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Abstract: Neyman’s seminal work in 1923 has been a milestone in statistics over the century, which has
motivated many fundamental statistical concepts and methodology. In this review, we delve into Neyman’s
groundbreaking contribution and offer technical insights into the design and analysis of randomized experi-
ments. We shall review the basic setup of completely randomized experiments and the classical approaches
for inferring the average treatment effects. We shall, in particular, review more efficient design and analysis of
randomized experiments by utilizing pretreatment covariates, which move beyond Neyman’s original work
without involving any covariate. We then summarize several technical ingredients regarding randomizations
and permutations that have been developed over the century, such as permutational central limit theorems and
Berry-Esseen bounds, and we elaborate on how these technical results facilitate the understanding of rando-
mized experiments. The discussion is also extended to other randomized experiments including rerandomiza-
tion, stratified randomized experiments, matched pair experiments, and cluster randomized experiments.
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1 Review of the proposal in Neyman [1] and its influence

Neyman’s seminal work [1] has been a cornerstone in the field of statistics over the last century. It has laid
foundational principles that have significantly shaped multiple research areas such as causal inference,
experimental design, and survey sampling. Its influence has been profound across a diverse range of applica-
tions, encompassing sectors such as agriculture, economics, biomedical research, social science, and beyond.

The main purpose of Neyman [1] is the analysis of field experiments conducted in order to compare
a number of crop varieties. Suppose there are m plots and v varieties. Neyman [1] introduced the notion
of potential yield of the kth variety being applied to the ith plot, which is denoted as Uy, for 1<i<m
and 1 < k < v; we use slightly different indices from Neyman to make them more intuitive. In Neyman’s
framework, the quantities {Uy} are fixed but may be unknown. The number

1 m
ax = _ZUik
=

is called “the best estimate” of the yield from the kth variety on the field, which is, in fact, an estimand
representing the average yield in modern terminology. Neyman [1] then used an urn model as a thought
experiment to depict the framework of sampling from a finite population. The v types of varieties are treated
as v urns. Each urn contains m balls, and each ball is associated with two labels: a plot label indexing the plots
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and a yield label indicating the unknown potential yields on the plots for each of the varieties. Specifically,
in the kth urn, there are m balls with yield labels

Ulk:"': l]ikx ey Umk-

Also, the urns have the property that “if one ball is taken from one of them, the balls having the same plot label
disappear from all the other urns.” Then, from each urn, a number of balls are drawn without replacement.
With this model, Neyman studied the properties (in particular, the means and variances) of the sample
averages across all varieties as well as their difference under the randomization distribution. This marks
the pioneering effort for studying the difference-in-means estimator in modern terminology. Notably, he was
able to “determine empirically that the difference of partial averages of the plots sampled shows a fair
agreement with the Gaussian law distribution.” This corrects the “common misunderstanding” at that time
that inference can be performed only if the yields from different plots follow the Gaussian law. Combined with
a conservative variance estimation strategy, he suggested a confidence interval for the true difference between
two varieties based on normal approximation.

Neyman [1] offered a series of groundbreaking and foundational insights. In the following, we outline
three key facets of Neyman’s [1] contributions.

The first contribution is the introduction of the potential outcome model. This model has since become a
standard framework for illustrating possible experimental outcomes, as referenced in works such as [2-5]. The
potential outcome paradigm serves as an impeccable model for a discussion in causation within randomized
experiments. Within this framework, researchers pose and address causal questions by analyzing causal
effects that are defined as comparisons between potential outcomes, which represent various hypothetical
scenarios or states of the world. This framework also elegantly facilitates the representation of interference
between units [6-8], the prolonged impacts of interventions [9-11], and the causal analyses involving post-
treatment variables such as instrumental variables [12] and mediation [13,14]. Moreover, the importance of
potential outcomes transcends experimental settings and is also profound in observational studies, as high-
lighted by Rubin [15].

The second contribution of Neyman [1] lies in that it further highlights the importance of physical
randomization or random selection when conducting experiments or performing sampling. Randomization
has been in the air since the 1920s, as commented by Rubin [16] citing Student [17] and Fisher and Mackenzie
[18] as references. Neyman [1] contributed to the randomization world by introducing the potential outcome
model and describing a finite population inference framework for randomization. Within this framework,
potential outcomes are viewed as fixed, and physical randomization emerges as the “reasoned basis” [19] for
facilitating statistical testing and estimation [4,20-22]. Moreover, the proposal of sampling without replace-
ment also inspires the pursuit of the parallels and linkages between survey sampling and randomized experi-
ments [23-26].

The third contribution of Neyman [1] centers on the repeated sampling properties of statistics over their
non-null randomization distribution. This viewpoint offers a new perspective on randomization-based or
design-based inference, distinguishing it from Fisher’s focus on the sharp null hypothesis of no causal effects
for any units and finite-sample exact p-values [16]. Neyman [1] recognized from an empirical perspective that
the asymptotic normality holds under the described sampling scheme, without requiring the outcomes to come
from a Gaussian law. Moreover, he proposed to estimate the variance of an estimator conservatively in
expectation, which can further lead to a conservative confidence interval. These efforts built up the foundation
for large-sample randomization-based inference in finite populations.

Building upon the pioneering contribution of Neyman [1] in randomization-based inference, there have
been many new developments in the design and analysis of randomized experiments. In the following sec-
tions, we shall first review the basic setup of completely randomized experiments (CREs) and the classical
approaches for analysis. We then present several technical ingredients regarding randomizations and permu-
tations, such as central limit theorems (CLTs) and Berry-Esseen bounds (BEBs), which were developed over
the century, and elaborate on how these results enhance and expand our understanding of the design and
analysis of CREs. We also extend the discussion to other randomized experiments and permutation-related
technical tools.
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Notations. We summarize a set of notations for the whole article. For an integer N, we use [N] to denote
the set of integers {1, ...,N}. For two positive semidefinite matrices V; and V5, we use V; = V; to indicate that V;
dominates V5, in the sense that V; — V4 is positive semidefinite. For a random sequence {Xy}y-;, we write
Xy ~ L if Xy converges weakly to the distribution £ as N = o, and Xy ~ Ly if Xy and Ly converge weakly
to the same distribution. When Xy converges in probability, we use plim,,_, Xy to denote its probabilistic limit.

2 Design and analysis of CREs

In this section, we introduce the basic setup for the design and analysis of CREs. Section 2.1 discusses the setup
of a simple treatment-control CRE as well as strategies for estimation and inference. The results are extended
to a more general multi-level CRE. We then consider more efficient design and analysis of randomized
experiments by incorporating pretreatment covariates. In particular, Section 2.2 presents several covariate-
adjusted estimators, and Section 2.3 discusses rerandomization.

2.1 Basic design and analysis of CREs
2.1.1 Treatment-control CRE

We start by considering a treatment-control CRE that enrolls N units, with N; units in the treatment arm
and Nj in the control arm. Let Z; denote the treatment assignment indicator for the ith unit, for 1 <i < N.
The treatment assignment status for the entire experiment is vectorized as Z = (Zy, ...,Zy). Under complete
randomization,

N N
P{Z= (2, ...zy)} = 1/[ 1]\\,[1 ] forany (z, ...,zy) €{0,}¥ with )z =N, and ) (1-2z)=N,.
i=1 i=1
The potential outcomes for the ith unit are (¥;(1) and ¥;(0)). This is essentially a special case of Neyman’s [1]
setup with two interventional arms. The more general notions of experimental units, treatment/control arms,
and potential outcomes presented here correspond to Neyman’s [1] notions of plots, varieties, and potential
yields.

Rubin [27] called the N x 2 matrix of potential outcomes in Table 1 as the science table. The observed
outcome for the i-th unit is ¥; = Z;¥;(1) + (1 - Z;)Y¥;(0). Importantly, the potential outcomes are fixed and the
randomness comes merely from the random allocation of the treatment, reflected by the random vector Z.
Scheffé [28, Chapter 9] called it the randomization model. Under this model, it is conventional to call the
resulting inference as randomization-based inference, design-based inference, or finite population inference.
It has become increasingly popular in both theory and practice [e.g., 4,20,22,29-38]. Define further the fol-
lowing finite-population mean and variance of potential outcomes for each arm, which are essentially sum-
maries of the science table in Table 1:

_ 1 X _ 1Y
r(0)= YY(0), Y= I 2 %(D); (6))
i=1 i=1

Table 1: Science table for treatment-control CRE

i ¥i(0) (1)

1 Y1(0) n®

N Yiv(0) W)
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1
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Under the potential outcome framework, the ith unit has individual treatment effect ; = ¥;(1) - ¥(0),
for 1 < i< N. The average treatment effect (ATE) over all units is then defined as

1 N
t==Y5=Y() - Y(0).
N5
Neyman [1] proposed to estimate the ATE 7 by the difference-in-means estimator:

t=Y() - ¥(0), where Y(z)= Zm{z =z}, forz=0,1 )

le

He proved that 7 is an unbiased estimator for 7, i.e., E{t} = ¥(1) - ¥(0) = ¢, with true variance
1 1 1
Var{t} = —S%(1) + —S§%0) - —S¥1),
{2} = S + 180 - 18U

where the variances S%(0) and S%(1) are defined in (1), and S%(7) is the variance of the individual treatment
effects

SZ(T) = mZ(Tl - T)Z 3)

Due to the fact that we are never able to jointly observe the two potential outcomes for any unit,

the variance of individual effects in (3) is generally not estimable based on the observed data. Neyman [1]
proposed the following variance estimator:

N
V= l32(1) + i32(0), where $X(z) = 2 (Y- Y(2)"Z; = z3, @
N1 NO 1i=1

Z

which essentially circumvents the problem by dropping the unestimable component regarding S%(7).
The variance estimator in (4) has expectation

. 1 1
- Q2 + —Q2 > 2
E{V} le @ NOS (0) = Var{t},
which suggests that V is, in general, not unbiased but conservative. A level-a confidence interval is then given
by
[T - Zalzﬁ: T+ Za/Z\/TA/]; Q)

where z,/; is the a/2 upper quantile of a standard normal distribution. In Sections 3 and 4, we will discuss
more technical results for the asymptotic validity of the confidence interval in (5).

Remark 1. Neyman’s [1] approach can also be used to test the following null hypothesis:
Hy:7= Y(l) - Y(O) =0
which is often called the weak null hypothesis [39]. In contrast, Fisher [19] proposed to test the following null
hypothesis:
or . ¥i(1) = ¥(0), forallunits i=1,..,N, (6)
which is called the sharp null hypothesis by Rubin [40] or the strong null hypothesis by Wu an Ding [39]. The
Fisherian perspective is fundamentally different, as it focuses on testing the hypothesis of no causal effects for

any units whatsoever, whereas the Neymanian perspective focuses on testing no average causal effect [41].
Obviously, Fisher’s null implies Neyman’s null, but either of them can be practically relevant depending on the
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application. Under (6), one can impute the unobserved potential outcomes and perform Fisher’s randomiza-
tion test (FRT) to deliver finite sample exact inference [19]. Fisher’s test has the advantage of being finite-
sample valid, while Neyman’s requires large-sample approximation. Nevertheless, Neyman’s asymptotic
results can also help ease the computation for Fisher’s null. We refer interested readers to references
[42-44] for a unification of both perspectives, and to references [45-50] for extending FRT to nonsharp null
hypotheses.

Remark 2. For analysis, practitioners usually prefer regression-based inference for the average causal effect.
The standard approach is to run the ordinary least-squares (OLS) of the outcomes on the treatment indicators
with an intercept:

N
(, ) = arg min ) (Y; - y - Z7)% @)
V,T€R  i=1
As implicitly written in (7), the point estimator from the OLS for the treatment effect is identical to the
difference-in-means estimator in (2). However, the usual variance estimation based on the OLS usually fails
(in the sense of either underestimating or overestimating the truth by possibly a quite large factor),
due to heteroskedasticity in potential outcomes [32]. More concretely, the OLS-based variance estimator is
a2 Y
., NN - 1) NN -1 a2 S . S°(0)

17 = " 1 =
o= o Pt w-omme O N T

which can be very different from (13) if the number of units or the sample variances of observed outcomes
differ a lot between the two arms. Instead, one can use the Eicker—Huber—White (EHW) variance estimator
to obtain a robust estimation:

. SONM-1 SHO)N -1
Venw = + ,
N N N N

which is asymptotically equivalent to V in (4). Alternatively, the so-called HC2 variant of the EHW robust
variance estimator is identical to V (see Chapter 4 of Ding [51] for a more detailed discussion on regression-
based analyses for the ATE).

2.1.2 Multi-level CREs

Much efforts have been devoted to extending the treatment-control CRE to multi-level scenarios, which caters
for many practical problems and designs such as (fractional) factorial experiments [35,52], conjoint analysis
[53,54], partially nested experiment [55,56], and sampling-based randomized experiments [57,58].

In a multi-level randomized experiment, there are N units and Q treatment arms, where the number of
units under treatment g equals Ny, with ZqQ:qu = N. Corresponding to treatment level g, uniti has the potential
outcome Yi(q), where i =1,...,N and q =1,...,Q (see the science table in Table 2). Despite its simplicity,
the multi-level CRE has been widely used in practice and has generated rich theoretical results. Definition 1

Table 2: Science table for multi-level CRE

i (1) ¥i(2) ¥(Q)

1 140 %(2) n(Q)

N w® (@) Y(Q)
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characterizes the joint distribution of Z = (Zy, ...,Zy) under complete randomization, where Z; € {1, ...,Q}
is the treatment indicator for unit i.

Definition 1. (Complete randomization) Fix integers Ni,..., Np with 23:1Nq = N. The treatment vector Z
is uniformly distributed over Z = {z € {1, 2, ...,Q}" : Zfill{zi =q} =N, for 1<q<Q}

Mathematically, Definition 1 implies that P(Z = z) = N;!... Np!/N! for all possible values of z in Z. Com-
putationally, Definition 1implies that Z is from a random permutation of N; 1’s, N, 2’s, ..., Ny Q’s. The observed

outcome is ¥; = ZgzlYi(q)l{Zi = g} for each unit i.

Similar to the two-arm setting discussed in Section 2.1, in Neyman’s [1] framework, all potential outcomes
are fixed and only the treatment indicators are random according to Definition 1.

We consider a general contrast matrix F € R9*H of full column rank, i.e., FTlo = 0y and rank(F) = H,
and a set of individual treatment effects defined as the linear contrasts of the potential outcomes:

T = FTY(), ®)
where Y;(*) is the vectorized potential outcome for unit i:
Yi() = (%), ... ¥ (Q)).

The average effect is defined as

1 N
= — - TY (-
T NZq FTY (), 9

i=1

where Y () is the vectorized average potential outcome:
_ 18 _ _
7()= £ W) = (T, .Y Q).
i=1

When Q =2 and F=(1,-1)7, 7 in (9) reduces to the ATE in the treatment-control setting. Moreover,
we can estimate 7 by the following generalization of the difference-in-means estimator:
t=FTY(), (10)
where Y(-) = (Y(1), ...,Y(Q))" is the vectorized sample average of observed outcomes for all treatment arms,
with Y(q) = Nq‘lzf\ilYil{Zi = ¢}. The estimator in (10) has variance [59]
¢ 1
F- —FTSF, (11)
q=1 N

Var{t} = ["Diag

1
ﬁqs(q, qQ

where S € R%*? is a covariance matrix for the potential outcomes with the (g, ¢")th entry given by

b

N
-1 2@ - Y@)¥%@) - Y@, 4.4 =10, (12)

i=1

S, q9) =

and FTSF is essentially the finite population covariance of the individual effects 7;’s in (8). A variance estimator
for (17) is
Q

F, 13)
q=1

S

N .
V = F'Diag N, S(q, )

where $(q, q) is the sample variance within the treatment level g:

1 N
Y (Y - Y(@)*1Z: = g} (14)

S0 =572
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Using (10) and (13), a Wald-type confidence region for 7 is given by
T @ -V -0 < gy 1s)

where gy , is the upper-a quantile of the )(é distribution. (15) can be proved to be asymptotically valid under
mild regularity conditions. More details are deferred to Sections 3 and 4.

In the following, we give two remarks in parallel with Remarks 1 and 2. First, FRT has also been a popular
tool for analyzing multiple-level randomized experiments, which can be used to test sharp nulls and deliver
finite-sample exact p-values [22] (see also [39,43,44] for the unification of Neyman’s and Fisher’s approaches).
Second, similar to the treatment-control case, we can perform analysis with the regression-based approach.
Zhao and Ding [60] studied general regression-based analyses in multi-level experiments.

2.2 Covariate adjustment

In many randomized experiments, there are pre-treatment covariates X, ..., Xy for the N units, where X;’s are
encoded as vectors in R?. Covariate adjustment has become a standard approach for analyzing randomized
experiments and has been widely adopted in many fields. As one example, in 2023, US Food and Drug
Administration issued the final guidance on Adjusting for Covariates in Randomized Clinical Trials for
Drugs and Biological Products Final Guidance for Industry. This guidance describes the agency’s current
recommendations regarding adjusting for covariates in the statistical analysis of randomized clinical trials
in drug and biological product development programs. A natural question is how to optimally adjust covari-
ates for inference? The problem is nontrivial in several aspects: (i) the true relation between outcomes and
covariates is usually unknown and (ii) the potential outcomes under different treatment levels are, in general,
heterogeneous. Many research works explored covariate adjustment from both practical and theoretical
perspectives. It has become a standard practice to use a model-assisted method for covariate adjustment
to gain efficiency for inference while being robust to model misspecification [34].

2.2.1 Fisher’s analysis of covariance (ANCOVA)

Historically, Fisher [61] proposed to use ANCOVA to improve estimation efficiency. This remains a standard
strategy in many fields. He suggested running the OLS of ¥; on (1, Z;, X;) and using the coefficient of Z; as an
estimator for 7. Mathematically, let X be the mean of the covariates: X = N‘lzfilXi. Fisher’s ANCOVA estimator
7 is given by the following OLS output:
N
(&, Gr, Bp) = arg min ) {¥; - a - Zz - (X; - X)'BY, (16)
a,7€R,BERP j=1
noting that the centering of covariates in (16) will not affect the OLS estimator .

Freedman [32,33] studied Fisher’s ANCOVA estimator under the CRE. He showed that 7+ can be biased in
the finite sample, but is consistent for the true average effect as the sample size goes to infinity. Moreover, he
showed some negative results for Fisher’s ANCOVA estimator. First, the asymptotic variance of % can be even
larger than the simple difference-in-means estimator ¢ without adjusting any covariates. Second, the standard
error estimator from OLS can underestimate the true standard error of % under the CRE.

2.2.2 Lin’s estimator

In response to Freedman’s negative findings, Lin [34] proposed a remedy, which is called “Lin’s estimator”
nowadays. Concretely speaking, he proposed to run OLS of ¥; on Z; and X; as well as their interaction term
Zi * X;:

. 1 X _ _
(t, Gy, By, ) = argmin —y{%-a-Zt- X -X)VB-ZxX-X)n an

a,7€R,B,NERP i=1
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Importantly, unlike (16), the centering of covariates here is critical since it will affect the OLS estimator ..

Lin’s estimator is also consistent when the sample size N goes to infinity. Moreover, it enjoys several
benefits. First, the asymptotic variance of 7, is not larger than that of both ¢ and %. Second, the EHW variance
estimator for (17) is asymptotically conservative for the true variance of ;.. As a side note, the EHW standard
error estimator for (16) is also asymptotically conservative for the true variance of % (see Lin [34] for a more
formal presentation of the theoretical results).

Besides the regression proposal, a second perspective for understanding Lin’s estimator is based on
minimizing the true or estimated variance of linearly adjusted estimators [62]. Consider the following class
of linearly covariate-adjusted estimators:

N N
2By B = N{1 D Z{Yi - (Xi - X)VB} - Ng' D (1 - Z)iYi - (X - X)' By}
R i=1 R _ X i=1A _ (18)
={Y() - RQ) - X)B} - {¥(0) - (X(0) - X)'B,}

=1 - 8y,

where X(1) and X(0) denote the averages of covariates in treatment and control groups, %y = X(1) - X(0)
denotes the difference-in-means of covariates, and § = Ny/N - B, + Ni/N - B, is a weighted average of the two
linear adjustment coefficients. Obviously, the true variance of the covariate-adjusted estimator in (18) is
minimized when 6 is the least-squares coefficient from regressing the difference-in-means estimator ¢ on
the difference-in-means of covariates 7y under the CRE. Li and Ding [59] showed that this is further achieved
when f5, and 5, are the least-squares coefficients from projecting the treatment and control potential outcomes
on covariates, respectively. Moreover, since the potential outcomes cannot be fully observed, we can estimate
the least-squares coefficients by their sample analog B1 and ﬁo, which are the least-squares coefficients from
the linear projection of observed outcomes on covariates in treatment and control groups, respectively.
The resulting covariate-adjusted estimator 7 — STfX with § = Ny/N - ﬁl + Ny/N - BO is actually identical to Lin’s
estimator.

We consider then the estimated variance for the covariate-adjusted estimator in (18). We can essentially
view the covariate-adjusted estimator as the difference-in-means estimator but with the adjusted potential
outcomes ¥;(1) - (X; - X)'B; and ¥;(0) - (X; - X)'B,. From the discussion in Section 2.1, a conservative var-
iance estimator for (18) can be

N N
V(B By) = {Ni(Ny = DY Zi{¥i - Py — (X = X B + {No(No — DY) (1 - Z)iYi - J, - (i - XV B (19)
i=1 i=1

where y; and j, are the sample mean of the adjusted outcomes for the treatment and control arm, respectively:
1& 1<
hi= 2 2% - (X - XVBy and jy= ) (1 Z){Y - (Xi - X)By}.
N5 Nois
This formulation suggests choosing f;, and 5, to minimize the variance estimator V(ﬁl, B,) to obtain a plug-in

estimator for §; and f,, which is equivalent to solving the following two regression problems for treated
and control groups, respectively, with intercept terms y; and y, [51]:

N N
miﬁn 2ZdY% -y - G- XA and min ) (1~ Z){Y -y, - (X - X B3 (20)
YiP1 =1 YoPo j=1

It is not difficult to see that the least-squares estimators for p; and S, from (20) are actually Bl and ﬁo defined
before. Consequently, the resulting covariate-adjusted estimator f(/?l, BO) is equivalent to Lin’s estimator 7.
In addition, the corresponding variance estimator constructed as in (19) is asymptotically equivalent to the
EHW variance estimator suggested by Lin [34].
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From the above, Lin’s estimator not only achieves the minimum true variance among all linearly cov-
ariate-adjusted estimators in (18), but also achieves the minimum estimated variance when we use the con-
servative variance estimator of form (19). A subtle issue here is that Lin’s estimator uses estimated coefficients
rather than fixed ones. With the technical tools discussed later, we can prove that the difference between Lin’s
estimator and the one with the oracle adjustment coefficients is asymptotically equivalent (see, e.g., Li
and Ding [59]).

2.2.3 Further extensions

There are a variety of extensions of covariate adjustment beyond treatment-control CREs.

First, it is natural to consider generalization to multiple treatment levels. Lu [63] studied covariate
adjustment in 2X factorial designs by extending (20) to multi-level settings. Zhao and Ding [60] considered
covariate adjustment in general multi-level experiments and made comprehensive comparison among
the unadjusted estimator, Fisher’s ANCOVA, and Lin’s estimator. The unadjusted estimator is given by
the regression:

N
(ino ...,ﬁQ’N) = arg min Z
Yis Vo i=1

0 2
Y- Y ylZi= q}’ . 1)
q=1

The generalization of Fisher’s ANCOVA is given by the following additive treatment regression:

2
(22)

Q
Y- Y yMZi=qt - X - X))
q=1

N
(Prp> oosVpps M) = arg min >
Vi oees Voll i=1

Meanwhile, Lin’s estimator can be generalized from either the regression with interaction perspective (17)
or the (estimated) variance minimization perspective (18) or (20). Here, we present the former one, which
applies the following fully interacted regressions:

2
(23

Q Q
Y- 2 pWZi= @ - 2 UZi= ¢ - X)n,
q=1 q=1

N
oo Voo M ""qQ,L) = arg min Z
Voo wes Vool 5 g 1=1

With the vectorized slope estimates J, = (§ ,, - Jp,)'s where *=N,F, L, an estimator for the target
average effect (9) is given by the plug-in estimator

%, =F7y, *=NTF,L

Besides, we can obtain EHW variance estimators VEHW,*, which is conservative in large samples. In multi-level
CRE, Lin’s estimator is also guaranteed to be at least as efficient as Fisher’s ANCOVA and Neyman’s difference-
in-means estimator.

Second, covariate adjustment has also been discussed in treatment-control trials when the dimension of
the covariates is diverging or high-dimensional. For example, Lei and Ding [64] proposed the following
debiased estimator in treatment-control experiments:

fggj =17 - [%Ao - %jl],
where 4, = N;'3 ,_,6Hj, z = 0,1, where & is the ith residual from Lin’s estimator (17) and Hy is the ith diagonal
element of the hat matrix H = X(X"X)'X", where X is an N x p matrix with rows consisting of the covariates
for the N units. Under some structural conditions, the estimator f;‘g]- achieves asymptotic normality if
the following condition holds:

k*plogp = 0(1), where k = max Hj.
i=1,..,N
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In the favorable case where k = O(p/N), the dimension p is allowed to grow as fast as o(N%/3/ log(N)!/?), which
is a strictly weaker restriction than that of 4, (see also the study of Lu et al. [65] for some recent development
that allows p to be in the same order as N). As another example, Bloniarz et al. [66] considered LASSO
estimator for covariate adjustment in the high-dimensional regime. Under a sparse linear model and some
regularity conditions, the LASSO-adjusted regression estimator is asymptotically normal and the asymptotic
variance is not greater than that of the difference-in-means estimator.

Third, some works explored the other variants of Lin’s estimators. For example, Zhao and Ding [60]
studied restricted least-squares and established for the first time its properties for inferring ATE from the
design-based perspective. Guo and Basse [38] considered generalized Oaxaca-Blinder estimators and extend
the covariate adjustment framework from linear models to nonlinear ones (see also the study of Cohen
and Fogarty [67]).

2.3 Rerandomization

Neyman [1] focused on the CREs, which can balance all potential confounding factors, no matter observed or
unobserved, on average and justifies the intuitive difference-in-means estimator for estimating the ATE. In
practice, in the design stage of an experiment, we often have access to a (rich) set of pretreatment covariates,
and it has been a routine to check whether these covariates are balanced between different treatment groups.
As commented by Morgan and Rubin [68], for a realized treatment allocation, the covariates are likely to be
imbalanced; for example, with ten independent covariates, at least one of the t-statistics for checking the
imbalance of these covariates will exceed 2 with a probability of about 40%. It is then natural to incorporate
the pretreatment covariate information into the design, aiming to get more balanced treatment groups as well
as more efficient inference for treatment effects.

Blocking is a classical and popular approach that can balance a few discrete covariates, but its imple-
mentation is not obvious once we have many continuous covariates. Rerandomization, a design recently
formally proposed by Morgan and Rubin [68], provides a general approach to improve covariate imbalance,
although its idea has existed for a long time in the literature and dates back to many earlier works [69-74]. In a
recent survey of researchers conducting randomized experiments in developing countries [75], the authors
discovered that rerandomization has been commonly used in practice. For example, Lee et al. [76] conducted a
rerandomized experiment to study the effect of mobile banking for rural households and their migrated
family members.

Under a general rerandomization design, for a randomly drawn treatment allocation, we will check the
covariate balance between different treatment groups and see whether it satisfies a prespecified covariate
balance criterion; if the balance criterion is met, we proceed to the actual experiment with this treatment
allocation; otherwise, we redraw the treatment allocation and will keep redrawing until the balance criterion
is met. Although the balance criterion can be general, in the context of a treatment-control experiment,
Morgan and Rubin [68] suggested a balance criterion based on the Mahalanobis distance:

NN,

M = £{{Cov(E)} Mt = =~ E{ (S M,

recalling that N; and N are the treated and control group sizes, 7x is the difference-in-means of covariates
defined as in Section 2.2.2, and SZ is the finite population covariance matrix of covariates defined as follows:

1 2 = _
St=——2 X -X)X-X).
X N - 11=z1( i )( i )
Under rerandomization using the Mahalanobis distance, denoted by rerandomization with the Mahalanobis
distance (ReM), we will repeatedly draw random treatment assignment from the CRE until obtaining an
acceptable one with the corresponding Mahalanobis distance bounded by a prespecified threshold a.
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Importantly, the analysis for rerandomization needs to take into account the selection step in its design.
This is often ignored in practice, and rerandomization is often analyzed as if it was a CRE. Morgan and Rubin
[68] proposed randomization tests for sharp null hypotheses, employing assignments generated randomly in
accordance with the rerandomization protocol. More recently, Li et al. [77] conducted Neyman-type large-
sample inference for rerandomization, considering also the intuitive difference-in-means estimator. They
demonstrated that, asymptotically, the difference-in-means estimator is more concentrated around the true
ATE with smaller asymptotic variance and shorter asymptotic quantile ranges, and proposed accurate con-
fidence intervals for the average effect, which are always shorter than Neyman’s intervals for the CRE while
remaining valid asymptotically under ReM.

In recent years, rerandomization has been extended to more general experiments, such as factorial
experiments [78,79], blocked experiments [80,81], and survey experiments [58], and it can also be combined
with covariate adjustment discussed in Section 2.2 [82]. Zhao and Ding [83] studied the procedure of con-
ducting rerandomization directly based on p-values from covariate balance tests, which is a general strategy
that works for many basic designs. An alternative rerandomization scheme that randomizes treatment assign-
ments multiple times and chooses the one with the best covariate balance has also been used in practice [75],
and its property has recently been studied in the work of Wang and Li [84].

3 Permutational CLTs

With all the design and analysis strategies introduced earlier, one natural question is how to theoretically
justify their statistical property. In the following two sections, we focus on the technical aspect of CREs. The
main question to answer is how to deliver valid inference with different estimators for different designs.
Permutational/combinatorial CLTs and BEBs are core to the technical development of randomization-based
inference. In Sections 3 and 4, we summarize the theoretical results regarding permutational CLTs and BEBs
and discuss their application in analyzing randomized experiments.

3.1 Sample average under simple random sampling

We start with the simple random sampling from a finite population [62]. Let {ay(i)}*; be a sequence of real
numbers. Suppose we randomly sample N; elements without replacement from the population and use a
binary variable Z; to indicate the sampling status of the ith element, i.e., Z; = 1 indicates ay(i) being sampled
while Z; = 0 not sampled. Write Ny = N — N;. Consider the sample average obtained from the aforementioned
procedure:

1 N
[=—)ay()lz = 1. 24)
Nli:1

T has mean and variance

1 1
E{T} = ay, Vy=Var{l}=|— - —|S},
I} =ay N ar{}[M NIV
where
1Y 1 X
ay = = ay(D), Sk=——= (ay(i) - ay)*
N5 N-15
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One fundamental technical question is to establish CLTs for I' to characterize its asymptotic distribution.
Paul and Rényi [85] established the following CLT for (24):

Proposition 1. If for any € > 0,

i 2@ ~ @ Hlav@ - avl > eNT}

2 O 25)
N-w Zi:l(aN(l) - aN)2

then as N — o,
I - E{T}

N

Héjek [86] further proved that Condition (25) is not only sufficient but also necessary provided that
Ny, Ny - . Moreover, Theorem 1 covers some other works on finite population CLTs. For example, Madow
[87] proved asymptotic normality under the conditions that N; — « and there exists § € (0,1) such that
Ni/N <1 - 6 when N is sufficiently large and that the following moment condition holds:

~ N(0, D).

Ny lay() - @y I

=001 for all integers r > 2.
@, g 26)

N3 (an (i) - «w]
The aforementioned moment condition (26) is stronger than (25), because for any r > 2,

Y (an(i) - )P flay(i) - axl > eNoy/Vi}
ZZI(aN(D - ay)
-

N18
11

N, N2r
s[l——l] £y
NJN-15

aN(l)
ENl\/VN
ay(i) - ay "

NV

1{|aN(l) - ay| > eN1/ Wy}

N
N7y Jay(i) - ayl"
-1 i=1
= N%_l N ‘ )
TN (an(i) - @y

i=1

which converges to zero under (26).

David [88] established a CLT for the hypergeometric distribution, which is a special case of Madow [87]
thus also stronger than (25). Li and Ding [59, Section 2.1] also provided a thorough exposition of CLT under
the simple random sampling scheme with a sufficient condition based on the maximum squared distance.

3.2 Simple linear rank statistics

The sample average in (24) from an simple random sampling (SRS) is a special case of a more general type of
permutational statistics, called simple linear rank statistics. Formally, let {ay(i)}Y, and {by(D)}'; be two
sequences of real numbers. Let 77 be a random permutation over the indices 1,..., N, with 7(i) denoting the
permuted index of i. A simple linear rank statistic is defined as

N
T = Y ay()by((i)), @7

i=1
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which has mean and variance

_ . X xr
E{T} = Nay - by, V= Var{l} = 57— -2 (an(i) = ay)? - Y (by(i) = by)*.
i=1 i=1
In particular, if we take by(i) = Ny Lfori=1,..,N;and by(i) = 0 fori = Nj + 1,..., N, then (27) gives the sample
average (24) in SRS. The statistic in (27) has been studied by many researchers. Wald and Wolfowitz [89]
established CLT under the following condition: for all integers r > 2,

-1y N ) - ay)’ 3 ) = by)'
N Zl=1(aN(l) a]\])r/2 - 0(1) and N Zl=1(bN(l) bN)r/2 - 0(1)

‘N_lzlzl(aN(i) - ay)* ‘N_lz{\;(bN(i) - by)?

Noether [90] proved CLT under the following condition that is slightly weaker than Wald and Wolfowitz [89]:
for all integers r > 2,

Y (by(i) - by)

1N N — AN\
N3 Li(an(D) - ay) s o(1),

7z 0(1) and

N (ay(D) - ay)? SN (ba (D) - by)?

which, however, is not symmetric for ay(i)’s and by(i)’s. Hoeffding [91] further proved CLT under a weaker
and symmetric condition: for all integers r > 2,

o Ty - @y 3E(by() - by)’

N2 r/2 B r/2 = 0(1) (28)
‘Z{L(aN(i) —a {Zihn) - by)?
Motoo [92] proved that CLT holds under an even weaker Lindeberg-type condition:
Proposition 2. Suppose that for any € > 0,
g, 2@ (D) ~ @(bn() = By - @n)by() - Bl > e} _ 9
N Sij=r(@n(®) = a)Xbu(j) - by)?

Then,
I - E{T}

J Var{I}

Hajek [93] proved further that Condition (29) is not only sufficient but also necessary, and presented
a comprehensive comparison of the CLT conditions introduced in the literature. There are also several multi-
dimensional extensions based on the Cramér-Wold device (see, for example, refs [94], [93, Section 7],
and [95, Lemma S.3.3]).

-« N(0, 1).

3.3 General univariate linear permutational statistics

Taking one step further from the simple linear rank statistics, the permutational CLTs are proposed for
the following linear permutational statistic:

N
T = ) My(i, n(Q)), (30)
i=1
where {My(i, )}ijev) is @ matrix in R¥V. In particular, if we take My(i, j) = ay(D)by(j), (30) recovers (27).
Hoeffding [91] computed the mean and variance of (30):
1 N
"~ . . 2
N - 12 MN(l)]) )

1 N
E{T} = — ) My(i,j) and Vy = Var{l}=
N ij=1

ij=1
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where My (i, J) is the centered array based on the following rule:
1 1 1
My(i, j) = My(i,j) - NG +) = TMy () + MG ), @D

where “+” means summation over the corresponding index.
Moreover, Hoeffding [91] showed that the asymptotic normality of I' in (30) holds under the following condition:

i N3 N, )T
Now {NIT M (i, )2

=0, forallintegers r > 2. (32)

Condition (32) is equivalent to Condition (28) in the simple linear rank statistics setting. A more compact
sufficient condition for (32) is also provided in Hoeffding [91]:
max; je v My(i, j)*
im —— 25— ————- =
Noeo N3 iaMv(i, J)

(33

Motoo [92] weakened Hoeffding’s [91]’s condition (32) to the following Lindeberg-type condition:

Proposition 3. (Main theorem of Motoo [92]) Suppose for any € > 0,

Zl =M (i, )MV, )| > SJVN}
N_'co zl] lMN(l ])

Then,
T - E{I}

 Var{I'}

Remark 3. Although Proposition 3 gives the weakest condition for permutational CLT in the literature, it is not
very convenient for use in many concrete examples. On the contrary, Condition (33) involves the maximum of
the centered matrices and is simpler for use and interpretation. Condition (33) and its multivariate general-
ization (presented in (36) in Section 3.4) are frequently applied to investigation of the properties of various
analysis and design strategies in randomized experiments presented in Section 2; for example, they can
faciliate the proof for the convergence of variance estimation. We will have more discussion in Section 3.5.

- N(0,1).

3.4 General multivariate linear permutational statistics

We now discuss the generalization of (32) to a multivariate case. Concretely, define the multivariate linear
permutational statistics:

N
[=(0,..I5), Th= ) My, n@)), (39

i=1
where {My n(i, )}ijev), h = 1,..., H are H matrices in RM¥_Shi and Ding [96, Appendix A.1] presented many
basic facts about (34), including its mean and covariance calculation and its standardization. Fraser [94]
extended Hoeffding [91] to the multi-dimensional setting by applying the Cramér-Wold device to establish
a multivariate CLT. More concretely, define the centered version of MN,h in the same way as (31). Fraser [94]
proposed the following condition for CLT as an extension to (32):

i N3 oMy i, )T
N=o (NTIS My (i, )22

=0, forallintegers r>2 andh € [H]. (35)
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Similarly, Fraser [94] also provided a sufficient condition for (35):

_ max; jepviMy a(i, j)?
im — 2 =
N=eo N3 My n(i, J)

0, for he€[H] (36)

The condition in (36) is further utilized by Li and Ding [59] to build asymptotic normality results for analyzing
treatment effects in multi-level CREs.

3.5 Application of permutational CLT in randomization-based inference

In this subsection, we collect several theoretical arguments in randomization-based inference that apply
permutational CLTs to deliver technical justification for studying ATEs.

3.5.1 Wald-type inference in CREs

Consider analyzing a multi-level CRE discussed in Section 2.1.2 and adopt the notation introduced there. Li and
Ding [59] proved the following result to justify the asymptotic validity of the confidence region (15) under
several regularity conditions.

Proposition 4. (Theorem 5 and Proposition 3 of Li and Ding [59]) Let Q be fixed and N go to infinity.
If the covariance matrix S has limiting values, Ny/N has positive limiting value, and
max max|¥(q) - Y(q)*/N - 0,
1<q<Q 1<isN
then the following conclusions hold:
(i) Asymptotic normality. N Var{t} has a semi-positive definite limiting value V., and

JN(E - 1) = N(O, Vi),

where T and T are the ATE and the corresponding estimator in (9) and (10).

(2) Variance estimation. The sample variance $(q, q) in (14) is consistent for S(q, q) in (12).

(3) Wald-type inference. If the limit of NFTDiag{N, 1S(q, Q)}F is nonsingular, then V in (13) is nonsingular with
probability converging to one, and the Wald-type confidence region (15) has asymptotic coverage rate at least
1 - a. Moreover, the asymptotic coverage rate equals 1 — a if and only if the causal effects are asymptotically
additive, in the sense that limy_...F'SF = 0.

We briefly comment on the technical details behind Proposition 4. Proposition 4 (i) utilized the permuta-
tional CLT for general linear permutational statistics. In particular, the estimate 7 follows the same distribu-
tion as (34) with matrices My , defined as follows: for i,j € [N],

My (i, J) = Ng'F(q, DYi(@), Ny +1<j< N,

where N = 0 and F(q, h) is the (q, h)th element of the contrast matrix F. Now, applying Condition (36), we can
obtain the regularity conditions on potential outcomes in Proposition 4 and justify the multivariate asymptotic
normality of the estimator 7. Proposition 4 (i) applied the Chebyshev inequality to the sample variance
estimators and showed their consistency. Proposition 4 (iii) combined (i) and (ii) and formally established
the asymptotic validity of (15). As a side remark, the matrix V. is not required to be invertible, because the
multivariate combinatorial CLT proved by Fraser [94] does not require an invertible limit for the covariance
matrix. However, to justify the validity of the Wald-type confidence intervals in part (iii), invertibility is
required. Proposition 4 covers the treatment-control experiments as special cases. In other words, under
certain regularity conditions, the difference-in-means estimator 7 in (2) is asymptotically normal, and the
variance estimator V in (4) is consistent for a limit that is no less than the true asymptotic variance of 7.
These then justify the asymptotic validity of the level{(1 — a) confidence interval in (5).
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3.5.2 Analyzing covariate adjustment

For covariate adjustment, we present a result by Zhao and Ding [60]. Let Y, € RO (* =N, F, L) be the estimators
for the averaged potential outcomes across all Q treatment levels from three estimation strategies: Yy from
Neyman’s approach, ¥; from Fisher’s ANCOVA, and ¥; from Lin’s regression. These three estimators corre-
spond to the coefficients ), in front of the treatment indicators from the regressions introduced in Section 2.2.3,
i.e., (21), (22), and (23). We slightly modified the notation in order to better present the results. Also, define V. to
be the corresponding EHW robust covariance estimator from the three regressions. The following proposition
from Zhao and Ding [60] established the asymptotic properties of these point and variance estimators.

Proposition 5. (Lemma 1 of Zhao and Ding [60]) Let N — . Assume that, for q € [Q], ¢; = Ny/N has a limit
in (0, 1). Assume that the first two finite population moments of {Yi(q), Xi, Xi¥i(q) : q € [Q]} have finite limits,
and both Sz = (N - 1)‘1Zf\i1)(,-)(l»T and its limit are nonsingular, where the covariates have been centered
so that NIY\.X; = 0. Also, assume that NY\,Y(q) = 0(1), NN, |IX|4 = 0(1), and N3, |IX:Yi()|:
= 0(1). Then, the following results hold:

(1) Asymptotic normality. \/N(f/* -Y) -~ N(0, V) for someV, 2 0,*=N,F, L.

(2) Conservative variance estimation. plimNme/*,EHw zV,*=N,F L.

(3) Efficiency comparison. Vi, < Vy and Vi, < .

Proposition 5 (i) established the asymptotic normality property of Neyman’s difference-in-means, Fisher’s
ANCOVA, and Lin’s estimator. Together with the conservative variance estimation in Proposition 5 (ii), one can
justify the asymptotic validity of Wald-type confidence regions constructed from these estimators.
Proposition 5 (iii) indicates that Lin’s estimator guarantees at least as much asymptotic efficiency as the
difference-in-means estimator and Fisher’s ANCOVA.

In terms of the technical derivation, Proposition 5 (i) utilized Proposition 4, which is a result motivated by
Hoeffding and Fraser’s permutational CLT (more specifically, Conditions (33) and (36)) and can accommodate
vector outcomes and multi-level randomized experiments. In particular, if we study the pseudo-potential
outcome vector (Y(q), X;")', for q € [Q], we can apply similar tricks as in Section 3.5.1 to establish a multi-

variate CLT for the arm-wise sample means (Yq, XqT ) for q € [Q] based on Condition (36). The covariate-

adjusted estimator p; in (23) can be formulated as linear combinations of these sample means, where the
combination coefficients are consistent for certain constant coefficients in the sense that their difference is of
order op(1). Then, a CLT can be derived after filling in the details [60]. Proposition 5 (ii) utilized the Chebyshev
inequality under the bounded moment conditions. Proposition 5 (iii) involves some delicate analysis of
the limiting variance structure V; for * = N, F, L, which has closed-form expressions [60].

3.5.3 Analyzing rerandomization

For rerandomization using the Mahalanobis distance discussed in Section 2.3, we adopt the notation intro-
duced there and present the following result by Li et al. [77]. Define V as the variance of VN7 under the CRE,
and R? as the squared multiple correlation between the difference-in-means of outcome and covariates
(see Proposition 1 of Li et al. [77] for its explicit expression). Let & ~ N(0,1), Lgq, ~DiID'D<a
with D = (Dl, ...,DK)T ~ N(O, IK), and & 1L LK,a-

Proposition 6. (Li et al. [77], Theorems 1 and 2 and Appendix A4.2) Consider ReM with a fixed positive threshold
a,and assume that, as N — o, (a) the proportions of units under treatment and control have positive limits, (b)
the finite population variances and covariances for potential outcomes and covariates have limits, and the limit
of S% is nonsingular; and (c) N max<;i<y|Yi(2) - Y(2)* — 0 and N maxy<i<n||X; - X|} - 0.

(i) Asymptotic distribution. VN (% - T)[M < a - VY21 - RZ - gy + VR? - Ly ).
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(ii) Conservative inference. We can construct estimators V and R* such that, as N — o, plimNﬁm(V -V)=0

and plim,,_ (VR* - VR?) = 0.

(iii) Efficiency comparison. The asymptotic distribution under ReM has a smaller (or equal) variance and
narrower (or equal) symmetric quantile ranges than that under the CRE. Here, the symmetric quantile
range means the interval formulated by the lower and upper a/2 th quantile of the asymptotic distribution

of JN(% - 7), for a € (0, 1).

Proposition 6 (i) means that the distribution of the difference-in-means estimator under rerandomization

converges in distribution to the same limit as VY/2(v1 = R? - gy + JR? - Lk q), a convolution of a Gaussian and
a constrained Gaussian random variable, where the coefficient depends crucially on R? that represents an
R%-type measure for the association between potential outcomes and covariates (see Li et al. [77] for more
details). Interestingly, unlike that under the CRE, the asymptotic distribution of 7 under rerandomization is
non-Gaussian in general, while it is still symmetric and unimodal around zero [77]. In addition, when a = o« or
R? = 0, the asymptotic distribution reduces to that for the CRE. The former is not surprising, because ReM
without rejecting any assignment is essentially the CRE. The latter is also intuitive, implying that ReM using
covariates that are irrelevant to potential outcomes is asymptotically equivalent to the CRE without using any
covariates. In Proposition 6(ii), we omit the explicit expressions of the estimators for conciseness. As a side
remark, Li et al. [77] used an estimator for V that is less conservative than or asymptotically equivalent
to references (4) by utilizing the covariate information; we refer interesting readers to references [77,97]
for details. Importantly, Proposition 6(ii) shows that we can consistently estimate the coefficient of Lg 4 in
the asymptotic distribution, while only conservatively estimating the coefficient of &;. Fortunately, due to
the symmetric and unimodal property of the asymptotic distribution, these will lead to conservative variance
estimation and confidence intervals.

Proposition 6 (iii) demonstrates the advantage of rerandomization over the CRE. In particular, the stronger
the association between covariates and potential outcomes, as measured by R?, the larger the gain from ReM
[77]. Branson et al. [98] recently extended the comparison to non-symmetric quantile ranges.

We now discuss the technical aspects of Proposition 6. A key for its derivation is to note that the distribu-
tion of 7 under rerandomization is the same as its conditional distribution under the CRE given that the
covariate balance criterion is satisfied. This is emphasized by the conditioning on M < a in Proposition 6 (i).
Thus, to understand this conditional distribution, it suffices to study the joint distribution of the difference-in-
means vector (£, £y) for both outcome and covariates, noting that M is a deterministic function of %y. Such a
joint distribution will be asymptotically normal, which can be derived using Proposition 4 by viewing (Y (z), X)
as a “potential outcome” vector. For the asymptotic conservative inference in Proposition 6 (ii), we can study
the probability limits of the estimators V and & again utilizing their properties under the CRE through the
conditioning argument (see details at Li et al. [77]). Proposition 6(iii) involves careful analysis of the non-
Gaussian distribution.

4 Permutational BEBs

4.1 Several univariate and multivariate permutational BEBs

Recently, permutational BEBs (also called combinatorial BEBs) start to raise attention in randomization-based
inference for experiments. BEBs depict the distance between the sampling distribution of a statistic and a
target, often normal, distribution. Theoretically speaking, it measures the convergence rate of CLTs. In general,
the distance between two probability distributions is based on a class of metric of the following form:

d(Py,Py) = sup Uhd[Pl - Ithz‘.
heH
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In particular, BEBs consider H to be the class of indicator functions over a family of sets. For univariate
distributions, BEBs study the upper bound based on the Kolmogorov metric, where % contains half-line
indicator functions:

Sup|P{X < t} - Po{X < t}].

teR
In the multivariate case, there are many choices of sets for different purposes, such as Euclidean balls [99],
rectangular sets [100], and measurable convex sets [101,102].

Below, we review some theoretical progresses of permutational BEBs and their important application

for analyzing randomized experiments in finite populations.

4.1.1 Univariate case

We consider the univariate linear permutational statistics in (30) and adopt the notation from Section 3.3.
We will summarize BEB results for I upon standardization. The standardized version of I' can be expressed as

YN (i, (D))

Var{T} V4T - E{I}) =
[Nl_lzf,v,-ﬁMN(i,j)Z]

N
1/2 = ZMN(L H(l)))
i=1

where
MN(i’ ])

M(i,)) = L
[(N - 1)'lzﬁ=1MN(i,j)2]

Therefore, without loss of generality, we assume the following condition.

Condition 1. (Normalizing I') T' in Definition (30) is defined with My satisfying the following normalizing condition:

My(i, +) = My(+,j) = My(+,+) =0, forall i,j € [N]; ) My(i,j* =N -1
LjEN]

Von Bahr [103] and Ho and Chen [104] established some early results. Bolthausen [105] applied one version
of Stein’s method [106] to establish the following result requiring only conditions concerning the third moment
of the matrix My.

Proposition 7. (Main theorem of Bolthausen [105]) Assume Condition 1. There exists some universal constant
C > 0, such that

sup|P{T < t} - ®(t)| < CNT ) |My(i, j)P. 37)
teR i,jE[N]

The upper bound on the right-hand-side of (37) achieves the rate of O(N-1/2) if
N2 IMy(i, I = 0. 38)
ijE[N]
von Bahr [103] imposed the following boundedness condition, which is sufficient for (38):

sup [My(i, j)| = ON2).

Lj€[N]
As a side note, the aforementioned boundedness condition is also sufficient for the BEB in the study of Ho
and Chen [104] to achieve the O(N"V/2) convergence rate. Chen et al. [107, Chapter 6.1] presented a thorough
discussion about the univariate permutational BEB. Proposition 7 is very helpful for analyzing the finite-
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sample quality of normal approximation for linear estimators. In Section 4.2, we provide an example of using
Proposition 7 to analyze CREs with possibly varying group sizes and diverging treatment levels.

4.1.2 Multivariate case

We now consider the multivariate linear permutational statistics (34) in Section 3.4. For the ease of presenta-
tion, we focus on results upon standardization. Specifically, Shi and Ding [96, Lemma S2] proved that
the standardized version of (34) can still be written as a multivariate linear permutational statistics with
a different set of My ps:

T

N N
Var{T}V%T - E{TY) = | Y My (@i, 7(@), ..., 2 My u(i, 7(@)]| ,
i=1 i=1

where My ps satisfy the following normalizing conditions:

My p(i, +) = My p(+j) = My p(+,+) = 0, forall i,j € [N]and h € [H]; (39
Y Myu(i,j)*=N-1,  foral h € [H]; (40)
ijE[N]
> My (i, My (i, j) = 0, forall h# I’ € [H]. (41)
ijE[N]

My zs can be constructed from My s by performing the centering step as in (31) and then applying a linear
combination using the matrix Var{T} /2 Therefore, without loss of generality, we assume the following
condition.

Condition 2. (Normalizing I in the multivariate case) I' in (34) is defined with My ;’s satisfying the normalizing
conditions in (39), (40), and (41), which guarantees that E{I'} = 0y and Var{I'} = I.

Bolthausen and Gotze [108] extended the univariate result in Proposition 7 to the multivariate, possibly
nonlinear setting. In particular, for the multivariate linear case, Bolthausen and Gotze [108, Theorem 1]
established the following BEB.

Proposition 8. Let A be the family of all measurable convex sets. Let I; be a random Gaussian vector that
follows N(Oy, Iy). Assume Condition 2. Then, there exists a constant Cy that depends only on the dimension H
such that

G
sup[P{T€ A} - P{Tl; €A} < = )
AEA Ni,jE[N]

H 3/2
> My (i, j)2] . (42)
h=1

The BEB in (42) covers the univariate case in Proposition 7 as a special case with H = 1. However,
Bolthausen and Gotze [108] did not give a closed form expression for Cy, whose dependence on the dimension
H is unknown. Raic [109] conjectured the following result:

3/2

H1/4
sup[P{T € A} - P{I; €A} < C— )
Aeq LjE[N]

2 My (i, j)?

he[H]

’

where Cy can be an absolute constant that does not depend on the dimension H. However, no formal proof is
provided by the author. Chatterjee and Meckes [110] made one step forward to reveal the dimensional
dependence using Stein’s method with multivariate exchangeable pairs. In Chatterjee and Meckes [110, Section
3.2], the authors established a bound for the following distance:

sup [E{g(D)} - E{gd},

gEC*RY)
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where C?(R¥) stands for the class of 2-times continuously differentiable functions on R¥, We state in the
following a special case of Chatterjee and Meckes [110]’s result.

Proposition 9. Under Condition 2and the condition of bounded entries:

sup  |Myn(i, )| = ONY), (43)
ijE€[N]he[H]

we have

sup [Efg(D)} - Eg(T)} = 0|— (44)

3
gECRY) NY2f

Nevertheless, (44) does not translate directly into a BEB under the Kolmogorov metric because the
indicator functions are not members of C2(RH). Shi and Ding [96, Theorem S2] made use of one key result
established by Fang and Roéllin [111] regarding Stein’s coupling and established the following multivariate
permutational BEB with explicit dependence on the dimension.

Proposition 10. Under Condition 2and the condition of bounded entries (43), we have

H13/4
zlelgl[P{l" €A} -P{I; € A} = O[ N2 ]

Proposition 10 is also useful for analyzing the finite-sample performance of many non-linear permuta-
tional statistics. Shi and Ding [96] used Proposition 10 to obtain a BEB for quadratic forms of a multi-dimen-
sional estimator for causal effects in CRE, which builds up the ground for Wald-type inference (see Appendix E
of Shi and Ding [96] for more discussion).

4.2 Application of permutational BEBs to randomization-based inference

In this section, we present several applications of permutational BEBs in randomization-based inference.

4.2.1 CREs with possibly varying group sizes and diverging treatment levels

Many classical experiments only involve a small number of treatment levels. For example, classical factorial
experiments typically include a small number of factors (like K < 5) [52]. However, many modern experiments
involve a much larger number of treatment levels and units due to the need for analyzing more complex
relations as well as the development of experimentation technologies. For example, in political science,
powered by the development of computers and web-based technology, conjoint survey experiments
[53,112,113] (as a special type of factorial experiments) are very popular for analyzing the effects of many
factors together and answering complex causal questions. Zhirkov [113] investigated an experiment exam-
ining the impact of six different attributes of immigrants on public support for their admission to the United
States. Caughey et al. [112] studied the impact of 12 (K = 12) personal traits on citizens’ preference for U.S.
presidential candidates. A large number of treatment levels pose new challenges to the analysis of rando-
mized experiments and call for new methodological and theoretical developments. Shi and Ding [96] and Shi
et al. [114] discussed general CREs where the number of treatment levels Q and the treatment group sizes
Ny’s follow a variety of asymptotic regimes beyond the classical setup. Table 3 presents several possible
regimes that are of interest both technically and practically.
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Table 3: Theoretical results for multi-level experiments under the randomization model, originally from Table 1 of the study of Shi
and Ding [96]

Regime Q N, CLT, variance estimation, and BEB

(R1) Small Large CLT and variance estimation established; no BEB
(R2) Large Large Seems similar to (R1) but not studied

(R3) Large Small but Nz 2 Not studied

(R4) Large N =1 Not studied; variance estimation is nontrivial
(R5) Mixture of the above Not studied

The columns “Q” and “N,” stand for the number of treatment levels and the number of replications within the treatment levels,

respectively. The last column summarizes how well each of the regimes is studied in the literature regarding CLT, variance estimation,
and BEB.

Most of the regimes in Table 3 are less visited by literature and lack scientific justification. Shi and Ding
[96] utilized permutational BEBs to characterize the normal approximation for sampling distributions of
statistics in general CREs, and managed to present a unified discussion of all the regimes listed in Table 3.
We elaborate on the usage of permutational BEBs with a canonical example in factorial experiments from Shi
and Ding [96].

In a 2K factorial design with K binary factors, there are Q = 2K possible treatment levels. Index the
potential outcomes Yi(q)’s also as Yi(z, ...,zx)’s, where q = 1,..., Q and 7, ..., zx = 0, 1. The parameter of interest
7 = FTY(-) may consist of a subset of factorial effects, where F is a contrast matrix with orthogonal columns
and entries of £(Q/2)™! (see Dasgupta et al. [35] for precise definitions of main effects and interactions). The
factorial design is called nearly uniform if the sizes of each arm, N;’s, are approximately of the same order.
More rigorously, we assume that there exists a positive integer N; > 0 and absolute constants ¢ < ¢ such that
N; = ¢fNowith ¢ < ¢; < ¢, forallq = 1,..., Q. Such a setup can cover many cases in regimes (R1)-(R4) in Table 3.

Shi and Ding [96] established the following result for the plug-in estimator ¢ = FTY(-):

Proposition 11. (Shi and Ding [96], Example 6, nearly uniform factorial design) Consider a nearly uniform 2K
factorial experiment. Let 7 = Var{t}V%(t - ) be the standardized version of . Let F &€ RYH with
H =K+ K(K-1)/2=K(K + 1)/2 be the contrast matrix for all main effects and two-way interactions. Recall
the definition of S(q, q) from (12). Under some mild regularity conditions, we have

max ien|Yi(@) - Y 2
sup sup|P{b"7 < t} - ®(t)| < Cor aslo)icinI () @l LS

; , (45)
bERH,||b]l=1 teR {minge01S(q, QF? N

where C > 0 is an absolute constant, and ar > 0 is a certain constant related to the matrix F.

Proposition 11 is established based on the permutational BEB from Bolthausen [105] (presented in
Proposition 7 in Section 4.1). In particular, one can formulate b'7 as a linear permutational statistic with a
carefully defined matrix My and apply Proposition 7 to obtain a raw BEB. After taking supreme over all unit-
norm vector b, the BEB can be simplified to the presented form (45). More technical details are provided in
Appendix A of Shi and Ding [96]. Also, the BEB in (45) is uniform in the linear coefficient vector b € R with
||b|l2 = 1. This uniformity results in the additional dependence in K2 (or the dimension H). Intuitively with
higher dimension H, the uniform bound becomes larger. From Proposition 11, we can obtain a sufficient
condition for the upper bound (45) to converge to 0, which implies a CLT for any one-dimensional linear
transformation of 7. In addition, Proposition 11 requires mainly the total sample size N to be large enough, and
therefore allows either a fixed number of treatment levels Q and diverging replications Ny, or a diverging Q
with limited replications N,. Shi and Ding [96] also established design-based properties of Wald-type inference
under general CREs, which utilizes multivarite permutational BEBs such as Proposition 10.



22 —— Lei Shiand Xinran Li DE GRUYTER

4.2.2 Rerandomization with diminishing covariate imbalance and diverging number of covariates

Li et al. [77] studied the asymptotic theory of rerandomization with a fixed covariate imbalance threshold that
does not vary with the sample size, as discussed in Sections 2.3 and 3.5.3. The theory there suggests that the
smaller the threshold, the more improvement we can gain from rerandomization over the complete rando-
mization. Although intuitive, such a conclusion is not precise. When the covariate balance criterion is too
stringent, there may be no acceptable assignments, and, even if there are acceptable ones, the asymptotic
approximation may work poorly due to the small and even diminishing acceptance probability, i.e., the
probability that a complete randomization is acceptable under rerandomization. Specifically and technically,
the derivation for properties of rerandomization is through analyzing conditional distributions under the CRE,
which will involve the acceptance probability in the denominator. The resulting asymptotic analysis will then
encounter a ratio between two quantities of order o(1) when we allow the acceptance probability (or the
imbalance threshold) to diminish with the sample size. In such cases, BEBs are crucial for conducting asymp-
totic analysis.

In the context of simple random sampling, Wang and Li [115] derived a multivariate BEB for the sample
average using Héjek’s [86] coupling and the BEB for sums of independent random vectors [116] with explicit
dependence on the dimension. The bound, although weaker than that implied by the conjecture in Raic [116], is
sufficient for studying rerandomization with diminishing covariate imbalance threshold (or equivalently accep-
tance probability) and diverging number of covariates. With the derived BEBs, Wang and Li [115] presented the
following asymptotic theory for ReM, which is stronger than Proposition 6. We adopt the same notation from
Section 3.5.3 and denote the covariance imbalance threshold by a, and the number of covariates by K, allowing
them to vary with the sample size N. Let r; = Ni/N, 1y = No/N, w; = (rp- %(1) + r1- ¥i(0), X;')', @ and S2
be the finite population average and covariance of u;’s, and

Ky +D 13 _
=) IS, (u; - W3,
\/erro N
i=1

W
where ;! is the inverse of the positive semidefinite square root of S2. We have the following BEB under ReM.

Proposition 12. (Wang and Li [115], Theorems 1 and 3) As N — o, if yy » 0 and pN/y1§/3—> o with
Dy = Pr()(ZN < ay), then

sup|Pr{Var{#} V%% - 7) < ¢|[M < ay} - Pr(v1 - R%g + \/FLKN,aN <¢) -0,

cER

where T is the true ATE.

Wang and Li [115] further studied additional conditions such that the constrained Gaussian random variable
L,y becomes ignorable as N — oo, under which Var{¢}/%(¢ - 7) can asymptotically follow the Gaussian dis-
tribution N(0,1 - R?) under rerandomization. This is the ideally optimal precision that one can expect under
rerandomization, since the remaining variation is due to the part of potential outcomes that cannot be linearly
explained by the covariates. Moreover, the Gaussian asymptotic distribution is the same as that of Lin’s regression-
adjusted estimator under the CRE. Intuitively, rerandomization and covariate adjustment are dual of each other,
where the former is at the design stage, while the latter is at the analysis stage. Wang and Li [115] further proposed
large-sample valid confidence intervals for the ATE under rerandomization.

5 Extensions

Neyman [1] has motivated many important extensions for the design and analysis of randomized experiments,
and the technical tools regarding permutations have been evolving during the past century. In this section,
we discuss some other extensions beyond Neyman [1].
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5.1 Other randomized experiments

In this section, we discuss several other widely used and studied randomized experiments, beyond Neyman’s
[1] focus on the CRE.

5.1.1 Stratified (block) randomized experiments

Stratified randomized experiments (SRE) have been used widely in many fields, including agricultural study
[117], biomedical study [118], and social science [119]. An SRE combines several different CREs according to the
levels of a stratum indicator. Concretely speaking, consider an experiment with K strata. Denote the number
and proportion of units in stratum k as Njxj and 71 = Njyg/N, respectively, where k = 1,..., K. Within stratum k,
Nk units are randomized to receive treatment and the remaining Njxjo = Nk — Nk units are assigned to
control. Across strata, the randomization is conducted independently. The treatment assignment distribution
is uniform over all possible randomizations.

Analogous to CRE, in SRE, for unit i in stratum k, we have potential outcomes Y¥;(1) and ¥;(0) and
individual causal effect 7; = Yj3(1) — ¥(0). For stratum k, we have stratum-specific average causal effect

Nix)
Tk = N[;(l] Z Tki-
i=1
The overall average causal effect is

K Ny K
T=NTY D = Q) Mt
k=1i=1 k=1
which is also a weighted average of the stratum-specific average causal effects. For Neyman-type analysis,
a point estimator can be obtained by taking a weighted average of stratum-specific difference-in-means
estimators:
K

5= Y Mg, (46)
k=1

where 7 is the difference-in-means estimator for stratum k. It has variance

K
Var{fs} = ) mjVar{fug},
k=1

which motivates the variance estimator

CE 5 SO
V= D Now TN
k=1 [k [k]o
with S[i](l) and §[i](0) being the stratum-specific sample variances for the treatment and control arms.
A Wald-type confidence interval can then be constructed for 7.

Under certain regularity conditions, the point estimator (46) is asymptotically normal and Wald-type
inference is proved to be asymptotically valid (see, for example, previous studies [120,121]). The random
assignment mechanism requires studying a convolution of independent permutational distributions, which
motivates new theoretical tools. When the total number of strata K is small and the sizes of the strata are large,
the permutational CLTs play a central role in the analysis. When K is large and the sizes of the strata are small,
CLTs for independent summations play a crucial role instead. With a mixture of large and small strata, there
are also theoretical results in the literature (see, for example, previous studies [120,121]). Moreover, Liu et al.
[122] and Wang et al. [80] further investigated covariate adjustment and rerandomization in SREs.
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5.1.2 Matched-pair experiments (MPEs)

The MPE is another popular experimental design in practice [19,123,124]. The MPE is the most extreme version
of the SRE with only one treated unit and one control unit within each stratum, which is called a pair. We can
adopt the notations for the SRE to define potential outcomes, causal effects, stratum-specific difference-in-
means estimator (denoted again as 7jx}), and the aggregated difference-in-means estimator (denoted as %) in
the MPE. However, the variance estimation strategy discussed in Section 5.1.1 is no longer applicable for the
MPE, since it implicitly requires at least two treated and control units within each matched set so that we can
calculate the stratum-specific sample variances. Imai [124] proposed the following variance estimator by
instead considering the sample variance of the stratum-specific difference-in-means estimators:

. 1 <

Vi = ——— ) (fig — )%
nn-1) kgl k]

and he showed that it is conservative in expectation for the true variance of 74y. We can then construct

the Wald-type confidence interval
A 5 1/2 A 5 1/2
[t = Za2Vm > B+ Za2Vn 1,

which can be asymptotically valid under certain regularity conditions. Moreover, regression adjustment can
be applied to improve efficiency when baseline covariates are available, as shown in the study by Fogarty [37].

In general stratified experiments with possibly one treated or one control unit in some strata, Fogarty [125]
and Pashley and Miratrix [126] discussed general strategies to conservatively estimate the variance of
the aggregated difference-in-means estimator.

5.1.3 Cluster randomized experiments

Cluster randomized experiments are widely used due to their logistical convenience and policy relevance. In a
cluster randomized experiment, the treatment is assigned at the cluster level instead of the individual level.
Consider a study with N units and M clusters. Cluster i has n; units (i = 1, ...,M). Let (i, j) index the jth unit
within clusteri fori =1,.., M and j = 1,..., n;. The experimenter randomly assigns M, clusters to receive the
treatment and M, clusters to receive the control, where M; and M, are fixed positive integers satisfying
M, + My = M. Let Z; be the treatment indicator for cluster i and Z; be the treatment indicator for unit (i, j).
In a cluster randomized experiment, units within a cluster receive identical treatment levels. So if cluster i
receives treatment, then Z; = Z; = 1 for all j. If cluster i receives control, then Z; = Z; = 0 for all j. Let ¥;(1) and
¥;(0) be the potential outcomes under treatment and control, respectively, for unit (i, j). The observed outcome
is then ¥; = Z;¥;(1) + (1 - Z)Y;;(0). The ATE over all units is
1 M n;

7= 3 2 21 - Y0},
i=1j=1

There are different strategies for inferring 7, including individual-level estimators and cluster-level estimators

[127], both enjoying desirable asymptotic properties implied by permutational CLTs. We refer interested

readers to a collection of works on analyzing cluster randomized experiments [127-132].

5.2 Some technical aspects for permutations

Permutation is a core element in the design and analysis of randomized experiments, and its development,
such as CLTs and BEBs, has involved many technical tools including moment matching [91], coupling [93,133],
Stein’s method [105-107,110]. In this section, we discuss some technical aspects for analyzing permutation-
related problems.
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5.2.1 Hajek’s coupling

Hajek’s coupling is one technique developed in the study by Hajek [86] for proving CLTs in simple random
sampling. The idea is based on constructing a coupling between simple random sampling and Bernoulli
random sampling so that CLTs for independent and identically distributed (i.i.d.) sampling can be applied.
Wang and Li [115] utilized Hajek’s coupling together with a multivariate BEB for sum of independent random
vectors [116] to study rerandomization with diminishing covariate imbalance. The techniques are useful to
establish theories for a wide range of permutational statistics (see, e.g., previous studies [122,133]).

5.2.2 Double and multiple permutations

Nowadays, there are many new variants of permutations in designing randomized experiments. For example,
Fredrickson and Chen [134] and Chen and Friedman [135] discussed permutation and randomization tests for
analyzing network data. D’Amour and Airoldi [136] and Deng et al. [137] studied randomized experiments with
dyadic outcomes, i.e., outcomes that measure the relationship between pairs of units. When randomization
occurs at the unit level, the dyadic outcomes are in turn randomized with double permutations. Doubly
indexed permutation statistics (DIPS) is useful in these settings because the dyadic potential outcomes are
functions of pairs of treatments, and the statistics for studying causal effects in these problems are generally
represented as DIPS. Bajari et al. [138,139] proposed multiple randomization designs for marketplaces in which
multiple populations interact and causal questions regarding interference are of particular interest. In terms
of technical tools that are potentially useful for analyzing double or multiple permutations, Chen et al. [107],
Zhao et al. [140], Reinert and Rollin [141], among others, used Stein’s method [106] to study the asymptotic
properties of DIPS.

5.2.3 Concentration inequalities

Another technical tool that has been recognized by the literature is permutational/combinatorial concentra-
tion inequalities. Bloniarz et al. [66] and Lei and Ding [64] used permutational concentration inequalities to
analyze regression adjustment in CREs when the dimension of the covariates is diverging. It will be interesting
to explore related potential research questions that involve delicate analysis of finite sample properties
of permutational statistics and inspire the use of concentration inequalities.

6 Conclusion

In this review, we revisited the fundamental contributions of Neyman’s [1] seminal work regarding the
introduction of potential outcomes, the promotion of physical randomization, and the emphasis of repeated
sampling properties of statistics over the randomization distribution. These contributions lay down the
foundation for the design and analysis of randomized experiments. We also reviewed permutational CLTs
and BEBs in great detail, and listed applications of these technical results in randomization-based inference.

Beyond what we have covered in the review, many research works are closely related to Neyman [1]. From
a technical point of view, many theoretical tools are not fully covered in the discussion. For example, when
analyzing SREs, we need CLTs and BEBs that combine the independent permutational distributions [121,122].
This is also closely related to Rosenbaum’s sensitivity analysis for matched observational studies with biased
permutations in each matched set [20,142,143]. As another example, for the design and analysis of adaptive
experiments, a general martingale structure typically exists, which requires a martingale CLT or Berry—Esseen
result [144,145].
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From a practical point of view, many real-world examples can motivate the study of new designs, out-
comes, assumptions, and causal estimands under the finite population framework. For example, interference
among units is a common phenomenon in many experimental and observational studies. The study of inter-
ference and peer influence has motivated a lot of new designs and methods, such as designing and analyzing
bipartite experiments [8,146], multiple randomization [138], randomized experiments with network interfer-
ence [147], group formulation design [148,149], etc. Another example is randomization with missing observa-
tions or covariates. Zhao and Ding [150] discussed several strategies for randomization-based inference with
missing covariates, and Zhao et al. [151] further studied covariate adjustment in randomized experiments with
both missing outcomes and covariates. Censored survival outcomes are another type of missingness that
occurs frequently in clinical trials. In these settings, to test the null hypothesis of no treatment effect for
any unit, Rosenbaum [20] proposed randomization tests for censored outcomes using a partial ordering, and
Zhang and Rosenberger [152] established asymptotic normality of the randomization distribution of the log-
rank statistic. Both approaches require the assumption of identical potential censoring times under treatment
and control. Recently, Li and Small [153] relaxed this assumption and proved that, under a Bernoulli rando-
mized experiment, with non-informative i.i.d. censoring, the log-rank test is asymptotically valid for testing
Fisher’s null hypothesis of no treatment effect on any unit.

At the same time, there have been extensive progresses for analyzing treatment effects from a super-
population perspective, and many of them share similar spirit as the randomization-based inference [154]. For
example, Yang and Tsiatis [155] have suggested linear covariate adjustment with treatment—covariate inter-
action under a semiparametric model (see also previous studies [156,157]). In the presence of censoring, there
have been many works studying semiparametric estimation of treatment effect [158-160], as well as covariate
adjustment to improve inference efficiency [161-163].
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