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Abstract—This paper examines line-of-sight (LOS) path iden-
tification for passive multi-target localization in multipath en-
vironments. We consider a system comprising multiple spatially
distributed sensors, each transmitting a distinct waveform and us-
ing the echoes to measure the LOS and non-LOS (NLOS) delays
(i.e., ranges) of the targets in the surveillance area. For simplicity,
we assume a 2-dimensional localization scenario, where each
range measurement defines a circle, and measurements from
different sensors create intersection points on the plane. The
problem is to identify intersections that are created by LOS
paths. To solve the problem, we classify the intersections into
N(N — 1)/2 types, where N denotes the number of sensors.
Then, an efficient clustering algorithm is proposed to efficiently
identify the LOS intersections based on the type and other
related attributes. Numerical results are presented to demonstrate
the performance of the proposed technique in comparison with
several peer methods.

Index Terms—Multi-target localization, passive targets, multi-
path propagation, line-of-sight (LOS) identification

I. INTRODUCTION

Target localization is a crucial requirement in diverse appli-
cations encompassing navigation, augmented reality, industrial
automation, and the Internet of Things [1]-[6]. Among various
localization approaches, delay-based methods offer superior
localization precision when paired with wideband probing
signals [7]-[15]. There are two types of localization problems.
In active localization, the target (e.g., a mobile wireless
device) transmits a distinct signal received by sensors [16],
whereas in passive localization, the target, which is RF-silent,
is illuminated by an external transmitter, and the target echo
is utilized for localization. Passive localization poses more
significant challenges, especially in a multi-path environment
with multiple targets (see Fig. 1) [17]-[19]. In particular, with
the same illuminator, all targets reflect the same waveform.
As such, a non-line-of-sight (NLOS) echo of one target can
be confused as a line-of-sight (LOS) echo of another target.
The problem is generally less challenging in active cases,
where different targets emit distinct waveforms, which can be
exploited for differentiation.

Target localization relies on LOS paths to find targets. If
some prior knowledge is available, such as when the statistics
of the excess delay of the NLOS path are known [16], [20]
or multiple NLOS observations are geometrically constrained
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Fig. 1. A multi-sensor localization system with multiple passive targets and
scatterers (non-target objects) in a multipath environment.

with one another [21], [22], LOS and NLOS measurements
can be properly combined for target localization. Without such
prior knowledge, NLOS paths will cause non-negative bias
in location estimates [16], [20], [23]. Various LOS detection
methods have been investigated for active and passive localiza-
tion problems [20], including hypothesis testing [24]-[26] and
nonparametric techniques [27]-[32]. Most of these methods,
however, were developed for active single-target localization
in multipath environments, and they are in general ineffective
for passive multipath multi-target localization.

We consider herein LOS identification for a delay-based
passive localization system consisting of multiple distributed
sensors. Each sensor measures the LOS and NLOS ranges
of the targets, thus creating numerous intersections in the
surveillance area. We propose a fype-based clustering algo-
rithm to identify intersections that are created by LOS paths.
Following LOS identification, the multi-target localization
problem reduces to multiple single-target problems which can
be solved by conventional localization methods.

II. PROBLEM FORMULATION

Consider a multi-sensor system comprising [N sensors at

a, € R’n = 1,...,N, which is employed to locate
K targets at unknown locations p, € R%k = 1,..., K.
The environment also consists of L non-target scatterers at
locations s; € R2?,1 = 1,...,L. Each sensor probes the

environment by sending a unique waveform and measures the
time delays of target/scatterer echoes by using a matched filter
[16]. The delay measurements translate to LOS and NLOS
range observations that are described by

Tk =[Pk — anl| + €nk,
Ynkl =Pk — anll + [P — sil| + I8t — anl| + €n k0,
ne{l,....N}, ke{l,....,K}, le{l,...,L} (1)
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Fig. 2. Intersectionpoints (red-dots) created by-LOS measurements (circles
in solid lines) and NLOS measurements (circles in dashed lines). Points 1 to
3 clustering around the target (red star) are referred to as farget intersection
points (TIPs).

where e denotes the range measurement noise with zero mean
and variance . The multi-sensor system cannot distinguish
between LOS measurements 7, ; and NLOS measurements
Yn,k,l, Dor can it identify which target each measurement is
related to. The problem of interest is to develop an algorithm
for identifying 7, ;. of each target by exploiting some inherent
geometric structure of the data.

III. PROPOSED APPROACH

A. Main Idea

Each delay-based range measurement defines a circle cen-
tered at the corresponding sensor’s location, and such circles
produce many intersection points. Consider the ideal case in
the absence of noise. The N circles defined by r,;,n =
1,..., N, referred to as the LOS circles associated with target
k, intersect at the target location pg, whereas the NLOS circles
defined by y,, 1, do not.

In scenarios with measurement noise, LOS circles no longer
intersect at py. Instead, as shown in Fig. 2, they create some
intersections close to py, €.g., points 1, 2, and 3. Such intersec-
tions are called target intersection points (TIPs). In contrast,
points 4 and 5 are non-target intersection points (NTIPs) that
are isolated from one another, although they are intersected
by LOS circles. LOS-NLOS intersections (e.g., point 6) and
NLOS-NLOS intersections (e.g., point 7) are also NTIPs. The
LOS identification problem is therefore transformed to finding
TIPs among the numerous intersections on the plane.

The presence of noise makes the problem even harder by
causing two LOS circles to cease to intersect, leading to the
disappearance of a TIP, a phenomenon referred to as point
loss. To circumvent this, if two circles do not intersect, we
implement a recovery procedure where the radius of each
circle is increased/decreased by a small amount « to create
expanded/shrunk circles, where x typically falls between o /2
and 20, where o denotes the standard deviation of the range
measurements. If the expanded or shrunk circles intersect at
two points, they are nearly tangent to each other since
is small. Therefore, the average of the coordinates of the
two points is included in the existing set of intersections for
LOS identification. Through simulations, we found the above
approach effectively mitigates the negative effect of point loss.

B. Type-Based Clustering Algorithm (TCA)

Given all intersection points, TCA is an efficient clustering
algorithm that produces K clusters of points, denoted by
Vi, k = 1,..., K, one for each target. Each cluster Vg,
referred to as a TIP set, is composed of the TIPs associated
with target k. TCA is a type-based algorithm, which classifies
all intersection points into a total of N(N — 1)/2 rypes.
Each type corresponds to the pair of sensors producing the
intersection. TCA utilizes the following concepts.

Definition 3.1 (Type Set): The points belonging to the same
type are referred to as a type set, expressed as Ty, n, 2{rec
R2|z = C,, NCp,,n1 # na}, where C, denotes the set of
circles centered at the n-th sensor.

Definition 3.2 (Spread): The spread of a point set I/, denoted
by s(U), is defined as the sum of the standard deviation of
the x- and, respectively, y-coordinates of all points in /.

Definition 3.3 (Parent Circles): Each point in a point set
U is produced by two intersecting circles. Parent circles of
U, denoted by P(U), consist of the set of all circles that are
involved in producing the points in ¢/ by intersection.

A TIP set has several properties that can be used for
identification. Most of them are straightforward to show.

Property 3.1 (TIP Set Number): The total number of TIP
sets is K, denoted by Vi, k =1,..., K, one for each target.

Property 3.2 (Type Uniqueness): Each point in V; has a
unique type and |Vi| = N(N —1)/2, i.e., Vi has all types of
points.

Property 3.3 (Size of Parent Circle Set): |P(V},)| = N. This
is because each TIP set is created by intersections of N LOS
circles respectively centered at each sensor.

Property 3.4 (Non-overlapping): Vi, N Vi, = 0,Vky # ko,
i.e., different TIP sets are non-overlapping.

Every point on the plane is either a TIP or NTIP. TCA
exploits the above concepts/properties to screen all points in
an efficient way. The algorithm consists of a two-stage search
process followed by a final screening.

1) Stage-1 Search: Stage 1 focuses on (N — 1) intersection
types T1,2,...,71,n, starting from 77 2. Note that sensor la-
beling is random, i.e., they can be labeled in any order. Hence,
71,2 can be any type set for initialization. We form the initial
candidate TIP sets, each containing a unique point from 7 »,
and these candidate sets are represented by Z/{}, j=1,...,Jy,
where J; = |T12|- These candidate sets, each containing a
single point, are designated size-1 candidate sets as denoted
by the superscript (-)!. For example, point 1 in Fig. 2 forms a
candidate set, which is a TIP. Point 5 also forms a candidate
set, which is a NTIP. Candidate sets containing NTIPs are later
eliminated by checking against points of other types.

We proceed to 73 and check if any of its points can
be included in the existing candidate sets. For an existing
candidate set, say Z/{jl, a point x in 77 3 can be included in
Uj if [PU} U )| = 3, ie., the size of the parent set of
{t} Uz} is 3, which means that that point z must share 1
circle with the circles associated with L{jl. This can be seen in
Fig. 2, where ] = {point 1} can be expanded with point 2 to
form a new candidate set, 4Z = {point 1, point 2} since point
2 adds only a new circle (the cyan solid circle) to P (U ).



Only 1 point can be included in an existing candidate set
for expansion. If multiple points meet the criterion, different
new candidate sets need to be formed. For example, point
4 also meets the parent circle criterion for U{, and they
can be combined into a new size-2 candidate set Ui =
{point 1, point 4}. Note that a point may be selected by
multiple different candidate sets, as long as it meets the parent
circle criterion. Those size-1 candidate sets that fail to integrate
with a 77 3 point based on the parent circle criterion are
eliminated. Furthermore, to reduce the number of candidates,
we can eliminate those sets comprising points that are far away
from each other, i.e., those with a spread measure exceeding
a threshold ~.

The next step is to go through the points in 7; 4, and expand
size-2 candidate sets into size-3 candidate sets. The process is
repeated until we have finished with 7; -, which results in a
series of size-(IN — 1) candidate sets L{]Nflhj =1,...,Jnv_1.

The above search process ensures each candidate set UJN -1
contains (N —1) points of distinct types (i.e., sensor pairs) that
are created by the intersections of N parent circles centered at
the N sensors. Consider again the 3-sensor example in Fig. 2.
U3 = {point 1, point 2}, which contains N — 1 = 2 points of
distinct types, i.e., 71,2 and 7; 3 respectively.

2) Stage-2 Search: The purpose of Stage-2 search is to
examine the points in the remaining Types Tp, n,,n1 >
1,my = 3,..., N, one type at a time, by following similar
steps used in Stage-1 search with one exception. Specifically,
recall in Stage 1, a point z is included in an existing candidate
setUj",m =1,..., N—2,if and if only = increases the size of
the parent set of U™ by 1. In Stage 2, a point x can be included
in an existing candidate TIP set U, m = N — 1, N,..., if
and only if x retains the size of the parent set of U™, which
is N. This, again, can be illustrated by the 3-sensor example.
Stage-1 search has produced a number of size-2 candidate sets,
including U7={point 1, point 2}. To expand U} to a size-3
candidate TIP set, we can add a point from Type 73 3. For
example, point 3 can be included to form U= {point 1, point
2, point 3}, which keeps the parent set size unchanged, i.e.,
3| = [U?| = N = 3. In contrast, point 6, which is also a
T2,3 point, cannot be used to expand the candidate set since
it would increase the parent set size to 4, whereas a real TIP
set should be produced by N and only N parent circles.

3) Final Screening: At the end of Stage-2 search, we
have a few size-N(N —1)/2 candidate sets U;,j =
1,...,JN@v—1)/2, Where the superscript is dropped for no-
tational simplicity and Jy (v _1)/2 denotes the number of the
final candidate TIP sets, which depends on the threshold ~.
These candidate TIP sets are guaranteed to satisfy Properties
3.2 and 3.3. The final screening process is to determine the
final TIP sets from the candidate sets by imposing Property
3.4 along with the fact that the points within a TIP set are
close to one another with a small spread.

A summary of TCA is presented in Algorithm 1, which is
non-iterative and guaranteed to produce K TIP set estimates
Uf, ..., Ujy. Note that P(U), i.e., the parent circles of U,
comprises N circles, each centered at a unique sensor. The

I'The superscript N(N — 1)/2 is next dropped for simplicity.

Algorithm 1: Type-based Clustering Algorithm (TCA)
Imput: 7,,, p,,n1=1,...,N—-1,np=2,..., N,
spread threshold -, target number K
Output: K TIP set estimates U,k =1,..., K
1 Initialization:
Z/{jl = {Jij|l‘j S 7172},j = 1,...,J1 = |’T172|; t=2
2 Stage-1 Search:
3 whilet < N —1 do
4 Setv=1
for each x in Ty 41 do
for j=1,...,J;_1 do
. t—1
lf| ;(({JLZZ//{{jt -1 LLJJgaC:}})) |§:7t Tcll then
8 ut = {U-tuz}
v J
9 L v=v+1
10 Jt =

11 %t:t+1

12 Stage-2 Search:
13 Rename 7, n,,n1 > 2,n2 > 3 as a single-indexed set

sequence 7/, t=1,...,(N —1)(N —2)/2
14 Initialization: t =1, m = N — 1
15 while t < (N — 1)(N —2)/2 do
16 Setv=1

BN I N

17 for each x in T, do
18 for j=1,...,J, do
19 if s({" Uz}) <~ and

[P{U* Uz})| = N then
20 L urtt ={ur v}
2

v=v+1
22 Jsp1=v
23 t=t+1
24 m=m-+1

25 Final Screening:

26 Let S = {UJN(N_D/Q,]' = 1, ceey JN(N_l)/Q}l
27 for i, j=1,..., nyn-1)/2,% # j do

28 L if U; NU; # 0 and s(U;) > s(U;) then

29

| Remove U; from S
30 Reorder S in increasing spread. The first K sets are
selected as TIP set estimates, denoted by U},
k=1,...,K.

radii of these circles, denoted by 7, ,,n = 1,..., N, represent
estimates of the LOS ranges in (1).

C. Target Localization

Once the LOS measurements corresponding to the K tar-
gets are respectively identified, the multi-target localization
problem is converted into several single-target localization
problems, which can be solved by several existing methods,
such as the range-based least squares (R-LS) estimator and
the squared-range-based least squares (SR-LS) estimator [33].



200 global view ;;om—m_(Krmeans)_74zuom—m (TCA) 200 global view zoom-in (K-means) zoom-in (TCA)
K 4 v 1021 * 1027 B
a 750 ¢ e 75 o =] - A
0 J 100 100 10°
100 -+ 8 100 v 98 98
-150 -145 -140 -144 -142 -88 -86 -88 -86
a -60 -60 [« o 2 .
O sensor e, P v P
0 w target 65+ x d 0 . 20 20 102k i
intersections -70 65 v 2 s e 4
k *, 130 140 126 128 130 -50 -45 -50 -45 .
-100 110 ¥ » -100 ol ¥ 15 \ .8
o o 1M0] #*°. o o p LY. w 10 Pid >
105 : ° B : 2 =g -
. . * Lol 4 -
200 100 108 200 -20 4 29 e
200 100 0 100 200 0 20 40 25 0 200 100 0 100 200 190 S0 2 20 ) S e
I I i I 5 PE—— 10 [
102 F |~ ®CRLB 1046 -9 . S J S
—©—-K-means &
TCA , s - CRLB
W w 10 1 2 K-means
TCA - B ]
g 10° g S =1 10 ,__gfi = X/~ -clairvoyant
............ L A TCA
0 P ] P
10 & i e - & sTCA
G -~
G -
10 2= L L | 102z ) L L 1028~ L L L L L
-10 -5 0 5 -10 -5 0 5 -10 -7.5 -5 -25 0 25 5
Range Estimation Accuracy 10\0910(0) Range Estimation Accuracy 10I09m(a) Range Estimation Accuracy 10Iogw(n)
(a) (b) (©

Fig. 3. (a) Results in a scenario with well-separated and fixed target locations. Upper left: a global view of sensors/targets/intersections with o = 1. Upper
right: estimates of the target intersection point (TIP) sets obtained by K-mean and TCA with ¢ = 1, where each colored area represents the convex hull of
the points within an estimated TIP set. Lower: MSE when target locations are fixed with varying o. (b) Result with another fixed-target location scenario,
where K-mean fails to identify all TIP sets. (c) MSE with randomly varying target locations.

In this paper, we use R-LS for target localization:

N
R-LS): mi Fok — PE — an])?
(R-LS) ng}an(r & = [Pk — an]])

n=1

2

Clearly, the localization performance of (2) is critically de-
pendent on the accuracy of the LOS identification rendered
by TCA. The relation is examined numerically next.

IV. SIMULATION RESULTS

In this section, experimental results are presented to show
the performance of different methods. We compare TCA and
a simplified version, denoted by sTCA, which is obtained by
skipping the stage-2 search of TCA. Another method included
in comparison is the K-means clustering algorithm, which
divides all points on the plane into multiple clusters and the
generated clusters that contain more than N (N — 1)/2 points
are selected as candidate sets. Similar to the screening process
of TCA, K clusters among the candidate sets with the smallest
spread are chosen and their centroids are regarded as the
location estimates of K targets. Additionally, a clairvoyant
method is included which locates the target by (2) with precise
knowledge of the LOS measurements. Finally, all methods are
compared with the Cramer-Rao lower bound (CRLB) [16].

The surveillance area is a 400 x 400 square area centered at
(0,0) on the plane. The system has N = 5 sensors uniformly
distributed on a circle centered at (0,0) with a radius 160.
The environment contains L = 4 scatterers randomly located
on the border of the square, where the locations of the sensors
and scatterers are fixed during simulations, and K = 3 targets,
whose locations vary randomly from one trial to another. The
measurement noise is independent and identically distributed
Gaussian random variable with zero mean and variance 0. For
TCA and sTCA, we set x = 20 for point recovery (cf. Section
III-A). The mean squared error (MSE) is obtained with 600
independent simulations and further averaged over all targets.

The performance of K-means is sensitive to the target
locations. Fig.3(a) depicts an example where the targets are
well separated and fixed in simulations. The target clusters
found by both K-means and TCA are relatively close to the
true target locations. The MSE of K-means is about 3at o = 1,
whereas the MSE of TCA is about 1. However, in another
case with fixed target locations depicted in Fig.3(b), K-means
is unable to locate one of the two closed-spaced targets. As a
result, its MSE averaged over all targets is orders of magnitude
worse than that of TCA.

Fig. 3(c) depicts the MSE of all considered methods, when
the target locations are randomly changing within the surveil-
lance area from one trail to another. It is seen that TCA
is nearly identical to the clairvoyant method and close to
the CRLB when range estimates are relatively accurate, i.e.,
10log;, (o) < 0. TCA also outperforms sTCA, especially with
less accurate range estimates. On the other hand, the MSE of
K-means is significantly higher than all other methods, since
it sometimes produces very poor target location estimates in
some scenarios. In contrast, TCA works well in both cases.
As shown in Fig.3(c), TCA gives a reliable performance with
all noise levels. Moreover, Stage 2 of TCA helps improve the
robustness and accuracy of the algorithm.

V. CONCLUSION

We examined a multi-static delay-based sensing system for
passive multi-target localization in multipath environments.
Based on the geometric characteristics of range measurements,
we proposed a TCA algorithm for LOS path identification. The
algorithm takes into account the point loss phenomenon and
consists of two stages of searching and a final screening pro-
cess. TCA assumes that each sensor has LOS measurements of
all targets. A future direction is to consider the case of missing
LOS measurements as some sensors might be blocked from
some targets in practice.
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