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Abstract. We introduce a finite volume scheme to solve a special case of isotropic 3-wave
kinetic equations. We test our numerical solution against theoretical results concerning the long time
behavior of the energy and observe that our solutions verify the energy cascade phenomenon. To our
knowledge, this is the first numerical scheme that can capture the long time asymptotic behavior of
solutions to those isotropic 3-wave kinetic equations, where the energy cascade can be observed. Our
numerical energy cascade rates are in good agreement with previously obtained theoretical results.
The finite volume scheme given here relies on a new identity, allowing one to reduce the number of
terms needed in the collision operators.
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1. Introduction. For more than 60 years, the theory of weak wave turbulence
has been intensively developed. Having origins in the works of Peierls [32, 33], with
modern developments originating in the works of Hasselman [17, 18], Benney and
Saffmann [4], Kadomtsev [22], Zakharov, L’vov, and Falkovich [45], and Benney and
Newell [3], wave turbulence kinetic equations have been shown to play an important
role in a vast range of physical applications. Well-known examples are water surface
gravity and capillary waves, internal waves on density stratification, inertial waves
due to rotation in planetary atmospheres and oceans, waves on quantized vortex lines
in superfluid helium, and planetary Rossby waves in weather and climate evolution.

In rigorously deriving wave turbulence kinetic equations, Lukkarinen and Spohn
are pioneers with the work [27]. In the last few years, the rigorous justification of
wave turbulence theory has been revisited in [5, 6, 11, 12, 40] in an effort to tackle
the longstanding open conjecture on the long time behavior of higher order Sobolev
norms, H*® (s> 1), of solutions to dispersive equations on the torus.

The 3-wave kinetic equation, one of the most important classes of wave kinetic
equations, reads (see [35, 36, 43, 44, 46])

(1.1) ocf(t,p) = QLfI(t,p), £(0,p) = fo(p),
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in which f(t,p) is the nonnegative wave density at wavenumber p € RN, N >2; f4(p)
is the initial condition. The quantity Q[f] describes pure resonance and is of the form

12 A= [ Rl = Rosiald] = R 7] 1,
with
Rp.pr.pelf]:= |Vp,p1,p2|25(29 —p1—p2)d(w—wi —w)(fife — ff1 = ff2),

with the shorthand notation f = f(¢,p), w = w(p) and f; = f(t,p;), w; = w(p;)
for wavenumbers p, p;, j € {1,2}. The function w(p) is the dispersion relation of the
wave system. The 3-wave kinetic equation has a variety of application areas, including
ocean waves, acoustic waves, gravity capillary waves, Bose-Einstein condensates, and
many others (see [17, 18, 34, 42, 43, 44] and references therein).

In the isotropic case, we identify f(¢,p) with f(t,w); the isotropic 3-wave ki-
netic equation, in which only the forward transferring part of the collision operator is
considered, takes the form

(1.3)
atf(tw WER+7f(07p):f0(p)>

1(t,w) / / R(w,w1,wz) — R(wy,w,ws) — R(w27w17w)]dw1dw2,
R(w,w1,wz) := 0(w—w1 —ws) [U(wr,w2) f1fo — Ulw,wi) ff1 —U(w,w2) f f2] ,

where U satisfies |U(wy,ws)] = (wiw2)?/?, in which v is a nonnegative constant,
which plays an important role in what follows. Note that the operator Q[f] can be
considered as a coagulation kinetic type operator for wave interactions.

One of the breakthrough results in weak turbulence theory (see [24, 44, 45]) con-
cerns the existence of the so-called Kolmogorov—Zakharov (KZ) spectra, which is a
class of time-independent solutions foo of equation (1.1):

foop)=C|p|™", k>0.

The KZ solutions are analogous to the Kolmogorov energy spectrum of hydrody-
namic turbulence, though the value of x in weak turbulence theory is dependent upon
the wave system under consideration. Research in line with this topic has actively
continued to the present (see, for instance, [15, 28, 29], to name only a few). However,
in the absence of forcing and dissipation, the KZ solution scaling is only expected for
infinite capacity systems, e.g., for a forward cascade process whose energy integral
diverges at infinite p. In the opposite case of finite capacity systems, the spectrum
blows up in finite time. The systems we consider in the present article are of the
latter class.

To our knowledge, relatively little has been done on the time-dependent solu-
tions of (1.1). In the important works [7, 8, 9], several numerical experiments were
designed for investigating the isotropic 3-wave equation. In [7], it was pointed out
that isotropic 3-wave kinetic equations are equivalent to mean field rate equations
for an aggregation-fragmentation problem which possesses an unusual fragmentation
mechanism. A numerical method for solving isotropic 3-wave kinetic equations, with
forcing and dissipation present, was also introduced in the same work.

In [39], Soffer and Tran show that the energy conserved isotropic solutions of
(1.1) in the finite capacity case (with « > 1) exhibit the property in which energy
is cascaded from small wavenumbers to large wavenumbers. They show that for a
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regular initial condition whose energy at infinity, w = oo, is initially 0, as time evolves
the energy is gradually accumulated at {w = oco}. In the long time limit, all the energy
of the system is concentrated at {w = 0o}, and the energy function becomes a Dirac
function at infinity £dy,—c0), where £ is the total energy. To be more precise, let us
define the energy of the solution (1.1) as ¢g(t,w) = wf(t,w). It has been proved in
[39] that g can be decomposed into two parts,

(1'4) g(tvw) :g(taw) +§(t)6{w:oo}7

where g(t,w) > 0 is the regular part, which is a function, and §(#)d{,—ocy is the singular
part, which is a measure. The function g(t) is nonnegative. Initially, g(0,w) = g(0,w)
and §(0) = 0. But there exists a blow-up time ¢} such that for all time ¢ > ¢, the
function §(t) is strictly positive. Moreover, starting from time t7, there exists infinitely
many blow-up times,

(1.5) O<ti<ty< - <ty <---,

such that

(1.6) g(ti,w) > g(ts,w) >--->g(ty,w)>---—=0
and

(1.7) 0<g(ty) <g(ty) <---<glty) <--

This phenomenon has been explained in [39]: after the first blow-up time, t7, the
energy starts to transfer from the regular part g(¢,w) to the singular part §(¢)d,—oo
at a rate of at least O (%), while the total energy of the two regular and singular parts
is still conserved. This decay rate has been obtained in item (iii) of the main theorem
of [39] (Theorem 10, pp. 22-45), which is stated as follows. The energy cascade has an
explicit rate f{‘p‘:m} F @& |p)wyp ol du(|pl) > € — %, where €; and €5 are explicit
constants. Item (iii) of the main theorem states that the total energy is accumulated
at the point {oo} with the rate (9(%) The above inequality yields with w = |p| the
equivalent rate

R
1
g(t,w dw§(9<> for any R > 0.
/o () Vi

In the limit ¢ — oo, all of the energy will be accumulated in the singular part
G(t)dw=c0, while the regular part g(¢,w) — 0 will vanish. This means that if we look
for a strong (nonmeasured) solution whose energy is conserved, then it can only exist
up to a very short time ¢ = ¢j, at which point it exhibits singular behavior. As a
result, we refer to time ¢7 as the first blow-up time. Let x[o,z)(w) be a cut-off function
of w on the finite domain [0, R]; the multiple blow-up time phenomenon (1.4)—(1.5)—
(1.6)—(1.7), with the decay rate O(%), can be observed equivalently as the decay of
the total energy on any finite interval [0, R],

(1.8)

R
1
/g(t,w)dw :/ Xjo,r) (w)g(t,w)dw SO(—) as t — oofor all truncated parameterR.
0 Ry

Vit

Inequality (1.8) simply means that the energy of the solution will move away from
any truncated finite interval [0, R] as t — co with the rate O(%)
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We refer the reader to [39] for a detailed comparison of the different results of
[7, 8,9, 39]. Below, a brief comparison will be given. In [7, 8, 9], both the infinite
capacity (0 <+ < 1) and finite capacity (v > 1) cases have been considered. The
solutions of [8, 9] are assumed to follow a self-similar hypothesis, called dynamic
scaling,

(1.9) o) st ().

where &~ denotes the scaling limits s(t) — co and w — oo with z =w/s(t) fixed. The
energy of this function can be computed as

(1.10)

Jy ettt = [serre (g Yoo = [ serer ()

= s(t)o+? /OOO oF (2)dz -~ O(s()*2),

Va)
3l
N——

QL
VRS

V2]
::‘E
N———

which grows with the rate s(¢)2*2. Substituting this ansatz into (1.3), we obtain the
system

(1.11) 5(t) = s¢ with (=y+a+2 and aF(z) + zF(z) = Q[F](x).

From (1.10), it can be observed that the only value of a that gives the conservation
of energy is a = —2. Making the assumption that F(x)«~xz~", when x « 0, this work
shows that the power can be determined to be n =+ 1. Since [8] focuses on the
infinite capacity case, the degree of homogeneity v is considered in the interval [0, 1);
thus the integral

(1.12) /0OO xF(z)dx

is well-defined. However, there is a problem in the finite capacity case: when v > 1,
this integral becomes singular.

The work [9] considers both infinite capacity (0 < v < 1) and finite capacity
(v > 1) cases. In the finite capacity case, the solution is considered before the first
blow-up time t < ¢, theoretically proved in [39]. However, solving (1.11) is a very
difficult task. In [9], the following hypothesis is then needed: the total energy of the
solution of (1.3) is assumed to grow linearly in time rather than being conserved, so
that

(1.13) /Oowf(t,w)dw:Jt.

F+3
2

Another challenging technical issue is that the integration (1.12) with F(x) vz~
for small = diverges in the finite capacity case (v > 1) and converges only in the
infinite capacity case (0 <+ < 1). Thus, other assumptions need to be imposed on
the solution f itself.

From the above discussions, the key differences between [7, 8, 9] and [39] are
summarized as follows. The works complement one another, as they consider very
different scenarios of the solutions of (1.1). The work [39] focuses on the finite capacity
case (v > 1), under no additional assumption on the solution f of (1.3), and shows
that the solution, whose energy is conserved rather than linearly growing in time
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as assumed in (1.13), exhibits an energy cascade phenomenon, where there exist
an infinite series of blow up times (1.4)—(1.5)—(1.6)—(1.7) (or, equivalently, inequality
(1.8)). The result of [39] is in good agreement with the discussion of [30], saying that
in the absence of external forcing and dissipation, the KZ spectrum is not expected
in the finite capacity (v > 1) case. The works [7, 8, 9] focus on both finite capacity
(v > 1) and infinite capacity (0 < < 1) cases. In the finite capacity case (y > 1),
the solution is studied before the first blow-up time ¢t < t}, rigorously proved later in
[39]. Studying the solution before the first blow-up time via the self-similar hypothesis
(1.9) is indeed a highly challenging problem, and thus in [9] the following assumption
needs to be imposed on the energy of the solution: it is assumed to grow linearly in
time (see (1.13)) rather than being conserved, so that

(1.14) / wf(t,w)dw = constant.
0

Moreover, additional hypotheses are also imposed to treat the singularities of the
integral (1.12).

We would like to highlight the work [2], where a self-similar profile of the solution
for a different finite capacity system—the Alfven wave turbulence kinetic equation—
is computed before the first blow-up time ¢j. Also, the recently published paper
[38] presents a numerical method for solving the self-similar profile before the first
blow-up time ¢} for a collision integral 4-wave kinetic equation based on Chebyshev
approximations. While finding self-similar profiles of the solution f of (1.1) not only
before the first blow-up time ¢} but also before the nth blow-up time ¢} is a topic of
our future work, our current paper only focuses on numerically verifying the existence
of the multiple blow-up time tj <5 <--- <t} <--- phenomenon as well as the bound
(1.8), rigorously proved in [39).

Let us also mention the work [37], where a 3-wave kinetic equation, derived from
the elastic beam wave equation on the lattice, has been analyzed. It has been shown
that the domain of integration of the 3-wave collision operator is broken into discon-
nected domains, where each has its own local equilibrium. If one starts with any
initial condition, whose energy is finite on one subdomain, the solutions will relax to
the local equilibrium of this subregion as time evolves. This is the so-called nonergod-
icity phenomenon, which is different from the energy cascade phenomenon observed
in our current work. The global existence of 3-wave kinetic equations in the presence
of forcing has been shown in [16, 31], and a connection to chemical reaction networks
has also been pointed out in [41].

Starting from (1.3), we could rewrite the 3-wave kinetic equation under the equiv-
alent form

(1'15) atf(tvk) = Q[f](tak)’ keRy, f(oak) :fO(k)a

in which Q is the collision operator defined by
k
(116) QU = [ sk~ RS~ k)  ak ) (01 )
—alk,k— k) £ £k — k)] dRy

(
—2Amwwwnﬂ> (ky) — allk + b, ko) £ (5 + ko) £ (k)
—alk, k1 +k)f(k)f(kyL+ k)]dky,
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where the collision kernel satisfies a(k;,k2) = (k1k2)?/2. In the rest of our paper,
we identify the variable k with the variable w as k is simply w multiplied by a fixed
constant.

Even though the theoretical result of [39] holds for the more general equation
(1.1) in the isotropic case, it is expected that the result also hold for equation (1.3),
in which only the part that drives the forward cascade is kept. Therefore, the goal of
our paper is then to derive a finite volume scheme (FVS) that allows us to observe the
time evolution of the solutions of (1.15) and to verify the theoretical results of [39] for
various values of v > 1. In other words, we aim to observe the transferring of energy
from the regular to the singular part in (1.4) and to measure precisely the rate of
this energy transfer process via the inequality (1.8), which we call the energy cascade
rate. In the absence of forcing and dissipation, the KZ spectrum is not expected in
the finite capacity (7 > 1) case considered in our current work [30].

Our FVS relies on the combination of a new energy identity represented in
Lemma 2.1 and an adaptation of Filbet and Laurengot’s scheme [13] for the Smolu-
chowski coagulation equation (SCE) to the 3-wave kinetic equation. Most numerical
schemes that approximate integrals on an unbounded domain require the truncation
of the unbounded domain to a finite domain. Thanks to the new identity, the number
of terms in the collision operators is reduced, which reduces the number of trunca-
tions needed in the approximation, making the scheme more accurate and reliable.
Indeed, we only need to truncate one term in our numerical scheme. Let us comment
that the CFL condition is restrictive in certain cases. For other types of equations,
the issue of positivity and accurate long time behavior could be resolved by using
the implicit in time discretizations. For instance, a structure preserving scheme has
been designed for the Kolmogorov—Fokker—Planck equation, which is an equation of
degenerate parabolic type in the work [14].

The advantage of degenerate parabolic type equations is that those equations are
normally local, while the 3-wave kinetic equation considered in the current paper is
highly nonlocal. Thus, the previous strategies for parabolic equations, such as the one
used for the above Kolmogorov—Fokker—Planck equation, do not immediately carry
over to the current 3-wave kinetic equation. We therefore defer this question to a
future paper.

2. Comparison with Smoluchowski Coagulation Equation and a New
Energy Identity. In [13], Filbet and Laurengot derive an FVS for the SCE

(2'1) 8tf(t’k) = QSmo[f](t7k)’ f(O,k) :fO(k)v
(2.2)

k 0o
Qsmolf](t, k) :/o a(ky, k— k1) f(k1)f(k—k1)dk; —2/0 a(k, k1) f(k)f(k1)dks,

where a(+,-) is the collision kernel for the 3-wave collision operator (1.16). Let us give
a short derivation of the nonconservative form of the SCE (see [1, 10, 13] and the
references therein).

Take a test function ¢(k) = kx[o,.(k) and apply it to the SCE

/Catf(t,k)kdk - /C/ka(k,k—kl)f(kl)f(k;—kl)kdkldk
0 0 0 . ~
_2/0 /0 alk, k) £ (k) f (ke Yoy di
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_2/ / alk, k) f )f(kl)kdk:ldk—Q/OC/OOO alle, k) £ () f (Y ocley .

Rearranging the right-hand side, we find
[ austeiorar = <2 [ [ alh ks 10k
0 0 Je—k

upon taking the derivative with respect to c,

duf(t,c)e = —286/0C/:a(k,kl)f(kl)f(k)kdkldk;

and, after truncating the inner integral, we arrive at

(2.3) 0, f (L, c)e :—28//k (s ) £ (ko ) £ () kdker i,

where R is a suitable truncation of the volume domain. Then, one can apply any FVS
scheme to solve the truncated problem. We note briefly that the choice of R can affect
the accuracy and efficiency of the scheme for the SCE. For example, when considering
the case of gelation, R must be quite large in order to avoid a loss of mass before the
gelation time. Also, in [23] the authors compare the FVS above with a finite element
approximation and find that for smaller truncation values, the finite element scheme
is a better choice, while for larger truncation values the FVS should be used.

If we compare (1.16) with (2.2), we see that the SCE is a special case of the
3-wave equation. Thus, we would like to adapt the FVS of Filbet and Laurengot to
derive a numerical scheme for the 3-wave equation. To do this we derive an identity
similar to (2.3) for the wave kinetic equation. The role of this identity is to reduce
the number of terms in the collision operator. As discussed previously, the truncation
of the terms in the collision operator can affect the accuracy of the numerical scheme;
thus reducing the number of truncated terms is crucial in the numerical computations
of the solutions, as it allows the scheme to be more accurate and reliable.

However, for the 3-wave equation the wave density, f(¢, k), is not conserved, but
the energy, g(t,k) = kf(t,k), is conserved, and so we solve for the energy. What’s
more, since we do not have an analytic solution to test against, we validate our scheme
by verifying the energy cascade rate for the 3-wave equation found in Soffer and Tran
[39] and discussed above.

LEMMA 2.1. The following identity holds true for the energy function g(t,k):

atg(tyc) _ _286/ / a(k7k1)MMX{c<k+kl}dkldk
¢ 0o Jo ko k

+60[0 /OOO a(k,kl)@g(kl)

with x{-} the characteristic function and initial condition g(0,k) = go(k) =kf(0,k).

Proof. Let ¢(k) be a test function. From [39], we have the following identity for
the 3-wave equation:

/matf@,k k)dk — / / ak k) k) (k)0 0k + ) + (1K — ka)
0
(2.5) — 2¢(max{k, k1 })|dkdk;.

(2.4)

Ydkdky,
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If we choose ¢(k) = x[0,c(k) (compare this with ¢(k) = kx[o,o(k) in [13]), we have
(2.6)

/atﬂt,k)x[oc / / alk, k) FO) () Dxgony (B + 1) + v (IE — K )
0
— 2X(0,q (max{k, k; })]dkdk;.

Set K (k,k1) = X[0,e(k + k1) + X0, (|E = F1]) — 2X0,¢ (max{k, k1 }). There are seven
cases as follows:
(i) Assume k + k1 < ¢; then we have xjo,)(k + k1) =1, X[0,q(|k — k1]) = 1 and
X[0,¢] (max{k, k1 }) =1 which implies that K (k,k;)=0.
(ii) Assume that k+k; > c but k <c and k; <c. Then we have x[o,(k+ k1) =0,
Xjo,q] (|E = k1]) =1, X0, (max{k,k1}) =1, and so K (k,k1)=—
(iii) Now let k+Fky > ¢, k <cbut ky > ¢; then xqo,¢(k+k1) =0, x[0,q(|k—k1]) = 1,
and x[o,o(max{k,k1}) =0, giving K (k, k1) =1.
(iv) Assume k+Fk; > ¢, with k> cand ky < cand [k—k1| > ¢; then [, (k+k1) =0,
Xio.e1 1k — k1)) = 0, (o, (max{k, k1 }) = 0, leaving K (k, ky) = 0.
(v) Assume k + ki > ¢, with k> c and k1 <c and |k — k1| <c¢,; then x[g (K + k1)
=0, xj0,q |k = k1]) =1, X0, (max{k, k1 }) =0, leaving K (k, k1) =1.
(vi) Lastly, set k+ ki >c, k>c, k1 > ¢, and |k — k1| > ¢; then X[ (k+ k1) =
X[0,¢ (|k — k1]) =0, and x[o,j(max{k, k1 }) = 0, resulting in K (k, k1) =
(vii) Lastly, set k+ k1 > ¢, k> ¢, k1 > ¢, and |k — k1| < ¢; then (o, (k + k1) =0,
X[0,¢ (|k — k1]) = 1, and x[o,](max{k, k1 }) = 0, resulting in K(k,k1)= 1.
Applying these computations to (2.6) and after taking the derivative as done for
(2.3), we have

2.7)
5t = -0, / / k‘ kl (kl)X{C<k+k1}X{k/\k1SC}dkldk

+ac/ / a(k, k) f(k) f (k) x{e < k+ kb {k Ak > eddkdk,
0 0

which gives

O f(t,c) = —28C/C/Ca(k,kl)f(k)f(kl)x{c<k+k1}dk1dk
(2.8) 0 0

+ 9. /oo /oo a(k, k1) f (k) f(k1)kix{c <k + ki }dkdk:,
0 0

yielding (2.4). O

With the identity (2.4) at hand, we now derive an FVS with which to solve it.
Note that with (2.4), we only need to truncate a single term, while with the original
formula (1.16), we are required to truncate three terms.

3. Finite volume scheme. We give a discretization for the frequency domain
for k € [0,R]. Let i € {1,2,...,M} = IM, with the maximum stepsize h € (0,1)
fixed. We define the set of cells K = Uielip/ K; =10, R] to be the discretization of the
wavenumber domain into M cells. Let

kiti/0+ki—1/2
K;= [ki—1/2vki+1/2)ie1;ya {ki}z‘el,'y = %v {hi}iel,fy = ki+1/2 - ki—1/2
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define the cells, pivots, and stepsize, respectively, with the boundary nodes ki, =0
and kpr41/2 = R. Note that the discretization does not require a uniform grid but
does restrict the stepsize in each cell K; so that h; < h. In practice, it can be useful to
drop the restriction that h € (0,1), especially when using a nonuniform grid, though
we leave it here to simplify the analysis. The set T = {0,...,T} with N + 1 nodes,
where T is the maximum time, is the discretization of the time domain. We fix the
time step to be At = % and denote t, = At-n for n €{0,...,N}. We approximate
(2.4) with

(3.1) g”+1(ki):g”(ki)+>‘i< ?+1/2[%}_ ;Ll/Q[iD’

k; At
hi

tonl2] - @t nlf]) =-2{ @l - 2ticualf]
+ ( g,i+1/2 {%] —Q;il/g{ﬂ)

where \; =

, and

[ n km [ n )
(3.2) ?,i+1/2{%} =3 h? ]Sn )<Zhjg ]Sfj)a(kmkj)x{km/z<km+kj}>,

n

L gtk
g h; L2 a (K, kj)X{ki+1/2 <km + kj} ;
=N

91~ 9" (k)
(3-3) g,i—&-l/Q{%} = Z hm k:mm

where we have used the midpoint rule to approximate the integrals in (2.4), and we
choose an explicit time stepping method.

We will be interested in computing the moments of our solution. We approximate
the £th moment, M*(t,), by

M
(3.4) M (tn) = hig" (ki)kL,
i=1
with £ e N.
The initial condition go(k) is approximated by
0 1 kit1/2
8°) =7 [ golk)dh gl
i Jki_12

again employing the midpoint rule. We have that ¢°(k;) > 0 for all i € {1,..., M}
since go(k) > 0 for all k € [0, R] by assumption. To ease notation in the proof of the
following proposition, we write g* for g™ (k;) and the negative flux as

nF _on g n g
(3.5) [Qz} —Yi-1/2 [E] T Witl/2 {E}’
so that the forward Euler scheme becomes gf“ =gl — \;[QF]F. Let us analyze the

collision operator (3.5). For the moment, we leave (3.5) in continuous form but will
apply the same midpoint approximation when appropriate. Then we have

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/24 to 192.44.85.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

B476 STEVEN WALTON AND MINH-BINH TRAN

kiti/2 rkivi/z2 o1
= 2/ / 97 gy (kiks)Y/2~ X{ki+1/2 <k +k‘1}dk‘2dk1
0 0

R R
—/ / g?gg(kle)V/Q—lx{km/z <k + k:l}dk:Qdkl
0 0
ki_1/2 ki_1/2
-2 / / 9195 (k)2 x{ i1y < o+l fdladin
0 0

R (R
—/ / g?gg(k‘lkg)'ym_lx{ki,l/g <k +k:1}dk:2dk1> = (I—1I) — (IIT - IV),
0o Jo
with g = g™ (k;) for i =1,2. We may decompose the integrals above so that
i—1/2 i—1/2
I=2 / / 9195 klkz)W/Q_IX{/%H/z <k + kl}dedkl

ki—1/2 pkizi/2 o1
+ 2/ / gl 92 klk‘g)’ﬂ - X{kiJrl/g <k +l€1}dk}2dk1

0 ki 12
kiti1/2 i—1/2
+ 2/ / gigh (kyko) /2~ {kmp <k + kl}dkgdkl
ki_ 1/2 0
it1/2  fRiti/2 o 1
(3.7) n 2/ / 9P g (ko) /2 X{km/g <k1—|—k1}dk2dk1
kz 1/2 kz 1/2

i—1/2 io1/2
= 2/ / 9?93(k1k2)7/2_1X{ki+1/2 <ki+k }dedkl

i+1/2 i—1/2 o1
+ 4/ / g?gg klk‘g)’ﬂ N X{ki+1/2 <ki+ kl}dk}gdkl
ki_1/2 J0O

i+1/2 i+1/2
T 2/ / gigh (ki ko )/2 1 {km/g <k + kl}dkgdkl,
ki_1/2

ki_1/2

and similar decompositions may be performed on II, ITI, and IV, which, leaving out

the g{’g?(klkg)w 2=1 integrands to simplify the expressions, gives
(3. 8)

i—1/2 i 1/2
/ / z+1/2 <ki+ kl} {ki—l/Z <ki+ kl})dedkl
+ / / X ki71/2<k1+k1} _X{ki+1/2<k1+kl})dk2dkl
o Jo
kit1i/2 pkiciy2
n 4/ / X{kiH/Q <k + kl}dkgdkl
ki_1/2

i+1/2 z+1/2
+ 2/ / {kis/o <k + ki fdadiy,
ki—1/2 Yki_1/2

i—1/2 i—1/2
:2/ / X{ki—l/Z <ki+k Ski+1/2}dk2dk1
0 0

R R
+ / / X{ki71/2 <ki+k < ki+1/2}dk2dkl
o Jo
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kivij2 pkiz1/z
+ 4/ / X{ki+1/2 <ki+ k‘l}dk‘gdkl
ki—1/2 Y0

i+1/2 1+1/2
/ / {Fiijs <o+ b pkodhs.
ki_1/2

ki_1/2

At this point, we apply the midpoint rule to approximate the integrals which, after
making use of the characteristic functions, simplifies the above to

B i e

i—1
=Y gt g (kiki )2  hyhi .
j=1

In what follows, we will abuse notation slightly and write [Q?]T when we mean its
midpoint approximation above.

We are now in position to state the following sufficient stability condition for the
time step.

PRrROPOSITION 3.1. If the time step At satisfies

(3.10) AR e (0.0) < l min by,

IZM
then for alln>0 and i € I} we have gl >0, and further,

19" | 2o 0,7y < CNNG" | Lo (0, 7).

with C(v) € [12,1] so that finally,

(3.11) 9™ 1o 0.5) < N19° | L= (0.m)
for alln>0.

Proof. Assume R > 1. We will proceed by induction. Starting from the forward
Euler scheme and using [QY]T as computed above, we obtain

R T )
=1

+ gl‘f’)\ Zgjgl —j kkz ])7/2 1h hl —J —@Z( )+C'?(g)

(3.12)

Given gY >0, ¢?(g) is clearly positive. Then, to conclude that g} >0, it is sufficient
to have ¢?(g) > 0 or, equivalently,

(3.13) At%(%g” ' [Zg%”” h; + ZgOkW ) jD <

N[ =

To this end, note that

/fz‘(?kzmlh'[z ok7/2 lh +Z okv/z 1 D

j=1
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2 _ 8
(3.14) < 4’%7/ 19°] £os 0. m) 167>l £10,m) < §R7+1||90HLW(0,R)~

For now, we provide a provisional stability condition on At so that

(3.15) AtRY! max{”g llLo=(0,r)} < < — mln hi,

I M

which will be seen to be equivalent to the condition (3.10) by the end of the proof.
Thus, with (3.15) setting n = 0 we have that ©)(g) is positive. Now, assuming g?* > 0,
we proceed in the same fashion. The steps are identical except that now we have the
condition that

3.16 AR g™ | e 0.1 < -L min s,
( ) llg™ Iz (0,R) = 16 ng}ﬁg

which again is satisfied by the provisional assumption on At, and we have by induction
that gf“ >0 as desired.

To show stability, let us consider ¢*(g) and give estimates for its second term. To
this end, note that

i—1
ki non -1y,
s D95 (ki) by <illg” ||MR>Zk
(3.17) =1 j=1
IcZ 1
§; Tlg" ||L°°OR) S;RVHHQ"HQLMO,R),

where the rearrangement inequality was used in the second line. Then, using (3.15),
we obtain

(3.18) Z: k ki 3)7/2 lh ihi—j < 16“9 ||L°° (0,R)-

Once again, using the assumption (3.15) we see that

(319) g =glle) + o) < gl () + 5o + 16 e

which implies that

17—+~
16

(3820) g o < (5 )l o m = CONlg" o,

We see that for v € [1,2] we have C(y) € [13,1] and thus

(3.21) 9" | Lo 0,y < 19°] Lo 0, )

which gives the equivalence of condition (3.15) with (3.10). |

In the following section we provide numerical results for several initial conditions,
which give evidence for the dependence of the timesteps on the initial condition and
truncation parameter as demonstrated above.
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4. Numerical tests. As mentioned above, the KZ spectrum is not expected in
our equation due to the absence of forcing and dissipation. Our numerical tests are
therefore only designed to verify the blow-up phenomenon first proved in [39] and to
confirm the energy cascade growth rate bound O(1/+/%) obtained in the same paper.
To verify this, in any finite interval of the wavenumber domain, we should see the
total energy £ or, equivalently, the zeroth moment of g(¢,k), decaying like (’)(%) in
the interval. As (1.4)—(1.5)—(1.6)—(1.7) is equivalent to (1.8), our numerical tests will
focus on verifying (1.8).

All tests were performed on a uniform grid, with A~ = 0.5 in the first two tests
and h =0.1 in the last two. We solve the 3-wave equation via (2.4) for four different
initial conditions. For each initial condition, we either vary the truncation parameter,
R, in (1.8), and hold the degree of the collision kernel, v, fixed, or we vary v with
R kept at a fixed value. Specifically, for the first two initial conditions, we run tests
for R = 50,100,200 with v = 2 fixed or 7y = 3,2,2 with R = 100 fixed. In the last
two cases, we do something similar and again run tests with v = 2 fixed but set
R = 25,50,80, then fix R =50, and let v = %, %72. We provide an approximation of
the convergence rate for the first initial condition by a comparison of approximated
solutions over successively refined grids. In all solutions presented, we use a second-
order Runge-Kutta scheme to integrate in time.

The first few moments of the energy, ¢(¢,k), are then computed for each set
of parameters. We find our numerical experiments to be in good agreement with
[39]. We note that, as with explicit methods for the Smoluchowski equation, the
CFL condition can be very restrictive if one wants to maintain positivity (see [25]).
Similarly to schemes for other types of kinetic equations, maintaining positivity of the
numerical solutions is also an important issue in our scheme.

We provide a condition in Proposition 3.1 that guarantees the positivity of the
solutions. Under this condition, the positivity can be preserved when we choose At
sufficiently small.

We observe that the choice of At depends on the initial data and the size of the
truncated interval. For example, in Test 1 we set At = 0.05, and in Test 2 we set
At = 0.005, though we perform computations with the same truncation parameter.
Also, in Tests 3 and 4, as we increase the truncation parameter from R =50 to R = 80,
we must drop the time step from At =0.0004 to At =0.00025, respectively.

We believe that common positivity preserving techniques like those developed in
[19, 20, 21] could potentially be a solution to handling this instability issue.

4.1. Test 1. Here we choose our initial condition to be
(4.1) go(k) = 1.26157¢~50(h=1.5)°

with At =10.05 for ¢t € [0,T], T = 10000, over a uniform grid, as mentioned previously,
with h=0.5. The initial condition and final state, g(T, k), are plotted in Figures 4.1a
and 4.1b, respectively, for v = 2. The theory developed in [39], in which it was proved
that as ¢ tends to oo, the energy g(t,k) converges to a delta function £d¢,—o}, applies
for v > 1. Moreover, due to (1.8), the energy on any finite interval also goes to O:

(4.2) Jim g(t, k) x(0,r) (k) = 0.

Both Figures 4.1a and 4.1b indeed give strong evidence for the theoretical result (4.2)
proved in [39].
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8
—t=0 ——t =10000

k-

(a) Initial Condition (4.1). (b) Final Condition.

FiG. 4.1. Test Case 1.

zeroth moments first moments

FiG. 4.2. Here, we fir R =100 and compute the moments of the energy as a function of time
for v=3/2,9/5, and 2 for initial condition (4.1).

The first four moments of the energy are shown in Figure 4.2 for v = %, %, 2 and
k €10,100]. The numerical results in Figure 4.2 show that higher moments of ¢ also
decay to 0, due to (4.2). We also see that the onset of decay happens later for smaller

degree . For the zeroth moment, the curve corresponding to v = 2 is below the curve
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for v =3/2 and the curve for v = 9/5. However, for the higher order moments, an
interesting phenomenon occurs. The v =3/2 curve has a big jump when ¢ is around
1040, and it lies above the other moments from that time on, while the v =2 curve is
still below the v =9/5 curve at longer times. While (4.2) can be used to predict what
happens in Figures 4.1, 4.2 indeed needs a different theoretical explanation, which
should be an interesting subject of analysis in a follow-up paper.

We then investigate the moments for increasing values of the truncation param-
eter. The first four moments of g(¢,k) are plotted in Figure 4.3, with v = 2 fixed.
For this initial condition, as might be expected, increasing the truncation parameter
seems to have a negligible effect on the higher moments. For the other initial condi-
tions in the test cases that follow, the difference is more distinguishable. When we are
able to make a distinction, the decay (4.2) seems to be slower for larger values of the
truncation parameter R, though the rate of cascade is unaffected. Moreover, when
the initial condition spreads the energy across the interval, larger truncation param-
eters result in larger amounts of energy initially, as one might expect, but again the
cascade rate is independent of the truncation value in these cases. This observation is
consistent with the findings of [39] and can be understood as follows. As the energy
moves away from the zero frequency k =0 and goes to the frequency k = co as time
evolves, the chance of having some energy in a finite interval k € [0, R] increases when
R increases.

To test convergence without an exact solution, we provide two experimental order
of convergence (EOC) tests. First, we compare stepsizes h, h/2, and h/4 for R =50
and 7 = 2. Here we run the simulation for ¢ € [0,Tgoc]| with Troc = 25 and
At =0.0125 for every choice of h. The approximate order of convergence, p, is given
by [26] as

||gh —9h/4||L1 1)

4.3 p=log (—
(4.3) 2 Tgna —gnallc

The coarser solutions are interpolated using the MATLAB built-in piecewise cubic
Hermite interpolating polynomial (pchip) interpolator. Table 4.1 summarizes the ap-
proximation of p for each h at t,,4, = argmax ||gn — gn 4l

Next, we approximate p by comparison with a fine grid solution, g+, with h* = 8—10
and At as before. Then we approximate p with the ratio [26]

(44) Rh(t) _ < ”gh — Yh~ ||L1(0,R) ) .
||gh/2 — 9h*||L1(0,R)

Then, the EOC is given by p ~logy{Rn(Troc)}. The results for h =0.2, h=0.1 are
summarized in Table 4.2.
A log-log plot of the errors is provided in Figure 4.4. The verification of these
experiments requires further analysis, which is the subject of a forthcoming work.
We test the decay rate of the total energy in [0, 00) obtained in [39] in Figures 4.5a
and 4.5b. We give a log-log plot of the zeroth moment of ¢(t, k) for varying truncation
parameter with v = 2, and with fixed truncation parameter R = 200 with varying

TABLE 4.1
Approzimation of p with formula (4.3) for various h values.

h 0.4 0.3 0.2
p 2.5777 2.6071 2.6392
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log(M°(t)

log(M>(t)

F1G. 4.3. For v =2 fized, we compute the moments of the energy with initial condition (4.1)

-3

'
—

'
a

'
[+)]

'
4
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zeroth moments

%,
N\
%,
R=50
— — R=100
R =200 \\ |
2 0 2 4 6 8
log(t)

second moments

R =50
- = R=100
sannenns R = 200
-2 0 2 4 6 8
log(t)

for truncation parameters R = 50,100,200.
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TABLE 4.2
Approzimation of p with formula (4.3) for various h values.

first moments

R=50
= = R=100
sannenns R = 200

-2 0 2 4
log()

third moments

-

R =50
= = R=100
R =200

2 0 2 4
log()

0.2 0.1
2.0118 2.5288
L. - -h=0.2
J T Tl - e h=0.1
~~a ---h=0.05

H‘gh - gvsnuL'(o,H)(p

FiG. 4.4. Log-log plot of the error between coarse and fine grid solutions.
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Fi1G. 4.5. (a) Rate of decay of the total energy, corresponding to initial condition (4.1) with
degree v = 2, allowing R to vary. The theoretical cascade rate is shown for comparison. (b) Rate
of decay of the total energy corresponding to the initial condition (4.1), with theoretical cascade rate
plotted for comparison.

degree against the theoretical decay rate of the total energy in [0,00). In [39], it was
shown that the decay rate can be bounded by O(%) (see (1.8)), which has very good
agreement with the numerical results, where the slope of the decay rate curve in the

long time limit is quite below the slope of the line corresponding to % We also

compare with a rate like (9(%) Here, and for the other initial conditions we consider,
it would appear that the rate is like O(%), with s € [1/2,1], depending on the degree
and the initial condition. Confirmation of this observation requires further analysis.

We present below some preliminary observations of the so-called transient spectra,
which are predicted to occur for finite capacity systems. These spectra are different
from the KZ spectra discussed above and cannot be estimated from dimensional ar-
guments or via applying Zakharov transformations in the 3-wave kinetic equation.
Briefly, the transient spectra should occur just before the singular behavior time ¢7,
and the solution should have the form firans(t, k) = Ciransk™® for a > 0, where, im-
portantly, a # k for k the exponent of the KZ solution. In Figure 4.6, we give a log-log
plot of the initial condition and the solution just before the cascade process begins.
We draw a comparative line through this snapshot in time of the solution. Lines
corresponding to the KZ spectra for capillary and acoustic waves are also shown for
comparison. To rigorously compute a, one must solve a nonlinear eigenvalue problem
as in [9]. However, as discussed above, solving such a nonlinear eigenvalue problem is
a difficult task: in [9], a hypothesis is imposed on the evolution of the solution. The
solution is assumed to grow linearly in time (1.13), and additional hypotheses are also
imposed to treat the singularities of the integral (1.12). While these hypotheses re-
main interesting mathematical questions to be verified, we assume that the nonlinear
interactions are solely responsible for the transfer of energy in our work. We provide
Figure 4.6 as preliminary evidence that the solution seems to give a cascade behavior
consistent with the predicted transient spectra, though further rigorous analysis is
required for verification. To reiterate, our main concerns in the present article are to
study the behavior of g(t, k) after the first blow-up time and to show the existence
of the multiple blow-up time phenomenon t7 < --- < ¢} < ---, while the transient
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FiG. 4.7. Test case 2.

cascade occurs just prior to the first blow-up time ¢7. Finding self-similar profiles for
the solutions before the nth blow-up times, similarly to those given in [2, 9, 38], is
nontrivial and will be the subject of future work.

4.2. Test 2. We next choose a Gaussian further away from the origin
(4.5) go(k) = (5m) /2= (ko030

as our initial condition. Solutions are computed up to 7" = 10000 with At =0.005 and
h = 0.5. The initial condition and final state can be seen in Figures 4.7a and 4.7b,
respectively. This test is designed based on Test 1, as we are curious to see what
happens if we move the Gaussian away from zero.

In Figures 4.7a and 4.7b we see that the energy is pushed slightly toward the origin
at some T, € [0,T) to k= 11.75, away from its initial concentration at k = 16.667 at
t =0. From this time T onward, the L> norm of [|g(t,k)x[0,r)(k)|/z decreases to
4.01 x 10~° for t = 10000, maintaining its concentration at k = 11.75. This indicates
that the energy cascade phenomenon does occur and happens in a very special way.
An analysis then needs to be done to explain this long time behavior of the solution.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/24 to 192.44.85.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NUMERICAL SCHEME FOR 3-WKEs B485

zeroth moments first moments

second moments third moments

—_— =2
- = y=95 N
10° y=3/2 N

F1c. 4.8. Here, we fir R =100 and compute the moments of the energy as a function of time
for v=3/2,9/5,2 with initial condition (4.1).

In Figure 4.8, we give results for the computation of the first few moments of the
energy when allowing the degree to vary while holding the truncation value fixed. We
notice a behavior similar to that in the previous test case.

The moment calculations are performed with v =2 fixed and varying truncation
parameter. The results are plotted in Figure 4.9. In contrast to Figure 4.3, the
difference in moments is more distinguishable. However, as already mentioned, this is
consistent with the previous analysis in [39], being that the chance of finding energy
in a larger frequency interval is higher.

The theoretical decay rate is compared with the decay of total energy for all
considered values of v and R = 100 in Figure 4.10b. As in Test 1, the numerical
results have a good agreement with the theoretical findings of [39]. It appears that
the decay is more like O(1), which is bounded by O(%) as shown in (1.8). We also
compare the theoretical cascade rate to the decay of total energy for each interval
considered in Figure 4.10a.

We see that increasing the truncation parameter has no influence on the cascade
rate and blow-up times, which is consistent with the theory found in [39]. We notice
that here and in the previous test case, there is also not a distinguishable difference (if
any) in the amount of energy contained in the intervals after varying the truncation
parameter, which will contrast with the next two test cases, where much more energy
is available initially.

As in the previous test, we provide possible evidence for the transient spectra and
compare them with the known KZ spectra of the relevant systems. The results are
shown in Figure 4.11.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/24 to 192.44.85.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

B486 STEVEN WALTON AND MINH-BINH TRAN

zeroth moments first moments
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F1G. 4.9. Moments of g(t,k) with initial condition (4.5), fized degree v =2, and varying trun-
cation parameter.

Fi1G. 4.10. (a) Rate of decay of the total energy with varying truncation parameter corresponding
to the initial condition shown in Figure 4.7a. (b) Rate of decay of the total energy corresponding
to the initial condition shown in Figure 4.7a with varying degree and theoretical rate plotted for
comparison.

4.3. Test 3. Here, we consider initial data given by

1 ke [2nm, (2n+ 1)1

(4.6) 90k} =10 e ((2n+1)m,2(n+ 1)7)

forn=0,1,3,5,...

and perform a test for ¢ € [0,T] for =100 and At =0.0004 when R =25 and R =50
and At = 0.00025 for R = 80. The frequency step is h = 0.1 for each interval [0, R)
considered.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/24 to 192.44.85.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NUMERICAL SCHEME FOR 3-WKEs B487

1
\ —t=0 3
1 - - t=0.005
! t=0.01
L r=3/2
L k=7/4
1
.

—t=0 —t=100

(a) Initial Condition (b) Final Condition

Fig. 4.12. Test case 3.

In Figure 4.12a we show the initial condition and in Figure 4.12b give the final
state at T'=100. In the final state, it would appear that the remaining energy in the
interval is collected near k = 0 with decreasing maximum amplitude at k£ = 0.05. It
seems that this profile is maintained as T'— oo, in a fashion similar to Tests 1 and 2.

We then vary the truncation parameter and show the decay of the energy for
R = 25,50,80 in Figure 4.13a. As mentioned previously, we can now see that the
amount of energy increases with the interval size, but, importantly, the rate of decay
is the same for each truncation value.

As in the previous tests, we explore varying the degree as seen in Figure 4.13b.
Here, as in the next case, we begin to see further contrasting behavior compared with
the previous two test cases. We see that the smaller the value of the degree, the longer
the energy is conserved, but now, once the first blow-up time ¢} is reached, the rate
of decay is larger for v =3/2,9/5 compared to v =2. To see this, we add a reference
line corresponding to a rate of decay like (9(%) in Figures 4.13a and 4.13b. It would
appear that for smaller values of 7, the decay rate is better described by (9(%)7 but
for v =2, the theoretical bound O(ﬁ) (see (1.8)) provides an excellent description of
the cascade rate.
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Fi1G. 4.13. (a) Zeroth moments of solution corresponding to initial condition (4.6), with v =2
and allowing R to vary. (b) Decay rate for initial condition (4.6) plotted against the theoretical rate.
The red and black lines are translated to match the intersection of the moments.

0 ‘ ‘ ‘ ‘ ‘ ‘—t=100

(a) Initial Condition (b) Final Condition

Fi1G. 4.14. Test case 4.

4.4. Test 4. Our last test has initial data given by

(4.7) golk) = 2T

for n € Ny. As in Test 3, we set h =0.1, T =100, and At =0.0004 when R =25 and
R =50 but At =0.00025 for R = 80.

We again give initial and final conditions in Figures 4.14a and 4.14b, respectively.
As in Test 3, we observe that the energy is accumulated to a frequency nearer to k=0
in some finite time T§, where it remains fixed with decaying L norm.

Now fixing v = 2 once again, we see in Figure 4.15a that varying the truncation
parameter has a similar result on the total energy as in the previous test case. By
extending the interval, we see that a larger amount of energy is retained but that the
rate of decay is equal for all truncation values. Further, we see a good fit with the
theoretical decay rate.

Next, we let v = %, %,2 and keep R = 50 once again, and we show the zeroth
moments of these solutions in Figure 4.15b. Here, as for the previous test cases, for
v =3/2,9/5, we see that the energy is conserved for a longer amount of time when

ke 2nm,2(n+ 1)m),
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F1G. 4.15. (a) Zeroth moments of solution corresponding to initial condition (4.7), with v =2
and allowing R to vary. The theoretical decay rate is shown for comparison. (b) Zeroth moments of
solution corresponding to initial condition (4.7), with R =50 and allowing « to vary. The theoretical
decay rate is shown for comparison.

compared to v = 2. As for the previous initial condition, it would appear that once
the decay begins, the rates of decay are faster for v = 3/2,9/5 than for v = 2. We
again observe that for v = 2, the decay rate is more like O(%), and for the smaller

values of 7, the decay rate is more like O(7).

5. Conclusions and further discussion. We introduce a finite volume scheme
which allows us to observe the long time asymptotics of the solutions of isotropic 3-
wave kinetic equations, including the energy cascade behavior proved in [39]. Our nu-
merical algorithm is based on the combination of the identity represented in Lemma 2.1
and Filbet and Laurengot’s scheme [13] for the Smoluchowski coagulation equation.

From the four numerical tests, we can see that the energy cascade behavior hap-
pens for v = %, g, 2 and seems to verify the theory found in [39].

From the solutions computed in sections 4.1, 4.2, 4.3, and 4.4, one can see that
the smaller v, the slower the onset of decay. The energy cascade behavior also seems
to occur independently of the smoothness of the initial data for all four cases with
=310

The results in Figures 4.3 and 4.9 serve as another verification of the theory since
the decay rate of the energy in any finite interval is the same due to the following fact
proved in the main theorem of [39]:

/ORg(t’w)dw = /]R+ Xjo,R) (w)g(t,w)dw < O(%) as t — oo

for all truncation parameters R.

Therefore, the rate at which the energy leaves any finite interval [0, R] is the same
since the convergence does not depend on the truncation parameter. As the theory is
only for the energy cascade at the point w = 0o, it is a challenging task theoretically
to obtain a convergence study pointwise with respect to all of the velocity variables
in this w.

We would like to comment that in contrast to Tests 3 and 4, the amount of
energy contained in the interval appears indistinguishable for the various truncation
parameters in Tests 1 and 2. This can be explained by comparing ||¢°|| ri(o,r) of

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/24 to 192.44.85.23 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

B490 STEVEN WALTON AND MINH-BINH TRAN

the different test cases. The initial energy serves as a kind of reservoir in the finite
intervals [30]. Then, for tests like Tests 3 and 4, we increase the amount of initial
energy by increasing the size of the interval. That is, for Ry < Rs < Rz we have

(5.1) 19°0 22 0,r0) < 119° 12 0,R2) < 119° 12 (0, R3)-

This is not the case (or is negligible) for Tests 1 and 2, seen in Figures 4.3 and 4.9,
due to the initial conditions selected there. The important thing to notice is that
the slopes (decay rates) are independent of how much energy is contained in the
interval initially, though the amount of energy can vary depending on the initial
condition.

The numerical results confirm the theoretical bound (1.8) and show that the
decay rate should be O(%), with s € [%, 1] for various initial data. In section 4.3,
the cascade rate is described quite well by C’)(%) for v = 2. We then conclude that
the cascade rate bound obtained in [39] is optimal.
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