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Abstract

Flood mapping on Earth imagery is crucial for disaster man-
agement, but its efficacy is hampered by the lack of high-
quality training labels. Given high-resolution Earth imagery
with coarse and noisy training labels, a base deep neural net-
work model, and a spatial knowledge base with label con-
straints, our problem is to infer the true high-resolution la-
bels while training neural network parameters. Traditional
methods are largely based on specific physical properties and
thus fall short of capturing the rich domain constraints ex-
pressed by symbolic logic. Neural-symbolic models can cap-
ture rich domain knowledge, but existing methods do not ad-
dress the unique spatial challenges inherent in flood map-
ping on high-resolution imagery. To fill this gap, we pro-
pose a spatial-logic-aware weakly supervised learning frame-
work. Our framework integrates symbolic spatial logic infer-
ence into probabilistic learning in a weakly supervised set-
ting. To reduce the time costs of logic inference on vast high-
resolution pixels, we propose a multi-resolution spatial rea-
soning algorithm to infer true labels while training neural
network parameters. Evaluations of real-world flood datasets
show that our model outperforms several baselines in pre-
diction accuracy. The code is available at https://github.com/
spatialdatasciencegroup/SLWSL.

Introduction
Flood extent mapping on high-resolution Earth imagery
plays a crucial role in addressing major societal challenges,
such as disaster management and response, national wa-
ter forecasting, and energy and food security (Eftelioglu
et al. 2017). For example, during Hurricane Harvey floods
in 2017, first responders needed to know where flood wa-
ter was to plan rescue efforts. In national water forecast-
ing, detailed flood extent maps can be used to calibrate
and validate the NOAA National Water Model, which can
forecast the flow of over 2.7 million rivers and streams
through the entire continental U.S. (Cline et al. 2009). Un-
fortunately, with the large amount of high-resolution earth
imagery being collected from satellites (e.g., DigitalGlobe,
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Spatial Knowledge Base for Flood Mapping

𝒓𝟏: ∀ 𝒔𝒊, 𝒔𝒋 𝑭𝒍𝒐𝒐𝒅 𝒔𝒊  ˄ 𝑨𝒅𝒋𝒂𝒄𝒆𝒏𝒕 𝒔𝒊, 𝒔𝒋  →  𝑭𝒍𝒐𝒐𝒅 𝒔𝒋

𝒓𝟐: ∀ 𝒔𝒊, 𝒔𝒋 𝑹𝒊𝒗𝒆𝒓 𝒔𝒊  ˄ 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒔𝒊, 𝒔𝒋 ≤  𝒅 →  𝑭𝒍𝒐𝒐𝒅(𝒔𝒋)

𝒓𝟑: ∀ 𝒔𝒊, 𝒔𝒋 𝑭𝒍𝒐𝒐𝒅 𝒔𝒊  ˄ 𝑹𝒊𝒗𝒆𝒓 𝒔𝒊  ˄ 𝑫𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎 𝒔𝒊, 𝒔𝒋  →  𝑭𝒍𝒐𝒐𝒅 𝒔𝒋

𝒓𝟒: ∀ 𝒔𝒊 𝑺𝒍𝒐𝒑𝒆 𝒔𝒊 >  𝒔 →  ¬ 𝑭𝒍𝒐𝒐𝒅 𝒔𝒊

𝒓𝟓: ∀ 𝒔𝒊 𝑬𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒔𝒊 >  𝒆 →  ¬ 𝑭𝒍𝒐𝒐𝒅(𝒔𝒊)
⋯ ⋯

Hidden True Label Observed LabelImage Feature
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Figure 1: A real-world problem example.

Planet Labs), aerial planes (e.g., NOAA National Geodetic
Survey), and unmanned aerial vehicles, the cost of manually
labeling flood extent becomes prohibitive. Instead, there are
abundant weak (imperfect) labels that are spatially coarse
and noisy, e.g., data product from low-resolution Earth im-
agery, and non-expert annotations.

Given high-resolution Earth imagery with coarse and
noisy training labels, a base deep neural network model, and
a spatial knowledge base with label logic constraints, our
problem is to infer the true labels in a high resolution while
training neural network parameters. Figure 1 provides an ex-
ample. The input high-resolution Earth imagery and coarse
and noisy labels are shown on the left and right sides, re-
spectively. The spatial domain logic rules on pixel labels are
shown at the top. The goal is to infer the hidden true labels
in a high resolution in the middle.

However, the problem poses several technical challenges.
First, the spatially coarse and noisy labels make it hard to
directly train a neural network on high-resolution Earth im-
agery. Second, hidden true pixel labels follow the physical
constraints expressed by the spatial logic rules, requiring
the learning framework to integrate data-driven and logic-
guided approaches. Third, spatial uncertainty is inherent in
the label inference process, coming from weak input labels,
imperfect spatial logic rules, and the neural network training
process. Finally, the computational costs are very high for
spatial learning on a vast number of raster pixels, especially
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Figure 2: Physically implausible results.

when incorporating domain logic.
Numerous works exist that address weak (e.g., coarse) la-

bels in earth imagery segmentation for convolutional neu-
ral networks or vision transformers. Techniques include uti-
lizing teacher-student framework (Wang et al. 2020a; Guo
et al. 2023), designing robust loss function (Mnih and Hin-
ton 2012; Malkin et al. 2018), incorporating geometric prop-
erties of spatial labels into learning framework (He et al.
2022a; Jiang et al. 2022), and learning multi-scale features
(Yang et al. 2012; Robinson et al. 2019; Cao and Huang
2022). However, these methods do not incorporate physi-
cal knowledge and thus may produce physically implausible
results, i.e., erroneous predictions that violate physical con-
straints. An example is illustrated in Figure 2, where some
pixels in the red circle are misclassified as dry (in purple)
although they have lower elevation than nearby predicted
flood pixels (in yellow).

Integration of domain knowledge and achievement of
physical consistency by teaching models about the govern-
ing physical rules of the Earth system can provide very
strong theoretical constraints on top of the observational
ones (Reichstein et al. 2019). A few studies integrate do-
main knowledge into machine learning models (Rußwurm
and Korner 2017; Fabrizio, Farina, and De Maio 2006; He
et al. 2022b; Zhou et al. 2022; Jiang et al. 2023; Liu et al.
2023), but they mostly rely on incorporating specific physi-
cal properties (e.g., distance, topology) as fixed constraints.
Such designs, while effective to some extent, are unable to
incorporate flexible domain constraints expressed by rich
logical expressions. In recent years, neural-symbolic sys-
tems have emerged as a promising solution, fusing symbolic
logical reasoning with the prowess of deep neural networks
(Garcez et al. 2022; Hu et al. 2016; Diligenti, Gori, and
Sacca 2017; Donadello, Serafini, and Garcez 2017; Xu et al.
2018; Xie et al. 2019; Zhou et al. 2021; Cai et al. 2022).
Several neural-symbolic models have been developed for
weakly supervised learning based on pseudo-label genera-
tion (Manhaeve et al. 2018; Weber et al. 2019; Zhou 2019;
Dai et al. 2019; Li et al. 2020; Tian et al. 2022; Duan et al.
2022). Nevertheless, these existing methodologies do not ad-
dress the unique challenges posed by spatial data in flood
mapping, especially spatial uncertainty and the high com-
putational costs due to logical inference over vast pixels.
Recently, a method (Xu et al. 2023) that utilizes a neural-
symbolic framework for flood mapping was proposed. How-
ever, it is not designed for weakly supervised learning with
coarse labels and fails to model label errors. Additionally,
the model’s pseudo-label inference relies solely on spatial
logic, neglecting the importance of image features.

To fill the gap, we propose a Spatial-Logic-aware Weakly

Supervised Learning framework (SLWSL) that combines
deep learning and symbolic spatial logic to infer hidden true
labels while training a deep learning model. We provide a
probabilistic formulation of the overall sample distribution
based on observed features, weak labels, and logical rules.
Specifically, the unified likelihood objective is expressed by
the fine-to-coarse label error model and a spatial-logic aware
label probability model based on observed features and a
knowledge base. The former functions as a prior probabilis-
tic model capturing the error and noise of observed coarse
labels, effectively simulating a weak annotator generating
labels that deviate from the hidden ground truth. The lat-
ter characterizes both data-driven class-feature relationships
and logical constraints. To solve this problem, we propose
an expectation-maximization approach that iteratively infers
hidden true labels and updates neural network parameters.
To address the computational bottleneck of true label in-
ference, we design a multi-resolution strategy to make a
balance between spatial granularity and computational ef-
ficiency. The contributions of this paper are as follows:

• This paper proposes a novel spatial-logic-aware weakly
supervised learning framework that integrates spatial do-
main logic into weakly supervised learning. We formu-
late a unified objective to characterize the weak label er-
rors, the spatial label constraints, and the relationships
between observed pixel features and hidden class labels.

• We develop a multi-resolution neural-symbolic learning
algorithm to address the computational bottleneck in true
label inference. Our idea is to use spatial uncertainty as
a greedy heuristic to balance the trade-off between the
spatial granularity of inferred labels and computational
efficiency.

• Experiments on the real-world flood dataset during Hur-
ricane Matthew in 2016 demonstrate the superior perfor-
mance of SLWSL in classification over baseline meth-
ods.

Problem Statement
Preliminaries
Here, we introduce some concepts and notations for the spa-
tial logic.

Definition 1. A spatial raster framework S is a two-
dimensional grid composed of N cells. Each cell is con-
sidered a spatial data sample, denoted as si = (xi, yi),
with 1 ≤ i ≤ N . It may include m non-spatial explana-
tory feature layers and a single class layer. The features
of all samples are represented as X = {x1,x2, · · · ,xN},
and the class is denoted by Y = {y1, y2, · · · , yN}, where
xi ∈ Rm×1 and yi are the explanatory features and class of
the ith cell, respectively.

For instance, in flood mapping, the explanatory features
may be spectral bands from remote sensing imagery, while
the target classes represent flood and dry areas. Here, each
image pixel is a spatial sample.

Definition 2. A predicate is a relation among objects or at-
tributes of objects in the domain (e.g., Adjacent). An atom
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is a specific instance of a predicate symbol applied to a tuple
of terms (e.g., Adjacent(si, sj)).
Definition 3. A rule is a clause constructed from atoms us-
ing logical connectives and quantifiers. An example could
be: Flood(si) ∧Adjacent(si, sj)⇒ Flood(sj).
Definition 4. A ground atom a and a ground rule r are
specific variable instantiations of an atom and rule, re-
spectively. The grounding of an atom or rule replaces
all its arguments with constants. For example, for the
rule: Flood(si) ∧ Adjacent(si, sj) ⇒ Flood(sj), a
ground rule should be: Flood(s1) ∧ Adjacent(s1, s2) ⇒
Flood(s2), where s1 and s2 are specific spatial samples and
Flood(s1), Adjacent(s1, s2) and Flood(s2) are ground
atoms.

With these definitions above, we can now formally estab-
lish the concept of a spatial knowledge base, KB:
Definition 5. A spatial knowledge base KB is a collec-
tion of logic rules: KB = {r1, r2, · · · , r|KB|}. Each rule ri
represents a spatial relationship, dependency, or constraint
among entities within the set of spatial samples S. |KB| de-
notes the number of rules in KB.

While these rules are represented in first-order logic, they
can be converted to a Markov Logic Network (Richardson
and Domingos 2006) or Probabilistic Soft Logic framework
(Kimmig et al. 2012; Bach et al. 2017), both of which blend
probabilistic graphical models with first-order logic.

Problem Definition
Our problem can be formally defined as follows:
Input:
• A large-scale spatial raster framework comprised of N
spatial samples denoted as S = {s1, s2, · · · , sN}.
• A set of explanatory features X = {x1,x2, · · · ,xN}
within S.
• A set of coarse and noisy labels Ỹ, where each label
ỹi ∈ {0, 1}.
• A spatial knowledge base KB.
• A base neural network model, e.g., U-Net.
Output:
• Refined high-resolution labels, denoted as Y.
• Trained deep learning model.
Objective:
• Maximize the prediction accuracy of the deep learning
model.
• Maximize the performance of uncertainty estimation.
Constraints:
• The refined labels Y should be consistent with the spatial
knowledge base KB.

Our Proposed Approach
This section presents our proposed approach. We need to
address several technical challenges: the mismatch between
coarse and noisy labels and high-resolution image features,
the difficulty in integrating domain knowledge (spatial log-
ical rules) into the neural network learning process, and
the high computational costs inherent to label inference

Uncertainty-aware 
Neural Network  

Multi-resolution 
Ground Rules 

Hidden 
True Label

Observed 
Label

Figure 3: An overview of the overall framework.

for vast pixels. To address these challenges, we propose a
spatial-logic-aware weakly supervised learning framework
(SLWSL) that combines deep learning and symbolic spatial
logic to infer hidden true labels while training a deep learn-
ing model. We provide a probabilistic formulation of the
unified objective based on observed features, weak labels,
and logical rules, which includes a label error model and
a spatial-logic aware label probability model based on ob-
served features and a knowledge base. We propose effective
and efficient learning algorithms based on the expectation-
maximization paradigm that iteratively infer hidden true la-
bels and update neural network parameters. To address the
computational bottleneck of true label inference, we design
a multi-resolution strategy to make a balance between spa-
tial granularity and computational efficiency.

Probabilistic Formulation of the Unified Objective
In this section, we introduce the overall objective of our
SLWSL framework. Instead of directly using observed noisy
label Ỹ to train neural networks, we assume there exist hid-
den true labels Y, influenced by both the features X and a
set of logic rules R. These rules are derived from the spatial
knowledge base KB through a grounding process and de-
scribe the spatial relationships and dependencies. The over-
all log-likelihood of all samples can be expressed as follows:

max
Y,Θ1,Θ2

L = logP (Ỹ,Y|X,R;Θ1,Θ2)

= logP (Ỹ|Y;Θ1) + logP (Y|X,R;Θ2)
(1)

Here, the term P (Ỹ|Y;Θ1) models the process of an anno-
tator generating weak labels that deviate from the ground
truth and serves as a probabilistic model for label errors
(with parameters Θ1). P (Y|X,R;Θ2) represents the like-
lihood of the predicted true labels given spatial rules and
input feature (with parameters Θ2).

Label error model: In our probabilistic framework,
P (Ỹ|Y;Θ1), the prior probability of observing the coarse
and noisy labels Ỹ given the true labels Y, encapsulates the
imperfections and noise in the labeling process and serves
as a bridge to connect the weak labels with hidden true la-
bels. To model this prior probability, a key challenge is that
the observed label Ỹ and true label Y have different reso-
lutions, i.e, one coarse observed label ỹi corresponds to a
group of high-resolution labels {yj}. Therefore, the label
errors come from two parts: coarse resolution, and random
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flipping noise. The coarse resolution can be expressed by a
mapping from hidden true labels in a high-resolution to a
coarse resolution, i.e., y′i = ⌊

∑
yj

C2 ⌉, where C is the res-
olution difference (e.g., one pixel in coarse resolution cor-
responds to C × C high-resolution pixels). We round the
mean to the nearest integer (assuming a binary label 0 or
1). The random flipping noise can be formulated by a label
class transition probability matrix Θ1. Each entry (p, q) of
this transition matrix represents the probability of observing
a noisy label p when the actual refined label is q. The matrix
gives us a quantifiable measure of how likely certain label
noise is to occur.

Likelihood of labels given features and rules: To model
the likelihood of the label inference model P (Y|X,R;Θ2),
we need to capture two primary factors:

• Data-driven unary potential: This term is related to the
dependencies between the labels and the observed fea-
tures. Formally, we represent it as ψ(yi,xi;Θ2), where
Θ2 are the parameters of the base deep learning model.
This unary potential models the likelihood of a label yi
given the features xi, captured by a neural network.

• Logic-driven interaction potential: This term is related to
the spatial relationships and dependencies between the
labels that are dictated by the grounded logic rules R.
We represent this as ϕ(yi, yj ; rm), where rm ∈ R is a
grounded rule, and yi, yj are labels associated with that
rule.

It is noted that following the set of Hinge-loss Markov
Random Field in PSL (Bach et al. 2017), the potential func-
tions are defined in such a way that the more probable con-
figurations have smaller potential, rather than larger poten-
tial, which is the opposite of the typical convention for po-
tential functions. The overall energy function here is then the
sum of the data-driven unary potentials and the logic-driven
interaction potentials, that is:

− logP (Y|X,R;Θ2)

=
∑
i

ψ(yi,xi;Θ2) +
∑
m

∑
(i,j)∈rm

ϕ(yi, yj ; rm) (2)

We express the unary potential as
∑

i ψ(yi,xi;Θ2) =
− logP (Y|X,Θ2). This is the class likelihood of deep
learning predictions.

To ensure consistency with spatial knowledge, we adopt
t-norm fuzzy logic, mapping binary truth values to a con-
tinuous interval between [0, 1]. The logical conjunction (∧),
disjunction (∨), and negation (¬) are defined as follows:

I(a1 ∧ a2) = max{I(a1) + I(a2)− 1, 0}
I(a1 ∨ a2) = min{I(a1) + I(a2), 1}

I(¬a1) = 1− I(a1)
(3)

where I is the truth function and a1, a2 represent two atoms
in a rule. It is natural to represent a label y using a logic
atom, e.g., in flood mapping, the label y of a spatial sample
s can be represented as the truth value of atom Flood(s).
With these definitions, we can model the extent to which a

Algorithm 1: Spatial-logic-aware Weakly Supervised Learn-
ing Algorithm

Input: weak labels Ỹ, features X, knowledge base KB
Parameters: maximum resolution level K, resolution con-
stant η, error model Θ1, deep neural network Θ2

Output: Inferred true labels Y
1: Initialize Θ1 and Θ2.
2: Initialize resolution level k ← K.
3: while k > 0 do
4: Infer hidden true label Y with Θ1 and Θ2 fixed
5: Update Θ1 and Θ2 with Y fixed
6: k ← k − 1
7: end while
8: return Y, Θ1, Θ2

rule is satisfied as a distance dr(I) to satisfaction for a rule
r : rbody → rhead:

dr(I) = max{0, I(rbody)− I(rhead)} (4)

Thus, the potential for spatial logic can be defined as:

ϕ(yi, yj ; rm) = ωm[max{l(yi, yj), 0}]pm (5)

where l is a linear function derived from Equation 3 and 4,
ωm is the weight for this rule, and pm ∈ {1, 2} provides a
choice to square the potential.

Thus, by minimizing the energy function, we essentially
aim to maximize this conditional probability, which aligns
with our goal of refining the initial weak labels to better suit
the data and the rules.

Effective and Efficient Learning Algorithms
Based on the unified objective, we need to optimize with

respect to three variables: Θ1,Θ2, and Y. We employ an
EM-like iterative approach to achieve this. In the “E-step”,
we infer the hidden labels Y, assuming fixed Θ1 and Θ2.
Unlike vanilla EM, here we directly infer the most likely
hidden true labels Y instead of computing an expectation.
During the “M-step”, with Y fixed, we update Θ1 and Θ2 to
maximize the likelihood. The optimization employs gradient
descent on the overall objectives. The overall algorithm is
shown in Algorithm 1.

However, for large-scale spatial data (e.g., high-resolution
Earth imagery), grounding the rules on all high-resolution
pixels will lead to too many atoms, making the logic in-
ference computationally intractable. Therefore, we need to
strike a balance between granularity, computational effi-
ciency, and prediction accuracy.

Multi-resolution logic reasoning: Here, we introduce
how to formulate the logic-driven potential at multi-
resolution. We aim to represent the spatial logic inference
of sample labels within raster frameworks. This is achieved
through two steps: spatial grounding and defining a potential
function.

Spatial grounding in our case refers to replacing the vari-
ables in the spatial knowledge base rules with specific in-
stances, i.e., pixels in earth imagery. To balance inference
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Figure 4: Illustration of hierarchical structure.

accuracy, efficiency, and granularity, we leverage a multi-
resolution framework inspired by the fractal and hierarchical
nature of spatial relationships.

We let the original input large-scale spatial raster frame-
work, S = S0, at the finest pixel-level resolution, and a con-
stant η, where η ∈ N and η > 1, which helps us derive
a set of resolutions: 1, η, η2, · · · , ηK corresponding to the
grid sizes at K + 1 levels. Here, the coarsest level has the
same resolution of the initial weak label Ỹ, i.e., ηK = C.
As shown in Figure 4, these levels form a hierarchy with the
coarsest resolution at the top (the root of the hierarchy) and
the finest at the bottom. Each spatial sample sk,i at layer k
corresponds to a group of cells at the next finer layer k − 1.

We propose a strategy that selects uncertain cells in a
coarse layer to refine. The quantified uncertainty uk,i for
each cell i at the k-th resolution level is calculated using
the entropy of the inferred label ŷk,i (He and Jiang 2023).
Starting from the coarsest resolution (k = K), the process
continues iteratively until the finest resolution (k = 0) is
reached, selecting a subset of cells with the highest uncer-
tainty at each resolution to refine the spatial partitioning.

Taking layer 2 in Figure 4 as an example, each cell in this
grid is color-coded to denote the probability of dry (dark)
and water (light). We view the cell with the leftmost and
rightmost color (certain Dry and Flood) in the color bar as
certain cells, and others as uncertain cells, i.e., only the s2,1
can be viewed as a certain cell in layer 2. Therefore, the
uncertain coarser cells in layer 2 are split into 2 × 2 finer
cells, respectively.

Uncertainty-aware multi-instance learning: In this
module, we model the data-driven potential to capture the
information from the imagery features. Instead of binary la-
bels, to directly optimize for the accuracy of the predicted
probabilities, we work with a modified Binary Cross En-
tropy loss function where ground truth labels yk,i are re-
placed with uncertain labels ŷk,i.

Since a hierarchical structure is used for label infer-
ence, we face a multi-instance learning scenario (Maron and
Lozano-Pérez 1997; Foulds and Frank 2010; Zhou 2004)
when the spatial domain is partitioned into non-overlapping
cells. Given different resolution levels, we calculate an ag-
gregate probability output for each pixel instead of assigning
a single label.

To account for cell-level labels, we define the uncertainty-
aware multi-instance loss function as:

logP (Y|X,Θ2) =
∑
i

ŷk,i logPk,i+(1−ŷk,i) log(1−Pk,i)

(6)
The probability output Pk,i for each cell sample sk,i is the
average of the predicted probabilities pj for samples within
the coarse cell sk,i. This aggregate approach accounts for
different granularity levels in the spatial domain, enhanc-
ing the model’s flexibility and adaptability to various spatial
scales.

Experiments
Experiments Setup
Dataset description: We use two real-world flood map-
ping datasets collected from North Carolina during Hurri-
cane Matthew in 2016. The explanatory features comprise
the red, green, and blue bands within the aerial imagery ob-
tained from the National Oceanic and Atmospheric Admin-
istration’s National Geodetic Survey1. Digital elevation im-
agery was sourced from the University of North Carolina
Libraries2 for spatial logic rule construction. Each piece of
data was subsequently resampled to a 2-meter by 2-meter
resolution to standardize the information. We have 500 100-
by-100 image patches in Dataset 1, among which 450 are for
training and 50 are for testing (from different sub-regions);
and 3360 patches in Dataset 2, among which 2856 are for
training and 504 are for testing.

Candidate methods: In the experiments, we compare our
proposed SLWSL with various methods: Base: The base
deep learning model trained with observed weak labels. U-
CAM (Wang et al. 2020b): This method uses image-level
labels for training with class activation maps (CAM) for in-
ference. DeepProbLog (DPL) (Manhaeve et al. 2018): A
logic programming language that integrates deep learning
with probabilistic logic programming. Abductive Learn-
ing (ABL) (Dai et al. 2019): A framework that combines
both reasoning and learning by training a neural network
model and using a logic reasoner to validate and revise these
predictions. w/o SR: A simplified variant of our proposed
SLWSL without selective refinement, which removes the se-
lection of uncertain areas during the grounding process.

Evaluation metrics: We used precision, recall, F1 score,
and Accuracy on the flood mapping class to evaluate the
pixel-level classification performance.

Implementation details: When implementing SLWSL
and baselines, we considered U-Net, a powerful deep learn-
ing model for image segmentation, as the Base model. We
set the same architecture for the U-Net model in all methods
with 5 downsample operations, 5 upsample operations, and
a batch normalization within each convolutional layer. For
other candidate methods and SLWSL, we use the same pre-
trained U-Net to initialize the deep learning model in these
frameworks.

1https://www.ngs.noaa.gov/
2https://www.lib.ncsu.edu/gis/elevation
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Method Class Dataset 1 Dataset 2
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Base Dry 0.70±0.10 0.74±0.06 0.71±0.03 0.80±0.02
0.80±0.05 0.90±0.03 0.84±0.03 0.82±0.03Flood 0.86±0.06 0.84±0.03 0.85±0.02 0.87±0.05 0.75±0.04 0.80±0.03

U-CAM Dry 0.75±0.06 0.77±0.07 0.75±0.01 0.82±0.02
0.83±0.06 0.89±0.02 0.86±0.02 0.84±0.02Flood 0.86±0.06 0.86±0.02 0.86±0.02 0.85±0.03 0.79±0.06 0.82±0.02

DPL Dry 0.82±0.02 0.82±0.01 0.82±0.01 0.87±0.00
0.92±0.01 0.86±0.01 0.89±0.00 0.87±0.00Flood 0.90±0.01 0.90±0.01 0.90±0.00 0.79±0.02 0.87±0.02 0.83±0.00

ABL Dry 0.89±0.01 0.78±0.01 0.83±0.01 0.87±0.00
0.87±0.02 0.93±0.01 0.90±0.00 0.88±0.00Flood 0.86±0.01 0.94±0.00 0.90±0.00 0.90±0.02 0.83±0.02 0.86±0.00

w/o SR Dry 0.95±0.02 0.88±0.02 0.92±0.00 0.94±0.00
0.91±0.01 0.93±0.01 0.92±0.00 0.91±0.00Flood 0.93±0.02 0.97±0.01 0.95±0.00 0.89±0.01 0.87±0.01 0.88±0.00

SLWSL Dry 0.91±0.01 0.94±0.00 0.93±0.01 0.95±0.00
0.90±0.03 0.97±0.01 0.93±0.01 0.92±0.01Flood 0.97±0.00 0.95±0.01 0.96±0.00 0.96±0.02 0.87±0.04 0.91±0.01

Table 1: Comparison on pixel-level classification.

For the multi-resolution structure of SLWSL, we set the
grid size constant η = 10 and K = 2 which means there are
3 layers with grid size 100× 100, 10× 10 and 1× 1 respec-
tively. We construct the spatial knowledge base for the flood
mapping task based on distance and topology relationships.
For the distance relationship, we directly use the neighbor-
hood pair to model. For the elevation, we adopt a Hidden
Markov Tree model (Xie, Jiang, and Sainju 2018) which can
model the topological relationship of each location based on
the elevation.

All the experiments were conducted on an AMD EPYC
7742 64-core Processor CPU and an NVIDIA A100 GPU
equipped with 80 GB of memory. We executed each model
five times to obtain the average performance and its devia-
tion.

Comparison on Pixel-level Classification
As demonstrated in Table 1, our SLWSL method consis-
tently outperforms the candidate models. The Base model
and U-CAM, predictably, struggle across both datasets. This
can be attributed to the fact that coarse and weak labels often
fail to provide adequate supervision, especially when train-
ing high-resolution data. The models DPL and ABL, which
make efforts to embed domain knowledge into the learning
process, show improved results over the Base model. This
underlines the significance of integrating spatial knowledge
into model training. Yet, they still fall short of SLWSL’s per-
formance. This discrepancy can be primarily traced back to
label inaccuracies, a consequence of relying on weak labels
and the overwhelming presence of extensive logic rules in
a large spatial area. The standout results of SLWSL across
both datasets not only show its capability in effectively in-
corporating spatial domain knowledge with deep learning
techniques but also highlight its unique strength in utiliz-
ing multi-resolution label inference. This becomes particu-
larly crucial in scenarios dominated by weak training labels,
showcasing SLWSL’s robustness and adaptability.

Moreover, Figure 5 presents a comparative visualization
of various models’ performance on Dataset 2. It should be
noted that the weak label image is of coarse resolution, with
each pixel representing a 100 by 100 pixel area in compari-

Weak Label Ground Truth

Base U-CAM

DPL ABL

w/o SR SLWSL

Figure 5: Visualization of classification results for dataset 2.

son to other images. Evidently, the Base and U-CAM mod-
els exhibit limitations in handling noise in the original la-
bel. Conversely, for SLWSL, a notable decrease in the num-
ber of misclassified pixels is clear, effectively reducing noise
within each classified area.

Case Study
In this case study, the label inference efficacy of SLWSL is
examined across various resolution levels during the training
phase, as visually depicted in Figure 6. The figure highlights
the evolution of inferred labels at three distinct resolutions
on Dataset 1. Starting from a coarse resolution with a size
of 25 by 18, the labels sharpen progressively to a fine reso-
lution with a size of 2500 by 1800. This progression aids in
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Figure 6: Inferred label at different resolutions (iterations)
for dataset 1.
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Figure 7: Accuracy comparison under varying noise inten-
sity.

detecting and refining uncertain regions, typically indicative
of flood boundaries.

Sensitivity Analysis
To examine the robustness of our proposed SLWSL, espe-
cially in the face of noise in observed weak labels, we under-
took a sensitivity analysis. For this analysis, we deliberately
introduced random noise to the original coarse label, varying
the intensity of noise from 10% to 40%. The objective was to
evaluate the resultant impact on classification accuracy un-
der progressively challenging conditions. The results of this
experiment are detailed in Figure 7. In contrast to the base
model, SLWSL remains relatively unaffected by the percent-
age of noise, maintaining an accuracy rate above 0.9. The
underlying reason lies in SLWSL’s unique label inference
process: it starts from a coarse resolution and subsequently
refines labels, ensuring accurate label inference. The slight
variations in the results can be attributed to training random-
ness and the initialization process.

Ablation Study
To highlight the advantages of the selective refinement strat-
egy, we evaluated the classification performance and com-
putational costs between SLWSL against the variant without
selective refinement (w/o SR).

As shown in Table 1, without selective refinement, the ac-
curacy results show that it is slightly less accurate. This can
be attributed to too many grounded rules leading to subop-
timal convergence in the label inference (E-step) and sub-
sequent neural network training. Table 2 presents a break-
down of the ground atoms, rules, and the time cost for the
E-step at the finest resolution, which predominates the train-
ing duration. Notably, the E-step’s time requirement is di-

Dataset 1 Dataset 2
SLWSL w/o SR SLWSL w/o SR

Ground Atoms 0.78M 4.50M 8.05M 28.56M
Ground Rules 8.50M 40.47M 72.29M 256.97M
Time Cost (Sec.) 438 3201 7472 44951

Table 2: Comparisons of SLWSL with and without selective
refinement at the finest resolution.

rectly related to the number of ground rules, a factor that
becomes critical during label inference with a large volume
of spatial samples. In contrast, our selective refinement ap-
proach grounded only 0.78 million atoms from a possible 4.5
million in Dataset 1, resulting in SLWSL achieving a speed
nearly 6.31 times greater than the complete grounding sce-
nario.

Limitations
There are two primary limitations of our SLWSL: 1) Limited
scope of spatial knowledge representation: while SLWSL ef-
fectively integrates spatial domain knowledge through logic
rules, it is limited to pre-defined representations. This con-
strains its applicability in scenarios where spatial knowledge
is conveyed through other formats like geographical knowl-
edge graphs, external spatial statistics/simulation models,
or partial differential equations (PDEs). Consequently, the
framework may not be effective in contexts where these al-
ternative knowledge representations are essential. 2) Induc-
tive bias and model constraints: the incorporation of logical
knowledge as an inductive bias can potentially hinder the
learning process. This is due to the constraints it imposes
on model training, which might lead to sub-optimal results.
Additionally, the reliance on a spatial knowledge database,
which may not be comprehensive or entirely accurate for all
scenarios, poses a risk of misleading the model.

Conclusion and Future Work
In this work, we presented SLWSL: a spatial-logic-aware
weakly supervised learning framework, which integrates
deep learning with symbolic spatial logic, enabling precise
label inference while training a neural model. By provid-
ing a probabilistic framework, informed by observed fea-
tures, weak labels, and logic constraints, we established a
novel method that uniquely addresses the challenges in high-
resolution Earth imagery. Central to SLWSL’s efficacy is the
utilization of an EM method and a multi-resolution strat-
egy, together to ensure both accuracy and computational ef-
ficiency. Our experiments demonstrate that this framework
surpasses existing baselines.

While our primary application domain in this work is
flood mapping, the proposed method indicates potential util-
ity in other spatial tasks, such as detecting deforestation
or monitoring urban expansion. Additionally, incorporat-
ing temporal variations from Earth imagery data into our
model could enhance its dynamism, making predictions
more closely with real-world changes.
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