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ABSTRACT The paper proposes a novel approach for the outage State of Risk (SoR) assessment caused by
weather and vegetation in the distribution grid. Machine Learning prediction algorithm is used in conjunction
with GIS application for mapping the SoR for the entire network. The proposed optimization approach leads
to the specification of the mitigation strategies that utility staff and customers can coordinate to minimize the
impact of outages. The resulting SoR assessment enables the implementation of an innovative decision-
making solution for utility operators, represented in the form of risk maps. Additionally, utilizing the SoR
assessments, a Customer Notification System (CNS) is introduced to enhance customer awareness and
facilitate the adoption of mitigation measures. This holistic approach shifts outage management from a
reactive process to a proactive initiative, promoting grid resilience and reliability through planned outage

mitigation.

INDEX TERMS Customer notification, machine learning, outage mitigation, outage prediction, state of

risk

. INTRODUCTION

The outages in the electric system impose significant losses
to the economy as well as a major non-monetary detrimental
societal impact. It has been reported that the population of the
United States experiences more blackouts than in any other
developed nation [1]. Based on the Electric Emergency
Incident and Disturbance Reports (Form DOE-417) from The
US Department of Energy (DoE), the annually affected load
loss has increased more than 10-fold from 3247.6 MW/year to
39411 MW/year, and the number of affected customers has
soared from 6524 651 customers/year to 8 603 823
customers/year [2]. DoE gives an estimate of $150 to $164
billion per year as the annual cost of outages to the US
economy [3, 4].

The research in outage loss estimation shows that a
notification of the customers about the upcoming possible
outage can reduce the outage costs by 25-70% [5-7]. The
notification of the customers about the possible outage
transforms the experience from an unexpected, forced event
into a planned event with some assigned probability.
Incorporation of the customer notification systems (CNS) into
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the operations of a utility company offers a unique way of
limiting the losses from outages by allowing utility staff and
customers to coordinate mitigation strategies ahead of time to
reduce the outage impact. Additionally, if the operators
receive a timely estimation of the current State of Risk (SoR)
of the system, this may lead to better decision-making, in turn
leading to improved resilience and power quality [8, 9]. Thus,
the timely and precise prediction of the State of Risk (SoR) of
outages is of utmost importance for limiting economic and
societal losses and ensuring public safety.

Latest advances in Machine Learning (ML), and
developments in remote sensing and weather forecasts,
bundled with Geographic Information Systems (GIS), have
paved the way for the proposed SoR prediction approach [10].
Incorporating data from diverse sources and combining it with
historical data about the causes and location of outages from a
utility company allows the creation of datasets for SOR ML
algorithm training and testing. The resulting SoR prediction,
if integrated into utility daily operations, allows planning of a
variety of mitigation actions (equipment replacement and
repair, customer notification, network topology switching,
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back-up generator startup, etc.) aimed at reducing overall
impact and curtailing losses [11-17].

ML ensemble models presented in [18-21] propose
predicting outages in distribution networks resulting from
catastrophic weather events. Analysis of network resilience is
performed in [ 18] by employing predicted risk levels produced
by the Naive Bayes model [22]. An approach to distribution
transformers (DT) outage prediction using Logistic
Regression is proposed in [23]. Optimization of tree trimming
scheduling based on predicted SoR is analyzed in [12]. The
above-mentioned applications use short and long-time horizon
weather forecasts as input to the prediction model. However,
the uncertainty level in long-term weather forecasts increases
with time [24]. This adversely affects the accuracy of
predicted SoR.

Our contributions are: (a) identifying key data sources for
outage SoR predictions, (b) introducing a new spatiotemporal
approach for GIS data processing for predicting outage SoR
using ML on historical data, and (c) formulating a novel
mitigation optimization method that uses SoR predictions for
determining best mitigation strategy for reducing the outage
impacts on utility and enhancing customer satisfaction levels.
We focus on day-to-day operations during severe weather that
doesn't cause catastrophic damage to infrastructure. With the
introduction of SoR prediction, outage management is
transferred from reactive to proactive, allowing utility staff
and customers to anticipate and prepare for a possible outage.

After Introduction, the network data import to GIS is
explained in Section II. Section III focuses on data
preprocessing and Section [V on ML model development. The
optimized mitigation approach to minimizing the impact is
given in Section V, and evaluation results are presented in
Section VI. The conclusions and references are given at the
end.

Il. NETWORK DATA IMPORT TO GIS

A. ORGANIZING DATA IN GEODATABASE

The SoR prediction has two inherent dimensions: spatial
and temporal. We use GIS ArcGIS Pro software to work with
spatial aspects of the problem by utilizing tools from the
Graphical User Interface [25]. We prioritized usage of python
and arcpy [26] library in the proposed framework, whenever
possible, for the following reasons: a) the history and order of
data manipulation and the utilized tools are automatically
preserved and logged, it can be readily changed, updated and
re-run on the same types of datasets; b) computer code (as
opposed to manual processing) has inherent scalability, so it is
applicable for processing significant amounts of data in
parallel; ¢) code is also more structured, which leaves
significantly less room for human error when developing and
documenting it.

Organizing Geodatabases (GDB) in ArcGIS is critical for
efficient use. We created several databases connected to our
project and defined feature datasets (FD) within geodatabases
to logically place initial data and intermediate results [27].

The location of distribution feeders is encoded in utility-
provided shapefiles. Once imported into GDB, the merge
operation combines them into one feature class (FC). The
advantage of organizing data into FD is that it ensures that the
same coordinate system is used for all FC within the FD. All
lines are placed into a single FD.

In the next step, we import locations of the outages into
GDB based on the latitude and the longitude from the utility-
provided data. As seen from a part of the network in Fig. 1, the
initial outage locations do not intersect the feeders in some
parts of the system (blue dots). That might occur for several
reasons, such as insufficient accuracy during data acquisition.
Nevertheless, we need to associate all the outages with a
corresponding feeder segment. The Snap tool in ArcGIS is
used: it moves each outage point to the closest feeder. The
result is presented by red crosses.

The service area of interest is located near a major city in
the US and spreads across 4 counties. We import shapefiles
with counties’ boundaries into GDB as a separate FD. After
importing, we also merge them to have a FC representing all
the counties. Counties FCs are usually used to clip bigger
datasets or to cluster the processing of bigger datasets (for
example, imagery datasets).

We used seven weather stations closest to the network.
Since the number of weather stations (WS) in the area can
change throughout the years, one needs to account for the
possible addition of data in a new location near the area of
interest or some of the data becomes available after being
unavailable for certain periods. We used the WSs that had data
for the entire period of interest and discarded the rest. Each
row of data in the weather dataset has a timestamp, the name
of WS where the measurement was taken, and WS
coordinates. We extracted the coordinates of WS into separate
files and then imported them into GDB as points. Fig. 2 shows
the location of WS around the network.

B. CREATING BUFFERS FOR FEATURE
EXTRACTION

The prediction object or the prediction entity needs to be
defined. We are using several distribution feeder segments,
grouped into clusters with the same circuit name identifier
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FIGURE 1. Adjusting fault location
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FIGURE 2. Location of weather stations
(CKTID) as a prediction entity. We are estimating and
predicting risk levels for each CKTID in the system. The
framework can be used on arbitrary prediction entity: from a
single feeder segment to an area served by a single substation
to even an entire distribution system.

One of the ways to spatially aggregate information about an
object is the use of buffers, which are polygons created around
geographical objects with a predefined distance from the
object. They allow the extraction of the necessary information
that belongs to a particular object from various datasets. In our
study, we used different buffers around distribution feeders.
An example of 20-, 100- and 500-meter buffers is shown in
Fig. 3. We also generate buffers that are grouped by county.
These buffers are used to process imagery datasets in several
steps to decrease processing time and lower possible errors.

FIGURE 3. 20-, 100- and 500-meter buffers around power lines

Processing imagery in a single step is very computationally
intense and unstable and prone to software errors.

C. ASSIGNING CKTIDS TO NULL FEEDER
SEGMENTS

In the GIS data provided by the utility, not all the feeder
segments had CKTID assigned to them, so we refer to these as
NULL feeder segments. The probable reason for this is that
there may have been new construction, and recently built
feeder segments were imported into the database but were not
assigned CKTIDs. We have created a procedure that allows us
to assign missing CKTIDs, while ensuring the feeder
connectivity. Specifically, CKTIDs are assigned to these
segments based on their geographical proximity and their
connection to feeders, particularly at the points where they
touch. We note that an obvious approach of using spatial self-
join with parameter “boundary touches” [28] yields
inadequate results.

The suggested method is an iterative process of dissolving
(or fusing together) feeder segments into bigger clusters, when
they meet each other. First, the NULL segments touching
known feeders are joined. Then, NULL segments that do not
touch any known feeders are combined into NULL clusters
based on their connectivity to each other. Next, these NULL
clusters are assigned CKITIDs based on proximity to known
feeders. In such a manner, the feeder segments “snowball” into
clusters, growing from single elements to fully connected
parts. The segments with the CKTIDs known are separated in
the beginning and later used as a reference for assigning
CKTIDs to NULL clusters. After all the segments have the
CKTID assigned, the datasets are merged (combined) into a
single dataset.

The disadvantage is that in some cases identical NULL
clusters can be formed because each NULL cluster has several
initial starting points. Since we do not have prior information
on where and which segments can form a NULL cluster, we
assume that any NULL segment can be a starting point for a
NULL cluster. To overcome this problem, the identical
clusters are removed at the end of the process. The proposed
method can be enhanced by using some method for cluster
center initialization, reducing the number of iterations and
computational burden. In our case, 5 iterations were enough to
cluster all the NULL segments.

We note the importance of the subpar GIS data on the
quality of the SoR predictions. Small variations in the GIS
placement of feeders, if they remain in proximity to their
actual locations, might not have a drastic impact on the
framework's performance. An exception would be
mountainous regions where environmental conditions can
vary significantly between peaks and valleys. In such
territories, a higher degree of precision in mapping the power
lines' locations is desired. Another issue is mislabeling of GIS
objects. It leads to using incorrect geographical information by
ML algorithms, which can result in the learning of inaccurate
patterns, ultimately producing less reliable predictions. In our
study, the method for NULL segments yields adequate results,
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since the number of NULL segments is low, and they are in
the vicinity of known feeders.

lil. DATA PREPROCESSING

A. DATA SOURCES

While the opportunities of incorporating datasets in the
proposed framework are broad, the principal limitation is the
time required for the following steps: 1) searching and
identifying new data source, 2) learning how to deal with new
dataset, 3) creating an automated process for data
incorporation, 4) providing computational resources for data
processing, 5) retraining and recalibrating the data model. We
use the diverse dataset from the National Oceanic and
Atmospheric Administration (NOOA) has recently launched
Big Data Initiative Program, offering public access to its open
data by accreting its uniquely generated data (satellites, radars,
ships, weather models) to public and private partnerships
through commercial cloud platforms [29]. In this study, we
have fused together datasets from several sources: a) Utility
provided data, b) National Agriculture Imagery Program
(NAIP) imagery [30], c¢) Automated Surface Observing
Systems) historical weather from NOAA [31], d) Historical
lightning data from Vaisala [32], and e) County borders
disposition from Esri [33].

An iterative approach for adding new datasets (or altering
any step in the framework) may be developed following the
CI/CD concept [34]. The approach offers several benefits in
SoR prediction applications:

e  Process is standardized and streamlined.

e  New features can constantly be added to the framework.

e New dataset effects can be readily evaluated against
previous implementations.

e Testing and quality control procedures ensure a smooth
transition to the production stage.

B. HISTORICAL OUTAGE DATA

We analyze the impact of different data parameters on the
outage SoR predictions. Utility-provided historical outage
logs contain information about outages. First, we separate
planned outages from all other types of outages. To better
understand how faults are distributed throughout time, we
aggregate outages by the quarter of occurrence and cause.
Environmental conditions (vegetation or weather) constitute a
substantial portion of known causes of outages, as shown in
Fig. 4.

2009 2010 2011 2012 2013 2014

Vegetation
B Weather
Other

300

200 |I I I IIII
1OE>I .I Il I .I.- I.-

0

Outages

2341234123412 341234/1234
FIGURE 4. Outage Distribution in time

The utility outage data we used is in Central Time Zone
(CDT and CST). Other datasets used in this study are in UTC
(Coordinated Universal Time), which never switches to
daylight saving time. To ensure all the data are in the same
time zone, we converted outage time stamps to UTC. The pytz
library offers a convenient way for such conversion.

C. WEATHER DATA

We obtained the historical weather data from National
Oceanic and Atmospheric Administration (NOAA)
Automated Surface Observing System (ASOS) [31].
Historical weather dataset comes in a variety of temporal
resolutions: from 5-min to 1 hour. The same dataset can be
obtained through the user-friendly website of Iowa
Environmental Mesonet (IEM) [35], which allows one to
select weather station locations, types of weather parameters,
and timespan directly from the website's interface. The I[EM
also provides a script for the automated download of data [36].
The resulting downloaded file is in .csv format, which can be
conveniently ingested by pandas and further manipulated.

The next step is to select the weather parameters of interest.
We used the following parameters with least of missing
values:

Air Temperature,

Dew Point Temperature,

Wind Direction in degrees from true north,

Wind Speed,

Wind Gust,

One-hour precipitation for the period from the
observation time to the time of the previous hourly
precipitation reset,

e Relative Humidity,

e  Present Weather Codes.

The missing data is detected and discarded for each WS and
parameter.

We have also accounted for the duration of high wind speed
by summing number of hours with wind speed higher than 7,
10, 13 knots in last 3, 6 and 12 hours. We note that our analysis
focuses on severe weather, and not catastrophic weather with
very high winds, and the infrastructure remains intact.

The weather parameters need to be spatially correlated to
CKTIDs. We use centroids of CKTIDs as a point where the
weather parameters need to be calculated. The distances
between each centroid of CKTID and WS are calculated and
stored in a table. These distances are then used to calculate
weather parameters for each CKTID.

To correlate weather parameters spatially and temporally to
the outages, we get an average of the available parameters for
each event weighted by distance and time (1):

Z{-\Ll Wgeog;-Wtime;-P;

PCKTID -

()

Zé\il Wgeog;Wtime; ’

where

1
Geographic dist.(CKTID;WS)

Wgeog; =
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1
Time dist.(Weather measurement time;Event time)’

Wtime; =

In our study, we used the Euclidean distance between the
centroids of CKTIDs and the WSs as a geographical distance
in (1). The kernel (2) is used for the time distance:

1,if t2 — t1 < 60 min
o0, otherwise

Time dist. (t1; t2) { 2)

The time distance kernel only considers the measurements
available in a 1-hour window before the event, discarding the
measurements outside this window. That approach assumes
that the weather preceding a fault has a major effect on it.
However, different time kernels can be used to give more
weight to measurements that are closer to the event timestamp.

For each hour of the study, the weather parameters are
calculated for corresponding CKTIDs using distances between
CKTIDs and WSs. Afterwards, the dataset is labeled into two
classes: faults and normal operation (NO) based on the
timestamps of fault occurrence. Then, to address the
imbalance of the dataset, NO is randomly sampled to be of the
same order as faults resulting in 517 faults and 581 NO. Only
vegetation and weather caused outages are considered.

D. IMAGERY DATA

National Agriculture Imagery Program (NAIP) imagery
data [37] used in this study can be accessed from Texas
Natural Resources Information System (TNRIS) [30]. NAIP
imagery consists of 3 bands: R, G, B. Each band is captured
by a separate sensor during the imagery acquisition, which is
performed by means of aerial photography [38]. NAIP
imagery is clustered by county and is updated every two years.

For our study, we focused on extracting specific parts of the
imagery data that are near the feeders. These features
characterize the amount of vegetation around the feeders and
how close vegetation is to a feeder. The underlying hypothesis
is that the more vegetation around a feeder and the smaller its
proximity to the feeder, the bigger the risk of an outage due to
an increased probability of: a) tree branches touching
conductors during strong wind, b) trees and/or branches falling
onto the feeder during severe weather conditions, and c) trees
growing into the conductors from underneath the feeder [39].

In total, there are 12 original NAIP imagery datasets: 4
datasets corresponding to the counties for 2010, 2012, and
2014. The computer used for the processing has 16 cores of
Intel ® Core ™ i9-9900 CPU with 3.1 GHz and 64 GB of
RAM. One NAIP raster consumes around 30% of the
computer resources during clipping. So, we can run 3 parallel
computing nodes simultaneously on one machine. Buffers of
20 meters around lines grouped by county are used as the
clipping boundaries for imagery.

After the clipping is finished, we are left with raster files in
20 meters vicinity around feeders in each county. The next
step is to separate tree locations from the rest of the dataset.
For that purpose, unsupervised clustering is used, followed by
the reclassification of raster cells into two categories:

vegetation (1) and no vegetation (0). ArcGIS Pro has an
unsupervised clustering tool: IsoCluster. To run the tool, one
needs to specify the number of clusters. The optimal number
of clusters is determined empirically. Usually, the optimal
number is around three times the number of bands in a raster
dataset. In our case, we used 30 clusters.

After running unsupervised clustering, we get a raster with
cells classified into 30 clusters. The tool uses information
embedded in all the bands to assign the cluster to each cell. At
this point, one needs to decide whether each -cluster
corresponds to an area with vegetation (1) or without (0). That
process is manual, and it helps to have the original raster
underneath the clustered raster. The resulting reclassified
raster represents the location of vegetation around the power
lines. An example of such a raster is shown in Fig. 5, where
green areas represent vegetation in the lines' vicinity. Once all
the raster files for counties are reclassified, same-year files are
merged. The reclassified raster files are then converted into
vector representation for easier use with other datasets.

E. LIGHTNING DATA

The lightning data comes from the National Lightning
Detection Network operated by Vaisala [32, 40]. For each
lightning strike, the following information is collected: the
location of the lightning strike, timestamp, lightning current,
and type of lightning (cloud to cloud or cloud to ground).

We import lighting data into GDB as points, only the cloud-
to-ground lightning strikes are extracted and sundered into
different FC for each year. The hypothesis is that only the
cloud-to-ground lightning strikes affect the feeders and cause
outages. Then, the absolute value of the current is calculated
from the original current, which accounts for polarity.

The hypothesis is also that certain parts of the network may
be more susceptible to lightning strikes than others, which
results in a higher risk for such parts of the network. The
reason might be in its geographical location and its
surroundings: if the feeder pole as a relatively tall structure is
standing out in a particular area, then the lightning is more
likely to strike it since lightning is "attracted" to taller objects
on the ground [41-43]. To get the statistics of lightning strikes
over different CKTIDs, we are using the buffers described in

FIGURE 5. Reclassified Raster
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section II B. The distances used are 5, 10, 15, 20, 30, 50, 100,
500, and 1000 meters. So, there are 9 buffers around each
CKTID of the network. We count how many lightning strikes
hit inside each buffer over a predefined time interval and
calculate their average current. These are used as features for
the ML classifier.

IV. DEVELOPMENT OF SOR PREDICTION MODEL

A. MODEL TRAINING AND EVALUATION

After all the features are prepared, we use them to train the
ML classifier. The performance of 3 classifiers is compared:
Random Forest (RF), Logistic Regression (LR), and Catboost
(CB) [44]. Performance is measured by the following metrics:
F1 Score, Area Under the Precision-Recall Curve (PRC
AUCQC), and Area Under the Receiver Operating Characteristic
(ROC AUC). Descriptions of the algorithms and metrics used
for performance evaluation can be found in [45-50].
Classifiers are trained and tested using Stratified K-Folds
cross-validator with 5 folds. The average performance metrics
scores of the algorithms are presented in Table 1. The highest
achievable score for each metric is 1.0. Our data indicates that
while ML algorithms show strong predictive abilities, they are
not flawless. Specifically, both CB and RF demonstrate
similar performance, surpassing LR. A direct and unbiased
performance comparison with existing methods is
challenging, given the variations in spatiotemporal focus
among studies and the unique regional weather patterns they
consider.

TABLEL
PERFORMANCE METRICS SCORES

RF LR CB

ROC AUC 0.91 0.761 0.926

PRCAUC | 0916 | 0.748 0.93

F1 0.823 | 0.655 | 0.836

Precision 0.857 0.662 0.872

Recall 0.793 0.65 0.803

B. CALCULATING RISK MAPS

The ML classifier outputs the probability of an outage under
given weather conditions for each individual CKTID in the
network for a given timestamp. The SoR values for several
timestamps are combined and exported as a .csv table and then
imported into ArcGIS. The tables need to have the prediction
timestamp as a separate column to use the time-series
visualization capabilities of ArcGIS. After importing, the risk
values from the algorithm are joined with lines FC. Predefined
layer symbology parameters are applied to the imported
dataset to standardize the color scheme.

To illustrate the risk map usage, the 12-hour windows
before the known outages are selected to build risk maps for
that period. One can see how the risk changes in the system as
the outage approaches in Fig. 6. As can be seen, the risk is low

in the beginning and increases with time, eventually leading to
an outage.

The spatial differentiation of the risk maps is not as accurate
as differentiation timewise. The improvement of spatial
awareness of the framework is left for future work. The risk
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FIGURE 6. Risk maps for 12 pm —4 pm
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maps can be used by utilities to improve real-time awareness
of network vulnerabilities and support predictive decision-
making practices. These risk maps can be used to establish
various proactive measures that will help mitigate future high
risks in the system. The information may also be used by the
customers to prepare for times of elevated SoR levels.

V. OPTIMIZATION OF MITIGATION ACTIONS

In this paper, we are focused only on the application of
SoRs to deploy a CNS by a utility, which improves the overall
satisfaction of the customers. We introduce mitigation
optimization based on SoR predictions. Our approach differs
from the current reactive approach, where the assessment of
the impacts is performed after the event (postmortem) [51, 52].
We are taking a proactive approach where customers are
notified in advance and have time to prepare for a possible
power interruption.

A. PROBLEM STATEMENT AND HYPOTHESIS

Our hypothesis is that given the SoR for the future timesteps
for different parts of the network, it becomes feasible to devise
and select appropriate mitigation measures that would reduce
or eliminate the losses resulting from outages. We propose an
optimization approach based on the acquired SoR levels,
which outputs a set of mitigation actions from a predefined set
for a given situation.

B. OBJECTIVE FUNCTION AND CONSTRAINTS

The objective function F (X) of optimization is maximized
by selecting the mitigation actions (MAs) from the set ®. The
choice of a specific F(X) is made to best suit the interests and
priorities of utility companies and end consumers. The
objective function should be designed to optimize the overall
outcome and ensure that the selected MAs effectively address
the needs and concerns of the stakeholders involved.

The set of mitigation actions © (by utility and/or customers)
is determined by the availability of the resources, system
topology, cost of action, market conditions, level of flexibility
of consumers and prosumers, time of the day, societal
expectations, etc. Certain utility actions may necessitate
longer time frames and require more resources, such as
replacing old equipment or executing tree trimming. Some
customer actions can be taken immediately, such as canceling
a family event or moving to a warming/cooling center. We
refer to these attributes as the inertia of an agent towards a
specific mitigation action, reflecting their inclination and
readiness to undertake it.

One also must account for the constraints g;(X) and h;(X)
that may be present in the system at the time of MA scheduling
and execution. Some MA can be infeasible at the time of high
risk, while other parameters may need to remain unchanged.
Accounting for these constraints would ensure that the
selected MAs align with the current system conditions and
limitations.

The proposed approach for optimization can be summarized
as follows (3), (4):

argmaxy F(X) 3)
9iX)<0,i=1,..,1

o | ,
K =0j=1..k @

Where X represents a vector of parameters on which the
objective function and constraints depend.

VI. CUSTOMER SATISFACTION

We introduced the customer satisfaction index (CSI) as a
quantitative measure of customers' satisfaction with utility
services. We demonstrate how the CSI may be improved by
sending notifications to customers about potential outages in
the system that can affect them.

A. UTILITY FUNCTIONS

Atevery moment in time, each customer is assigned a utility
function (UF) denoted by 7;(t1,¢2) (5). This function
represents the customer's perceived value of being correctly or
falsely notified about an outage that will eventually happen in
a predefined time interval. One can also think of this function
in terms of the cost of false positive (FP) and false negative
(FN) signals and the reward of true positive (TP) and true
negative (TN) signals provided by the prediction model. The
UF reflects Customer Interruption Cost since it aggregates
both direct and indirect impacts [53], [54]. The utility function
is dependent on time because it may change throughout the
day/month/year and is subject to personal preference:

r(t1,t2) =
aj — [ ¢;(Tout) dTout,if 0;(t1,t2) = +1,N;(t1,¢2) = +1
b; — [ y;(Tout)dTout,if 0;(t1,t2) = +1,N;(t1,t2) = —1
¢, if 0;(t1,t2) = —=1,N;(t1,£2) = +1
d;, if 0;(t1,¢2) = —1,N;(¢1,t2) = -1
(5)

where

e aisareward for a correct notification about an outage that
has occurred,

e b is a penalty for a missed notification about an outage
that has occurred,

e cisapenalty for an incorrect notification about an outage
that did not happen (disturbance cost),
d is a reward for not notifying when there is no outage,
@; and y; are dissatisfaction rate functions,

e Tout is the duration of an outage.

We also utilize indicator functions 0;(t1,t2) and
N;(t1,t2) that take a value of +1 in case of an outage or
notification taking place, respectively, and a value of -1 in case
of an outage or notification not taking place in the time interval

[t1, t2) (6), (7):

+1, if outage occurred during [t1,t2)

0;(t1,62) = { —1, otherwise

(6)
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N;(t1,62) = {+1, if notification sent'durmg [t1,t2)
—1, otherwise

(7

During actual outages (0;(t1,t2) = +1), the UF includes
an integral of the dissatisfaction rate functions ¢; and y; with
respect to Tout. The longer it takes to return the power supply
to a customer once the outage happens, the more dissatisfied
customer becomes with the utility. The dissatisfaction rate
from the outage duration is different in case of being notified
in advance and not being notified in advance, as can be seen
from the example of such functions, which is shown in Fig. 7.
The form of functions is not limited to exponential functions
and can be an arbitrary function, perhaps determined through
behavioral experiments.

The contents of the notification message to a customer can
consist of a set of items: outage probability, expected outage
duration, possible mitigation actions, recommendations, etc.
An effective message structure would yield better satisfaction
and a more considerable impact reduction. Formulation of the
message structure and estimation of how efficiently a
customer acts, given the notification, lies beyond the scope of
this paper and is left for future research. In this paper, we limit
the message to a warning about a potential outage in the
customer’s area in the next hour. Each customer is assumed to
act according to his/her personal circumstances to reduce
outage impact.

Tresys: 1s the expected time of restoration of power the
customer anticipates, and when the power outage lasts more
than Tres.,;, dissatisfaction grows at an accelerated rate. The
Tres s 1s customer dependent and, in general, is affected by
the personal background and experience of a particular
customer. For example, a customer may base his/her
estimation based on previous outages. The time of restoration
expected by a customer can be purposely influenced by a
utility sending a notification of the expected restoration time
for a particular outage, thus, making the customer's
expectation more specific. The functions will be revisited in
Section VIII.

A utility has its own expected restoration time for each
outage: Tres,,;. It can be predicted by a separate ML model
or can be assessed by means of statistical analysis for various
parts of the system, for example, using the historical mean.

Dissatisfaction
Tres cust

M y (Tout)
B ¢ (Tout)

Tout

FIGURE. 7. Dissatisfaction rate from the power outage

The repair crews’ allocation during outages can be optimized
by reducing actual restoration time for customers with higher
dissatisfaction rates.

While the previous two restoration times are expected
values by different parties, after the restoration is completed,
the actual restoration time is known. We denote this as
Tresgciuai- The dissatisfaction of a customer would be
calculated by comparing the actual and predicted restoration
time for each outage. However, the decision on MA must be
made based on the expected values since the actual restoration
time is not available at the time of making the decision.

The coefficients of the utility function and dissatisfaction
rate functions for individual customers are subject to
behavioral economics assessment because the perceived
cost/value of an outage by a customer is different from the
monetary cost/value. Surveys of customer opinions are
necessary to address the issue. In this paper, we assume that
the utility functions are known.

B. CUSTOMER SATISFACTION INDEX

By informing customers about potential disruptions, we aim
to improve their overall satisfaction and reduce any
inconvenience caused by unexpected service interruptions.
The notifications serve as a proactive measure to keep
customers informed and engaged, enhancing their perception
of the utility service provider's responsiveness and reliability.

Satisfaction Index CSI; for a given customer j is a sum of
all rewards/penalties increments from the UF up to a given
moment in time t0, discounted by a discounting factor E (8):

CSI;(t0) =
YU (¢, t + db) - 0;(t, t + db) - Ni(t, t + db)[etE, (8)

where dt is a discretization time step.

VII. STATE OF RISK INCORPORATION INTO
OPTIMIZATION

A. STATE OF RISK

The likelihood of an outage is reflected by the State of Risk
(SoR). SoR represents the conditional probability p of the
system element i failure in the time interval [t1, t2) given the
set of operation conditions (2, which includes historical and
forecasted weather conditions, system topology, loading and
generation conditions, etc. (9):

SoR;(t1,t2|2) = p(element i fails in [t1,t2) | 2) (9)

Each customer j in the network at current time t0 is
described by the following parameters, including SoR:
e  Geographical location of the customer in the network,
e Customer location in the grid topology (electrical
location),
SoRs for the next time
e History of experienced outages in the past: HO;(t0)
e History of the notifications sent: HN;(t0),
e UFs for the next time intervals: 7;(¢0, t1),7;(¢1,t2) ...,

intervals:

VOLUME XX, 2017



IEEE Access

Wuhtidisciplinary § Rapid Review : Open Access Journal

e Current Customer Satisfaction Index: CSI;(t0).

The relation between element i and customer j can be
formulated in several ways. In this paper, element i is a feeder
to which customer j is connected.

B. SOR BASED ACTIONS

Given the uncertainty of the outage in the future period, one
can define a random variable that represents the possible gain
or loss of the Customer Satisfaction Index ACSI; using the
predicted SoR levels for that period. The gain/loss of the next
period depends on whether the notification will be issued and
whether an outage will take place. The PMF of such random
variable is presented in (10) (time periods are omitted to
simplify the notation):

P(ACSI; = a; + [ @;(Tout) dTout|0 = 1,N = 1) = SoR

P(ACSI; = —b; — [yj(Tout) dTout|0 = 1,N = —1) = SoR

P(ACSI; = —¢j|0 = =1,N =1) =1 — SoR
P(ACSIj=d;|0 =—1,N=-1)=1—SoR
(10)

The action vector 6; represents a mitigation action for each
customer (11):

9-={(1 0),if N = +1 (1)

770 D,if N=-1

The objective function F (X) at time t0 for the optimization
is to maximize the Customer Satisfaction Index in the next
time period across the entire grid with consideration of
Satisfaction Index change ACSI;, which is an expected value
of future reward/penalty of the utility function, given the SoR
(12):

" E(ACSL|IN = 1)
PO = 2 CSLED + 6 (E(ACSI-|N - —1))' (2
N =

where M is the total number of customers in the grid.

Using SoR, we can calculate the expected values of the
Satisfaction Index change for both cases: notification will be
sent (N = 1) and will not be sent (N = —1) (13):

E(ACSL|IN =1) =

SoR - (aj - f @;(Tout) dTout) + (1 —SoR) - (—¢)
E(ACSL|N = -1) =

SoR - (=b; - J y,(Tout) dTout ) + (1 = SoR) - (&)

(13)

The optimization problem is then to choose such mitigation
vectors 8;, so that the objective function is maximized or, in
other words, to choose which customers should be notified
about possible outages.

There are several constraints to the optimization problem.
First, we would not notify a customer if there is already an
outage at its feeder. Second, each customer can have a “do not
disturb” mode when notifications are not accepted. We also
consider a third constraint, namely the total number of
notifications in the system. Even though the cost of sending a
single notification is minuscule (given that the notifications
are sent by means of the Internet), in an exceptionally large
system sending frequent notifications may require more
processing power in the hardware and faster Internet
connections. The constraints are summarized in (14):

6; = (0 1),if experiencing an outage
6; = (0 1),if "donotdisturb” mode
jyl=19j1 - Nmax < 0/ (14)

where N4, is the maximum number of notifications in
each period.

C. HYPERPARAMETER OPTIMIZATION

To further improve the CSI of the customers, we introduce
an additional step in optimization: find and set minimum SoR
threshold SoR,,;,, (s, t) as a function of time t and locations s,
below which the notifications will not be issued (15):

6;(s,t) = (0 1),if SOR; < SORpy (5, 1) (15)

This hyperparameter helps to fine-tune message
notifications and tie thresholds to a current situation in the
service area. We suggest that the minimum threshold is
updated on a periodic basis (which can be chosen arbitrarily)
based on the performance of the CNS in the last period(s).
Value of the SoR,,;;, (s, t) is the threshold to maximize the SI
at location s during the previous period(s).

VIIl. MITIGATION EVALUATION

We have evaluated the impact of Customer Notification
System implementation on 1 year of real-life data.

We have randomly generated a utility function for each
customer in the network. The forms of dissatisfaction rate
functions are assumed to be linear (16):

AL Tout,if Tout < Tres

®; (Tout) = {Aijout +wj, otherwise

pl;Tout,if Tout < Tres
u2;Tout + zj, otherwise

yj(Tout) = { (16)

where 0 <A1 < A2, 0 <pl <p2, A1 <pul, A2 < u2,
and w; and z; are such that the functions are continuous in
Tresq,st-

The system has a total of 698 313 customers located at
different feeders. The time of restoration TresSg iy q0f an
outage obtained from utility provided data. Tres,;; is set to 2
hours for all outages, as the current utility practices suggest.
For each customer, Tres,,,; is modeled as a sample from a
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lognormal distribution with a mean of 0.7 hours and a standard
deviation of 0.2 hours. Coefficients A1,42,ul,u2 are
modeled by uniform distribution with bounds (0,1) respecting
the conditions above. Hence the utility function coefficients
have only 2 degrees of freedom [55], we model dj = 0, bj =
0.1, aj as a lognormal distribution with a mean of 1 and
standard deviation of 1, ¢j as a lognormal distribution with a
mean of 1 and standard deviation of 1, multiplied by 0.01.

In general, the coefficients aj, bj, c¢j, dj can be of any sign
because there possibly might exist a customer who, for
example, likes being falsely notified. However, we deem it to
be viable to assume that such customers are rare, for that
reason, all the coefficients are modeled as a positive number,
which is in accordance with the “reasonableness” conditions
presented in [55]. The initial CSI; for each customer is
assumed to be zero.

To ensure the robustness of the results, we have repeated
the test for the entire system on 1 year of data for a total of 150
times, which is considered to be a sufficient number of
samples for the Central Limit Theorem to be applicable [56,
57], and recorded the results of each run. The results of the
optimization runs are shown in Fig. 8 in the form of the end-
of-the-year percentage difference between the SI of the entire
system with and without CNS implementation. As can be seen
from the figure, the usage of CNS based on SoR predictions
improves the Satisfaction Index by 54.3% on average.

IX. CONCLUSIONS
By summarizing our findings, we arrive to the following
conclusions:

e Employing an iterative approach for incorporating new
relevant datasets is essential to the performance
evaluation of the SoR prediction models.

e  The practical value of SoR maps for utilities is in ability
to plan and anticipate potential outages, enhancing their
operational preparedness for inclement weather events.

e  Proactive outage management facilitated by CNS allows
utilities to effectively communicate with customers,
raising overall satisfaction levels and minimizing
detrimental outage impacts.

Our future work will focus on enhancing our outage SoR
prediction by incorporating new datasets and deploying
advanced feature engineering. We will also conduct a detailed

6 48 50 52 54 56 58 60 62

SI(CNS) - SI(no CNS), %

Number of cases
N
o

[9)]

0 o

44 4

FIGURE 8. Distribution of percentage difference between CSI with CSN
and S| without CNS

analysis of vegetation-related features and introduce outage
duration prediction.
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