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Abstract—We consider solving the source localization problem
by exploiting measurements collected from both active and
passive sensors. We first briefly review some existing least squares
approaches that utilize only one type of measurement (active or
passive), and further establish a hybrid objective function that
includes active and passive measurements simultaneously in the
sense of squared least squares. We propose two different methods,
Newton’s method and the semidefinite relaxation method, to
efficiently solve the optimization problem. Simulation results
indicate that the source location estimates given by the proposed
hybrid methods are superior to the peer methods that only utilize
one type of measurement. The performance difference between
Newton’s method and the semidefinite relaxation method is also
investigated.

Index Terms—source localization, active and passive sensors,
hybrid measurements, nonconvex optimization, least squares.

I. INTRODUCTION

The problem of locating a source from range measure-
ments or from range-difference measurements collected using
a network (or array) of active or passive sensors has received
significant attention in the signal processing literature owing
to its importance to many applications including telecon-
ferencing, wireless communications, surveillance, navigation,
and geophysics [1]–[16]. The first type of source localization
systems, which are based on range measurements from active
sensors, employ the time of arrival (TOA). The distance can
be directly calculated from the TOAs as signals travel with
a known velocity. TOA data from two sensors will narrow
a position to a position circle; data from a third sensor is
required to resolve the precise position to a single point. Many
positioning systems, including GPS, use TOA [2]–[4].

Compared to the first type, a time difference of ar-
rival (TDOA) localization system, which is based on range-
difference measurements from passive sensors, determines the
difference in the source of interest’s distance to pairs of sensors
at known fixed locations [5], [6]. For one sensor pair, the
distance difference results in an infinite number of possible
subject locations that satisfy the TDOA. When these possible
source locations are plotted, they form a hyperbolic curve.
It relies on multiple TDOAs to locate the exact source’s
position along that curve. For two dimensions, a second
TDOA, involving a different pair of sensors (typically one
sensor is a member of both pairs, so only one sensor is new),
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will produce a second curve, which intersects with the first.
When the two curves are compared, a small number of possible
source locations (typically two) are revealed.

Existing work in [7]–[10] gave detailed discussions about
locating sources through TOA/TDOA systems. Efficient algo-
rithms have been proposed for the source localization problem
based on maximum likelihood or least squares estimation.
Source location and velocity estimation using both TDOA
and frequency difference of arrival (FDOA) measurements
were examined in [11], [14], [15]. The primary limitation
of TOA lies in its stringent requirement for precise time
synchronization between the signal source and the receiver;
any discrepancy in timekeeping can significantly impair the
accuracy of the positioning. This dependency on synchro-
nized clocks introduces complexity, especially in decentralized
systems or those with limited infrastructure for time cali-
bration. In contrast, TDOA, while alleviating the need for
strict synchronization, introduces its own set of challenges.
The accuracy of TDOA is heavily contingent on the precise
knowledge of the relative locations of multiple receivers, as
the technique is predicated on measuring the time difference
as the signal arrives at these disparate points. Furthermore, the
computational complexity in TDOA is typically higher than in
TOA, as it involves more intricate algorithms to resolve the
position from the time differences.

To improve the accuracy and reliability of localization and
reduce dependency on system complexity, we try to develop
a hybrid approach to locate the source by simultaneously
exploiting both active TOA measurements and passive TDOA
measurements, which can be solved by two different methods.
The development that we consider here is based on the
assumption that the sensor network includes both active and
passive sensors and can be utilized to obtain (noisy) range
or range-difference measurements. Simulation results show
that the exploitation of both TOA and TDOA measurements
markedly improves the localization performance and outper-
forms several peer methods in various setups.

II. PROBLEM FORMULATION

We consider a distributed sensor network that consists of m
active sensors respectively located at ai ∈ R2, i = 1, . . . ,m,
and n passive sensors located at cj ∈ R2, j = 1, . . . , n. Let
x ∈ R2 denote the source coordinates. The active sensors
are capable of proactively detecting the distance between



themselves and a source, and the range measurement between
the source with the i-th active sensor can be expressed as

ri = ‖x− ai‖+ εi, i = 1, . . . ,m, (1)

where εi denotes the noise term. In contrast, passive sensors
can only discern the difference in distance to the source by
comparing the variations in the arrival time of the received
signals. Suppose there exists an additional reference sensor
(sensor 0) located at the coordinate origin and the range-
difference measurements obtained by comparing the jth pas-
sive sensor and sensor 0 are written as

dj = ‖x− cj‖ − ‖x‖+ εj , j = 1, . . . , n. (2)

In this paper, we assume all the unknown noise terms ε
in (1) and (2) are independent and identically distributed,
following a Gaussian distribution with zero mean and standard
deviation σ. Both range information of (1) and (2) can be
utilized for source localization. In this work, we propose
to concurrently incorporate range measurements and range-
difference measurements into a single hybrid optimization
problem, contributing synergistically to accurate target lo-
calization. In the following section, we will briefly review
some of the existing methodologies that focus on utilizing
only active or passive measurements and further introduce our
hybrid algorithm.

III. LOCALIZATION USING ACTIVE OR PASSIVE
MEASUREMENTS

A. Range-Based Least Squares (R-LS)

Using active sensor measurements, one common approach
to obtaining the estimated source location is via establishing
the following optimization problem

(R-LS): min
x

m∑
i=1

(‖x− ai‖ − ri)2 (3)

which is a maximum likelihood estimator with Gaussian
measurement noise. The solution to (3) is called the range-
based least squares (R-LS) estimate. Note (3) is a nonconvex
problem. There are no existing methods to acquire the exact
solution [12]. Semidefinite relaxation (SDR) was used in [12]
to solve (3), though the global optimum is not guaranteed.

B. Squared-Range-Based Least Squares (SR-LS)

Another way to exploit active measurements is to apply the
least squares methodology to the squared range measurements,
leading to the squared-range-based least squares (SR-LS)
estimate [7]

(SR-LS): min
x

m∑
i=1

(
‖x− ai‖2 − r2i

)2
(4)

which is suboptimal compared to the maximum-likelihood
estimates obtained from (3). Note that (4) is still a nonconvex
problem. However, an efficient approach is available to find the
global solution of SR-LS, as well as an unconstrained SR-LS
solution denoted by USR-LS, as shown in [7].

C. Squared-Range-Difference-Based Least Squares (SRD-LS)

To utilize the range-difference measurements from passive
sensors for the source localization problem, square both sides
of (2) to yield

− 2dj‖x‖ − 2c>j x = d2j − ‖cj‖
2
, j = 1, . . . , n. (5)

The objective function can be derived as

min
x

n∑
j=1

(
−2cTj x− 2dj‖x‖ − (d2j − ‖cj‖

2
)
)2
. (6)

The solution to the above problem is called the squared-range-
difference-based least squares (SRD-LS) estimate, which is
also a suboptimal solution compared with the maximum like-
lihood estimate. The global optimum can be efficiently solved
by a numerical algorithm while an unconstrained version of
the SRD-LS estimate is denoted by USRD-LS, which were
reported in [7].

IV. PROPOSED HYBRID LOCALIZATION APPROACH

In this section, we propose a hybrid approach that uses both
active (range) and passive (range-difference) measurements
simultaneously in the sense of squared least squares to solve
the source localization problem. Two methods are employed
to solve the hybrid estimation.

A. Squared-Hybrid Least Squares (SH-LS)

Based on (1) and (2), the hybrid objective function is
formulated as

min
x

m∑
i=1

(
‖x− ai‖2 − r2i

)2
+

n∑
j=1

(
(‖x‖+ dj)

2 − ‖x− cj‖2
)2
.

(7)

Note that the optimization problem (7) is a nonconvex
problem [17], [18]. To find the global optimal solution, we
transform (7) into a constrained minimization problem by
using the substitution y =

(
x>, ‖x‖2, ‖x‖

)>
(SH-LS): min

y
‖Ay − b‖2

s.t. y>Cy + 2f>y = 0, y>Dy + 2f>y = 0 (8)

where

A =



−2a>1 1 0
...

...
...

−2a>m 1 0
−2c>1 0 2d1

...
...

...
−2c>n 0 2dn


, b =



r21 − ‖a1‖2
...

r2m − ‖am‖
2

d21 − ‖c1‖
2

...
d2n − ‖cn‖

2


and



C =

(
0(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1

)

D =

 2In 0n×1 0n×1
01×n 0 0
01×n 0 −1



f =

 0n×1
−0.5

0

 .

One way to obtain the approximation solution of (8), is to
discard the quadratic constraints. This gives rise to the uncon-
strained squared-hybrid least squares (USH-LS) problem

(USH-LS): min
y
‖Ay − b‖2. (9)

The closed-form solution of (9) is given by

ŷ =
(
A>A

)−1
A>b (10)

and the corresponding estimate of x is the vector comprised
of the first two components of ŷ.

The exact solution of (8) can also be efficiently found [19],
and the resulting method is called constrained squared-hybrid
least squares (SH-LS) estimator. The Lagrangian function of
(8) is

Φ (y, λ1, λ2) = y>A>Ay − b>Ay − y>A>b+

λ1
(
y>Dy + 2f>y

)
+ λ2

(
y>Cy + 2f>y

)
.

(11)

The partial derivative of y should be equal to 0

∂Φ

∂y
=2y>

(
A>A + λ1D + λ2C

)
− 2b>A + 2λ1f

> + 2λ2f
>.

(12)

Therefore y can be expressed in λ1 and λ2 as:

y (λ1, λ2) =
(
A>A + λ1D + λ2C

)−1 (
A>b− λ1f − λ2f

)
.

(13)
Let

G = A>A + λ1D + λ2C

p = A>b− λ1f − λ2f .
(14)

Then the two constraints (8) can be expressed as:

f1 (λ1, λ2) = p>G−>DG−1p + 2f>G−1p (15)

f2 (λ1, λ2) = p>G−>CG−1p + 2f>G−1p. (16)

Newton’s method can be utilized to find the optimal λ1
and λ2 in the following form to force f1 and f2 equal to 0.

Let λ(0) =
[
λ
(0)
1 , λ

(0)
2

]>
and h(0) =

(
f
(0)
1 , f

(0)
2

)>
, where

f
(0)
1 = f1(λ

(0)
1 , λ

(0)
2 ) and f (0)2 = f2(λ

(0)
1 , λ

(0)
2 ). The problem

is solved by implementing the iteration starting from k = 0

λ(k+1) = λ(k) −
(
1− αk

) [∂h(k)

∂λ(k)

]−1
h(k) (17)

where

∂h(k)

∂λ(k)
=

 ∂f
(k)
1

∂λ
(k)
1

∂f
(k)
1

∂λ
(k)
2

∂f
(k)
2

∂λ
(k)
1

∂f
(k)
2

∂λ
(k)
2

 (18)

h(k) =
(
f
(k)
1 , f

(k)
2

)>
(19)

f
(k)
1 = f1(λ

(k)
1 , λ

(k)
2 ) (20)

f
(k)
2 = f2(λ

(k)
1 , λ

(k)
2 ). (21)

α is the learning rate of Newton’s method and is usually set
between 0 and 1. The iteration is stopped when the values of
(15) and (16) become smaller than a threshold η. In this work,
the elements of the initial λ(0) are randomly chosen between
0 and 1.

B. Semidefinite Relaxation (SDR)

Another way to solve the SH-LS problem is by applying
semidefinite relaxation to (7). Here we keep using the substi-
tution y =

(
x>, ‖x‖2, ‖x‖

)>
. Let

Y =

[
yy> y
y> 1

]
, M =

[
D f
f> 1

]

S =

[
A>A −A>b
−b>A b>b

]
where Y is a 5× 5 semi-definite symmetric matrix, and

(SDR): min
Y

tr(YS)

s.t. Y5,5 = 1

tr(Y1:2,1:2) = Y4,4

tr(YM) = 1

rank(Y) = 1.

(22)

The SDR problem can be efficiently solved by using the
SeDuMi toolbox in Matlab by dropping the rank constraint.
The SDR solution exactly leads to the global optimum of the
SH-LS problem if the solution is strictly restricted as in (22).
However, the matrix Y solved by SeDuMi may have a rank
larger than 1. In these situations, singular value decomposition
(SVD) can be used to obtain a rank-one approximation of Y.
The SVD of Y is written as

Y = UΣVH (23)

where U is the matrix consisting of the left-singular vectors,
and Σ is a diagonal matrix with diagonal entries of Σ equal
to the singular values of Y. If the sum of the four smaller
singular values of Y is close to zero, the solution matrix Y
is considered a tight case [7]. In tight cases, we can get a
good rank-one approximation result, by simply adjusting the
first left-singular vector that corresponds to the largest singular
value. We will discuss more details in the next section.



C. CramrRao Lower Bound (CRLB)

Denote the true source location by θ = (θ1, θ2)
> ∈ R2. The

covariance matrix of the unbiased estimator θ̂ satisfies [20]

Cov(θ̂) > I−1(θ) (24)

where I(θ) denotes the Fisher Information

I(θ) =

[
I11 I12
I21 I22

]
. (25)

The individual component of the Fisher information is given
by

Iij = E

[
∂

∂θi
ln f(w;θ)

∂

∂θj
ln f (w;θ)

]
(26)

where the observation vector w contains all active and passive
measurements and f (w;θ) denotes the likelihood function.
According to (1) and (2),

w(θ) = [r1, . . . , rm, d1, . . . , dn]>. (27)

For the typical problem form (7), we can obtain

I(θ) =
1

σ2

(
∂w

∂θ

)>(
∂w

∂θ

)
. (28)

The CRLB is given by I−1(θ).

V. NUMERICAL RESULTS

In this section, Monte-Carlo simulation results are presented
to compare the localization performance of our proposed
methods with different methods that are mentioned previously.

Consider a sensor network of m = 5 active sensors and n =
10 passive sensors. The locations of all sensors are randomly
generated in a 100×100 square area centered at (0, 0). Without
loss of generality, the coordinates of the source are randomly
generated in another 100× 100 square area centered at (β, 0).
Therefore, |β| denotes the distance between the two areas.
We compare the performance of SR-LS, SRD-LS, and SH-
LS, as well as their unstructured versions USR-LS, USRD-LS,
and USH-LS, by using the mean squared error (MSE). Let x̂l
denote the estimate of the true source location xl in the lth
simulation. The MSE is given by

MSE =
1

L

L∑
l=1

‖x̂l − xl‖2 (29)

where L denotes the total simulation number.
First, we investigate the localization accuracy of different

methods when β = 0. An example of the randomly gen-
erated sensors and source is illustrated in Fig. 1. In such a
case, the source is located in the same generation area as
the active and passive sensors and is thus surrounded by
them. The simulation results averaged on 800 independent
runs are shown in Fig. 2. The target and sensor locations
are all randomly generated in each trial. The proposed SH-
LS estimate outperforms the other methods that exploit only
active or passive measurements; furthermore, SH-LS is close
to CRLB at all considered noise levels. The two solutions,
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Fig. 1. An example of the distributed sensors and the source location with
β = 0. The two generation areas are respectively denoted by the blue and
green dashed squares that overlap when β = 0.
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Fig. 2. MSE of different methods with noise level from −10dB to 5dB.
β = 0.

respectively solved by SDR and Newton’s method, give almost
the same localization accuracy across the 800 runs.

Then we look into the case with |β| = 100, which means the
source is located in a different generation area, not surrounded
by the active/passive sensors anymore. One instance of the
distribution is given in Fig. 3. With |β| = 100, SH-LS still
leads to better localization accuracy than the other peer meth-
ods. While Newton’s method works well for all simulations,
the SDR solution suffers from poor estimates of the source
locations in some rare cases. As mentioned in Section IV-B,
the solution matrix Y usually has a higher rank than 1, which
violates one of the constraints in (22), and we can employ SVD
to impose the constraint on the solution matrix Y provided
by the SDR method. As the distance between the target and
the sensors increases, our simulations have revealed that some
trials are not tight, i.e. the sum of four small singular values
of the SDR solution matrix Y is not close to zero (here we
consider larger than 10−3 as “not close”). These trials cause
poor estimates of the source location even after the rank-one
approximation process. For example, with the setup |β| = 100,
11 trails among the total 800 simulations were observed not
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Fig. 3. An example of the distributed system with β = 100. Compared to
Fig. 1, the blue and green areas do not overlap when β = 100.

TABLE I
TIGHT CASES OF SDR AMONG 800 INDEPENDENT SIMULATIONS

β -10dB -5dB 0dB 5dB
0 800 (100%) 800 (100%) 800 (100%) 800 (100%)

100 790 (98.75%) 791 (98.88%) 790 (98.75%) 789(98.62%)
200 729 (91.2%) 747 (93.4%) 739 (92.4%) 740 (92.6%)
300 473 (59.2%) 435 (54.4%) 451 (56.4%) 473 (59.2%)

tight with σ = 5dB, and the SDR’s MSE of these “not tight”
simulations are several orders of magnitude larger than the
MSE given by Newton’s method. We show how the number
of tight cases changes with the increasing β in Table I.

After eliminating the influence of non-tight cases from the
SDR results, the MSE comparison for the methods with β =
100 is illustrated in Fig. 4. It is observed that for the remaining
tight cases, SDR provides the same estimation accuracy as
Newton’s method. The SR-LS (using active measurements
only) and SRD-LS (using passive measurements only) are
sensitive to the increased distance between the source location
and the sensor network. The proposed SH-LS, however, is
more robust to the distance |β|. It achieves a better localization
performance than the peer methods by utilizing both active and
passive measurements and stays close to CRLB at all noise
levels.

VI. CONCLUSION

In this paper, we proposed a hybrid SH-LS localization
approach that takes advantage of both active and passive
measurements. Two efficient solutions, Newton’s method, and
the SDR method, are proposed to find the SH-LS location
estimate. Simulation results indicate that the proposed SH-
LS estimate outperforms other peer methods and is close to
CRLB. Among the two SH-LS methods, SDR is more sensitive
to the distance between the source and the sensors and the
increasing distance can cause extremely poor performance of
the SDR solution in some cases, whereas Newton’s method is
more robust and provides more reliable estimates of the true
source location.
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Fig. 4. MSE of the methods with β = 100.
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