are
first expressed in the barycentric frame. This barycentric
frame is defined by b : {Oy, iy, jb, ks } where Oy, is the
barycenter of the Earth-Moon system, 2; coincides with
the direction from the Earth to Moon, k; is parallel to

the Earth-Moon system angular momentum vector, and
J» completes a right-handed frame, as shown in Figure 1.
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Fig. 1: Barycentric and LVLH frames in the Earth-Moon
system.

Additionally, the LVLH frame is also defined as
L :{O. 5,31, kr} where O, is located at the Chief
spacecraft position, j; aligns with the velocity vector
of the Chief, kj, is the cross product of the normalized
Moon position vector relative to the Chief with j;, and
27, completes the right-handed system.

B. Circular Restricted Three-Body Problem

The spacecraft dynamics are modeled in the setting of
the circular restricted three-body problem (CR3BP) [4],
[5]. The equations of motion can be written as

Xi(1) = f(7, Xi(7), ui(7)), (1)

where X; = [z4, i, %i, T4, Ui, 2] 1> i € {c,d} denotes the
state of the spacecraft, which consists of position and
velocity, u; = [Ugz i, Uy, uz4]", i € {c,d} denotes the
control input to the spacecraft, and 7 € R>y denotes the
non-dimensional time. Note that the spacecraft’s state
and control input for ¢ € {c,d} are expressed in the
barycentric frame.

The governing equations of motion for the CR3BP are
given in non-dimensional form as [4], [5]:
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where subscript i € {c, d} denotes either the Chief or the
Deputy spacecraft, 71 ; and 72 ; can be expressed as,

ri; = [(@; + w)?+ 7+ 212]1/2’
2 2 211/2 3)
ros = [ — 14+ p)* +y; +27]77,
and u = my,/(me + myy,) is the mass ratio of the

secondary body to the total system, with m. being the
mass of the Earth and m,, being the mass of the Moon.

Note that the units of states and control inputs can
be dimensionalized by applying the distance scale of
D, where D is Earth-Moon distance, and the time scale



of 1/n, where n stands for the mean motion of Moon
orbiting around the Earth, i.e., n = 1/G(me + my,) /D3,
where G is the universal gravitational constant.

C. Nominal Controller

The objective of the nominal controller is to track a
state trajectory in the barycentric frame that corresponds
to a commanded orbital position on NRHO (either that of
Chief spacecraft or of a virtual target corresponding to
Chief spacecraft advanced along the orbital track). We
use a linear-quadratic regulator (LQR) with a constant
gain as our nominal controller, while noting that TSG is
applicable to other nominal controller choices, including
LQR with the gain re-computed along the orbit, as long
as the nominal controller is (locally) stabilizing.

The Chief spacecraft is assumed to operate in NRHO
with unforced natural motion (ie., u.(7) = 0,Y7 €
R>), while the Deputy is controlled by the feedback

law
ug (1) = K (Xa(r) — Xo(7)), @)

where X, (7) is the virtual target for the Deputy space-
craft, and K is the frozen-in-time LQR gain which is
computed for the linearization of (1) at a selected point
on the orbit. The linearization of (1) has the following
form:

56X = [j}é(xu(f),o)]ax + [;L(XU(T),O)](FU,
= A6X + Béu,
&)
where
6X(7) = Xa(r) — Xo(7), du(r) =ua(r)—0. (6)

The nominal LQR controller is designed such that the
feedback law defined by (4), when applied to (1), results
in (local) closed-loop uniform asymptotic stability of the
unforced trajectory X, (7), and, in particular, X (7) —
X,(T) as T — oo

D. Constraints

The operation of the Deputy spacecraft is subject to
various constraints. In this work, we mainly consider
three types of constraints to demonstrate the effectiveness
of the proposed approach. These include LoS cone
angle constraint, thrust limits, and an approach velocity
constraint in the vicinity of the Chief spacecraft.

The objective of the rendezvous mission is to bring
the Deputy spacecraft to close proximity of the Chief
spacecraft and proceed to docking. During the approach,
the Deputy spacecraft has to remain within a prescribed
Line of Sight (LoS) cone. The LoS cone angle constraint
is defined with LoS half-cone angle « as

hy = —v(Xe)"p(Xa — Xe)
+ cos(a) [v(Xe)|[p(Xa — Xo)| <0,
where v(X) designates the velocity vector and p(X)

designates the position vector corresponding to the full
state X.

)

The thrust that the Deputy spacecraft can develop is
limited, leading to a constraint,

h2 = ”UdH — Umax S 0; (8)

where U,y 1S the maximum magnitude of the control
input. Rather than handling (8) as a constraint by TSG,
an alternative approach, which can lead to faster response
[25], is to enforce (8) using saturation. Such a saturation
preserves the direction of the control input and limits its
magnitude to the maximum value upay:

e (540

Umax Ty, ()]

if ua(7)] < tmax, ©
if [Jug(7)| > tUmax-
With (9) used to enforce (8), the TSG must also account
for the control input being saturated in its prediction
model.

When the Deputy spacecraft is in the vicinity of the
Chief spacecraft, a constraint on the relative velocity
between the Deputy spacecraft and the Chief spacecraft
is imposed to avoid potential high speed collisions be-
tween them. As a result, the constraint on the magnitude
of the relative velocity is only active when the Deputy
spacecraft is near the Chief spacecraft, i.e.,

Hp(Xd - X(')H <M,

in which case, the relative velocity is bounded by a
linearly decreasing function of the relative distance to
the Chief location,

hy = [v(Xa— X¢)| = 2|p(Xa — Xo)| — 5 <0, (11)

(10)

where 5 and 3 are constant parameters.

Additional constraints could be included such as con-
straining the final state of the Deputy spacecraft along
the predicted trajectory to a small terminal region around
the virtual target to ensure stability. Such a constraint has
not been added in this paper as the nominal closed-loop
system remained stable for the maneuvers considered.

ITII. TIME SHIFT GOVERNOR

In this paper, we adopt the TSG to enforce the
constraints in our halo orbit rendezvous problem. The
proposed control scheme is shown in Figure 2, where the
TSG augments a nominal closed-loop system consisting
of spacecraft dynamics and the nominal LQR controller.
If it were not for constraints (and assuming closed-
loop stability), to perform the rendezvous with the Chief
spacecraft, the state trajectory of the Chief spacecraft
along NRHO could be simply commanded to the nominal
controller of the Deputy spacecraft.

To avoid violation of the constraints, the TSG com-
mands to the nominal controller of the Deputy spacecraft
a time shifted trajectory of the Chief spacecraft, i.e., the
commanded state for the Deputy spacecraft at time 7 is

given by

Xv(T) = XC(T + Tlead); (12)

where Tieq iS the time shift. Assuming the Deputy
spacecraft is further along the orbital track as compared



to the Chief spacecraft, we restrict the time shift to
non-negative values, i.e., Tieaqa = 0, and set an upper
bound of Ti¢.4 as an initial admissible time shift which
results in constraint satisfaction (assumed to exist by pre-
positioning Deputy spacecraft if necessary). The TSG
then minimizes the time shift, 7..q > 0, at discrete-
time instants subject to the condition that the predicted
closed-loop trajectory of the Deputy spacecraft and the
predicted open loop trajectory of Chief spacecraft over a
sufficiently long prediction horizon satisfy the imposed
state and control constraints. Figure 3 shows an illustra-
tion of the Chief, the Deputy and the virtual target (time
shifted Chief spacecraft state commanded to the nominal
controller) during operations.
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Fig. 2: Diagram of the nominal closed-loop system
augmented with the TSG to enforce constraints.
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Fig. 3: The Chief, the Deputy, and the virtual target
spacecraft in the orbital track.

Following the developments in [22], [21], [24], it can
be shown that if a feasible 70,9 €Xists at the initial time
instant, the prediction horizon is sufficiently long, the
nominal controller is stabilizing and constraints strictly
hold in steady-state corresponding to any constant virtual
target, then constraints are guaranteed to be satisfied for
all future times. As the Deputy spacecraft is controlled
by the nominal controller to the target X, (7) and Tieaq
is reduced by the TSG, the Deputy spacecraft is made
to safely approach the Chief spacecraft. Formal finite-
time convergence guarantees of Tieaq to zero and X, (7)
to X.(7) can be given under the assumption of strict
steady-state feasibility and rejection of sufficiently small
changes in Ti¢aq by the TSG [24], [26].

The process of finding 70,4 uUsing bisections is sum-
marized in Algorithms 1 and 2. In Algorithm 1, we first
set the initial time shift parameter Tyeaq,0 € R0, such
that (4), (12) with Tieaq = Tieaq,0 Tesults in trajectories
that do not violate constraints. In (12), we limit the time
shift parameter Tyeaq to

Tead(T) ET = {T€R50: 0 < 7 < Teadao), (13)

where 7 denotes the time shift parameter set.

In Lines 4-8, the algorithm finds the minimal admis-
sible time shift parameter iteratively, where v is the
minimum adjustment to the Ty..q during each update
and Py is the prediction horizon. The feasibility of
the time shift parameter is evaluated by the prediction
(Algorithm 2), which checks whether the virtual target
determined by the time shift parameter can satisfy all im-
posed constraints for all time instants over the prediction
horizon, i.e., V7 € [7, 7+ Pret ] In Line 6 of Algorithm 2,
the prediction is performed based on forward propagation
of the nonlinear model (1), (4) and (9).

Algorithm 1 Time shift governor algorithm

1: Select the initial shift parameter Ticag = Tiead,0 €
R at 7 = 0 s.t. the resulting trajectory satisfies
constraints using the selected Tyeaq,0 in (4) and (12);

2: while 7 < Topq do

3: Tlead = Tlead, Tiead — 0;

4: while ||[T1eaq — T1eaql| > ¥ do

5: Propose a shift parameter:

Tleadm = (T1lead + T1eaa)/2:

6: Predict the trajectory using the proposed time
shift parameter over the time interval Tpreq = [, 7+
Pref]a

]lsafe = Prediction(Xc (7—)7 Xd(T)7 Tlead,m» Tpred);
7: Update the feasible shift parameter bounds,
Tlead = Tieadm, 1 Lgafe = 1,
Tieaq = Tleadm; Otherwise;
8: end while
9: Set Tread = T1eaa a0d X, (7) = Xo(7 + Treaa);
10: Forward simulate the system over [7,7 4+ Pieaq]
using (1) and (4);
11: T =74 Pleag.

12: end while

By construction, the previously computed time shift
parameter Tieaq(7 — Pleaa), Where Ple.q is the TSG
update period, is feasible at the time instant 7 at which
TSG updates Tieaq; hence Tieada(T — Pieaa) is used as an
upper bound on 7yeaq (7).

Algorithm 2 Prediction(X.(7), X4(7), Tread,ms Tpred)

L: ]lsafe =1;

2: for 7 € Tpreq do

3: Compute control input u4(7) using (4) and (9);

4: Compute LoS cone angle constraint hq

5: Compute relative velocity constraint hs using
(11) if ||p(Xq — X¢)|| < 10 km;

6: If max(hq, hs) = 0, then Ly = 0 and break;

7: end for

8: return 1.

After determining the minimal admissible shift param-
eter, the TSG updates 71044 to this value (Line 9), and the
Deputy spacecraft tracks the virtual target determined by



the current Ty..4 (Line 10). The TSG updates 70,4 again
after P, lead-

IV. SIMULATION RESULTS

In this section, simulation results are reported to
demonstrate the ability of the TSG to enforce constraints
during the rendezvous mission.

A. Simulation specifications

A near rectilinear halo orbit (NRHO) is considered
as a reference trajectory of the Chief spacecraft. Fig-
ure 4 shows this reference trajectory for one period
(Pt ~ 6.6 days), which corresponds to the initial state
X.(0) = [1.0220,0, —0.1821, 0, —0.1031, 0] "[ND]. The
prediction horizon for TSG at the time instant 7 is
selected as [7, 7 + Pref]-
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Fig. 4: Reference NRHO trajectory with velocity (color
figure), its projection (gray), and Moon (dark gray) in
Earth-Moon CR3BP.

In the simulations, we assume that the gravitational
constant of the primaries is G = 6.6743 x 10729 km® .
kg~!-s~2, the mass of the Earth is m. = 5.972 x 10%*
kg, the mass of the Moon is m,,, = 7.3477 x 10?2 kg, and
the Earth-Moon distance is D = 384, 399 km, so that the
mean motion is n = +/G(mg + mar)/D3. We choose
the initial time shift as Tyeaq,0 = 0.0128 [TU] = 1.3333
hr and the time between subsequent TSG updates of the
time shift as Pjgag = 9.5951 x 1073 [TU] = 1 hr.

The Deputy spacecraft is controlled by the nominal
controller (4) using an LQR gain K corresponding to
the following state and control weighting matrices,

Q = diag(10°,10°,10°, 103, 10, 10%),
R = diag(10, 10, 10),

and the linearized model (5) at the initial virtual target
Xc(Tlead,0)~

In the simulations, the TSG handles constraints in-
troduced in Section II-D and is configured with the
following values: The half-cone angle is a = 20 deg,
the maximum thrust magnitude is umax = 0.03 [ND]
= 8.1921 x 10~8km - s72, and the approach velocity
constraint is formed with y; = 2.6015x 107> [ND] = 10
km, v = 20 [ND] = 5.3306 x 107> s~!, and 3 = 0.001
[ND] = 1.0245 x 10~3 km - s~ !, where [ND] stands for
the non-dimensional unit employed in this paper.

B. Results

Table I summarizes the initial conditions of the Deputy
spacecraft and of the virtual target with respect to
the Chief spacecraft in the barycentric frame. At the
beginning of this simulation, the Deputy is about 609
km forward in the orbital track from the Chief. Al-
gorithm 1 is initialized with Tjeaq,0 SO that the virtual
target corresponds to the Deputy position. TSG, after
executing at the initial time, 7 = 0, sets T1eaq(0) so that
Tiead(0)/n = 0.3716 hr; this corresponds to the virtual
target at about 469 km forward from the Chief.

TABLE I: Initial Deputy state and virtual target state
(Tread,0 = 0.0128) with respect to the Chief in the
barycentric frame.

Xa(0)—Xc(0) Jb ks

Position [km] -5.9768 -608.5601 22.8060
Velocity [km/s]  -2.0752x10~3  5.3850x10~5 7.9192x10~3
Xu(0)—Xc(0) Jb ky

Position [km] -11.3610 -466.4400 432349
Velocity [km/s]  -1.5758x1073  3.6634x10~% 5.9513x1073
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Fig. 5: (a) Spacecraft rendezvous trajectories with ini-

tial and final points: X.(0) (magenta), X;(0) (black),

Xo(Tend) (cyan), Xq(7enq) (blue). (b) The Deputy space-

craft (blue line) and the virtual target (magenta asterisk)

trajectories in the LVLH frame, as stated in Section II-A.

Figure 5a shows the three dimensional trajectories of
the Chief (green dotted line) and Deputy (solid blue line)
with the proposed control scheme during the rendezvous
mission. In Figure 5a, the black circle and magenta
cross denote the initial Deputy and Chief locations,
respectively, while the blue circle and cyan cross indicate
the final Deputy and Chief locations. At the end of the
simulation, the deviation between the two spacecraft is
within 7.6230 m using ¢ = 0.01 in Algorithm 1.

Figure 5b depicts how the TSG governs the spacecraft
rendezvous mission by moving the virtual target of the
Deputy in the LVLH frame. With the TSG gradually
adjusting the virtual target, the proposed control scheme
is able to achieve the rendezvous mission while satisfying
the imposed constraints.

Figure 6 shows the Deputy spacecraft position relative
to the Chief spacecraft and relative to the virtual target
in the barycentric frame. The Deputy spacecraft is able
to arrive close to the Chief spacecraft and successfully
complete the rendezvous mission. Note that there are
peaks in both Figures 6a and 6b at around 80 hrs.



These peaks are caused by the sudden increase of the
relative velocity as the spacecraft enters the peri-lunar
region, which is colored in magenta in Figure 4. Getting
into the peri-lunar region instantly boosts the velocity
of spacecraft and causes the deviation in the relative
position. Since the Deputy spacecraft is closer to the
virtual target compared to the Chief spacecraft, this
results in a smaller peak in Figure 6b than the one in
Figure 6a.
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Fig. 6: Time histories of the relative Deputy spacecraft

position (a) to the Chief spacecraft and (b) to the virtual

target.
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Fig. 7: Time histories of constraints during the ren-
dezvous using the TSG (blue) and only the nominal
controller (green): (a) the LoS cone angle constraint
h1; (b) thrust constraint hsy; (c) the approach velocity
constraint hs. Note that hg < 0 is required only when
the Deputy spacecraft is within 10 km distance from the
Chief.

In Figures 7a-7c, we compare the performance of
using only the nominal controller and our proposed
control scheme with the TSG during the rendezvous
mission. Figure 7a shows the time history of the LoS
cone angle constraint h;. The TSG is able to enforce the
LoS cone angle constraint, while the nominal controller
alone (without TSG) experiences significant constraint
violations during the rendezvous mission. Figure 7b
shows the thrust constraint ho (note that it is handled
using saturation as described in (9)). Figure 7c shows the
time history of the approach velocity constraint h3. The
TSG is able to enforce this constraint when it becomes

active (i.e, when the Deputy spacecraft is in the vicinity
of the Chief spacecraft). Note that with the nominal
controller alone the Deputy spacecraft does not enter a
10 km neighborhood of the Chief spacecraft at all due
to thrust saturation, and fails to complete the rendezvous
mission.
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Fig. 8: (a) The evolution of the time shift parameter
during the rendezvous in hours (f1eaa = Tieaa/n)- (b)
Time history of the Deputy spacecraft control input in
the barycentric elements.
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Fig. 9: Time histories of constraints during the ren-
dezvous using the TSG starting from 1,000 different
initial Deputy states (green dots): (a) the LoS cone angle
constraint hq; (b) thrust constraint hs; (c) the approach
velocity constraint hs. (d) Time history of the relative
Deputy spacecraft position to the Chief spacecraft.

Figure 8a illustrates how the time shift parameter
changes as a function of time. At the beginning of the
simulation, we start with the initial admissible time shift
parameter, Tieaq,0, and the time shift parameter, Tyeaq, 15
updated to the smallest admissible value by the TSG at
every update step. The time shift parameter then keeps
reducing until it reaches a small value for which the
Deputy is able to approach the Chief.

Figure 9 shows the results of Monte Carlo simulations
for different initial states of the Deputy spacecraft chosen
at random, while satisfying constraints at the initial time,
and corresponding to the perturbed deputy spacecraft
position along the orbital track and perturbed velocity.



The constraints are enforced in all cases and the Deputy
spacecraft converges to the Chief spacecraft.

V. CONCLUSIONS

In this paper, we considered the application of the time
shift governor (TSG) to the spacecraft rendezvous mis-
sion in a near rectilinear halo orbit (NRHO). The TSG
is shown to be capable of enforcing various constraints
during the rendezvous mission, such as on the line of
sight cone angle, the thrust, and the approach velocity.
To enforce the constraints, the TSG commands a virtual
target trajectory to the Deputy spacecraft controller,
which is a time-shifted version of the Chief spacecraft
trajectory. The time shift is gradually reduced to zero by
the TSG so that the virtual target trajectory and the actual
Chief spacecraft trajectory eventually coincide. Simu-
lated maneuvers for NRHO in the Earth-moon system
demonstrated the effectiveness of the TSG in handling
constraints.
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