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Abstract
For ! ≥ 2 and " ≥ 0, let H!," ⊂M!," denote the complex moduli stack of n-marked smooth hyperelliptic curves
of genus g. A normal crossings compactification of this space is provided by the theory of pointed admissible
Z/2Z-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex
which computes the weight zero compactly supported cohomology of H!,". Using this graph complex, we give
a sum-over-graphs formula for the #"-equivariant weight zero compactly supported Euler characteristic of H!,".
This formula allows for the computer-aided calculation, for each ! ≤ 7, of the generating function h! for these
equivariant Euler characteristics for all n. More generally, we determine the dual complex of the boundary in any
moduli space of pointed admissible G-covers of genus zero curves, when G is abelian, as a symmetric Δ-complex.
We use these complexes to generalize our formula for h! to moduli spaces of n-pointed smooth abelian covers of
genus zero curves.
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1. Introduction
For integers ! ≥ 2 and " ≥ 0, let H!," ⊂M!," denote the complex moduli stack of n-marked smooth
hyperelliptic curves of genus g. This space is a smooth Deligne–Mumford stack of dimension 2!+"−1.
The group #" acts on H!," by permuting the marked points, and the rational cohomology groups with
compact support %$

# (H!,";Q) are #"-representations in the category of mixed Hodge structures over
Q. In particular, each cohomology group %$

# (H!,";Q) carries a weight filtration

$0%
$
# (H!,";Q) ⊂ $1%

$
# (H!,";Q) · · · ⊂ $4!+2"−2%

$
# (H!,";Q) = %$

# (H!,";Q),

which is preserved by the #"-action. In this paper, we study the #"-representation defined by the weight
zero piece of this filtration.

When X is a smooth and separated variety or Deligne-Mumford stack, Deligne’s weight spectral
sequence [26, §3.2] computes the associated graded pieces of the weight filtration on the compactly
supported cohomology of X. It identifies the weight zero piece with the reduced cohomology of the dual
complex of any normal crossings compactification of X. We will furnish a normal crossings compactifi-
cation of H!," using the theory of pointed admissibleZ/2Z-covers, as developed by Abramovich–Vistoli
[3], Abramovich–Corti–Vistoli [2] and Jarvis–Kaufmann–Kimura [36], following Harris–Mumford’s
original theory [32]. Denoting the dual complex of the resulting boundary divisor by Θ!,", we then
study the weight zero compactly supported cohomology of H!," via the identification

$0%
$
# (H!,";Q) ! %̃$−1(Θ!,";Q) (1.1)

mentioned above, where %̃∗ denotes reduced cohomology. Along the way, we also explicitly determine
the dual complex of the boundary in any space of pointed admissible G-covers of genus zero curves, for
abelian groups G (Theorem 3.5).

Our main result concerns the #"-equivariant weight zero compactly supported Euler characteristic

&%!
(
$0%

∗
# (H!,";Q)

)
:=

4!+2"−2∑
$=0

(−1)$ ch"
(
$0%

$
# (H!,";Q)

)
∈ Λ,

where ch" (·) denotes the Frobenius characteristic of an #"-representation: this is an element of the ring

Λ = lim
←−
Q['1, . . . , '"]%!

of symmetric functions, which encodes the character of the representation. See [38] or [45] for more on
symmetric functions and the Frobenius characteristic.

For each ! ≥ 2, we define

h! :=
∑
"≥0

&%!
(
$0%

∗
# (H!,";Q)

)

to be the generating function for these equivariant Euler characteristics. Note that h! is an element
of Λ̂, the degree completion of Λ. In Theorem A below, we prove a sum-over-graphs formula for the
generating function h!. The precise definition of the terms in the formula can be found in Section 6.
For now, we only remark that (<3

2!+2 is a finite set of trees, and given such a tree C, there is a canonically
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associated vertex-weighted graph )& which can roughly be understood as a ‘tropical double cover’ of C;
see Section 4 for details on this perspective.

Theorem A. We have

h! =
∑

&∈' <3
2"+2

(−1) |(# |

| Aut()& ) |
∑

)∈Aut(*# )
sgn(* |(# )

∏
+≥1

(1 + ++ ) , (*# ,),+) ,

where ,& is the set of edges of the tree C, ++ =
∑

">0 '
+
" ∈ Λ̂ is the kth power sum symmetric function,

and - · . ()& , *, -) is given by the compactly supported Euler characteristic of the set of points in )&

which have orbit of length k, under the action of *.

Implementing Theorem A on a computer, we are able to compute h! explicitly for 2 ≤ ! ≤ 7; see
Table A.1. The code is available at [14]. Our data allow us to extract the polynomials /" (0) ∈ Q[0], for
each " ≤ 9, which have the property that /" (!) = &0

# (H!,") for each ! ≥ 2, where

&0
# (H!,") :=

4!+2"−2∑
$=0

(−1)$ dimQ$0%
$
# (H!,";Q)

denotes the numerical weight zero compactly supported Euler characteristic. See Proposition C in
Section 1.3 below. Also see Figure A.1 in Appendix A for an illustration of Theorem A when ! = 2; in
this case, (<3

6 consists of three trees, and their contributions to h2 can be computed by hand.
Our proof of Theorem A relies on our description of the cellular chain complex of Θ!," as a graph

complex generated by certain double covers of trees, which are a special case of the theory of graph-
theoretic admissible covers we develop in Section 3. We find that several subcomplexes of this graph
complex are acyclic; the proofs are given in Section 5. As in earlier work on M!," [22], one conceptually
important subcomplex is the repeated marking subcomplex (i.e., the subcomplex spanned by graph-
theoretic admissible covers containing a vertex supporting more than one marking). This subcomplex is
acyclic (Theorem 5.5), and after quotienting by it, the resulting chain complex is related to configuration
spaces of distinct points on graph-theoretic admissible covers; see [10, 11] for related work. Since
Theorem A is about Euler characteristics, we may work one graph-theoretic admissible cover at a time,
summing the individual contributions. For each individual graph-theoretic admissible cover, we use
Proposition 6.3, explained more below, to calculate its contribution. This proves Theorem A.

Proposition 6.3 may be useful in other applications, so we mention it briefly here: it gives a formula
for the completed symmetric function

∑
"≥0

&%!
# ((Conf" (1) × Δ◦)/2),

where X is any finite CW complex, Δ◦ is an open simplex, G is a finite group, and G acts on X cellularly
and on Δ◦ by permuting vertices. See Section 6. This proposition is closely inspired by a result of
Gorsky [31, Theorem 2.5] concerning complex quasi-projective varieties X with an action of a finite
group; our specific formulation is a new contribution. In particular, it does not appear in the work of
Chan–Faber–Galatius–Payne on the top weight cohomology of M!,", where an alternate argument,
which is less geometric, is used [20, Proposition 3.2].

Now let us turn our attention to individual cohomology groups, rather than Euler characteristics.
First, for " = 0, 1, 2 and 3, the cohomology of H!," was completely computed by Tommasi [46]; see
Section 1.2. The consequences of these computations for the weight zero part of cohomology with
compact supports can be interpreted via our work as statements about chain complexes of graph-
theoretic admissible covers. In Section 5, we prove some of these statements, using the acyclicity results
mentioned above. In particular, we deduce the following facts, first proved by Tommasi:
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Proposition B. For all ! ≥ 2, we have
1. $0%$

# (H!,";Q) = 0 for all i, when " ≤ 1;
2. When " = 2, we have

$0%
2!+1
# (H!,2;Q) ! Q.

As an #2-representation, we have

$0%
2!+1
# (H!,2;Q) !

{
triv if ! is even
sgn if ! is odd.

Part (1) of Proposition B is established via a spectral sequence argument, similar to the ones we use
for acyclicity of other subcomplexes of Θ!,". For part (2), we write down an explicit cellular cycle on
Θ!,2 corresponding to the nonzero class in $0%2!+1(H!,2;Q); see Figure 11 in Section 5. Tommasi
shows additionally that $0%$

# (H!,2;Q) = 0 for 3 ≠ 2! + 1, but we do not see how to prove this directly
using our graph complex, nor have we investigated whether we can use our methods to re-deduce
$0%∗# (H!,3;Q) for all g.

1.1. The support of $0%∗# (H!,";Q)
It is worth noting that the weight zero compactly supported cohomology of H!," is supported in at most
two degrees. Precisely,

$0%
$
# (H!,";Q) = 0 unless 3 = 2! − 2 + " or 3 = 2! − 1 + ". (1.2)

We now explain the claim (1.2), which follows from an argument we learned from D. Petersen. To
sidestep stack-theoretic issues, let us momentarily replace H!," by its coarse moduli space %!,"; this
is inconsequential on the level of rational cohomology. It is well known that %! is affine, as it can be
identified with the quotient M0,2!+2/#2!+2. In general, %!," is not far from affine; as explained by D.
Petersen in a MathOverflow post [24], the affine stratification number [43] of %!," is 1 for all " > 0.
By [43, Corollary 4.19] and a suitable comparison theorem for étale cohomology [39, Theorem 21.1],
we may conclude that

%$ (H!,";Q) = 0 for 3 > 2! + ", and %$
# (H!,";Q) = 0 for 3 < 2! − 2 + ",

the latter by Poincaré duality. As the dual complexΘ!," of the normal crossings compactification of H!,"

by pointed admissible Z/2Z-covers is a generalized cell complex of dimension 2! − 2 + " (Section 3),
the claim (1.2) follows immediately from (1.1).

Thus, our formula for h! is a formula for the difference of the two #"-representations in (1.2) and
can be used to bound the multiplicities of Specht modules appearing in them individually. We have not
investigated whether h! is, in fact, a cancellation-free formula for this difference.

1.2. Related work on the cohomology of H!,"

Recently, there have been a number of significant advances on the geometry of moduli spaces of pointed
hyperelliptic curves. Canning–Larson study the rational Chow ring of H!," – in particular, determining
it completely for " ≤ 2! + 6 [16]. Their results also have implications for rationality of H!,". More
generally, there has been progress on understanding the birational geometry ofH!,"; see, for example, the
overview and references in that paper. In another direction, Bergström–Diaconu–Petersen–Westerland
[7] compute the stable homology of braid groups with coefficients in (any Schur functor applied to)
the Burau representation. These results have implications for the stable homology of moduli spaces of
hyperelliptic curves with twisted coefficients. They can also be related to the Serre spectral sequence on
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rational cohomology for the fiber bundle Conf" (#!) → H!," → H!, as C. Westerland has explained to
us. Our focus here is the cohomology groups of H!," with (untwisted) Q-coefficients, and specifically
the weight zero compactly supported cohomology groups.

The topological Euler characteristic of H!," has been computed by Bini [13], but his techniques are
not compatible with the weight filtration. Gorsky [30] calculates the equivariant Euler characteristic

&%! (H!,") :=
4!+2"−2∑

$=0
(−1)$ ch" (%$ (H!,";Q))

by fibering H!," over H!. The fiber of this morphism over a point of H! representing a curve C is equal
to Conf" (4)/Aut(4). Gorsky proceeds by stratifying H! by the #"-equivariant Euler characteristic of
the fibers and then calculating the Euler characteristic of each stratum. Our techniques are similar in
spirit to Gorsky’s. The #"-equivariant weight zero compactly supported Euler characteristic of H!,"

is equal to ℎ" − &%! (Θ!,"), where ℎ" ∈ Λ is the nth homogeneous symmetric function. As explained
above, we first remove an acyclic locus from Θ!," and then stratify the remaining space in terms of
configuration spaces of graphs, summing up these contributions to give our formula (Section 6).

1.3. Relation to point-counting
Bergström [6] studies the cohomology of H!," via point-counting: for all ! ≥ 2, he gives an algorithm
to determine the count of F--points of H!," for " ≤ 7 and for all prime powers q. Together with the
results of [8], Bergström’s work implies that for odd q, the number of F--points of H!," agrees with a
polynomial )!," (6) for " ≤ 9 (there is a different polynomial for even q). By [33, Theorem 6.1.2(3)],
we have an equality

)!," (6) =
2!+"−1∑

.=0
&2 .
# (H!,")6 . ,

where

&+
# (H!,") :=

4!+2"−2∑
$=0

(−1)$ dimQGr/+ %$
# (H!,";Q),

and

Gr/+ %$
# (H!,";Q) := $+%

$
# (H!,";Q)/$+−1%

$
# (H!,";Q)

is the kth associated graded piece of the weight filtration. In particular, the constant term of )!," (6)
is equal to the weight zero compactly supported Euler characteristic. Bergström’s original work [6] is
#"-equivariant, and we have confirmed that our data agree with his for " ≤ 7. He has explained to us
that [6, Theorem 5.2] and [8] imply that for each " ≤ 9, there exists a polynomial /" (0) ∈ Q[0], with
degree bounded by " − 2 if n is even and " − 3 if n is odd, such that

&0
# (H!,") = /" (!)

for all g. With these bounds on the degrees, our formula allows us to compute this polynomial for all
" ≤ 9, using the data in Table A.3. The polynomials /" (0) can certainly be calculated from Bergström’s
work but did not explicitly appear there, so we record them below. In each case, the degree of /" (0)
attains the communicated bound.

Proposition C. We have &0
# (H!,") = 0 for " ∈ {0, 1, 3}, while &0

# (H!,2) = −1. For 4 ≤ " ≤ 9, we have
the following:
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&0
# (H!,4) = !(1 − !)

&0
# (H!,5) = 5!(−1 + !)

&0
# (H!,6) =

1
8!(198 − 203! + 18!2 − 13!3)

&0
# (H!,7) =

7
4!(−78 + 83! − 18!2 + 13!3)

&0
# (H!,8) =

1
4!(3420 − 3784! + 1355!2 − 1005!3 + 25!4 − 11!5)

&0
# (H!,9) =

9
4!(−2700 + 3092! − 1545!2 + 1195!3 − 75!4 + 33!5).

1.4. Relation to previous work on M!,"

Our calculations are a new step in understanding weight zero compactly supported rational cohomology
of moduli spaces via combinatorics of normal crossings compactifications [1, 15, 21, 22, 20]. In our
calculation of h!, we proceed in a similar fashion to Chan–Faber–Galatius–Payne [20], who calculate
the #"-equivariant weight zero Euler characteristic of M!,". They use the dual complex Δ!," of the
Deligne–Mumford–Knudsen compactification M!," ⊂ M!,", which can be interpreted as a tropical
moduli space of curves [1]. They express the generating function

z! :=
∑
"≥0

&%!
(
$0%

∗
# (M!,";Q)

)

as a sum over contributions from configuration spaces of graphs. The contribution from each graph is a
sum of monomials in the inhomogeneous power sum symmetric functions )$ := 1 + +$ , of degree equal
to the topological Euler characteristic of the graph. A crucial difference between their work and ours,
which has been an unexpected subtlety here, is that they find that the only graphs contributing to their
formula are connected with first Betti number g. As such, their formula for z! is a Laurent polynomial in
the )$’s, homogeneous of degree 1− !, where )$ has degree i. The ability to focus on graphs with fixed
Euler characteristic is a significant conceptual aid to their work. In contrast, we find that while all of the
graphs contributing to h! are connected double covers of metric trees, they do not have fixed first Betti
number, so their topological Euler characteristics vary, and indeed for ! ≥ 3, the formulas for h! are not
homogeneous in the )$’s. When ! = 2, we have H2," = M2,", so h2 = z2 is homogeneous of degree −1.

1.5. Applications to moduli spaces of admissible G-covers in genus zero
While our main focus in this paper is the moduli space H!,", our techniques are more general. As
mentioned above, Theorem 3.5 in Section 3 contains a description of the dual complex of the boundary
divisor in any moduli space of pointed admissible G-covers of genus zero curves, when G is an abelian
group. We specialize to 2 = Z/2Z in order to study H!,". We can prove a generalization of Theorem A
to more general moduli spaces of pointed G-covers; see Remarks 5.13 and 6.6, and Theorem D in
Section 6.

2. Pointed admissible G-covers and their moduli
In this section, we recall moduli spaces of pointed admissible G-covers, following [3, 2, 32, 36]. We
determine the connected components of these spaces when ! = 0 and G is abelian (Proposition 2.4), and
we give a normal crossings compactification (Proposition 2.5). Later, in Section 3, we will determine the
dual complex of this compactification. Ultimately, we will obtain a normal crossings compactification
of H!," and the corresponding dual complex as a special case in Section 4.
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2.1. Admissible G-covers
Let G be a finite group, and let !, " ≥ 0 be integers such that 2! − 2 + " > 0. We recall the notion of an
admissible G-cover of nodal curves of type (!, ") over an arbitrary base scheme T ([36, Definition 2.1],
[2, Definition 4.3.1]). It is the data of an n-marked, stable genus g curve (4, +1, . . . , +") over T, and a
covering of nodal curves 7 : )→ 4 with an action of G on P leaving 7 invariant, such that

1. 7 is a principal G-bundle away from the nodes and markings of C,
2. The analytic local equations for )→ 4 → ( at a point + ∈ ) over a node of C are

Spec 8[9,:]/(9: − 0) → Spec 8[', ;]/('; − 00 ) → Spec 8,

where 0 ∈ 8, ' = 90 and ; = :0 for some integer < > 0.
3. The analytic local equations for )→ 4 → ( at a point + ∈ ) over a marked point of C are

Spec 8[9] → Spec 8['] → Spec 8,

where ' = 91 for some integer = > 0.
4. If ' ∈ ) is a geometric node, then the action of the stabilizer 22 of x on the tangent spaces of the

two analytic branches at x is balanced: the characters of these two one-dimensional representations
of 22 are inverse to each other.

Admissible G-covers of type (!, ") form a Deligne-Mumford stack, denoted Adm!," (2); this is a
consequence of the identification of Adm!," (2) with the space Bbal

!," (2) of balanced twisted G-covers
of type (!, ") which is proven in [3] to be a Deligne-Mumford stack. We may write G-cover rather than
admissible G-cover for short.

2.2. Admissible covers of smooth curves
Let Adm◦!," (2) denote the open substack of G-covers in which the target curve (and hence also the
source curve) is smooth. In this section, we will determine the connected components of Adm◦0," (2)
(Proposition 2.1). We will use this result later when determining the connected components of the
corresponding space of pointed admissible G-covers.

There is a forgetful map

> : Adm◦!," (2) →M!,"

sending a G-cover ) → (4, +1, . . . , +") to the n-pointed curve (4, +1, . . . , +"). The morphism > is
étale; this property can be deduced from [9, Theorem 5.1.5], as explained in Proposition 6.5.2 of op.
cit. Working over C, the fiber over (4, +1, . . . , +") is identified with the set

Hom(>1 (4 − {+1, . . . , +"}, +0),2)/2, (2.1)

where G acts by conjugation, and +0 ∈ 4 − {+1, . . . , +"} is any choice of basepoint. There are no
other restrictions on the set (2.1); in particular, the source curves P are not required to be connected.
An element of the set (2.1) specifies a G-cover of the punctured curve 4 − {+1, . . . , +"}, which can be
extended uniquely over the punctures. Then the data of the morphism > is equivalent to the data of the
action of >1 of the base space M!," on the fiber (2.1) above. We shall now consider this action in the
case ! = 0, when the action may be understood via the classical Hurwitz theory of P1. We denote by

?ni
" (2) := {(!1, . . . , !") ∈ 2" : !1 · · · !" = 1}

the set of Nielsen classes. We do not impose that !1, . . . , !" generate G; correspondingly, our source
curves are not required to be connected. The group G acts by conjugation on ?ni

" (2), and the elements
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of ?ni
" (2)/2 are called inner Nielsen classes. Recall the following relationship between the set (2.1) to

the set of inner Nielsen classes: choose loops @1, . . . , @" around +1, . . . , +", respectively, based at +0,
such that @1, . . . , @" generate >1 (4 − {+1, . . . , +"}, +0) subject only to the relation

@1 · · · · · @" = 1.

Such a choice identifies the set (2.1) with the inner Nielsen classes.
Now the following diagram of pullback squares relates Adm◦0," (2) to Hurwitz spaces of G-covers.

Adm◦0," (2)

!!

"" H3
P1 ,"

!!

"" AH3
P1 ,"

!!

M0," "" Conf" (P1) "" UConf" (P1).

The spaces above are defined as follows. The configuration spaces (ordered and unordered) of n points
in P1 are denoted Conf" (P1) and UConf" (P1), respectively. The space AH3

P1 ,"
is the moduli space

parametrizing sets # ⊂ P1 of n points, together with a ramified G-cover . : )→ P1 whose branch locus
is contained in S. The space H3

P1 ,"
is the ordered version of this space, obtained by pullback. The map

M0," → Conf" (P1) fixes (+1, +2, +3) to be (0, 1,∞), for instance.

Proposition 2.1. If G is abelian, then H3
P1 ,"
→ Conf" (P1), and hence also Adm◦0," (2) →M0,", is a

trivial bundle. As a variety, Adm◦0," (2) is isomorphic to M0," × ?ni
" (2).

Proof. For an arbitrary finite group G, the way in which AH3
P1 ,"

is a covering space over UConf" (P1)
is classically understood, essentially going back to Hurwitz [35]; see [27, p. 547]. The following is a
complete description. Let # = {=1, . . . , ="}. For an appropriate choice of basis, Hom(>1 (P1 − #, +0),2)
is identified with ?ni

" (2). And >1 (UConf" (P1)) has a presentation with generators B1, . . . , B"−1, where
B$ interchanges points i and 3 + 1. Furthermore, the generators B$ act on ?ni

" (2) via

B$ · (!1, . . . , !") = (!1, . . . , !$−1, !$!$+1!
−1
$ , !$ , !$+2, . . . , !").

In the case that G is abelian, the action is

B$ · (!1, . . . , !") = (!1, . . . , !$−1, !$+1, !$ , !$+2, . . . , !").

In other words, the action of >1 (UConf" (P1)) on ?ni
" (2) factors through >1 (UConf" (P1)) → #".

Passing to the ordered configuration space, we therefore obtain a trivial action of the spherical braid
group >1 (Conf" (P1)) on ?ni

" (2), proving the claim. !

Remark 2.2. Stack-theoretically, we have

Adm◦0," (2) !M0," × [?ni(2)/2] (2.2)

if G is abelian, where G acts trivially on ?ni(2). Under this identification, write

Adm◦0," (2; !1, . . . , !") (2.3)

for the connected component of Adm◦0," (2) corresponding to the Nielsen class (!1, . . . , !"); it is
isomorphic to M0," × C2.
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2.3. Pointed admissible covers
We study spaces of pointed admissible covers and determine the connected components of these spaces
in Proposition 2.4. This is an important calculation toward the computation of the connected boundary
strata in Theorem 3.5 since the boundary strata of spaces of pointed admissible covers are quotients of
products of smaller spaces of pointed admissible covers.

Let G be any group, not necessarily abelian. Let M3
!," denote the space of n-marked pointed admis-

sible G-covers of genus g [36]. It is a moduli space for nodal admissible G-covers )→ (4, +1, . . . , +"),
together with a choice of a lift +̃$ on P of each +$ . The open substack M3

!," is the moduli space of pointed
admissible G-covers in which source and target are smooth. Summarizing, we have a Cartesian square

M3
!,"

4

!!

⊂ "" M3
!,"

4

!!

Adm◦!," (2) ⊂ "" Adm!," (2)

which lays out the unfortunate lack of parallelism in the notation for these spaces. The notation comes
from the literature, however.

Proposition 2.3. The morphisms M3
!," → Adm◦!," (2) and M3

!," → Adm!," (2) are étale.

For easy reference, we prove Proposition 2.3 below. We note, however, that the argument appears as
part of the proof in [36, Theorem 2.4] of the fact that M3

!," is a smooth Deligne-Mumford stack, flat,
proper and quasi-finite over M!,".

Proof. We verify the second statement, which implies the first. Recall the construction of M3
!,", which

we summarize following [36]. Let , → C = [,/2] denote the universal source curve and stacky target
curves, respectively, over Adm!," (2), and let C denote the coarse space of C. For 3 = 1, . . . , ", let
S$ → C denote the closed substack of Csm whose image in C is the universal 3th marked point; S$ is an
étale gerbe over Adm!," (2). Let ,$ = , ×C S$ . We have the following diagram, whose top square is
Cartesian and where the morphisms known to be étale are labeled:

,$
""

ét
!!

,

ét
!!

S$
""

ét

##
!!

!!
!!

!!
!!

!!
!!

!!
C= [,/2]

!!

4

!!

Adm!," (2).

The morphism ,$ → Adm!," (2) is étale since it is a composition of ,$ → S$ , which is a pullback of
an étale morphism and hence étale, and the étale gerbe S$ → Adm!," (2). Therefore,

M3
!," = ,1 ×Adm",! (3) · · · ×Adm",! (3) ,"

is also étale over Adm!," (2). !
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The spaces M3
!," and Adm◦!," (2) need not be connected, as observed in Remark 2.2. Given

!1, . . . , !" ∈ 2, write M3
!," (!1, . . . , !") for the open and closed substack of M3

!," in which the mon-
odromy at the marking +̃$ in the source curve is !$ . We recall the notion of monodromy at a point in the
source curve, following [36, §2.1]: pick a small oriented loop around the point +$ in the target curve, say
based at a point 6$ near +$ . Then the loop lifts to d possible paths between the d preimages of 6$ near
+̃$ , where d temporarily denotes the number of sheets of P meeting at +̃$ . Each of these d paths starts
and ends at points x and !', respectively, for some well-defined ! ∈ 2. Indeed, this g is independent
of choice of one of those d paths since they are each of the form !$' to !$+1' for 3 = 0, . . . , D − 1. The
monodromy at +̃$ is then defined to be g. (Note that g can depend, a priori, on choice of lift +̃$ of +$ if
G is not abelian. Indeed, the action of any ℎ ∈ 2 moves the previously mentioned path near +̃$ from x
to !' to a path near ℎ+̃$ from ℎ' to ℎ!' = (ℎ!ℎ−1)ℎ', so the monodromy at ℎ+̃$ is ℎ!ℎ−1.)
Proposition 2.4. Let G be an abelian group. Suppose !1 · · · !" = 1, so that M3

0," (!1, . . . , !") is
nonempty. The connected components of M3

0," (!1, . . . , !") are in bijection with orbits of functions

{1, . . . , "}→ 2/〈!1, . . . , !"〉

under left G-translation.

Proof. The restriction of the map M3
0,"

4−→ Adm◦0," (2) to M3
0," (!1, . . . , !") becomes a surjection

M3
0," (!1, . . . , !")

4−→ Adm◦0," (2; !1, . . . , !") !M0," × C2,

where the last isomorphism was established in Proposition 2.1. This morphism is étale by Proposition 2.3.
Now let ) → (4, +1, . . . , +") be any unpointed admissible cover; the fiber of > over it is the action

groupoid on all lifts +̃1, . . . , +̃" of +1, . . . , +" respectively, with the group G acting by simultaneous
translation of the +̃$ . The connected components of M3

0," (!1, . . . , !") are in bijection with the orbits of
this category under the further action of pure mapping class group Mod0,". Those orbits are in bijection
with orbits of functions {1, . . . , "}→ >0 ()) under left G-translation, and >0 ()) ! 2/〈!1, . . . , !"〉. !

It will be convenient to work with pointed curves labeled by arbitrary finite sets. Thus, let G be a
finite group, S a finite set, and @ : # → 2 any function. For ! ≥ 0 with 2! − 2 + |# | > 0, let

M3
!,% (@)

denote the space of pointed admissible G-covers of genus g curves with specified monodromy @. Let
M3

!,% (@) denote the open subset parametrizing admissible G-covers in which the target curve is smooth.

Proposition 2.5. The space M3
!,% =

∐
5 M3

!,% (@) is a normal crossings compactification of
M3

!,% =
∐

5 M3
!,% (@).

Proof. This follows from the fact that Adm◦!," (2) ⊂ Adm!," (2) is a normal crossings compactification,
by the proof of [40, §3.23], and M3

!,% is étale over Adm!,% (2) (Proposition 2.3). !

3. Boundary complexes of pointed admissible G-covers
In this section, we write down the boundary complex for the normal crossings compactification

M3
0,% (@) ⊂M3

0,% (@) (3.1)

when G is abelian (Theorem 3.5). This will be used in Section 4 to provide a normal crossings
compactification of H!," and obtain its boundary complex. The boundary complex is governed by
graph-theoretic admissible covers of graphs, which we develop below in §3.1.
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The basic notion of an admissible cover in tropical geometry was established in [17] and [18], and
hyperelliptic graphs and tropical curves were studied in [5] and [19]. In recent work of Len, Ulircsch and
Zakharov, [37], the authors classify harmonic G-covers of a tropical curve for abelian G. More closely
related to this paper, the combinatorics of the stratification of admissible covers spaces by dual graphs
is in [9, §7]. Building on this, Schmitt–van Zelm define admissible G-graphs, which are the graphs with
G-action arising as dual graphs to admissible G-covers. They note that a stratum corresponding to an
admissible G-graph may be disconnected or empty. They also compute the degree of the map from such
a stratum to the moduli space of target curves [44, §3]. Implementations in SageMath are available in
the package admcycles [25]. Closely related, the notion of a graph G-cover associated to a admissible
G-cover was developed by Galeotti [28, 29] – see especially [29, §3.1] – for the purpose of studying
the birational geometry, and singularities, of (coarse spaces of) moduli spaces of genus g curves with a
principal G-bundle. Our definition is a version of these, undertaken in a case when it becomes possible
to explicitly determine the combinatorics of the connected strata of the boundary. In other words, by
putting into place our restrictions on g and G, we are able to give a completely explicit description of
the boundary complex of (3.1), which is likely hard in general. See Remarks 3.6 and 3.7 for further
comments on the general case and for further discussion of the surrounding literature.

3.1. Categories of covers of graphs
Throughout Section 3, let G be a finite abelian group. In this section, we describe the boundary strata
of the compactification

M3
0,% (@) ↩→M3

0,% (@),

showing in Theorem 3.5 that they are in correspondence with graph-theoretic admissible G-covers,
which we will now define.

A graph 4 = (F ,%, 3& , <& ) is the data of two finite sets of vertices F = F (4), and half-edges
% = % (4), together with maps

3& : % → %, <& : % → F

such that 3& is an involution. We abbreviate 3 = 3& and < = <& . We permit i to have fixed points, and let
G = G(4) denote the set of fixed elements of i, called legs. View <& as the map taking a half-edge to its
incident vertex. The edge set , = , (4) is the set of pairs {ℎ, 3(ℎ)} for 3(ℎ) ≠ ℎ; view 3& as the ‘other
half’ map on the half-edges.

A morphism of graphs . : 4 → 4 ′ is given by set maps .6 : F → F ′ and .7 : % → % ′ such that
the relevant squares commute:

%

,$
!!

$#
"" %

,$
!!

% ′
$#′

"" % ′

%

,$
!!

0#
"" F

,%
!!

% ′
0#′

"" F ′.

For a finite set S, an S-marking of C is an injection H = H& : # → G(4). It will be convenient not to
require that m is a bijection. A morphism of S-marked graphs (4,H& ) → (4 ′,H&′) is a morphism of
graphs . : 4 → 4 ′ that preserves the S-marking (i.e., .7 ◦ H& = H&′).

Definition 3.1. Let G be a finite abelian group, and S a finite set. An S-marked, admissible G-cover of
graphs in genus 0 is

1. A morphism . : ) → 4 of S-marked graphs, such that C is a stable S-marked tree: for each vertex
I ∈ F (4), we have |<−1

& (I) | ≥ 3 and that H# is a bijection between S and the legs of C.
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12 M. Brandt et al.

Figure 1. A G-cover of 5-marked graphs, for 2 = Z/4Z = {0, 1, 2, 3}. The labels of legs are boxed to
avoid confusion with the monodromy marking J : % (4) → Z/4Z.

2. A left action Φ : 2×)→ ) leaving )→ 4 invariant, such that )→ )/2 is canonically isomorphic
to )→ 4.

3. A ‘monodromy marking’ J : % (4) → 2. Thus, every half edge (including legs) of C is assigned an
element of G. If 3(ℎ) ≠ ℎ, we require that J(3(ℎ)) = J(ℎ)−1.

4. A function ! : F ()) → Z≥0; we call !(I) the weight or genus of v.

The above data must satisfy the following:

(a) For every I ∈ F (4), . −1(I) ! 2/〈J(ℎ) : ℎ ∈ <−1(I)〉 as left G-sets, and∏
ℎ∈0−1 (9)

J(ℎ) = 1.

(b) For every ℎ ∈ % (4), . −1(ℎ) ! 2/〈J(ℎ)〉 as left G-sets.
(c) (local Riemann-Hurwitz)For all I ∈ F ()), writing : = . (I) and ": = <−1

& (:), the genus !(I) of v
is given by

2 − 2!(I) = |〈J(": )〉 |
(
2 −

∑
ℎ∈"&

|〈J(ℎ)〉 | − 1
|〈J(ℎ)〉 |

)
.

We will use the boldface notation P → C to indicate a graph-theoretic admissible G-cover, with the
understanding that this includes all of the data above. When we need to refer to the marking functions,
we will write H* for the marking of P and H& for the marking of C.

It is clear from condition (c) that the genus function g is determined by the monodromy marking
J as well as the morphism ) → 4. Moreover, since C is a tree, the data of C and J, without the S-
marking, actually determine P and Φ up to isomorphism. However, the S-marking on P is not in general
determined by the S-marking on C.

If P → C is an S-marked admissible G-cover of nodal curves, with C a stable S-marked curve
of genus 0, then we obtain a corresponding S-marked admissible G-cover of dual graphs P → C.
The meaning of condition (a) is that the subgroup of G stabilizing the generic point of an irreducible
component of P above a given irreducible component C9 of C is exactly the subgroup of G generated

2���:�  .73�7�1 ������
 05:������	��
��43:2/.�7�43�/��!���5��3.1/���3 /�:3�!�
�/::

https://doi.org/10.1017/fms.2024.53


Forum of Mathematics, Sigma 13

by the monodromy elements around the special points (nodes and marked points) on C9 . Thus, each
irreducible component of P above C9 maps to C9 with degree |〈J(<−1

& (I))〉 |. The content here is that
since C9 is rational, >1 (C9 ) is generated by keyhole loops around the special points. Similarly, the data
of a homomorphism >1 (C9 ) → 2, for appropriately chosen keyhole loops, are the data of an ordered
tuple of elements of G whose product is the identity. Condition (b) is similar.
Definition 3.2. Let P→ C and P′ → C′ be graph-theoretic S-pointed admissible G-covers.
1. An isomorphism (P → C) → (P′ → C′) is the data of G-equivariant graph isomorphisms

7 : )→ )′ and K : 4 → 4 ′, compatible with the marking functions H* and H& , as well as the
monodromy marking J, which fit into a commutative square.

2. Let L ∈ , (4) be an edge. The edge-contraction of P → C, denoted (P → C)/L, is obtained by
contracting the edge e in C, together with its preimages in P. The new monodromy marking is
obtained by restricting the previous one.

Definition 3.3. We write Γ3
0,% for the category of all graph-theoretic S-pointed admissible G-covers,

where morphisms are given by compositions of isomorphisms and edge-contractions. Given a function
@ : # → 2, we put Γ3

0,% (@) for the full subcategory of Γ3
0,% on those graph-theoretic S-pointed admissible

G-covers P→ C such that the monodromy marking on C extends @. Precisely, @ = J |; (&) ◦H& , where
H& : # → G(4) is the S-marking on C.

3.2. The dual complex of the boundary
We now state Theorem 3.5 on the boundary complex of the space of pointed admissible covers. Recall
the category of symmetric Δ-complexes (see [21]) (i.e., the category Fun(FIop,Set), where FI is the
category of finite sets with injections). For 6 ≥ −1 an integer, we henceforth write

[6] = {0, . . . , 6}.

This notational convention includes the special case [−1] = ∅. Given 1 : FIop → Set and an integer
6 ≥ −1, write

1- = 1 ([6])

for the set of q-simplices of X.
Definition 3.4. Fix ! = 0 and G abelian. For data2, # and @ as above, we define a symmetricΔ-complex

Δ3
0,% (@) : FIop → Set

as follows.
For each 6 ≥ −1, the set Δ3

0,% (@)- is the set of isomorphism classes of pairs (P→ C,M), where

1. P→ C is an object of Γ3
0,% (@)

2. M : [6] → , (4) is a bijection, called an edge-labeling.
An isomorphism of pairs (P → C,M) → (P′ → C′,M′) is an isomorphism (P → C) → (P′ → C′)
such that ifK : C→ C′ is the induced isomorphism on targets, we haveM′ = K◦M as maps [6] → , (C′).

For morphisms, given 3 : [6′] ↩→ [6], and given a graph-theoretic admissible cover P→ C as above,
contract the edges , (4)−M(3([6′])) to obtain a new object of Γ3

0,% (@) and take the unique edge-labeling
by [6′] which preserves the order of the remaining edges.
Theorem 3.5. Let G be an abelian group, and S a finite set. There is an isomorphism of symmetric
Δ-complexes

Δ3
0,% (@) ! Δ (M3

0,% (@) ⊂M3
0,% (@)).
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Proof. Let us start with the stratification of the boundary of Adm0,% (2; @). The space Adm0,% (2; @) is
nonempty if and only if

∏
1∈% @(=) = 13 . The boundary complex of Adm◦0,% (2; @) ⊂ Adm0,% (2; @) is

the complex of trees C with a bijective S-marking H : # → G(4), together with a monodromy marking
J : % (4) → 2 extending @, which must satisfy, for every vertex I ∈ F (4) and L = {ℎ1, ℎ2} ∈ , (4),∏

ℎ∈0−1 (9)
J(ℎ) = 1, J(ℎ1)J(ℎ2) = 1.

The stratum of the boundary indexed by such a triple (4,H, J) is indeed connected since it is, up to finite
quotient, isomorphic to a product

∏
9 ∈6 (&) Adm0,"' (2; J9 ) of varieties that are themselves connected;

see Equation (2.3). More formally, as a symmetric Δ-complex, the boundary complex has a q-simplex
for every such datum (4,H, J) together with an arbitrary bijective edge-labeling M : [6] → , (4), one
for each isomorphism class of (4,H, J,M).

Suppose

(4,H : # → G(4), J : % (4) → 2)

is a stable S-marked tree with monodromy marking J as above. For I ∈ 4, write "9 = <−1 (I) for the set
of half-edges (including legs) at v, and write

29 = 〈J(ℎ) : ℎ ∈ "9〉.

Let J9 be the restriction of J to "9 . As noted above, (4,H, J) indexes a boundary stratum of
Adm0,% (2; @). The preimage in M3

0,% (@) of this stratum is isomorphic to the variety
∏

9 ∈6 (&)

(
M3

0,"' (J9 ) /2( (&)
)
, (3.2)

for example, by [41, §2]. Let us explain the action of 2( (&) in (3.2). For a given edge L = {ℎ, ℎ′},
incident to vertices v and I′, the copy of G indexed by e acts by translating the lifted marked point
indexed by h, respectively ℎ′, in the moduli space M3

0,"' (J9 ), respectively M3
0,"'′

(J9′). (In general, G
would also change the values of the marking functions J9 (ℎ) and J9′ (ℎ′), respectively, by conjugation,
but G is abelian here.)

The variety (3.2) may not be connected, and it remains to describe its connected components. For
each I ∈ F (4), let

19 = {Fun("9 ,2/29 )}/2,

where the quotient is with respect to the G-action on 2/29 . From Proposition 2.4, the connected
components of (3.2) are in bijection with

./
0

∏
9 ∈6 (&)

19
12
3
/2( (&) . (3.3)

The last step is a combinatorial identification of (3.3) with the set of isomorphism classes of graph-
theoretic S-pointed admissible G-covers. Let us begin by considering local data at a single vertex
I ∈ F (4). Consider an element .9 ∈ 19 , together with the data of J |"' : "9 → 2. From .9 and J |"' we
can extract a graph-theoretic "9 -pointed admissible cover involving graphs with legs but no edges. 49

is a single vertex, with legs "9 ; F ()9 ) = 2/29 as a left G-set, and above each leg ℎ ∈ "9 of C is a set
of legs in )9 isomorphic to 2/〈J(ℎ)〉, with root map compatible with the map 2/〈J(ℎ)〉 → 2/29 .
Finally, )9 has S-marking given by .9 .
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Continue to fix a stable S-marked tree C and monodromy marking J on C. Now, given ( .9 )9 ∈
∏

19 ,
we assemble the local picture above into an admissible cover of graphs. For every edge L = {ℎ, ℎ′} of
C, with root vertices I = < (ℎ) and I′ = < (ℎ′), the half-edges of )9 above h and the half-edges of )9′

above ℎ′ are each isomorphic to 2/〈J(ℎ)〉 = 2/〈J(ℎ′)〉 as G-sets. There is a unique G-equivariant
bijection between these two sets that sends the chosen lift of h to the chosen lift of ℎ′, and another
choice of lifts of h and ℎ′ produce the same bijection if they are related to the original choices by
the same element of G. Therefore, these identifications glue the half-edges above h and ℎ′ into edges
above e, obtaining a graph-theoretic admissible cover ) → 4 which was independent of the action of
2( (&) . It is straightforward to reverse this process, giving an element of the set (3.3) starting from a
graph-theoretic admissible cover. !

Remark 3.6. Theorem 3.5 furnishes an explicit description of the symmetric Δ-complex

Δ (M3
!," ⊂M3

!,") (3.4)

when ! = 0 and G is abelian. It is sufficiently explicit that it can be programmed, and indeed, we
carry out computer calculations for the results in Appendix A. Without restrictions on G and g, it is
still possible to give a general description of (3.4) using the framework of graphs of groups, roughly,
decorating vertices of graphs with fundamental groups of punctured curves. This idea will appear in
future work by M. Talpo, M. Ulirsch and D. Zakharov; we thank Ulirsch for bringing it to our attention.
This general description is not explicit in the above sense. It involves the very interesting sub-question
of determining the connected components of the spaces M3

!," in general; compare with Proposition 2.1.
We also refer to forthcoming work of P. Souza that constructs (3.4) in the case of G cyclic with g
arbitrary and identifies it as the nonarchimedean skeleton of the toroidal pair. Moreover, that work is a
precursor to further work by Y. El Maazouz, P. Helminck, F. Röhrle, P. Souza and C. Yun studying the
homotopy type of boundary complexes of unramified Z/+Z covers for ! = 2.

Remark 3.7. The graph-theoretic admissible G-covers in this paper (Definition 3.1) are exactly what
are needed for a precise description of the boundary complex (Theorem 3.5). Thus, they are reasonably
expected to be similar to, but distinct from, the spaces of covers of tropical curves appearing in [17], in
[18] and the references therein. The work [18] on tropicalizations of the space of admissible covers is
an important comparison point for this paper. Rather than G-covers, they study the admissible covers
compactification of the Hurwitz space of degree d covers of smooth curves with fixed target genus h
and fixed ramification profiles (and hence fixed source genus g) over n marked branch points in the
target. All of the inverse images of the branch points are also marked. This moduli space is canonically
isomorphic to a cover of a component of the space Admℎ," (#<). In [18], the boundary complex, which
may be identified with the link of the skeleton of the Berkovich analytification [1], is compared, but not
identified, with a certain space of tropical admissible covers via a surjective morphism of generalized
cone complexes from the former to the latter. The failure of this surjection to be an isomorphism is due
to multiplicities fully accounted for in [18, §4.2.4] and is related to Remark 3.6 above.

4. Compactifications of H!,"

Let ! ≥ 2 and " ≥ 0. Throughout this section, we will fix

# = {1, . . . , "} ∪ {:1, . . . ,:2!+2}

and fix 2 = Z/2Z = {0, 1}. We also define @ : # → Z/2Z by @(3) = 0 for all 3 ∈ {1, . . . , "}, and
@(:+ ) = 1 for - ∈ {1, . . . , 2! + 2}. We will discuss how the stack quotient

[MZ/2Z
0,% (@)/#2!+2]
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Figure 2. Two graph-theoretic admissible G-covers, where 2 = Z/2Z = {0, 1}.

provides a normal crossings compactification of H!,", and we will give an explicit description of the
dual complex Θ!," of this compactification. The description will be in terms of the dual complexes
studied in the previous section. We first consider the case of labeled Weierstrass points and then quotient
out by #2!+2.

4.1. The complex Θ̃!,"

First, let H̃!," denote the moduli stack of hyperelliptic curves of genus g with n distinct marked points
and 2! + 2 labeled Weierstrass points. The symmetric group on 2! + 2 letters permutes the labels on
Weierstrass points, and

H!," ! [H̃!,"/#2!+2] .

In this subsection, we will provide a normal crossings compactification of H̃!," and give the corre-
sponding dual complex. Then we will quotient out by #2!+2 to give a normal crossings compactification
of H!,".

In H̃!,", a marked point is allowed to coincide with a Weierstrass point, and two marked points are
allowed to form a conjugate pair under the hyperelliptic involution. Because of this, two types of graphs
will require special attention.

Definition 4.1. We call the following graph-theoretic admissible covers type (1) and type (2), respec-
tively:

1. For distinct 3, N ∈ {1, . . . , "}, the admissible cover of graphs in Figure 2 on the left.
2. For each 3 ∈ {1, . . . , "} and :+ ∈ {:1, . . . ,:2!+2}, the admissible cover of graphs in Figure 2 on

the right.

Proposition 4.2. There is an open inclusion

H̃!," ↩→MZ/2Z
0,% (@)

which is a normal crossings compactification, and whose boundary complex Θ̃!," is isomorphic to the
subcomplex of

ΔZ/2Z
0,% (@)

on simplices whose vertices are not of type (1) or (2) in Definition 4.1.
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Proof. Let H̃◦!," denote the open substack of H̃!," in which a marked point may not collide with a
Weierstrass point, and two marked points may not form a conjugate pair. Then

H̃◦!," !MZ/2Z
0,% (@),

where MZ/2Z
0,% (@) denotes the interior of the moduli space MZ/2Z

0,% (@) of pointed admissible covers. We
define a partial compactification H∗!," of H̃◦!,", such that

H̃◦!," ⊂ H∗!," ⊂MZ/2Z
0,% (@),

and the second inclusion is normal crossings. In MZ/2Z
0,% (@), define H∗!," to be the open complement of

all boundary divisors except for those corresponding to dual graphs of type (1) or (2) (see Definition 4.1).
Since H∗!," is the complement of a subset of the boundary divisors, the divisor

MZ/2Z
0,% (@) \ H∗!,"

still has normal crossings. Stabilization gives a canonical isomorphism H∗!," ! H̃!," which is equivariant
with respect to the action of #", thus giving the first part of the result.

We now turn our attention to the boundary complex. Denote by ΔZ/2Z
0,% (@) the dual complex of the

compactification

H̃◦!," !MZ/2Z
0,% (@) ⊂MZ/2Z

0,% (@).

The target graphs of type (1) and (2) in Definition 4.1 have one edge and correspond to vertices in
ΔZ/2Z

0,% (@). Then the boundary complex Θ̃!," of the inclusion

H̃!," ⊂MZ/2Z
0,% (@)

is the subcomplex of ΔZ/2Z
0,% (@) determined by those simplices which have no vertices of type (1) or (2)

in Definition 4.1. !

Let us now describe the complex ΔZ/2Z
0,% (@) in more detail. Its q-simplices are given by isomorphism

classes of pairs (P → C,M), where P → C is an object of the category ΓZ/2Z
0,% (@) (Definition 3.3),

and M : [6] → , (4) is an edge-labeling. Moreover, on G(4), the monodromy marking J satisfies
J(H& ( N)) = 0 if N ∈ {1, . . . , "}, and J(H& ( N)) = 1 if N ∈ {:1, . . . ,:2!+2}. We will call the elements of

H& ({:1, . . . ,:2!+2}) ⊂ G(4)

the branch legs of C.
Notice that the above conditions on J |; (&) suffice to determine J on all other half-edges of C, by

condition (1) of Definition 3.4. Call a vertex I ∈ F (4) a leaf vertex if it is incident to only one edge. If
a leaf vertex I ∈ F (4) supports an odd number of branch legs, then the non-leg half edge h incident to
v must satisfy J(ℎ) = 1. However, if a leaf vertex v supports an even number of branch legs, then the
non-leg half edge h incident to v must satisfy J(ℎ) = 0. Proceeding inductively, this determines J on
all half-edges incident to non-leaf vertices of C as well.
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Figure 3. A {1, 2} ∪ {:1, . . . ,:8}-marked stable tree C, together with the two lifts of H& to a marking
H* . These non-isomorphic lifts are determined by a choice of element in the fiber over each leg marked
by {1, 2} on C, and two such choices define the same graph-theoretic admissible Z/2Z-cover if they
differ by the Z/2Z-action on P.

This discussion implies that given the monodromy data @ and an S-marked stable tree C, the only
additional data required to determine an object of the category ΓZ/2Z

0,% (@) is a lift of the marking function
H& : # → G(4) to a function H* : # → G()) such that the diagram

G())

!!

#

=(
$$"""""""""

=#
"" G(4)

commutes. (Note that the morphism of graphs ) → 4, without the marking function on P, is already
determined by C and J.) Moreover, since each branch leg in C has a unique preimage in P, one only
needs to choose, for each 3 ∈ {1, . . . , "}, a leg in the preimage of H(3) ∈ G(4). Two such choices are
equivalent if they differ by the Z/2Z-action on P. See Figure 3 for an example.

4.2. The complex Θ!,"

We now construct a normal crossings compactification of H!," and the corresponding dual com-
plex Θ!,".

By Proposition 4.2, in order to pass from ΔZ/2Z
0,% (@) to Θ̃!,", we remove all edge-labeled pairs

(P→ C,M) such that P→ C admits a contraction to covers of type (1) or (2) in Definition 4.1. To that
end, let

ΓZ/2Z,∗
0,% (@)

be the full subcategory of ΓZ/2Z
0,% (@) on those covers which do not admit a contraction to covers of type

(1) or (2).

Definition 4.3. We define the category ΓH
!," as follows.

1. The objects are #2!+2-orbits of objects of ΓZ/2Z,∗
0,% (@). Precisely, the objects are covers P→ C, where

(a) C = (4,H& ) is the data of a stable tree C with 2!+2+" legs, together with an injective function
H& : {1, . . . , "}→ G(4).

(b) P = (),H*), where P is the unique graph-theoretic admissible Z/2Z-cover of C obtained
by declaring each unmarked leg to have monodromy 1 ∈ Z/2Z and each marked leg to have
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monodromy 0, and H* : {1, . . . , "} → G()) is a marking of G()) such that H* (3) is a leg in
the inverse image of H& (3) for all i.

The cover P→ C is required to satisfy the following:
◦ No contraction to type (1): If I ∈ F (4) has |<−1 (I) | = 3 and H−1

& (<−1(I)) = {3, N}, then a single
vertex of P supports markings i and j – in other words,

<* (H* (3)) = <* (H* ( N)).

◦ No contraction to type (2): No vertex I ∈ F (4) satisfies

|<−1 (I) | = 3, |G(4) ∩ <−1 (I) | = 2, and |H−1
& (<−1 (I)) | = 1.

2. The morphisms are compositions of isomorphisms and edge-contractions.

Proposition 4.4. The inclusion H!," ⊂ [MZ/2Z
0,% (@)/#2!+2] is a normal crossings compactification, and

the boundary complex Θ!," has the following explicit description.

1. The set of q-simplices
(
Θ!,"

)
- is the set of isomorphism classes of pairs (P→ C,M) where P→ C

is an object of ΓH
!,", and M : [6] → , (4) is an edge-labeling.

2. Given an injection O : [6′] ↩→ [6], we define O∗(P → C,M) ∈
(
Θ!,"

)
-′ by contracting those edges

which are not in the image of O and taking the unique induced edge-labeling which preserves the
order of the remaining edges.

Proof. Since the action of #2!+2 on H̃!," ⊂MZ/2Z
0,% (@) preserves H̃!," and sends strata isomorphically

to strata, we have that

H!," ! [H̃!,"/#2!+2] ⊂ [MZ/2Z
0,% (@)/#2!+2]

is a normal crossings compactification with boundary complex equal to

Δ (H̃!," ⊂MZ/2Z
0,% (@))/#2!+2 = Θ̃!,"/#2!+2,

and the described symmetric Δ-complex is precisely the quotient of Θ̃!," by #2!+2. !

As a direct result of Proposition 4.4, we have the following corollary identifying the weight zero
compactly supported cohomology of H!," with the reduced cohomology ofΘ!,"; see [21, Theorem 5.8].

Corollary 4.5. For each i, there are canonical #"-equivariant isomorphisms

$0%
$
# (H!,";Q) ! %̃$−1(Θ!,";Q) ! %̃$−1(Θ!,";Q)∨,

where %̃∗ and %̃∗ denote reduced cohomology and homology, respectively.

We now establish some conventions for working with objects of the category ΓH
!,".

Definition 4.6. Given an object P → C of ΓH
!,", we define the weight of a vertex I ∈ F (C) to be the

number of unmarked legs based at v.

The total weight of the vertices of C is 2! + 2. The weight in this sense should not be confused with
the notion of vertex weights corresponding to genera of irreducible curves. The two notions of vertex
weight are related by the Riemann-Hurwitz formula.

When depicting objects of ΓH
!,", we adopt the following conventions. Instead of drawing the unmarked

legs of C, we will label each vertex of C with its weight. To avoid confusion with the genera of vertices
in the source graph, we will depict the weight of a vertex in C with the color grey and genera of vertices
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Figure 4. The images of the graph-theoretic admissible Z/2Z-covers in ΓZ/2Z,∗
0,% (@) from Figure 3, under

the functor ΓZ/2Z,∗
0,% (@) → ΓH

!,". The number of unmarked legs at a vertex of a target tree is indicated by
the weight function. We do not depict any unmarked legs of the source graph since they are determined
by the legs of the target.

with blue. Since each unmarked leg of C has a unique preimage in P, we will not draw those legs of
P. When a leg of C has two preimages in P, so only one is marked, we will suppress the other leg. See
Figure 4 for the images of the ΓZ/2Z,∗

0,% (@) objects from Figure 3 under the functor to ΓH
!,". See Figure 5

for a complete list of isomorphism classes of ΓH
!,"-objects when ! = 2 and " = 0.

Remark 4.7. We remark on the case " = 0. In this case, the symmetric Δ-complex Θ!,0 is isomorphic
to the quotient of the dual complex

Δ0,2!+2 := Δ
(
M0,2!+2 ⊂M0,2!+2

)
(4.1)

by the #2!+2-action permuting the marked points. The dual complex (4.1) is the moduli space of (2!+2)-
marked tropical curves of genus zero and volume one [22], also known as the space of phylogenetic
trees [4, 12, 42]. The identification

Θ!,0 = Δ0,2!+2/#2!+2

can be seen directly from our description of the category ΓH
! and holds despite the fact that the morphism

[MZ/2Z
0,2!+2(@)/#2!+2] → [M0,2!+2/#2!+2]

is not an isomorphism or even a Z/2Z-gerbe, due to the possible presence of extra automorphisms, more
than Z/2Z, in the source curves of Z/2Z-admissible covers.

5. Acyclic subcomplexes of Θ!,"

In this section, we will study the cellular chain complex of Θ!,", establishing Theorem 5.1 below, which
states that several natural subcomplexes are acyclic. This will allow us to prove Proposition B later in
this section. The acyclicity results will be used in Section 6 to obtain Theorem A.
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Figure 5. The set of isomorphism classes of ΓH
!,"-objects for ! = 2 and " = 0.

Theorem 5.1. Fix ! ≥ 2 and " ≥ 0. Then the following subcomplexes of Θ!," have vanishing reduced
rational homology:
1. the repeated marking locus Θrep

!,", namely the subcomplex determined by those ΓH
!,"-objects P→ C

such that there exists I ∈ F (P) supporting at least two markings from {1, . . . , "};
2. the weight3 locus Θ≥3

!,", determined by those ΓH
!,"-objects P→ C such that C has a vertex of weight

at least 3 (Definition 4.6); and
3. the intersection Θrep

!," ∩ Θ≥3
!,".

Remark 5.2. There are stronger statements that are also true, namely that the three subspaces of the
space Θ!," corresponding to (1), (2) and (3) are, in fact, contractible. It is possible to convert the proofs
below, of vanishing reduced rational homology to proofs of contractibility, using the vertex property
technique of [22, §4].

5.1. The cellular chain complex of Θ!,"

Following [21, §3], the reduced rational homology of Θ!," is computed by the graph complex C (!,")
∗

described as follows. In degree p, C (!,")
> is spanned by pairs (P → C,M) where P → C is an object

of ΓH
!,", and M : [+] → , (C) is a bijective edge-labeling. These pairs are subject to the relation

(P→ C,M) = sgn(@) (P→ C,M ◦ @) whenever @ ∈ #>+1 = Aut([+]).
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Figure 6. The cover B% → E% .

The differential P : C (!,")
> → C (!,")

>−1 is given by the signed sum of edge contractions:

P (P→ C,M) =
∑
$∈ [>]

(−1)$ (Q$)∗(P→ C,M),

where Q$ : [+ − 1] → [+] is the unique order-preserving injection which misses i.
To prove Theorem 5.1, we will show that the corresponding sub-chain complexes of C (!,")

∗ are acyclic.
Denote by R(!,")

∗ the sub-chain complex of C (!,")
∗ spanned by those pairs (P→ C,M) such that P has

a vertex v that has at least two markings from {1, . . . , "}; this is the chain complex which computes
the reduced rational homology of Θrep

!,". Denote by Q(!,")
∗ the sub-chain complex of C (!,")

∗ spanned by
those pairs (P→ C,M) where C has at least one vertex v with weight at least 3.

We will show that the chain complexes R(!,")
∗ and Q(!,")

∗ ∩R(!,")
∗ are acyclic for all ! ≥ 2 and all

" ≥ 2 (Theorem 5.5), that the chain complex Q(!,")
∗ is acyclic for all ! ≥ 2 and all " ≥ 0 (Theorem 5.9),

and that the chain complex C (!,")
∗ is acyclic for all ! ≥ 2 and " ≤ 1 (Theorem 5.12). Thus, Theorem 5.5

and Theorem 5.9 prove Theorem 5.1, and Theorem 5.12 gives part (1) of Proposition B.
The proofs of these theorems are informed by previous work of Chan–Galatius–Payne on contractibil-

ity criteria for symmetric Δ-complexes [22], as well as work of Conant–Gerlits–Vogtmann [23] on the
acyclicity of the subcomplex of Kontsevich’s graph complex spanned by graphs with cut vertices.

5.2. The homology of Θrep
!,"

It will be useful to isolate specific types of edges of covers with repeated markings.

Definition 5.3. For a ΓH
!,"-object P → C with repeated markings, we say an edge L ∈ , (C) is a

supporting edge, with support equal to # ⊆ ["], if, upon contracting all edges of C which are not equal
to e, as well as their preimages in P, we obtain the cover B% → E% depicted in Figure 6. If |# | = 3, we
will call e an i-supporting edge. Note that, necessarily, 3 ≥ 2.

Definition 5.4. Given a ΓH
!,"-object P → C, we define the supporting edge retraction of P → C to be

the cover obtained by contracting all supporting edges in C and their preimages in P.

Theorem 5.5. For all ! ≥ 2 and " ≥ 2, the chain complexes R(!,")
∗ and R(!,")

∗ ∩Q(!,")
∗ are acyclic.

Proof. We will prove the theorem only for R(!,")
∗ , as the same argument works for R(!,")

∗ ∩Q(!,")
∗ . For

ease of notation, fix !, " ≥ 2 and put

R∗ := R(!,")
∗ .
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First, filter R∗ as follows: let

R≥$∗ ↩→ R∗

be the subcomplex generated by covers which have a k-supporting edge for some - ≥ 3. More precisely,
we mean that R≥$∗ is spanned by covers obtained by edge-contraction from covers with supporting edges
of this type. We apply this definition even when 3 = " + 1, in which case R≥"+1

∗ = 0. Then we have a
filtration

0 = R≥"+1
∗ ↩→ R≥"∗ ↩→ · · · ↩→ R≥2

∗ = R∗.

Passing to the associated spectral sequence, it suffices to show that for each 3 = 2, . . . , ", the successive
quotient chain complexes

R$
∗ := R≥$∗ /R≥$+1

∗

are acyclic. These quotient chain complexes are spanned by covers with i-supporting edges and their
edge-contractions but do not include any covers with k-supporting edges or their edge contractions for
any - > 3. Now we filter R$

∗. Define

/>R$
∗ ↩→ R$

∗

to be the sub-chain complex spanned by graphs with at most p non-supporting edges. The number of
non-supporting edges cannot increase under edge contraction, so />R$

∗ really is a subcomplex. We
obtain an ascending filtration

0 = /−1R$
∗ ↩→ /0R$

∗ ↩→ · · · ↩→ R$
∗,

and again by considering the associated spectral sequence, it suffices to show that successive quotients

2 >R$
∗ := />R$

∗//>−1R$
∗

are acyclic, in order to conclude that R$
∗ and hence R∗ is acyclic. For fixed i and p, let 8$,> denote the

set of isomorphism classes of ΓH
!,"-objects P → C where |, (C) | = + and which (1) do not have any

supporting edges, (2) admit a contraction from a cover with an i-supporting edge and (3) do not admit a
contraction from any covers with k-supporting edges for - > 3. Then we have a direct sum decomposition

2 >R$
∗ =

⊕
P→C∈?),*

LP→C
∗ ,

where LP→C
∗ is the sub-chain complex consisting of those covers whose supporting edge retraction is

equal to P → C. This direct sum decomposition holds because the differential on 2 >R$
∗ is given by

a signed sum of supporting edge contractions and hence preserves the supporting edge retraction of a
given cover. Next, given P→ C ∈ 8$,> , we have a tensor product decomposition

LP→C
∗ ! ./

0
⊗

9 ∈6 rep
) (P)

(Q ∼−→ Q)12
3
[1 − +],

where F rep
$ (P) denotes the set of vertices of P which contain exactly i markings, and the first copy of

Q is in degree 1. This tensor product decomposition holds because a generator of LP→C
∗ is determined

by a choice of subset of those vertices of P which contain i markings: the corresponding generator
is determined by expanding a single i-supporting edge from the image of each chosen vertex in C.
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Figure 7. The cover D→ F.

Figure 8. A cover in ΓH
5,2 and its maximal expansion by 3-ends.

(Since 3 ≥ 2, such an expansion is indeed possible, producing a stable S-marked target tree.) The degree
shift is required to account for the p edges of P → C. Altogether, this shows that LP→C

∗ is a tensor
product of acyclic chain complexes, so LP→C

∗ is itself acyclic, and the proof is complete. !

5.3. The homology of Θ≥3
!,"

We will now show that the chain complex Q(!,")
∗ is acyclic. It will again be convenient to name particular

types of edges.

Definition 5.6. Suppose P→ C is an object of ΓH
!,", and that C has a vertex of weight at least 3.

1. We say L ∈ , (C) is a 3-end if upon contracting all edges in C except for e, and their preimages in
P, we obtain the cover D→ F in Figure 7.

2. We say a cover P′ → C′ is a 3-end expansion of P → C if P → C is obtained from P′ → C′ by
contracting a sequence of 3-ends.

It is straightforward to see that for any cover P→ C, the poset of 3-end expansions of P→ C has a
maximal element, as in the following lemma. We omit the proof; see Figure 8 for an example of how
this expansion is constructed.

Lemma 5.7. Let P → C be an object of ΓH
!,". Then the poset of 3-end expansions of P → C has a

unique maximal element P′ → C′, and this expansion is canonical in the sense that any automorphism
of P→ C lifts to an automorphism of P′ → C′.

Given a ΓH
!,"-object P→ C, let 8(P→ C) be the set of isomorphism classes of covers obtained from

P→ C by contracting 3-ends. We define a chain complex QP→C
∗ as follows: the vector space QP→C

> is
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spanned by pairs (H → K,M), where H → K is an element of 8(P → C) with |, (K) | = + + 1, and
M : [+] → , (K) is an edge-labeling. These generators are subject to the usual relation

(H→ K,M ◦ @) = sgn(@) (H→ K,M)

for @ ∈ Aut([+]). The differential on QP→C
∗ is given by the signed sum of 3-end contractions; we set it

equal to 0 on any generators which do not have any 3-ends.

Proposition 5.8. Suppose P→ C has a 3-end and is maximal with respect to expanding 3-ends. Then
QP→C
∗ is acyclic.

Proof. First, consider the case where C has no automorphisms. This implies that all 3-end contractions
of C have no automorphisms, since any automorphism of the target tree of a ΓH

!,"-object must lift to an
automorphism of its maximal 3-end expansion. Let 6 + 1 be the number of distinct 3-ends of C. We
can understand QP→C

∗ as a shift of the augmented cellular chain complex of the standard q-simplex R- ,
viewed as the space parameterizing assignments of nonnegative lengths to the 6 + 1 distinct 3-ends of
C, such that the lengths sum to one. Note that 6 ≥ 0 by assumption, so that R- is nonempty. So in the
automorphism-free case, QP→C

∗ is acyclic.
For the general case, when C and its contractions may have automorphisms, fix a labeling of the edges

of C, and denote the resulting object by C†. This induces a labeling of the edges of each contraction of
C. Let 8(C†) be the set consisting of C† and all of its 3-end contractions. We can make a chain complex
QC,†
∗ which in degree p is spanned by pairs [K,M] where K is an element of 8(C†) with |K| = + + 1,

and M : [+] → , (K) is a bijection, subject to the usual relations under the action of Aut([+]). Observe
that there is a canonical action of Aut(C) on the chain complex QC,†

∗ , and QP→C
∗ is identified with the

Aut(C)-coinvariants of the complex QC,†
∗ , by the second part of Lemma 5.7. Since Aut(C) is finite, it has

no homology over the rationals. Moreover, QC,†
∗ is acyclic by the first part of the proof. We conclude that

%∗(QP→C
∗ ) = %∗((QC,†

∗ )Aut(C) ) = (%∗(QC,†
∗ ))Aut(C) = 0,

as desired. !

We now prove that Q(!,")
∗ is acyclic.

Theorem 5.9. For ! ≥ 2 and " ≥ 0, the chain complex Q(!,")
∗ is acyclic.

Proof. Let />Q(!,")
∗ denote the subspace spanned by those covers whose target tree has at most p edges

which are not 3-ends. This defines a bounded, increasing filtration of Q(!,")
∗ . The ,0 page

,0
>,- = />Q(!,")

>+- //>−1Q(!,")
>+-

of the associated spectral sequence is spanned by covers whose target tree has exactly p edges which
are not 3-ends. The differential P0 : ,0

>,- → ,0
>,-−1 is given by a signed sum of 3-end contractions.

Therefore, by Lemma 5.7, the pth column of the ,0 page breaks up into a direct sum of chain complexes
of the form QP→C

∗ , where C has at least one 3-end, and the tree obtained from C by contracting all 3-ends
has p edges. Proposition 5.8 then implies that the ,1 page vanishes, which completes the proof. !

5.4. Calculations on Θ!," for " ≤ 2

We conclude this section by proving Proposition B. The first part of Proposition B asserts that C (!,")
∗

is acyclic for " ≤ 1, and the proof is similar to the one that Q(!,")
∗ is acyclic. Once again, we isolate

particular types of edges:
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Figure 9. The cover J→ K.

Figure 10. A cover P→ C in ΓH
5,2 and the two distinct maximal elements of its poset of 2-end expansions.

When " ≤ 1, this poset always has a unique maximal element, as explained in the proof of Lemma 5.11.

Definition 5.10. Let P→ C be a ΓH
!,"-object. An edge L ∈ , (C) is called a 2-end if upon contracting

all edges of C except for e, and their preimages in P, we obtain the cover J→ K in Figure 9.

The key to the proof of acyclicity of C (!,")
∗ when " ≤ 1 is the following lemma.

Lemma 5.11. Let P → C be an object of ΓH
!," for " ≤ 1. Then the poset of expansions of P → C by

2-ends has a unique maximal element P′ → C′. Moreover, this expansion is canonical in the sense that
any automorphism of P→ C lifts to one of P′ → C′.

Proof. It is clear how to construct the graph C′: for every vertex of C with weight D ≥ 2, one expands
5D/26 many 2-ends from v, leaving behind a vertex of weight D − 25D/26 (if D = 2, this expansion
should only be performed if it preserves the stability condition – that is, only if the vertex is not already
part of a 2-end). This uniquely determines a cover )′ but does not determine the marking function on
)′. If " = 0, then there is no marking function, so P′ is determined. For " = 1, the only ambiguity arises
when v supports the unique marking, and the preimage of v in C′ has 2 preimages in the graph )′, so
one has to make a choice as to which fiber to mark. However, since " = 1, both choices are equivalent,
as they differ by the Z/2Z-action on )′. Therefore, P′ is also determined when " = 1. The statement on
lifting of automorphisms is straightforward to check. The lemma fails when " > 1, because, in general,
there is no canonical way of distributing the markings supported at v among the fibers over v in )′. See
Figure 10 for an example. !

Given Lemma 5.11, the proof of the following theorem is completely analogous to the proof of
Theorem 5.9; we will only outline the necessary steps.

Theorem 5.12. For ! ≥ 2 and " ≤ 1, the chain complex C (!,")
∗ is acyclic.
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Figure 11. A cycle spanning %̃2! (Θ!,2;Q).

Proof. First, define C(P → C) to be the set of isomorphism classes of ΓH
!,"-objects obtained from

P → C by contracting 2-ends. Then use this to define a chain complex GP→C
∗ analogously to QP→C

∗ ,
where the differential is given by a signed sum of 2-end contractions. The proof that GP→C

∗ is acyclic,
for P → C maximal with respect to expanding 2-ends, is exactly the same as the proof of Proposition
5.8. Finally, one proves the theorem by filtering C (!,")

∗ : set />C (!,")
∗ to be the subcomplex of C (!,")

∗
spanned by those covers with at most p edges which are not 2-ends. Then the pth column of the ,0

page of the associated spectral sequence breaks up into a direct sum of complexes of the form GP→C
∗ by

Lemma 5.11, so the ,1 page vanishes, and the result follows. !

Theorem 5.12 gives part (1) of Proposition B. Part (2) states that

$0%
2!+1
# (H!,2;Q) ! Q

and that the corresponding #2-representation is trivial if g is even and given by the sign representation
if g is odd. We prove this now by writing down an explicit cycle in C (!,2)

2! corresponding to this class.
See Figure 11.

Proof of Proposition B, part (2). We have an isomorphism of #2-representations

$0%
2!+1
# (H!,2;Q) ! %̃2! (Θ!,2;Q)∨

by Corollary 4.5. We have

%̃2! (Θ!,2;Q) = %2!
(
C (!,2)
∗

)
.

Observe that 2! is the top homological degree of C (!,2) : the maximal number of edges of a stable tree
with 2! + 4 legs is 2! + 1. Therefore, any cycle in C (!,2)

2! defines a class in homology. Any target tree
for a cover in C (!,2)

2! must be trivalent, and to be a nonzero element, it cannot have any automorphisms
which act by an odd permutation of the edge set. It is straightforward to conclude that such a tree must
be equal to the tree depicted in Figure 11. This tree C has two covers, depicted in Figure 11. Therefore,
dim C (!,2)

2! = 2, where a basis is given by choosing any edge-labeling of the aforementioned tree. One can
verify directly that neither one of these basis elements forms a cycle on their own, but their difference
does. From this we conclude that %2! (C (!,2)

∗ ) ! Q. To understand the #2-representation, we note that
when g is even, the transposition in #2 induces an even permutation on any edge-labeling of the given
tree, and when g is odd, the transposition induces an odd permutation of the edge labels. !
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Remark 5.13. Theorem 5.5 generalizes to other spaces of admissible covers. Fix an integer S > 0,
and let G be an abelian group, which we now write additively to be consistent with our notation for
2 = Z/2Z. Let

J : {:1, . . . ,:@ }→ 2

be a function such that the image of J generates G, which additionally satisfies

@∑
$=1

J(:$) = 0,

where 0 ∈ 2 denotes the identity element. For any integer " ≥ 0, we can extend J to a function

{1, . . . , "} ∪ {:1, . . . ,:@ }→ 2

by setting the image of each 3 ∈ {1, . . . , "} to be 0; for ease of notation, we will also call this extension
J. We set the notation

M3
0,"+@ (J) := M3

0, {1,...,"}∪{:1 ,...,:+ } (J)

and define M3
0,"+@ (J) similarly. We now define an intermediate locus

M3
0,"+@ (J) ⊂ M̃3

0,"+@ (J) ⊂M3
0,"+@ (J)

in analogy with the space H̃!," of n-marked hyperelliptic curves of genus g together with a labeling
of their Weierstrass points, considered in §4.1. Given a graph-theoretic pointed admissible G-cover
P → C ∈ Ob(Γ3

0,"+@ (J)), where Γ3
0,"+@ (J) is the category defined in Definition 3.3, we say that

P→ C is forbidden if all of the following conditions hold:

(a) |, (C) | = 1,
(b) If we erase all of the legs labeled by {1, . . . , "} from C, the resulting {:1, . . . ,:@ }-marked tree is

not stable in the sense of Definition 3.1, and
(c) the source graph P has no vertices supporting repeated markings among {1, . . . , "}.

Each forbidden cover P→ C corresponds uniquely to a boundary divisor of M3
0,"+@ (J), and we define

M̃3
0,"+@ (J) to be the complement in M3

0,"+@ (J) of those boundary divisors which are not forbidden.
When 2 = Z/2Z = {0, 1}, S = 2! + 2, and J(:$) = 1 for all i, the forbidden divisors are precisely

those of type (1) and (2) in Definition 4.1, and we have

M̃Z/2Z
0,"+2!+2 (J) ! H̃!,".

For general G and J, the space M̃3
0,"+@ (J) can be identified with the moduli space of smooth N-pointed

admissible G-covers of P1, with monodromy specified by J, together with n distinct marked points on
the source curve. This space admits an #"-action given by permuting the n marked points on the source,
and the isomorphism with M̃3

0,"+@ (J) is #"-equivariant.
The dual complex Θ̃3

0,"+@ (J) of the normal crossings compactification

M̃3
0,"+@ (J) ⊂M3

0,"+@ (J)
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is the subcomplex of Δ3
0,"+@ (J) of those simplices which have no forbidden vertices. The analogue

of Theorem 5.5 holds for Θ̃3
0,"+@ (J): the subcomplex parameterizing graph-theoretic admissible G-

covers P → C where P has a repeated marking is acyclic. Our proof of Theorem 5.5 carries through
to this setting, mutatis mutandis. In Remark 6.6 below, we explain how this leads to a generalization of
Theorem A for these spaces.

6. A graph sum formula for h!
Recall from the introduction that

h! =
∑
"≥0

4!−2+2"∑
$=0

(−1)$ ch"$0%
$
# (H!,";Q) ∈ Λ̂

denotes the generating function for the weight zero equivariant Euler characteristics of the moduli spaces
H!,". In this section, we will prove Theorem A, thus establishing our sum-over-graphs formula for h!.
We let (2!+2 denote the set of isomorphism classes of stable trees with 2! + 2 unlabeled legs. When
each leg is given monodromy marking equal to 1 ∈ Z/2Z, such a tree C has a unique graph-theoretic
admissible Z/2Z-cover )& → 4. Let (<3

2!+2 denote the subset of (2!+2 consisting of those trees such that
no vertex supports more than two leaves, and for a tree C, we write ,& for its set of edges. We restate
Theorem A for convenience.

Theorem A. We have

h! =
∑

&∈' <3
2"+2

(−1) |(# |

| Aut()& ) |
∑

)∈Aut(*# )
sgn(* |(# )

∏
+≥1

(1 + ++ ) , (*# ,),+) ,

where ,& is the set of edges of the tree C, ++ =
∑

">0 '
+
" ∈ Λ̂ is the kth power sum symmetric function,

and - · . ()& , *, -) is the compactly supported Euler characteristic of the set of points in )& which have
orbit of length k, under the action of *.

We will prove Theorem A through a series of intermediate results. Throughout this section, we tacitly
replace the symmetric Δ-complex Θ!," with its geometric realization.

Lemma 6.1. We have

h! = −
∑
"≥0

&%!
# (Θ!," \ (Θrep

!," ∪ Θ≥3
!,")),

where &%!
# (·) denotes the #"-equivariant compactly supported Euler characteristic.

Proof. Via the identification

$0%
$
# (H!,";Q) ! %̃$−1(Θ!,";Q)∨

of Corollary 4.5, and using that the Frobenius characteristic of a representation of #" equals that of its
dual, we can write

h! =
∑
"≥0

4!−2+2"∑
$=0

(−1)$ ch" %̃$−1(Θ!,";Q)

=
∑
"≥0
−&̃%! (Θ!,"),
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where &̃%! (·) denotes the #"-equivariant reduced Euler characteristic. Since Θ!," is connected and
compact, and #" acts trivially on %0 (Θ!,";Q) ! Q, we have

−
∑
"≥0

&̃%! (Θ!,") =
∑
"≥0

ℎ" −
∑
"≥0

&%!
# (Θ!,"),

where ℎ" ∈ Λ is the nth homogeneous symmetric function, defined as the Frobenius characteristic of
the trivial #"-representation. By the additivity of the compactly supported Euler characteristic under
stratification, we can write

∑
"≥0

&%!
# (Θ!,") =

∑
"≥0

(
&%!
# (Θ!," \ (Θrep

!," ∪ Θ≥3
!,")) + &%!

# (Θrep
!," ∪ Θ≥3

!,")
)
.

Since the union Θrep
!," ∪ Θ≥3

!," is compact and connected, with vanishing reduced rational homology by
Theorem 5.1, and #" acts trivially on %0 (Θrep

!," ∪ Θ≥3
!,";Q), we have

&%!
# (Θrep

!," ∪ Θ≥3
!,") = ℎ",

and the proof is complete. !

Lemma 6.2. We have

h! = −
∑

&∈' <3
2"+2

∑
"≥0

&%!
#

((
Conf" ()& ) × (Δ |(# |−1)◦

)
/Aut()& )

)
.

Proof. We can stratify the space

1!," := Θ!," \ (Θrep
!," ∪ Θ≥3

!,")

by the ΓH
! -object that arises when we forget the marking function and delete all legs with monodromy

equal to 0, as well as their preimages, and then stabilizing; stabilization process only entails the removal
of 2-valent vertices, because we are outside the locus Θrep

!,". Such an object is uniquely specified by an
element C of (<3

2!+2, which determines its covering )& . Since we have removed the repeated marking
locus, the stratum corresponding to )& → 4 is #"-equivariantly homeomorphic to

(
Conf" ()& ) × (Δ |(# |−1)◦

)
/Aut()& ).

Above, (Δ |(# |−1)◦ denotes the interior of the standard |,& | − 1 simplex Δ |(# |−1, viewed as the space
parameterizing metrics ℓ : ,& → R>0 of total length one. The space Conf" ()& ) is the configuration
space of n distinct points on )& , and the action of Aut()& ) is diagonal: one finds that the morphism
)& → 4 can be reconstructed from )& , so Aut()& ) naturally acts on C and hence on |,& | and(
Δ |(# |−1)◦. !

We now show how to calculate the terms in the sum, following Gorsky’s calculation of the #"-
equivariant Euler characteristic of Conf" (1)/2, where X is an algebraic variety and G is a finite
subgroup of its automorphism group [31].
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Proposition 6.3. Let X be a finite CW complex, and let E be a finite set. Set

Δ◦ =

{
ℓ : , → R>0 |

∑
A∈(

ℓ(L) = 1
}
.

Let G be a finite group acting on both X and E, and set

hB ,( ,3 :=
∑
"≥0

&%!
# ((Conf" (1) × Δ◦)/2).

Then

hB ,( ,3 = − (−1) |( |

|2 |
∑
!∈3

sgn(! |( )
∏
+≥1

(1 + ++ )C, (B- (!))/+ ,

where 1+ (!) denotes the set of points of X which have orbit of length k under the action of g.

Before proving Proposition 6.3, we need two intermediate lemmas.

Lemma 6.4. Suppose that X is any finite CW complex. Then

. (0) :=
∑
"≥0

&# (Conf" (1))
0"

"! = (1 + 0)C, (B ) .

Proof. We have the identity

&# (1") =
"∑

+=1
#(", -)&# (Conf+ (1)),

where #(", -), the Stirling number of the second kind, counts the number of partitions of n with k parts.
It follows that

!(0) :=
∑
"≥0

&# (1") 0
"

"! = LC, (B )D

is the Stirling transform of f, so that . (0) = !(log(1 + 0)) = (1 + 0)C, (B ) , as claimed. !

Lemma 6.5. For any group H acting on a space Y, denote by

[U ]ℎ

the set of fixed points of ℎ ∈ % acting on Y. Then, for X, E and G as above, and R ∈ #", we have

&#
(
[(Conf" (1) × Δ◦)/2]E

)
= − (−1) |( |

|2 |
∑
!∈3

sgn(! |( ) · &#
(
[Conf" (1)]!

−1E
)
.

Proof. Define

# = {(!, ℓ, ;) ∈ 2 × Δ◦ × Conf" (1) | ! · (ℓ, ;) = R · (ℓ, ;)}.

Then we have a map

# → [(Conf" (1) × Δ◦)/2]E ,

2���:�  .73�7�1 ������
 05:������	��
��43:2/.�7�43�/��!���5��3.1/���3 /�:3�!�
�/::

https://doi.org/10.1017/fms.2024.53


32 M. Brandt et al.

which takes (!, ℓ, ;) to (;, ℓ). The fibers of this map are all nonempty and have cardinality equal to |2 |,
so

&#
(
[(Conf" (1) × Δ◦)/2]E

)
=

1
|2 | &# (#).

However, the projection # → 2 has fiber over ! ∈ 2 isomorphic to

[Δ◦]! × [Conf" (1)]!
−1E .

Therefore, we have

&#
(
[(Conf" (1) × Δ◦)/2]E

)
=

1
|2 |

∑
!∈3

&# ([Δ◦]!) · &#
(
[Conf" (1)]!

−1E
)
.

The proof is finished upon noting that [Δ◦]! is again an open simplex, whose dimension modulo 2 is
equal to |, | + sgn(! |( ) − 1. !

We can now prove Proposition 6.3.

Proof of Proposition 6.3. We have

hB ,( ,3 =
∑
"≥0

1
"!

∑
E∈%!

∑
$≥0

(−1)$Tr
(
R |7 )

, ( (Conf! (B )×Δ◦)/3;Q)

)
++1 (E)

1 · · · ++! (E)
"

=
∑
"≥0

1
"!

∑
E∈%!

&#
(
[(Conf" (1) × Δ◦)/2]E

)
++1 (E)

1 · · · ++! (E)
" ,

by the Lefschetz fixed-point theorem applied to the one-point compactification of (Conf" (1) × Δ◦)/2,
where we set -$ (R) to be the number of cycles of length i in R. Now using Lemma 6.5, we have

hB ,( ,3 = −
∑
"≥0

1
"!

∑
E∈%!

(−1) |( |

|2 |
∑
!∈3

sgn(! |( ) · &#
(
[Conf" (1)]!

−1E
)
++1 (E)

1 · · · ++! (E)
" .

Now the proof follows that of Gorsky [31, Theorem 2.5]: if we set

1+ (!) := {' ∈ 1 | ' has orbit of size - under !},

and

1̃+ (!) = 1+ (!)/(!),

then for fixed ℓ1, . . . , ℓ" such that
∑"

$=1 3ℓ$ = ", we have a map

∐
E∈%!

+) (E)=ℓ)∀$

[Conf" (1)]!
−1E →

"∏
$=1

Confℓ) ( 1̃$ (!))/#ℓ)
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which is "!-to-1, so that

1
"!

∑
E∈%!

+) (E)=ℓ)∀$

&#
(
[Conf" (1)]!

−1E
)
=

"∏
$=1

&# (Confℓ) ( 1̃$ (!)))
ℓ$!

.

Now the proposition follows from Lemma 6.4, upon summing over all possible tuples (ℓ1, . . . , ℓ"). !

Now Theorem A is proved by combining Lemma 6.2 with Proposition 6.3.

Remark 6.6. As explained in Remark 5.13, the repeated marking locus in the dual complex Θ̃3
0,"+@ (J)

of the inclusion

M̃3
0,"+@ (J) ⊂M3

0,"+@ (J)

is also acyclic, and M̃3
0,"+@ (J) is naturally identified with the moduli space of smooth N-pointed

admissible covers of P1 with J-specified monodromy, together with n distinct marked points on the
source curve.

By the acyclicity of the repeated marking locus, we can write a graph sum formula for the generating
function encoding the #"-equivariant weight zero compactly supported Euler characteristics of these
moduli spaces. Define

h3@ (J) =
∑
"≥0

2@+2"−6∑
$=0

(−1)$ ch" ($0%
$
# (M̃3

0,"+@ (J);Q)).

By removing the repeated marking locus from the dual complex and emulating the techniques of this
section, we obtain the following theorem.

Theorem D. We have

h3@ (J) =
∑

P→C∈Ob(Γ.
0,+ (G))

(−1) |(C |

| Aut(P→ C) |
∑

)∈Aut(P→C)
sgn(* |(C )

∏
+≥1

(1 + ++ ) , (P,),+) ,

where ,C is the set of edges of the tree C, ++ =
∑

">0 '
+
" ∈ Λ̂ is the kth power sum symmetric function,

and - · . (P, *, -) is given by the compactly supported Euler characteristic of the set of points in P which
have orbit of length k, under the action of *. The first sum is taken over isomorphism classes of objects
in Γ3

0,@ (J), which is the category defined in Definition 3.3.

Taking 2 = Z/2Z, S = 2! + 2 and J : {:1, . . . ,:@ } → Z/2Z to be the constant function 1 in
Theorem D, we obtain the generating function for the #"-equivariant weight zero compactly supported
Euler characteristics of the moduli spaces H̃!," of n-pointed hyperelliptic curves of genus g, together
with labelings of their Weierstrass points.

A. Calculations for ! ≤ 7

In this appendix, we present the computational data obtained by implementing Theorem A on a com-
puter. This was implemented in Mathematica using the package IGraph/M [34]. The code for these
computations is available at [14].
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Table A.1. The generating function h" ∈ Λ̂ for 2 ≤ ! ≤ 7. Here, *) := 1 + >) ∈ Λ̂ is the inhomogeneous power sum..

g h"

2 1
12

(
−
*3

1
*2

2
−

2*2
1

*3
+ 6*1

*2
− 2*2*3

*6
− 1

*1

)

3 − *1
4

16*2
3 + *1

3

8*2
2 −

5*1
2

16*2
2 −

*1
2

8*4
− 1

16*1
2 + *1*2

4*4
+ *1

2*2
+ 1

8*1
− *2

8*4
− 5

16*2

4 −
9*5

1
160*4

2
+

7*4
1

48*3
2
−

*3
1

8*2
2
−

*3
1

16*3
2
−

*3
1

16*2*4
+

*2
1

16*2
2
+

*2
1

8*4
−

*2
1

10*5
− *1

2*2
+ 7*1

16*2
2
+ *1

6*3
− *2*1

4*4
+ *1

8*4
+ *3*1

6*6
−

1
8*1

+ 7
48*2

1
− 9

160*3
1
+ 1

16*2
− 1

16*1*2
+ *2

8*4
− *2

16*1*4
− *2*5

10*10

5 −
11*6

1
192*5

2
+

3*5
1

16*4
2
−

*4
1

4*3
2
−

5*4
1

64*4
2
−

*4
1

16*2
2 *4

+
*3

1
8*2

2
+

5*3
1

16*3
2
+

3*3
1

16*2*4
−

*2
1

4*2
2
−

35*2
1

96*3
2
−

*2
1

12*2
3
−

3*2
1

16*2*4
−

*2*2
1

8*2
4

+

*2
1

12*6
−

*4*2
1

8*2*8
+ 3*1

4*2
2
− *2*1

4*4
+ 3*1

8*4
+
*2

2 *1

4*2
4

+ *4*1
4*8

+ 1
8*1
− 1

4*2
1
+ 3

16*3
1
− 11

192*4
1
− 1

4*2
+ 5

16*1*2
− 5

64*2
1 *2
−

35
96*2

2
− 3

16*4
+ 3*2

16*1*4
− *2

16*2
1 *4
−

*2
2

8*2
4
+ *2

12*6
−

*2*2
3

12*2
6
− *4

8*8

6 −
227*7

1
3584*6

2
+

*6
1

4*5
2
−

55*5
1

128*4
2
−

25*5
1

256*5
2
−

9*5
1

128*3
2 *4

+
3*4

1
8*3

2
+

7*4
1

16*4
2
+

*4
1

4*2
2 *4
−

*3
1

8*2
2
−

13*3
1

16*3
2
−

55*3
1

512*4
2
−

11*3
1

32*2*4
−

3*3
1

64*2
2 *4
−

7*3
1

128*2
4
−

*4*3
1

32*2
2 *8

+
7*2

1
8*2

2
+

5*2
1

16*3
2
+

*2
1

4*4
+

*2
1

8*2*4
+
*2*2

1
8*2

4
−

*2
1

14*7
− 99*1

64*2
2
+ 59*1

128*3
2
+ *2*1

4*4
− 7*1

8*4
+ 19*1

64*2*4
−

9*2
2 *1

32*2
4

+ 9*2*1

64*2
4
− *4*1

8*8
+ 3*4*1

16*2*8
− 1

8*1
+ 3

8*2
1
− 55

128*3
1
+ 1

4*4
1
− 227

3584*5
1
+ 7

8*2
− 13

16*1*2
+ 7

16*2
1 *2
− 25

256*3
1 *2

+

5
16*2

2
− 55

512*1*2
2
+ *2

4*4
+ 1

8*4
− 11*2

32*1*4
− 3

64*1*4
+ *2

4*2
1 *4
− 9*2

128*3
1 *4

+
*2

2
8*2

4
−

7*2
2

128*1*2
4
− *4

32*1*8
− *2*7

14*14

7 −
19*8

1
256*7

2
+

351*7
1

1024*6
2
−

913*6
1

1280*5
2
−

33*6
1

256*6
2
−

11*6
1

128*4
2 *4

+
53*5

1
64*4

2
+

171*5
1

256*5
2
+

185*5
1

512*3
2 *4
−

25*4
1

48*3
2
−

389*4
1

256*4
2
−

43*4
1

256*5
2
−

41*4
1

64*2
2 *4
−

11*4
1

128*3
2 *4
−

*4
1

16*2*2
4
−

*4*4
1

32*3
2 *8

+
*3

1
8*2

2
+

15*3
1

8*3
2

+
949*3

1
1024*4

2
+

9*3
1

16*2*4
+

29*3
1

64*2
2 *4

+
55*3

1
256*2

4
+

5*4*3
1

64*2
2 *8
−

23*2
1

16*2
2
−

213*2
1

128*3
2
−

137*2
1

256*4
2
−

3*2
1

8*4
−

37*2
1

64*2*4
−

21*2
1

64*2
2 *4
−

5*2
1

32*2
4
−

3*2*2
1

64*2
4
−
*2

2 *
2
1

8*3
4
−

*2
1

16*8
+

*4*2
1

16*2*8
−

5*4*2
1

32*2
2 *8

+ *1
2*2

+ 57*1

32*2
2
+ 199*1

128*3
2
− *1

6*3
+

*1

8*2
3
+ *2*1

4*4
+ *1

4*4
+ 229*1

256*2*4
−

5*2
2 *1

16*2
4

+ 25*2*1

64*2
4

+
103*3

2 *1

384*3
4

+ *1
10*5

− *3*1
6*6

+
*2

3 *1

8*2
6
− *4*1

4*8
+ 5*2*1

32*8
+ 5*4*1

16*2*8
+

*5*1
10*10

+ *6*1
12*12

+ 1
8*1
− 25

48*2
1
+ 53

64*3
1
− 913

1280*4
1
+ 351

1024*5
1
− 19

256*6
1
− 23

16*2
+ 15

8*1*2
− 389

256*2
1 *2

+ 171
256*3

1 *2
− 33

256*4
1 *2
−

213
128*2

2
+ 949

1024*1*2
2
− 43

256*2
1 *

2
2
− 137

256*3
2
− 3*2

8*4
− 37

64*4
+ 9*2

16*1*4
+ 29

64*1*4
− 41*2

64*2
1 *4
− 11

128*2
1 *4

+ 185*2

512*3
1 *4
−

11*2

128*4
1 *4
− 21

64*2*4
− 5*2

32*2
4
−

3*2
2

64*2
4
+

55*2
2

256*1*2
4
−

*2
2

16*2
1 *

2
4
−

*3
2

8*3
4
− *2

16*8
+ *4

16*8
+ 5*4

64*1*8
− *4

32*2
1 *8
− 5*4

32*2*8

We compute h! explicitly for 2 ≤ ! ≤ 7; see Table A.1. For scale, h5 is computed as a sum over 96
graphs and takes 8 minutes to compute on a home laptop, while h7 is computed as a sum over 2789
graphs and takes just under 3 days to compute on a home laptop. Figure A.1 contains the calculation of
h2 as a sum over three graphs – compare with [20, Example 8.3].

We extract from this data exponential generating functions for the numerical weight zero compactly
supported Euler characteristic by setting )1 to 1 + 0 and all other )$ to 1; see Table A.2. We display
these Euler characteristics for 0 ≤ " ≤ 10 in Table A.3.
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Figure A.1. The three trees C in (<3
6 , their associated covers )& , and the contribution of )& → 4

to h2 as in Theorem A. The generating function h2 is the sum of the three contributions. Note that the
contributions in the second and third rows cancel.

Table A.2. The exponential generating functions for numerical weight zero compactly supported Euler characteristics of H",!..

g ∑
!≥0

D!

"!

(∑4"+2!−2
)=0 (−1)) dimQ/07 )

, (H",!;Q)
)

2 − D2

12(1 + D)
(
6 + 6D + D2)

3 − D2

16(1 + D)2
(
8 + 16D + 12D2 + 4D3 + D4)

4 − D2

480(1 + D)3
(
240 + 720D + 960D2 + 720D3 + 386D4 + 146D5 + 27D6)

5 − D2

192(1 + D)4
(
96 + 384D + 736D2 + 864D3 + 748D4 + 504D5 + 246D6 + 74D7 + 11D8)

6 − D2

3584(1 + D)5
(
1792 + 8960D + 22400D2 + 35840D3 + 43232D4 + 41888D5 + 32096D6 + 18272D7 + 7268D8 + 1828D9 + 227D10)

7
− D2

15360(1 + D)6

(
7680 + 46080D + 142080D2 + 288000D3 + 446720D4 + 565760D5 + 587520D6 + 485120D7 + 308936D8

+146832D9 + 49551D10 + 10695D11 + 1140D12

)

Table A.3. The weight zero compactly supported Euler characteristic of H",! for 2 ≤ ! ≤ 7, and 0 ≤ " ≤ 10..

!
" 0 1 2 3 4 5 6 7 8 9 10

2 0 0 −1 0 −2 10 −60 420 −3360 30240 −302400
3 0 0 −1 0 −6 30 −225 1890 −17640 181440 −2041200
4 0 0 −1 0 −12 60 −579 5586 −59220 684180 −8557920
5 0 0 −1 0 −20 100 −1245 13230 −157500 2022300 −27877500
6 0 0 −1 0 −30 150 −2385 27090 −361080 5099760 −76856850
7 0 0 −1 0 −42 210 −4200 49980 −745920 11460960 −187595730
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