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Abstract—Orthogonal radar waveforms originating from spa-
tially distributed transmitters (TXs) usually arrive at a re-
ceiver (RX) in non-orthogonal forms, as they propagate through
different paths with distinct delays and Doppler frequencies
in distributed multi-input multi-output (MIMO) radar. Non-
orthogonal waveforms complicate the composition of the target
and clutter returns, making it more challenging to separate one
from the other. In this paper, we consider joint target detection
and clutter mitigation in distributed MIMO radar. We first
present a general signal model for distributed MIMO radar
in cluttered environments. Next, we propose three families of
detection solutions, including non-coherent detectors that require
no phase estimation and are relatively simple to implement,
coherent detectors that offer enhanced detection performance
given accurate phase information, and hybrid detectors that
are a compromise of the former two, requiring only local
phase coherence but no explicit phase estimation. In addition,
approximate solutions are proposed in each category with further
complexity reduction, using high clutter-to-noise (CNR) approxi-
mation or convex relaxation. Simulation results are presented to
demonstrate the performance of the proposed detectors, which
outperform their earlier counterparts that neglect the presence
of clutter.

Index Terms—Distributed MIMO radar, target detection, clut-
ter mitigation, non-orthogonal waveforms

I. INTRODUCTION

Distributed multi-input multi-output (MIMO) radar, which
can detect and track targets of interest by employing widely
separated antennas with multiple waveforms, has received
significant attention in recent years [1]. Unlike its counter-
part, co-located MIMO radar with closely spaced antennas,
distributed MIMO radar can probe a target from different
aspect angles and exploit the spatial or geometric diversity to
enhance radar performance. Some recent works on distributed
MIMO radar include diversity gain analysis [2], [3], direction
finding [4], target detection [5]–[9], target localization using
various techniques (e.g., sparse modeling [10], weighted least
squares algorithm [11], and Lagrange programming neural
network approach [12]), waveform/code design [13], [14],
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optimal power allocation [15] and antenna configuration [16]–
[18], phase errors [19] and registration errors [20], spectral
coexistence of distributed MIMO radar and multi-user MIMO
communication systems [21], and development of a distributed
dual-function radar-communication MIMO system [22].

Most prior studies on MIMO radar assume that the wave-
forms emitted from different transmitters (TXs) are orthogonal
and that orthogonality is preserved at the receivers (RXs).
As such, different waveforms as well as the information
carried by them can be perfectly separated at the receivers by
using a set of matched filters (MFs), one for each waveform.
However, orthogonality cannot be maintained in practice for
all Doppler and delay pairs [23]–[25]. The problem becomes
more critical in distributed MIMO radar, where radar echoes
are inherently dispersive in time and frequency. Specifically,
the propagation delays and, respectively, Doppler frequencies
for the same moving target are in general different for dif-
ferent TX-RX pairs, due to the different bi-static geometries
associated with them. This would cause orthogonal waveforms
on transmit to become non-orthogonal at the RXs. There-
fore, it is important to study the effect of non-orthogonal
waveforms on the performance of MIMO radar. Direction-of-
arrival (DOA) estimation with co-located MIMO radar and
non-orthogonal waveforms was studied in [26]–[28]. Target
detection in distributed MIMO radar with imperfect waveform
separation was considered in [29], [30]. In particular, [29]
modeled the cross-correlation among the signals received from
different transmitters as deterministic unknowns and examined
the sensitivity of target detection against the cross-correlation
strength. In [30], a distributed generalized likelihood ratio test
(GLRT) was developed by treating the target residual due to
imperfect waveform separation as a statistic quantity with an
unknown covariance matrix. Meanwhile, [8] developed a gen-
eral framework for target detection in distributed MIMO radar
with non-orthogonal waveforms in clutter-free environments,
which also incorporates effects of timing, frequency, and phase
errors among different TXs and RXs.

Another major challenge with distributed MIMO radar
is clutter mitigation. Due to the multi-static configuration
of distributed MIMO radar, the clutter is inherently non-
homogeneous and exhibits distinct characteristics across differ-
ent TX-RX pairs and different range resolution cells [31]. To
address this problem, prior studies considered various tech-
niques to model, estimate, and reject the non-homogeneous
clutter in distributed MIMO radar, by using a discrete/subspace
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clutter model [31]–[36], a parametric autoregressive approach
[31], [37], a compound Gaussian clutter model [38]–[40],
and a Bayesian scheme based on a complex Wishart or
complex inverse Wishart prior [41], [42], among others. Most
of these works, however, assume the radar waveforms are
orthogonal, in which case the clutter becomes independent
of the radar waveforms due to MF processing. With non-
orthogonal waveforms, the problem is more challenging. This
is because a clutter echo from each clutter scatterer is a
superposition of the radar waveforms emitted from different
TXs, which arrive at a RX with different delays and Doppler
shifts. After MF processing, the clutter consists of both an
auto term, which refers to the auto correlation of the radar
waveform the MF is matched to, and multiple cross terms,
which are the cross correlations between the desired and other
radar waveforms. As a result, the clutter in distributed MIMO
radar is in general waveform dependent and more difficult to
characterize/mitigate.

In this paper, we consider joint moving target detection
and clutter mitigation in distributed MIMO radar with non-
orthogonal waveforms. We first derive a general signal model
for distributed MIMO radar with non-orthogonal waveforms
in cluttered environments, and then examine the covariance
structure of the clutter signal comprising both auto and cross
terms. The moving target detection problem is solved by using
the GLRT framework, which results in three categories of
detectors, covering non-coherent, coherent, and hybrid detec-
tion, respectively. The non-coherent approach, which requires
no phase estimation, is the simplest among the three for
implementation, while the coherent approach is the opposite.
The hybrid approach, which needs local phase coherence
and performs non-coherent integration across different TX-RX
pairs, is a compromise between the former two. Meanwhile, it
turns out that the maximum likelihood estimates (MLEs) of the
clutter powers cannot be obtained in closed form, we develop
suboptimal clutter power estimators, which are obtained based
on either a high clutter-to-noise ratio (CNR) approximation or
convex relaxation, to reduce the computational complexity of
the GLRT. Extensive simulation results show that all proposed
detectors significantly outperform their counterparts in [8] that
neglects the clutter.

The remainder is organized as follows. A general sig-
nal model for distributed MIMO radar with non-orthogonal
waveforms in cluttered environments and the moving target
detection problem are presented in Section II. The proposed
non-coherent, coherent, and hybrid detectors are detailed in
Sections III, IV and V, respectively. Section VI contains
numerical results, followed by conclusions in Section VII.

Notations: We use boldface symbols for vectors (lower case)
and matrices (upper case). (·)T denotes the transpose and (·)H
the conjugate transpose. ‖ · ‖ denotes the determinant of a
matrix. E{·} represents the statistical expectation. CN (u,Σ)
denotes the complex Gaussian distribution with mean u and
covariance matrix Σ. [X]m,n indicates the (m,n)-th element
of the matrix X while [x]m denotes the m-th element of the
vector x.
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Figure 1. A distributed MIMO radar with M = 2 TXs and N = 1 RX. Each
TX/RX pair and the target specifies an isorange which is an ellipse with foci
at the TX and RX. The RX receives returns from the target and all clutter
scatterers on the isorange.

II. SIGNAL MODEL AND PROBLEM FORMULATION

In this section, we first extend the signal model of [8]
by considering the target detection problem for a distributed
MIMO radar with non-orthogonal waveforms in cluttered
environments. Then, we examine the covariance structure of
the clutter signal. Finally, we formulate the moving target
detection problem by explicitly accounting for the signal
model with clutter.

A. Signal Model

Consider a distributed MIMO radar, which is equipped with
M TXs and N RXs. The system probes the environment
using M distinct waveforms, one from each TX, and pulsed
transmission. Each coherent processing interval (CPI) consists
of K periodic pulses. Suppose there is a moving target located
at a distance Rt,m to the m-th TX and a distance Rr,n to the
n-th RX. The range sum Rt,m + Rr,n specifies an isorange,
which is an ellipse with foci at the TX and RX [31], as shown
in Fig.1. Suppose there are Lm,n clutter scatterers on the
isorange of the (m,n)-th TX-RX pair. Then, the noise-free
received signal at the RX can be expressed as (cf. [8]):

sn(t) =
M∑
m=1

αξmnum(t− τmn)eψmne2π(fc+fmn)(t−τmn)

+
M∑
m=1

Lmn∑
l=1

α̃mnlξ̃mnlum(t− τmn)eψmne2π(fc+f̃mnl)(t−τmn),

(1)

where
• α and α̃mnl denote the radar cross section (RCS) of the

target and, respectively, the (m,n, l)-th clutter scatterer.
• ξmn and ξ̃mnl are the channel coefficients, which lump

the path loss and antenna gains [8], associated with the
(m,n)-th TX-RX pair of the target path and the (m,n, l)-
th scatterer path, respectively.
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• um(t) =
∑K−1
k=0 pm(t− kTs) is the baseband transmitted

signal which comprises K repetitions of the pulse wave-
form pm(t) with Ts being the pulse repetition interval.

• ψmn denotes the phase offset between the oscillators at
the m-th TX and the n-th RX.

• τmn = (Rt,m + Rr,n)/c is the propagation delay associ-
ated with the (m,n)-th TX-RX pair and c is the speed
of light.

• fc is the carrier frequency, while fmn and f̃mnl denote
the Doppler frequency of the target and the (m,n, l)-th
clutter scatterer.

After down conversion, the received signal passes through
M matched filters (MFs) with impulse response gm(t) =
p∗m(−t)e2πfmnt, m = 1, . . . ,M . Then, the output of the m-th
MF at the n-th RX xmn(t) can be written as:

xmn(t) =
M∑
m̄=1

αξm̄ne
ψmne−2πfcτm̄ne2πfmn(t−τm̄n)

×
K−1∑
k=0

χmm̄(t− τm̄n − kTs, fm̄n − fmn)e2πkTs(fm̄n−fmn)

+
M∑
m̄=1

Lm̄n∑
l=1

α̃m̄nlξ̃m̄nle
ψmne−2πfcτm̄ne2πfmn(t−τm̄n)

×
K−1∑
k=0

χmm̄(t− τm̄n − kTs, f̃m̄nl − fmn)e2πkTs(f̃m̄nl−fmn),

(2)

where χmm̄(v, f) is the cross ambiguity function (CAF)
defined as [8]

χmm̄(ν, f) =

∫
pm(µ)p∗m̄(µ− ν)e2πfµdµ. (3)

The continuous-time MF output is sampled at the pulse rate,
i.e., t = τmn + kTs, k = 0, · · · ,K − 1, which yields:

xmn(k) =
M∑
m̄=1

αξm̄ne
−2πfcτm̄ne2πkTsfm̄ne2πfmn(τmn−τm̄n)

× eψmnχmm̄(τmn − τm̄n, fm̄n − fmn) +
M∑
m̄=1

Lm̄n∑
l=1

α̃m̄nlξ̃m̄nl

× e−2πfcτm̄ne2πkTsf̃m̄nle2πfmn(τmn−τm̄n)eψmn

× χmm̄(τmn − τm̄n, fm̄nl − fmn), (4)
m = 1, . . . ,M ; n = 1, . . . , N ; k = 0, . . . ,K − 1.

Note that the output of the target signal consists of M
components, i.e., m̄ = m is the auto term that is the MF
output matched to the m-th transmitted waveform and the
other M − 1 components are the cross terms that are the MF
outputs matched to the rest M − 1 waveforms. The clutter
output has a similar composition. It can be seen that when the
M waveforms are orthogonal across time and frequency, i.e.,
χmm̄(·, ·) = 0, for m 6= m̄, the M − 1 cross terms vanish.
However, maintaining such strict orthogonality in distributed
MIMO radar is impossible [23]. Thus, the cross terms become
non-negligible and need to be accounted for.

Remark: While the derivation of the model (4) appears
to suggest that we need prior estimates of the target delays

and Doppler frequencies, which are unnecessary. In practice,
the radar receiver divides the uncertainty region of the target
location and velocity into many location-velocity cells, which
are similar to the range-Doppler bins in conventional mono-
static radar. The radar scans each cell one by one, each of
which corresponds to a set of known delays and Doppler
frequencies for each TX-RX pair. The receiver uses a set
of MFs matched to these delays and Dopplers. It should be
noted that (4) describes the observed signal only for the cell
that contains a target. For non-target cells, the measurements
comprise only clutter and noise. The measurements for target
and non-target cells are described by the hypothesis testing
data model in (13).

Next, we stack the K slow-time samples and form xmn =
[xmn(0), · · · , xmn(K − 1)]T :

xmn = αSnhmn +
M∑
m̄=1

S̃m̄ndiag(h̃mm̄n)α̃m̄n, (5)

where

• Sn = [s(f1n), · · · , s(fMn)] and S̃m̄n =
[s(f̃m̄n1), · · · , s(f̃m̄nLm̄n

)] with s(f) =
[1, e2πTsf , · · · , e2π(K−1)Tsf ]T .

• hmn ∈ CM×1 is the target channel vector
with the m̄-th element given by [hmn]m̄ =
ξm̄ne

−2πfcτm̄ne2πfmn(τmn−τm̄n)eψmnχmm̄(τmn −
τm̄n, fm̄n − fmn).

• h̃mm̄n ∈ CLm̄n×1 is the clutter channel vector
with the l-th element given by [h̃mm̄n]l =
ξ̃m̄nle

−2πfcτm̄ne2πfmn(τmn−τm̄n)eψmnχmm̄(τmn −
τm̄n, fm̄nl − fmn).

• α̃m̄n ∈ CLm̄n×1 is the clutter RCS vector with the l-th
element given by [α̃m̄n]l = α̃m̄nl.

B. Clutter Covariance Matrix

Since the clutter components contain reflections from un-
wanted stationary and slow moving objects (e.g., wind, rain,
wave, etc.) within the considered test cell, their velocities and
sizes are usually unknown. We assume that the clutter Doppler
frequencies f̃m̄nl and reflection amplitudes αm̄nl are inde-
pendent random variables. Specifically, f̃m̄nl are uniformly
distributed in an interval of [−∆f ,∆f ], where ∆f denotes the
maximum Doppler frequency, and α̃m̄nl are Gaussian random
variables with zero mean and variance σ2

m̄nl. Then, the K×K
clutter covariance matrix can be expressed as

Γmn
(a)
=

M∑
m̄=1

E
[
S̃m̄ndiag(h̃mm̄n)E

[
α̃m̄nα̃

H
m̄n

]
diag(h̃Hmm̄n)S̃Hm̄n

]
=

M∑
m̄=1

E
[
S̃m̄ndiag(h̃mm̄n)Λ̃m̄ndiag(h̃Hmm̄n)S̃Hm̄n

]
(b)
≈

M∑
m̄=1

|χ̃mm̄n|2E
[
S̃m̄nΛ̃m̄nS̃Hm̄n

]
, (6)

where the outer E in (a) operates the expectation over the
Doppler frequencies fm̄nl, while the inner E performs expec-
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tation over the clutter RCS α̃m̄nl. Λ̃m̄n is an Lm̄n × Lm̄n
diagonal matrix with diagonal elements given by

[Λ̃m̄n]l,l = ξ̃2
m̄nlE[α̃m̄nlα̃

H
m̄nl] = σ2

m̄nlξ̃
2
m̄nl, (7)

and

χ̃mm̄n = χmm̄(τmn − τm̄n, 0). (8)

Note that in (b) of (6), we used the approximation χmm̄(τmn−
τm̄n, 0) ≈ χmm̄(τmn − τm̄n, fm̄nl − fmn) as the radar wave-
form is insensitive to small Doppler shift [43, p.15]. Then, the
(k1, k2)-th element of Γmn can be further expressed as

[Γmn]k1,k2
=

[
M∑
m̄=1

|χ̃mm̄n|2E
[
S̃m̄nΛ̃m̄nS̃Hm̄n

]]
k1,k2

=
M∑
m̄=1

|χ̃mm̄n|2
Lm̄n∑
l=1

σ2
m̄nlξ̃

2
m̄nlE

[
e2π(k1−k2)Tsf̃m̄nl

]
=

M∑
m̄=1

|χ̃mm̄n|2
Lm̄n∑
l=1

σ2
m̄nlξ̃

2
m̄nlsinc[2π∆f (k1 − k2)Ts]

= amnsinc[2π∆f (k1 − k2)Ts], (9)

where the clutter power amn is given by

amn =

M∑
m̄=1

|χ̃mm̄n|2
Lm̄n∑
l=1

σ2
m̄nlξ̃

2
m̄nl. (10)

Let

[Ψ]k1,k2
= sinc[2π∆f (k1 − k2)Ts],

k1, k2 = 1, · · · ,K. (11)

Then, the covariance matrix Γmn can be expressed as

Γmn = amnΨ, (12)

which consists of an unknown power coefficient amn and
a covariance structure matrix Ψ that depends on the clutter
Doppler bandwdith ∆f .

C. Problem Statement

Let ymn denote the noise-contaminated observation of xmn.
The problem of interest is to detect the presence/absence of
a moving target in the test cell using observations {ymn}.
Specifically, the problem involves the following hypothesis
testing:

H0 : ymn =
M∑
m̄=1

S̃m̄ndiag(h̃mm̄n)α̃m̄n + wmn,

H1 : ymn = αSnhmn +
M∑
m̄=1

S̃m̄ndiag(h̃mm̄n)α̃m̄n + wmn,

(13)
m = 1, 2, · · · ,M, n = 1, 2, · · · , N,

where wmn denotes the white Gaussian noise with zero mean
and covariance matrix σ2I, i.e., wmn ∼ CN (0, σ2I), where
σ2 is the noise variance. The clutter is modeled as a Gaussian
vector, which is independent of the noise, with zero mean
and covariance matrix given by (12). It will be useful for

later discussion to introduce the covariance matrix of both
the clutter and noise:

R(amn) , amnΨ + σ2I, (14)

where the dependence on the clutter power coefficient amn is
explicitly shown.

In the following sections, we address the detection problem
by developing three categories of detectors, covering non-
coherent, coherent, and hybrid detection, respectively. In all of
our developments, it is assumed that the noise power σ2, which
can be determined by calibration prior to radar operation, is
known.

III. NON-COHERENT DETECTION IN CLUTTER

In this section, we first develop a non-coherent detector in
clutter (NCDC) by using a GLRT framework that treats the
target signal in (13) as an unknown quantity with no specific
structure. It turns out that the MLE of the clutter power under
the H0 hypothesis does not have a closed-form solution. To
bypass a brute force search over the parameter space, two
suboptimal clutter power estimators, which are based on a high
CNR approximation and, respectively, a convex relaxation, are
proposed to reduce the computational complexity of the GLRT.

A. NCDC
The detection problem can be solved by using a GLRT

approach along with the MLEs of the unknown parameters.
In the absence of phase coherence, it is generally impossible
to estimate the individual components of the target signal
αSnhmn. Instead, we can estimate the target signal µmn ,
αSnhmn as an unstructured vector. Specifically, the GLRT is
given by the likelihood ratio with the parameters replaced by
their MLEs:

max
{µmn},{amn}

p1

(
{ymn}|{µmn}, {amn}

)
max
{amn}

p0

(
{ymn}|{amn}

) , (15)

where p1({ymn}|{µmn}, {amn}) and p0({ymn}|{amn}) de-
note the likelihood functions under H1 and H0, respectively.

The MLEs of the parameters in (15) are discussed in
Appendix I. It is shown there that the GLRT reduces to

TNCDC =
M∑
m=1

N∑
n=1

(
ln |R̂0|+ yHmnR̂−1

0 ymn
)H1

≷
H0

γNCDC, (16)

where γNCDC denotes a test threshold and R̂0 = R(âmn,0),
with âmn,0 denoting the MLE of the clutter under H0:

âmn,0 = arg min
amn

ln |R(amn)|+ yHmnR−1(amn)ymn, (17)

which is non-convex and can be solved by a 1-dimensional
(1-D) search over the non-negative real axis. In the next
subsections, we propose two suboptimal solutions based on
approximations to reduce the computational complexity.

The GLRT (16) is referred to as the NCDC detector, which
involves whitening by the covariance matrix R̂0 followed by
energy integration. Note that R̂0 is a real-valued covariance
matrix. The above whitening and integration process does not
utilize the phase information of the observations ymn. Hence,
the NCDC is a non-coherent detector.
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B. High CNR Approximation

Since the clutter is usually much stronger than the noise,
i.e., amn � σ2, we have amnΨ + σ2I ≈ amn(Ψ + σ2I).
Then, the optimization problem in (17) can be approximated
as

âmn,0 ≈ arg min
amn

ln
(
aKmn|R̃|

)
+

1

amn
yHmnR̃−1ymn, (18)

where

R̃ = Ψ + σ2I. (19)

The problem can be solved in closed-form with

âmn,0 ≈
1

K
yHmnR̃−1ymn. (20)

Substituting (20) into p0

(
{ymn}|{amn}

)
, the likelihood func-

tion under H0 reduces to

p0

(
{ymn}

)
=

M∏
m=1

N∏
n=1

1

(yHmnR̃−1ymn)K
. (21)

As shown in Appendix I, the GLRT depends only on
the likelihood function under H0. This leads to a new non-
coherent detector in clutter with high CNR approximation
(NCDC-A):

TNCDC-A =
M∏
m=1

N∏
n=1

yHmnR̃−1ymn
H1

≷
H0

γNCDC-A, (22)

which has an intuitive form of whitening followed by energy
integration over all pulses and TX-RX pairs.

C. Convex Relaxation

The above approximation is valid only under high CNR. In
the following, we transfer the non-convex optimization in (17)
into a convex one by using majorization-minimization, which
employs an iterative process to find the solution. Let a(l)

mn

denote an estimate of amn obtained from the l-th iteration.
Then, the concave term in (17), i.e., ln

∣∣R(amn
∣∣, can be

upperbounded by using its first-order Taylor expansion as [44]

ln
∣∣R(amn)

∣∣ ≤tr
(
R−1(a(l)

mn)Ψ
)
(amn − a(l)

mn)

+ ln
∣∣R(a(l)

mn)
∣∣, (23)

where the equality is achieved at amn = a
(l)
mn.

Thus, during the (`+1)-st iteration, the non-convex problem
is relaxed into the following convex optimization problem to
obtain a(l+1)

mn :

min
amn

tr
(
R−1(a(l)

mn)Ψ
)
amn + tr

(
R−1(amn)ymnyHmn

)
, (24)

where the cost function is obtained by dropping the constant
terms that are independent of amn. After convergence, (24)
results in an approximate MLE of amn under H0. Then, we
substitute it into (16). The resulting detector is referred to as
the non-coherent detector in clutter with convex approximation
(NCDC-CA).

IV. COHERENT DETECTION IN CLUTTER

In standard radar detection, the target location-velocity
(range-Doppler) uncertainty region is divided into a finite num-
ber of test cells, and detection is performed on each cell one by
one [45]. The target delays and Doppler frequencies associated
with each test cell are known. For coherent detection, the radar
receiver also keeps track of the phase offset ψmn between each
TX-RX pair. As such, the receiver can form the target Doppler
matrix Sn and channel vector hmn [cf. (5)]. This leaves the
target RCS α as the only unknown target parameter under H1,
while the clutter power parameters amn remain as unknowns
under both hypotheses. In view of the above discussion, a
coherent detector in clutter (CDC) can be obtained by using
the GLRT framework as

max
α,{amn}

p1

(
{ymn}|α, {amn}

)
max
{amn}

p0

(
{ymn}|{amn}

) , (25)

where p1({ymn}|α, {amn}) denotes the likelihood function
under H1, while p0

(
{ymn}|{amn}

)
the likelihood function

under H0 which is the same as in (15) for the NCDC. Thus,
the MLE of amn under H0 is given by (17), which requires
1-D search.

The log likelihood function (LLF) ln p1

(
{ymn}|α, {amn}

)
is similar to (49), except that the mean µmn is replaced by its
structured version αSnhmn. The MLEs of α and amn under
H1 can be obtained in a sequential manner. Specifically, we
first obtain the MLE of α by taking the derivative of the LLF
with respect to (w.r.t.) α and setting it to zero, which gives

α̂ =
(
zHmnR−1(amn)zmn

)−1
zHmnR−1(amn)ymn, (26)

where

zmn = Snhmn. (27)

Substituting (26) back into the LLF yields

fCDC(amn) =− ln |R(amn)| − yHmnR−1(amn)ymn

+ yHmnR−1(amn)zmn
(
zHmnR−1(amn)zmn

)−1

× zHmnR−1(amn)ymn. (28)

Thus, the MLE of amn is obtained as

âmn,1 = arg max
amn

fCDC(amn), (29)

which, similar to (17), requires 1-D search.
Substituting the MLEs under H1 and H0, i.e., α̂, âmn,1,

and âmn,0, into the log likelihood ratio (LLR) leads to the
coherent detector in clutter (CDC):

TCDC =
M∑
m=1

N∑
n=1

(
ln
|R̂0|
|R̂1|

+ yHmn(R̂−1
0 − R̂−1

1 )ymn

+ yHmnR̂−1
1 zmn(zHmnR̂−1

1 zmn)zHmnR̂−1
1 ymn

)H1

≷
H0

γCDC,

(30)

where R̂1 = R(âmn,1). It is seen from (30) that in addition to
whitening by covariance matrices R̂1 and R̂0, the test statistic
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also involves the multiplication by zHmn, which amounts to fil-
tering by the Doppler matrix SHn and then phase compensation
and channel matching by the channel vector hHmn. Clearly,
CDC is a coherent detector.

To avoid 1-D search and reduce the computational com-
plexity, the high CNR approximation, i.e., amnΨ + σ2I ≈
amn(Ψ + σ2I), can be employed to convert (29) to

âmn,1 ≈ arg max
amn

f̃CDC(amn), (31)

where

f̃CDC(amn) = − ln
(
aKmn|R̃|

)
− 1

amn
(yHmnR̃−1ymn

− yHmnR̃−1zmn(zHmnR̃−1zmn)−1zHmnR̃−1ymn). (32)

The solution to (31) has a closed-form

âmn,1 ≈
1

K

(
yHmnR̃−1ymn

− yHmnR̃−1zmn(zHmnR̃−1zmn)−1zHmnR̃−1ymn
)
.
(33)

Given the MLEs of the clutter power with high CNR
approximation (20) and (33), it is easy to show that the GLRT
reduces to

TCDC-A =

M∏
m=1

N∏
n=1

âmn,0
âmn,1

H1

≷
H0

γCDC-A, (34)

which is henceforth referred to as the coherent detector in
clutter with approximation (CDC-A).

V. HYBRID DETECTION IN CLUTTER

Coherent detection outperforms non-coherent detection at
the cost of requiring additional information of the channel
including the carrier phase offset between each TX-RX pair.
In this section, we consider a hybrid detection approach that
obviates the need for the knowledge of the channel vector
hmn and phase synchronization. Instead, it only requires phase
coherence of the samples within each CPI to enable Doppler
filtering, but the exact phase due to the carrier offset and
channel-induced phase shift is not required. Hence, it is a
comprise between coherent and non-coherent detection.

Specifically, let βmn , αhmn which lumps the target RCS
and channel vector. A hybrid detector in clutter (HDC) can
be obtained by using the GLRT along with the likelihood
function p1

(
{ymn}|{βmn}, {amn}

)
under H1 parameterized

by βmn and clutter power amn and the likelihood function
p0

(
{ymn}|{amn}

)
under H0:

max
{βmn},{amn}

p1

(
{ymn}|{βmn}, {amn}

)
max
{amn}

p0

(
{ymn}|{amn}

) . (35)

Since the MLE of the clutter power under H0 is given by
(17), we only need to solve the estimation problem under H1.
Maximizing the LLF (49) w.r.t. βmn (by setting the mean
vector to µmn = Snβmn) yields its MLE (conditioned on the
clutter power amn) as:

β̂mn =
(
SHn R−1(amn)Sn

)−1
SHn R−1(amn)ymn. (36)

Substituting the above estimate back into the LLF followed by
some simplification, we obtain the MLE of the clutter power
as

âmn,1 = arg max
amn

fHDC(amn), (37)

where

fHDC(amn) = − ln |R(amn)| − yHmnR−1(amn)ymn

+ yHmnR−1(amn)Sn(SHn R−1(amn)Sn)−1SHn R−1(amn)ymn.
(38)

Similar to what we have for the NCDC and CDC, the MLE
(37) of the clutter power requires 1-D search. After finding all
MLEs, substituting them back into the LLR yields the HDC

THDC =
M∑
m=1

N∑
n=1

(
ln
|R̂0|
|R̂1|

+ yHmn(R̂−1
0 − R̂−1

1 )ymn

+ yHmnR̂−1
1 Sn(SHn R̂−1

1 Sn)−1SHn R̂−1
1 ymn

)H1

≷
H0

γHDC. (39)

Compared with the CDC detector (30), HDC (39) retains the
whitening and Doppler filtering steps in CDC but dispenses
with the phase compensation and channel matching.

The high CNR approximation used earlier can be employed
to simplify the optimization problem in (37), which transfers
the non-convex cost function into

f̃HDC(amn) = − ln(aKmn|R̃|)−
1

amn

(
yHmnR̃−1ymn

− yHmnR̃−1Sn(SHn R̃−1Sn)−1SHn R̃−1ymn
)
. (40)

The above cost function can be minimized in closed-form,
leading to the following approximate MLE

âmn,1 ≈
1

K

(
yHmnR̃−1ymn

− yHmnR̃−1Sn(SHn R̃−1Sn)−1SHn R̃)−1ymn

)
. (41)

Then, after substituting âmn,0 in (20) and âmn,1 in (41) back
into the likelihood ratio, we obtain a new hybrid detector:

THDC-A =
M∏
m=1

N∏
n=1

âmn,0
âmn,1

H1

≷
H0

γHDC-A, (42)

which is referred to as the hybrid detection in clutter with
approximation (HCD-A) for simplicity. Note that HCD-A
shares a similar form as CDC-A (34). The clutter power
estimates âmn,0 and âmn,1 employed by the two detectors
are different.

VI. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the performance of the proposed detectors, i.e., the
NCDC, NCDC-A, and NCDC-CA in Section III, the CDC and
CDC-A in Section IV, and the HDC and HDC-A in Section
V. These detectors are summarized in Table I. In addition, the
NCD, CD, and HD detectors, which were developed in [8] that
do not account for the clutter in observations, are included for
comparison.
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Table I
SUMMARY OF PROPOSED DETECTORS

Detector Name Summary of Detector

NCDC

Step 1: Compute the MLE âmn,0 by (17).
Step 2: Use âmn,0 in (14) to form the covariance
matrix estimate R̂0.
Step 3: Use R̂0 and measurements ymn in (16) to
compute the test variable TNCDC.

NCDC-A
Step 1: Compute the covariance matirx R̃ by (19).
Step 2: Use R̃ and measurements ymn in (22) to
compute the test variable TNCDC-A.

NCDC-CA

Step 1: Compute the MLE âmn,0 by solving the
convex problem (24).
Step 2: Use âmn,0 in (14) to form the covariance
matrix estimate R̂0.
Step 3: Use R̂0 and measurements ymn in (16) to
compute the test variable TNCDC-CA.

CDC

Step 1: Compute the MLE âmn,0 by (17) and the
MLE âmn,1 by (29).
Step 2: Use âmn,0 and âmn,1 in (14) to form the
covariance matrix estimates R̂0 and R̂1, respectively.
Step 3: Use R̂0, R̂1 and measurements ymn in (30)
to compute the test variable TCDC.

CDC-A

Step 1: Compute the MLE âmn,0 by (20) and the
MLE âmn,1 by (33).
Step 2: Use âmn,0 and âmn,1 in (34) to compute
the test variable TCDC-A.

HDC

Step 1: Compute the MLE âmn,0 by (17) and the
MLE âmn,1 by (37).
Step 2: Use âmn,0 and âmn,1 in (14) to form the
covariance matrix estimates R̂0 and R̂1, respectively.
Step 3: Use R̂0, R̂1 and measurements ymn in (39)
to compute the test variable THDC.

HDC-A

Step 1: Compute the MLE âmn,0 by (20) and the
MLE âmn,1 by (41).
Step 2: Use âmn,0 and âmn,1 in (42) to compute
the test variable THDC-A.

The signal-to-nosie ratio (SNR) and CNR are defined as

SNR =
M∑
m=1

N∑
n=1

|ξmn|2E{|α|2}
σ2

, (43)

CNR =
M∑
m=1

N∑
n=1

Lmn∑
l=1

|ξmnl|2E{|α̃mnl|2}
σ2

. (44)

where the noise variance is chosen as σ2 = 1. The target RCS
and clutter RCS are randomly generated as α ∼ CN (0, σ2

t )
and α̃mnl ∼ CN (0, σ2

mnl), where σ2
t and σ2

mnl are determined
based on specific values of SNR and CNR, respectively.

We consider a distributed MIMO radar with M = 2 TXs
and N = 1 RX unless otherwise stated. The propagation
delays are τ11 = 0.1Tp and τ21 = 0.61Tp, where Tp = 10−5

s is the pulse duration. The pulse repetition frequency (PRF)
is 500 Hz, the carrier frequency is 3 GHz, the normalized
target Doppler frequencies are f11 = 0.3 and f21 = 0.4
unless otherwise stated, and the normalized clutter Doppler
frequencies f̃m̄nl are randomly generated with a uniform
distribution: f̃m̄nl ∼ U{−∆f ,∆f}, where ∆f = 0.12. The
number of pulses within a CPI is K = 10 unless otherwise
stated and the probability of false alarm is Pf = 10−4.

Linear frequency modulation waveforms pm(t) with over-
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Figure 2. Probability of detection versus CNR when SNR = 18 dB.

lapping instantaneous frequency are employed for testing [46]:

p1(t) =
1√
τ
e(πβt

2/Tp+3πβt), 0 ≤ t < Tp, (45)

p2(t) =
1√
τ
e(−πβt

2/Tp+5πβt), 0 ≤ t ≤ Tp, (46)

where β denotes the bandwidth of the chirps.
We first consider the performance of the proposed NCDC,

CDC, and HDC detectors without any approximations. Fig. 2
shows the probability of detection versus CNR when the
SNR = 15 dB. Comparisons between the proposed detec-
tors and their counterparts, namely the NCD, CD, and HD
detectors [8] that ignore the clutter, are included. It can be
seen that all proposed detectors significantly outperform their
counterparts due to the fact that the formers explicitly take
into account for the presence of clutter in the observations.
Meanwhile, among the three proposed detectors, NCDC has
the worst performance, although it does not require any
knowledge of the target. CDC achieves the best performance
by exploiting the phase and channel information to perform
coherent processing. HDC, which is a result of complexity
versus performance trade-off, lies between NCDC and CDC.
Finally, as CNR increases, the performance of all detectors
decreases.

The performance gap in Fig. 2 between the proposed de-
tectors and those of [8] is primarily because the latter neglect
clutter, which can significantly impact their performance when
the clutter is strong. Let us first consider the NCD detector
in [8], which is an energy detector. Specifically, NCD accu-
mulates the energy of the output of all MFs and compares it
with a threshold which is determined based on the assumption
that the disturbance comprises of only noise (no clutter). NCD
does not involve any clutter mitigation; nor does it utilize the
target Doppler information for detection. When the observed
signal consists of a strong clutter, the clutter dominates the
total received energy, in which case whether a target is present
or not would result in similar total energy. This creates a
difficulty for NCD to distinguish the target-absent state from
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the target-present state, and hence a substantial performance
loss compared with NCDC.

On the other hand, CD and HD experience a smaller per-
formance loss relative to CDC and HDC, respectively. This is
because CD and HD do use the target Doppler frequencies for
Doppler filtering across slow-time/pulse samples. For example,
unlike NCD which indiscriminately uses the energy of the
entire Doppler band, HCD involves a projection which inte-
grates the target signal energy in the target Doppler frequency
bands for detection. When the clutter and target occupy non-
overlapping Doppler frequency bands, the Doppler filtering
also partially rejects clutter by filtering out the clutter outside
the target bands. This is why CD and HD show a smaller
performance loss in the presence of clutter. Nevertheless, when
the clutter is strong, there is non-negligible clutter energy in
the target bandwidth due to leakage, which causes CD and
HCD to underperform their counterparts in Fig. 2.

We next evaluate the performance of the proposed detectors
with approximations. For benchmarking, we also include the
clairvoyant detectors for each category which assume the
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Figure 5. Simulation time versus K the number of pulses within a CPI, when
CNR = 30 dB and SNR = 18 dB.

knowledge of the unknown parameters. Fig. 3 and 4 show
the probability of detection for the detectors with/without
approximation against various SNR under both a high CNR
scenario with CNR = 30 dB, and respectively, a low CNR case
with CNR = 0 dB. It can be seen from Fig. 3 that when clutter
is strong, the proposed detectors with or without approx-
imation, i.e., NCDC/NCDC-A/NCDC-CA, HCDC/HCDC-A,
and CDC/CDC-A, significantly outperform their counterparts
NCD, HD, and CD. This is because in this case, the clutter
has a strong impact on the detection performance. It is also
seen that convex approximation based NCDC-CA, which sur-
passes the high CNR approximation based NCD-A, achieves a
performance nearly identical to that of NCDC. Meanwhile, at
CNR = 0 dB, the clutter reduces to the noise level. The perfor-
mance gaps between the corresponding detectors as shown in
Fig. 4 become considerably smaller. Hence, the original NCD,
HD and CD might be opted for to seek lower computational
complexity when the clutter becomes negligible. It is also seen
that while the clairvoyant detectors have the best performance,
the proposed NCDC, CDC, and HDC only exhibit a small
performance loss compared with clairvoyant counterpart.

Next, we compare the computational complexities of the
proposed detectors with and without approximation. Specifi-
cally, Fig. 5 shows the simulation time of each detector in one
Monte Carlo trial versus K the number of pulses within a CPI.
On one hand, it can be observed that the simulation time of the
proposed detectors without approximation increases substan-
tially as K increases. This is because these detectors involve
non-convex estimation which requires brute force search. As
K increases, the observation size increases, which results in
larger vectors/matrices and in turn, higher computation com-
plexity. On the other hand, high CNR approximation, which
leads to closed-form estimation solutions, reduces significantly
the complexity and simulation time. NCDC-CA with convex
relaxation has a higher complexity than NCDC-A since, while
it transfers the original non-convex problem into a convex
one, the latter does not a closed-form solution. It also requires
several iterations for the solution to converge.
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Finally, we examine the impact of the target Doppler
frequencies relative to the clutter Doppler bandwidth (BW)
[−0.12, 0.12]. For comparison, we include the detectors under
study with M = 2 and M = 1, respectively, the latter
corresponding to a conventional system with a single transmit
antenna. The conventional system is formed by using the first
antenna of the MIMO system, but transmits at twice the power
level so that the two systems have an identical total transmit
power for fair comparison. We consider three cases for the
normalized target Doppler frequencies:
• Case 1: f11 = 0.3 and f21 = 0.4 for M = 2; f11 = 0.3

for M = 1, where the target Doppler frequencies are all
far from the clutter Doppler BW.

• Case 2: f11 = 0.13 and f21 = 0.4 for M = 2; f11 = 0.13
for M = 1, where the MIMO system has one target
Doppler frequency that is far from from the clutter BW.

• Case 3: f11 = 0.13 and f21 = 0.14 for M = 2; f11 =
0.13 for M = 1, where the target Doppler frequencies
are all near the clutter Doppler BW.

The results of the proposed detectors with approximations are
omitted to better illustrate the impact of Doppler frequencies.
Fig. 6 shows the performance of the non-coherent detectors
when CNR = 30 dB. It can be seen from Fig. 6 that the
performance of the proposed NCDC decreases considerably
from Case 1 to Case 3. This is because when the target
Doppler frequencies are near the clutter BW, it becomes harder
to separate the target from clutter. It is also seen that the
MIMO system with M = 2 outperforms the conventional
system with M = 1 in all 3 cases. Specifically, in Case 2 the
conventional system degrades significantly relative to Case 1
because its target Doppler frequency is near the clutter BW,
whereas the MIMO system excels as among its two observed
target Doppler frequencies, one is far from the clutter BW. This
result signifies the benefit of diversity of the MIMO system,
which observes the target from different aspect angles, leading
to diverse target Doppler frequencies. As long as one target
Doppler frequency is not near the clutter Doppler BW, the
system is able to separate the target from clutter. Meanwhile,
if all observed target Doppler frequencies are near the clutter
BW, as in Case 3, the MIMO system loses much of its benefit
of diversity. Similar relations can be observed in Figs. 7 and 8
for the hybrid and coherent detectors. One notable difference
in these figures is that the original HD and CD also deteriorate
substantially from Case 1, Case 2, to Case 3. That is because,
as discussed earlier, these detectors implicitly perform some
clutter rejection through Doppler filtering. When the target and
clutter Doppler frequencies become overlapping as in Case 2
and Case 3, the Doppler filtering employed by these detectors
pass not only the target signal but also a significant amount
of clutter, causing their performance degradation.

VII. CONCLUSIONS

We examined target detection using distributed MIMO radar
with non-orthogonal waveforms in cluttered environments.
Our main contributions comprise a general signal model
for the considered problem and three families of detectors,
including the non-coherent NCDC, NCDC-A, and NCDC-CA,
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the coherent CDC and CDC-A, as well as the hybrid HDC
and HDC-A. Our results indicate that the proposed detectors
significantly surpass their earlier counterparts in cluttered
environments. The proposed detectors with approximation can
greatly reduce the computational complexity with only a minor
performance loss. In addition, these MIMO detectors exhibit
an improved target detection ability compared with conven-
tional single-antenna based schemes due to spatial diversity.

APPENDIX I
ML ESTIMATION DERIVATION FOR NCDC

Under H0, the unknown parameters are {amn}. The LLF
is given by

ln p0

(
{ymn}|{amn}

)
= −

M∑
m=1

N∑
n=1

[
ln |R(amn)|

+ yHmnR−1(amn)ymn

]
. (47)
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Then, the MLE of amn under H0 can be obtained by solving
the following optimization problem:

min
amn

ln |R(amn)|+ yHmnR−1(amn)ymn . (48)

Under H1, the unknown parameters are {µmn} and {amn}.
The LLF is given by

ln p1

(
{ymn}|{µmn}, {amn}

)
= −

M∑
m=1

N∑
n=1

[
ln |R(amn)|

+ (ymn − µmn)HR−1(amn)(ymn − µmn)
]
. (49)

The MLE of µmn is obtained by taking the derivative of the
LLF in (49) w.r.t. µmn, and setting it to zero, which yields:

µ̂mn = ymn. (50)

Substituting the above MLE back to (49), the LLF reduces to

ln p1

(
{ymn}|{amn}

)
= −

M∑
m=1

N∑
n=1

ln |R(amn)|. (51)

which is independent of the observations ymn, and so is the
MLE of amn.

Since the LLF under H1 with the parameters replaced by
their MLEs becomes independent of the observations, the
GLRT only depends on the likelihood function under H0.
This leads to the NCDC detector given by (16), where the
test statistic is essentially the negative LLF under H0.
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