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ABSTRACT

In this paper, we consider state estimation in the Kalman
filtering framework with unlimited sensing measurements
(USMs), which are obtained from sensors equipped with
a self-reset analog-to-digital (SR-ADC). SR-ADC was
recently introduced to deal with the saturation issue
frequently encountered in a conventional ADC. To tackle the
nonlinearity of the USM, we present a unique decomposition
property of the USM. Leveraging this property and a multiple
model adaptive estimation strategy, we propose a novel USF-
based Kalman filtering (KF-USM) algorithm. Numerical
results reveal that the proposed KF-USM filter is an effective
alternative to the conventional ADC-based KF to deal with
high dynamic range input signals, offering more accurate
state estimation in the presence of saturation.

Index Terms— Kalman filtering, multiple models,
unlimited sensing

1. INTRODUCTION

The Kalman filter (KF) [1] and its nonlinear variants [2—
4] are ubiquitous tools to estimate the state of dynamic
state-space models (SSM), which are employed in various
applications including target tracking [5], fault detection and
diagnosis [6], system identification [7], adaptive feedback
cancellation [8], and many others. In such applications, each
sensor is equipped with an analog-to-digital converter (ADC)
to convert the analog observed signal to digital. However,
saturation occurs when the amplitude of the input signal
exceeds the dynamic range of the ADC, leading to a censored
measurement, which may result in significant performance
degradation of the KF and its nonlinear extensions.

To cope with the censored measurements, a Tobit
KF (TKF) is proposed in [9], via a Tobit model, for
state estimation. In the TKF, the likelihood function
of an observation is modified so that it can reflect the
probability that the corresponding variable is above or
below the censored threshold. Although TKF helps increase
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Fig. 1: Measurements from sensors with an ideal ADC (top);
a conventional ADC that can only record positive values
(middle); a SR-ADC (bottom).

the estimation accuracy, the so-obtained improvement in
estimation accuracy is limited due to the permanent loss of
information in censored observations.

The recently introduced unlimited sensing framework [10]
offers an alternative approach to addressing the above
drawback of conventional measurement range-limited ADCs.
The unlimited sensing is a hardware-software co-design
approach. The core idea of unlimited sensing is to utilize
a self-reset ADC (SR-ADC) to fold an arbitrary input
signal into the recordable range by taking a modulo related
operation. We provide a comparison of measurements from
a sensor with a conventional ADC (the middle of Fig. 1) and
measurements from a sensor with a SR-ADC (the bottom of
Fig. 1) when the input signal is shown in the top of Fig. 1. It
can be seen that, when the output exceeds the operation range
of the ADC, the SR-ADC saves the information via a modulo
operation, while the conventional ADC simply sets the output
to its threshold (i.e., 0 in Fig. 1).

However, the resulting unlimited sensing measurement
(USM) creates a challenge in signal processing, since
the input/output relationship of the SR-ADC is highly
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nonlinear. Several applications have been investigated over
the past few years, including the estimation of sinusoidal
mixtures [11], direction-of-arrival estimation [12], sparse
signal recovery [13], and others. In this work, we extend
the application of the USM to the estimation of the dynamic
SSMs and propose a novel filtering algorithm to estimate
the state of interest. To tackle the nonlinearity of the
USM, we propose a novel Kalman filter by exploiting a
unique decomposition of the USM and a multiple model
adaptive estimation (MMAE) based strategy. Simulation
results reveals that the proposed method can provide accurate
state estimates in the presence of high dynamic range input
signals, illustrating the effectiveness of using SR-ADC and
USM in replacement of the conventional ADC.

2. PROBLEM FORMULATION

Consider a linear dynamic system with state evolution as
= Fx; 1 +w; (D

where x; € R"” is the state of interest at time instant ¢, F' is
a known state transmission matrix, and w; ~ N(0, Q,) is the
process noise. Ideally, the state of such a dynamic system is
observed via

Yy, = Hx; + v, ()

where v; is the Gaussian measurement noise with zero-mean
and covariance R;.

However, the amplitude of y, may exceed the operation
range of the sensor, resulting in censoring/saturation. To
avoid this issue, a self-reset analog-to-digital (SR-ADC)
device is employed at the measurement sensor to fold the out-
of-range amplitudes into a recordable range. Specifically, the
output of the dynamic system is expressed as

ze =Ux (y,) = U\ (Hxt + vy) 3)

where U, (-) is an element-wise nonlinear mapping. For a
scalar a, U (a) is defined as

a a
L{,\(a).a»—>)\()\ L)\D 4)
where A > 0 is the dynamic range of the sensor, and |a]
denotes the floor function. It is apparent that (4) folds back an
arbitrary vale a into the interval [0, \], and hence we hereafter
call such a measurement as the USM.

Remark: It should be noticed that in most existing works,
the nonlinear mapping related to the sensor with a SR-ADC

is given as
a a 1
L{,\(a) ta 2\ <2)\ - {)\dl» 2J>

which folds back an arbitrary vale a into a symmetric interval
[—A, A]. In this work, we consider the asymmetric one in (4)

for ease of comparison with the TKF. The proposed filtering
algorithm can be easily extended to the symmetric case.

The objective of this work is to estimate the state of
interest based on the measurements {2} ;. Theoretically,
existing nonlinear filtering algorithms such as the Gaussian
approximation filters and particle filter (PF) can be utilized to
obtain the estimates of the states. However, these approaches
ignore the inherent property of the nonlinear mapping, which
would incur performance degradation.

3. MULTIPLE MODEL BASED SOLUTION

3.1. Representation of The USM

The nonlinear mapping involved in the USM makes the
filtering problem more challenging. To deal with this issue,
we introduce the following proposition concerning the unique
decomposition of the USM.

Proposition 1. If z = Uy (a), where X is a fixed and positive
constant, then the relationship between z and a is given by

z=a+ e (®)]

where e is an integer that can be uniquely determined for
given a and .

This proposition can be easily proved by the definition in
(4). Specifically, we know that

a a a
=2 (5-[5) =a-2 5 ©
Comparing (5) and (6), we can conclude that e = —|a/\],
which is an integer with a unique value.

Based on the unique decomposition in (5) and the fact that
Uy (a) is an element-wise mapping, we can rephrase (3) as

ztszt—i—vt—i—/\e (7)

where e € Z™ is a vector with each element being an integer.

3.2. Kalman Filtering with The USM

In this section, we employ a multiple model adaptive
estimation (MMAE) algorithm to estimate the state of
interest. In the MMAE framework, a finite set of models from
prior knowledge is provided, and the true model is assumed
to be (or at least can be adequately approximated by) one
of these models. In our problem, the set of models can be
formulated as

Tt :Fa:t_1+wt (8)
zt:Hmt—Fep/\—th, (p:l,,P) (9)

where e? denotes the integer vector for the pth model, and P
is the number of models. From Section 3.1 we know that P is
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theoretically tending to infinity, which effectively renders the
MMAE framework inapplicable. To deal with this issue, we
utilize the predicted value of the state to reduce P to a finite
number. The details of the proposed Kalman filter with the
USM based on the MMAE framework is described as follows.

Step 1: State Prediction.

The prediction step of the proposed Kalman filtering
algorithm is the same as the conventional one. Specifically,
given the estimated state &;_;;—; and its associated with
error covariance matrix P;_1, we have

i‘t\tfl = Fti‘t71|t71 (10)
Py =F/P,_1F,+Q,_, (11)

Step 2: Determining P and {e?}.

Using the predicted state, we can calculate the estimate
value of Hx; as H®;;_1, which can be further utilized to
estimate the integer vector e. Specifically, the ¢th component
of e can be provided as

6 = {(zt - I‘i\iittl)iJ (12)

where (a); denotes the ith element of the vector a. Although
€; may not be exactly the same as the true value e; due to the
existence of the measurement noise, these two values are very
close. Therefore, we can assume that e; belongs to the set =;

€¢€Eié{6i|‘€i—éi|SK,@Z'EZ,KGZJF} (13)

where K is a positive integer. It is apparent that e; has 2K +1
possible values. In addition, we define 3 as a set that contains
all possible combinations of {e; }!" ,, i.e.,

A {e: ler, - sem]T|e; € By, i€ {1, - ,m}} (14)

We choose e, € X, and hence P can be determined by the
candidate of 32, which is given by

P=(2K +1)™ (15)

Step 3: Filtering for Each Individual Model.

Once P and {eP} are obtained, we can implement the
standard measurement update for each individual model in
parallel. Specifically, for the pth model, we have

ji)\t = it\t—l + K(Zt — Hit\t—l — ep)\) (16)

K? = Pt\t—lHT(HPt\t—lHT +Ry)! (17)
P} =(I—-K'H)P,, , (18)

It should be noted that the measurement update procedure
for each model has the same Kalman gain and the filtered
covariance.

Step 4: Calculating Probability for Each Model.

The residual vector for each model is defined as
ifézt—H:ﬁm,l —eP (19)

and its corresponding covariance matrix is given by
S=HP,, H" + R, (20)

Theoretically, if the pth model is the true model, Ef follows
the Gaussian distribution N(0, S). Therefore, the conditional
probability of each model is given by

K
fp = —po— p (21)
Ep:l Kp

where k), is calculated by the Gaussian likelihood

1 Loprgoige
Kp = (27805 exp( 2(zt) Sz} (22)

Step 5: Obtaining The Estimate of The State.

The filtered state and its corresponding covariance is
obtained by combining the estimated results of each model,
ie.,

P P
Ty = Y ppdy),, Po=> Py (23)
p=1 p=1

It should be noticed that the update procedure in Step 5
is different from the one in the interacting multiple model
Kalman filter [14]. This is because the multiple models in
our approach are independent and there is not an interacting
procedure.

4. SIMULATION RESULTS

In this section, numerical simulations are employed to
illustrate the performance of the proposed Kalman filter with
USM (KF-USM) !. We consider a linear dynamic system [9]

xp1|  [cos(0) —sin(0)| {zi—11 W1
Lftﬂ] B Lin(ﬁ) cos(0) Tt—1,2 + Wy, 2 24
o Tt,1
ve=[1 0] [x )J + ot (25)
where @; £ 241,727 is the state of interest, § is a system
parameter, w; = [wy 1, w2]’ ~ N(0,Q,) is the process
noise, and v; ~ N(0, R;). The USM is given by

z = Un(yt) (26)

We compare the KF-USM with the conventional KF (cKF)
and the PF. In addition, the TKF is also compared, and the
censoring measurement model of the TKF is given by

Zt:{ %ﬁ

ISimulation codes and data can be found in: https://github.com/
tianhangnpu/KF_US_ICASSP2024.

yr >0

Y <0 @7
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Fig. 2: The MSEs of the compared methods.

To evaluate the performance of different filters, the mean
squared error (MSE) at each instant ¢ is employed as a metric,
which is defined as (taking x; ; as an example)

L
MSE(t thl @)% t=1,--,T (28)

R \

where L is the number of independent Monte Carlo runs, and
xél and :%i’l, respectively, denote the true and estimated state
component at time ¢ in the /th Monte Carlo run.

In simulations, we set § = 0.00527, Q,_; = 0.01I,
and Ry = 1, A = 5. The initial state x; and xg o are
randomly selected from N(z,0.0115) where o = [3,0]7
The simulation results are obtained via L = 1000 Monte
Carlo runs. In the PF, we set the number of particles to 1000.

Fig. 2 illustrates the performance of the compared
methods in the RMSE sense, and Fig. 3 presents the estimated
1 in a certain Monte Carlo run. It can be seen that both
the KF-USM and the TKF have relatively small RMSEs
compared with the cKF and the PF. Meanwhile, in the
considered simulation run, we can see that the cKF (at the

0 200 400 600 800 1000
Time instant

Fig. 3: The true and estimated x; in a specific Monte Carlo
run.

initial stage) and the PF (and the initial and the ending stages)
can only partially track the state of x;, while both the KF-
USM and the TKF can correctly follow the trend of z;.
Therefore, we can conclude that both the KF-USM and the
TKF have significant performance improvements compared
with the cKF and the PF. Hence, taking the additional
information of the saturated measurements or the folded
measurements into account can indeed enhance the estimation
accuracy.

In addition, although both outperforming others, the KF-
USM is superior to the TKF. This is because, the USM
essentially encodes information of the data into its modulo,
while the sensor with a conventional ADC only records the
maximum (or the minimum) range of the ADC and the
details are lost. Apparently, the sensor in the unlimited
sensing framework has an advantage over the sensor with a
conventional ADC.

5. CONCLUSIONS

We studied the Kalman filtering problem in an unlimited
sensing framework, in which measurements are obtained via
a sensor equipped with a SR-ADC to avoid saturation. We
proposed a MMAE based Kalman filter for the USM, and the
multiple measurement models were constructed by a unique
decomposition property of the USM. Simulation results
show that the proposed method can provide reliable state
estimates, and that the unlimited sensing framework has an
advantage over the conventional solutions when dealing with
saturations. The computational complexity of the proposed
method is exponential in the dimension of the measurement.
Therefore, how to reduce the computational complexity is one
of the future research directions.
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