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Abstract

We develop a computationally e�cient learning-based forward-backward stochastic di↵erential equations (FBSDE) controller
for both continuous and hybrid dynamical (HD) systems subject to stochastic noise and state constraints. Solutions to stochastic
optimal control (SOC) problems satisfy the Hamilton–Jacobi–Bellman (HJB) equation. Using current FBSDE-based solutions,
the optimal control can be obtained from the HJB equations using deep neural networks (e.g., long short-term memory (LSTM)
networks). To ensure the learned controller respects the constraint boundaries, we enforce the state constraints using a soft
penalty function. In addition to previous works, we adapt the deep FBSDE (DFBSDE) control framework to handle HD
systems consisting of continuous dynamics and a deterministic discrete state change. We demonstrate our proposed algorithm
in simulation on a continuous nonlinear system (cart-pole) and a hybrid nonlinear system (five-link biped).
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1 Introduction

Optimal control has been applied in various applications,
e.g., robotic control [17] [5] and navigation [8]. Optimal
control problems are often cast as the minimization of
a cost function, which the solution can be found via nu-
merical optimization techniques [9]. Recently, optimal
control has been used to solve increasingly complex con-
trol problems [18] thanks to the enhanced computational
abilities and optimization software and the adoption of
neural networks [2]. Applying optimal control requires
accurate modeling of the system of interest. However,
unmodeled processes are common in real-world systems,
e.g., measurement noise and external forces with un-
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known distributions [16] [10]. We adopt SOC [4] tech-
niques to consider the uncontrolled inputs explicitly.

Recently, neural networks have been widely used to
solve SOC problems [14] [15] [20] [7]. A promising di-
rection for deep neural network (DNN) based SOC
solutions is formulating the problem as an FBSDE [22].
FBSDE enables the numerical estimation of the solu-
tion to the HJB equation, i.e., the value function with
respect to a cost function. The optimal control at each
state then can be analytically obtained using the esti-
mated value function. The introduction of deep neural
networks [22] to FBSDEs improves the value function
estimation. Compared to nonlinear model predictive
control (MPC) approaches, DFBSDE-based approaches
are computationally more e�cient during inference by
moving the heavy computation o✏ine. On top of the
vanilla DFBSDE, work has been done in introducing
state constraints using penalty functions [6] and ap-
pending a di↵erentiable quadratic program [19]. In this
work, we explore a penalty function based approach
since it is faster in training and inference.

Another key aspect of this paper is the control of HD sys-
tems. The type of HD systems considered consists of two
phases: first, a phase of continuously evolving dynamics,
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and second, a phase of a discrete jump. Such HD systems
are very common, e.g., walking robots [12]. Thus, it is
worthwhile to understand how it is typically controlled.
The control of walking robots is traditionally achieved
with a hierarchical control architecture. A reduced-order
model is used for motion generation. The generated mo-
tion is tracked via a tracking controller [17]. Another
approach is to see the HD system as a combination of
multiple phases of continuous dynamics [21]. Using this
approach, the controller only needs to work well for the
continuous dynamics and be robust to changes caused
by discrete jumps. This formulation is end-to-end, which
better suits DFBSDE.

This paper proposes a SOC setting for nonlinear sys-
tems that incorporates state constraints and adapts the
method to handle HD systems. The main contribution
of this paper is threefold: (1) proposed the state con-
straint DFBSDE algorithm and adapted it to handle HD
systems; (2) devised a new training loss and controller
ensemble setting for high-dimensional HD systems; (3)
provided simulation studies on both continuous and HD
systems to show the e�cacy of our approach. In rela-
tionship with our previous work [6], this paper provides
a more detailed development of the methodology, exten-
sion to hybrid systems, and application to bipeds. The
remainder of this paper is structured as follows. In Sec-
tion II, the state-constrained SOC formulation is given.
Section III presents a derivation connecting the SOC
formulation and FBSDEs, and how control saturation
and state constraints can be incorporated. Then using
the derived formulation, a deep neural network-based
algorithm is presented to solve the FBSDE with state
constraints and control saturation. The last part of Sec-
tion III discusses adapting the DFBSDE algorithm to
HD systems. In Section IV, simulation studies are pre-
sented for a continuous dynamical system, namely the
cart-pole, and a five-link biped [13], which is HD.

2 Problem Formulation

In this section, we outline the SOC problem under
state constraints. We consider a filtered probability
space (⌦,F , {Ft}t�0,P), where ⌦ is the sample space,
F is the �-algebra over ⌦, P is a probability measure,
and {Ft}t�0 is a filtration with index t denoting time.
A controlled a�ne system with noise represented by
stochastic processes can be described using a stochastic
di↵erential equation (SDE)

dx(t) = (F(x(t)) +G(x(t))u)dt+ ⌃(x(t))dw(t) (1)

with initial state x0 2 Rn and w(t) 2 R⌫ an Ft-adapted
Brownian motion. Throughout this paper, we will write
x(t) and other stochastic processes with argument t
omitted whenever appropriate. The states are denoted
by x 2 Rn and the control input by u 2 Rm. In (1),

F : Rn ! Rn represents the drift, G : Rn ! Rn⇥m rep-
resents the control influence, and ⌃ : Rn ! Rn⇥⌫ repre-
sents the di↵usion (influence of the Brownian motion to
the state). We assume that range(G) ✓ range(⌃), i.e.,
the noise enters wherever the control input appears (in
addition to possibly elsewhere). The state constrained
SOC problem is to find a controller u(x) that minimizes
an objective function Ju(x, t) 2 R+ under a set of state
constraints. The objective function is denoted as

Ju(x, t) = E
h
qN (x(T )) +

Z
T

t

⇣
q(x) + r(u)

⌘
d⌧

i
(2)

where E represents expectation, T 2 R+ is the termi-
nal time, qN : Rn ! R+ is the terminal state cost,
q : Rn ! R+ is the instantaneous state cost, and the in-
stantaneous control cost is r : Rm ! R+. The controller
u(x(t)) is a function of the state, this dependency will be
omitted in the remainder of this paper for brevity, and
the controller will be written as u. Without loss of gener-
ality, we consider state constraints in the following form
c(x)  b, where c(x) 2 Rr is a vector of functions of
the state, and b 2 Rr represents the element-wise upper
bound of c(x). Control saturation (with Umax 2 Rm

+
)

can also be introduced into the SOC formulation

u 2 U = {u | |ui|  Ui,max, i = 1, . . . ,m} (3)

where ui and Ui,max are the ith element of u and Umax,
respectively. Note that all operations with stochastic
processes are understood a.s. (almost surely, i.e., with
probability 1) unless specifically indicated. In summary,
we have the SOC problem as

min
u2U

Ju(x0, t0) subject to (1) and c(x)  b a.s. (4)

3 Method

In this section, we first show how (4) can be written as an
FBSDE. Then, state constraints are considered. Subse-
quently, adaptations for HD systems are presented. Fi-
nally, a DNN-based solution to the FBSDE is proposed.

3.1 SOC to FBSDE

The derivation presented in this section was originally
proposed in [22], it is summarized here for completeness.
LetV(·, ·) be the value functionV(x, t) 2 R+ defined as

V(x, t) := inf
u2U

Ju(x, t). (5)

Using (2) and Bellman’s principle [1] yields

Vt(x, t) + LV(x, t) + h(x,Vx(x, t)) = 0 (6a)
V(x(T ), T ) = qN (x(T )) (6b)
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where h denotes the Hamiltonian

h(x,Vx) = inf
u2U

⇣
q(x) + (G(x)u)TVx + r(u)

⌘
, (7)

the di↵erential operator of V is given by

LV(x, t) =
1

2
trace

⇣
⌃⌃T

Vxx(x, t)
⌘
+ F

T (x)Vx(x, t),

(8)
Vt(x, t) 2 R is the partial derivative of V with respect
to t, and Vx(x, t) 2 Rn⇥1 and Vxx(x, t) 2 Rn⇥n denote
the first and second partial derivatives, respectively, of
V with respect to x. To consider control constraints [22],
we define r(u) as

r(u) =
mX

i=1

Si(ui) =
mX

i=1

ci

Z ui

0

sig�1

⇣ v

u
max

i

⌘
dv (9)

with u
max

i
being the i-th element of Umax and

sig(v) =
2

1 + e�v
� 1. (10)

In (9), ci weights the importance between di↵erent
control inputs. Using first-order conditions to solve for
an analytic solution of the optimal control action that
achieves the infimum of the Hamiltonian yields

G
T (x)Vx +Rsig�1(

u
⇤

Umax

) = 0, (11)

with R = diag(c1, · · · , cm). Solving (11) for u⇤ in yields

u
⇤(x, t) = Umax ⇤ sig(�R�1

G
T (x)Vx(x, t)) (12)

with “⇤” denoting element-wise multiplication. The con-
trol is saturated between [�Umax,Umax]. Define y(t) =
V(x(t), t). From (7), we can write a stochastic system
for the optimal value function

�dy(t) = (q(x) + r(u⇤))dt�V
T

x (x, t)⌃
T (x)dw (13a)

dx(t) = (F(x) +G(x)u⇤)dt+ ⌃(x)dw (13b)
y(T ) = qN (x(T )) (13c)
x(0) = x0 (13d)

which is in the form of a FBSDE (the forward part
consists of (13b) (13d), the backward part consists
of (13a) (13c)). The forward and backward parts are of
the form of a forward SDE (FSDE) and a backward SDE
(BSDE), respectively. For details regarding the deriva-
tion from (7) to (13), the reader is referred to [22][6].

3.2 Handling State Constraints

In this section, we consider incorporating state con-
straints into the FBSDE framework using a penalty

Fig. 1. The left figure shows p(x) in (14) under di↵erent
values of k, with µ = 3, L = 5, c(x) = x, bmin = 1, bmax = 5
and x being a scalar. The right figure shows p(x) in (15)
under di↵erent values of k, with the same parameters.

function based approach. A perfect penalty function
would be zero inside the constraint boundary and infin-
ity outside. We propose two di↵erentiable and numeri-
cally stable alternatives to a perfect penalty function.
The first option is a penalty function based on logistic
functions (PFL). When the state constraint has both
an upper bound bmax and lower bound bmin, the i-th
element of PFL would be

pi(x) =
L

1 + e�k(ci(x)�bi,max)
� L

1 + e�k(ci(x)�bi,min)

+ L� 2L

1 + e�k(µi�bi,max)
(14)

where L 2 R+ determines the maximum value of the
penalty, k 2 R+ determines the steepness of the bound-
ary (larger k leads to steeper boundaries), and µ =
(bmin+bmax)/2. The proposed penalty function consists
of two parts: the first consists of two logistics functions,
which give the valley shape; the second sets the mini-
mum value of the penalty function to zero. The second
option is a rectified-linear-unit (ReLU) based function
which is defined asReLU(x) = max(x, 0). When an up-
per and lower bound exist, the penalty function is

pi(x) = k(ReLU(bi,min � ci(x))
+ReLU(ci(x)� bi,max)). (15)

Similar to (14), k represents the steepness of the con-
straint boundaries. However, in (15), there is no bound
on the penalty function magnitude. An example of these
two types of penalty functions with varying steepness
is shown in Fig. 1. When only an upper bound exists,
i.e., c(x)  b, the lower bound is set to be �1, and
when only a lower bound exists, i.e., c(x) � b, the up-
per bound is set to be 1. The main di↵erence between
these two penalty functions is their values within the
constraint boundary. For PFL, the value of the penalty
function is only close to zero when a large k value is uti-
lized. Otherwise, states within but close to constraint
boundaries will have a positive penalty function value.
The ReLU-based penalty function is always zero within
the bound. Specific use cases are demonstrated in Sec-
tion 4.
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Fig. 2. The DFBSDE architecture for one time step.
Curve-edged boxes contains DNNs, and sharp-edged boxes
represent intermediate calculations. Everything in green con-
tains the LSTM network, red and blue colors represent the
FSDE and the forward version of the BSDE, respectively.

After applying penalty function p(x), the instantaneous
state cost is q̄(x) = q(x) + p(x). Ideally, we would pick
larger k and L to ensure a steeper boundary and larger
penalty. While a controller without access to measure-
ments of future noise can not guarantee that state con-
straints will be met for all time due to stochastic nature
of the system dynamics, note that the penalty functions
guide the learning towards a robust controller that does
not violate state constraints (at least under the distur-
bances seen during training). The expected value of the
integral of p(x) is at most Ju. If Ju is finite and p(x)
is a perfect penalty function, the constraint is satisfied
except on a set of measure zero.

3.3 Deep FBSDE Algorithm

The solution of the FBSDE in (13) requires backward
integration in time and the fact that Vx(x) is unknown
creates additional di�culties in utilizing classical nu-
merical integration approaches. To deal with backward
integration in time, following the formulation in [22],
we can estimate the value function at time zero using a
DNN, which is parameterized by �, i.e., V0(x, t0). This
allows the forward integration of the BSDE. We can
then rewrite the FBSDE as two FSDEs. For unknown
Vx(x, t) values, it can also be estimated using a DNN
parameterized by ✓, i.e., Vx(x, t | ✓).

We deploy an LSTM-based architecture [11] forVx(x, t |
✓), which has shown to be superior to dense-layer-based
architectures [22]. Linear regression based approaches
have also been considered, but are inferior due to com-
pounding error. Assuming the initial state and time hori-
zon are fixed [22], the initial value function is a learned
fixed valueV0(�). Due to the use of LSTMs, two changes
need to be made to the DFBSDE algorithm. First, a
separate network H0(') is used to estimate the initial
hidden state values. Second, yk will also depend on the
hidden state values Hk. The FBSDE can be forward in-
tegrated by discretizing the time as follows

yk = V0(x0, t0 | �)�
kX

i=1

(q̄(xi�1) + r(u⇤
i�1

))�t

+
kX

i=2

V
T

x (xi�1, ti�1,Hi�1 | ✓)⌃T (xi�1)�wi�1

+V
T

x (x0, t0,H0(') | ✓)⌃T (x0)�w0 (16a)

xk = x0 +
kX

i=1

�xi�1 (16b)

where k � 1, �t = T/N , �xk = ẋ(k�t)�t and �wk =
ẇ(k�t)�t. The calculation of xk and yk is illustrated in
Fig. 2. To learn the weights, we minimize the least square
loss between the estimated terminal value function and
the measured terminal cost,

LFBSDE(✓,�,') =
MX

j=1

kqN (xj

N
)� y

j

N
k2 (17)

where M is the batch size and the superscript j denotes
the j-th set of data in the batch. The detailed DFBSDE
algorithm is shown in Algorithm 1.

3.4 Penalty Function Update

For the penalty function, if k is large in the initial stage
of training, numerical instabilities can arise due to large
gradients generated by states within the steep region
near the constraint boundary. On the other hand, if k is
kept small, it wouldn’t be e↵ective since the penalty for
constraint violation is small. Thus, we propose to update
k during training so that it gradually increases.

The update scheme is as follows. For a given k, the DNN
is trained until convergence; then, k is updated. Ametric
to check for convergence is the variance of the episode-
wise cost over a few episodes; the episode window size
is denoted as ⌘. If the iterates are converging, the vari-
ance will be small. Convergence is determined by com-
paring the square root of the variance with a threshold
� 2 R+; if it is smaller than �, k is updated as k k+�.
This condition is checked every ⌘ iterations. Addition-
ally, if the condition is not satisfied after ⌘0 iterations,
then also k is updated since it could be stuck at a local
minimum. Empirically, we have found ⌘ = 500, k = 1.5,
� = 0.5, and �� = 0.25 to be reasonable values to start
with. Both � and �� can be increased if training is sta-
ble and faster growth of k is desired; otherwise, � and/or
�� should be reduced. During training, the variance de-
creases. Thus, � should also decrease after each update:
� = ��, with � 2 (0, 1). To make the decrease in �
smoother, we gradually increase � to 1 using � = � +�
with � 2 R+. Similarly, the acceleration of k is made
negative, i.e., � = � + ��, with �� 2 R�, leading to
finer-grained changes in k at later stages of training. The
initial value of � can be determined after the training
converges for the first iteration of Algorithm 2. From em-
pirical evaluations, we find � = 0.9 and � = 0.02 to be
reasonable values. The penalty function update scheme
is shown in Algorithm 2.
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Algorithm 1 State Constrained DFBSDE Controller

1: Get Initial state and state dynamics, cost function
parameters, penalty function, N : Time horizon, NI :
Number of iterations, M : Batch size,�t: Time step,
�: Weight decay parameter, and state constraint pa-
rameters (refer to Algorithm 2);

2: Initialize ✓, �, ', k, �, �, �;
3: for nI = 1 to NI , m = 1 to M , k = 0 to N � 1 do

4: Calculate tk = k�t and V
m

x (xk, tk | ✓);
5: Calculate optimal control as in (12);
6: Sample Brownian noise: �w

m

k
⇠ N (0,�t);

7: Update value function y
m

k
and system state xm

k
;

8: Compute target terminal cost;
9: Compute LFBSDE (17) or LHFBSDE (20)

10: Update ✓, � and ' and run Algorithm 2;

3.5 Adaptation to Hybrid Dynamics

This section will discuss the adaptations required for the
DFBSDE algorithm to handle HD systems. HD systems
consist of two phases: a continuous dynamic phase and a
phase of a deterministic discrete jump. Such an HD sys-
tem is very common, e.g., a biped. The FBSDE formula-
tion in (13) is only for continuous dynamics. Inspired by
the cyclic motion in human walking, we treat the hybrid
dynamics as having multiple cycles, where the dynamics
are continuous within each cycle. For the case of bipedal
locomotion, each cycle will be a footstep; at the end of
each cycle, the swing foot lands on the ground (more on
this in Section 4). The main challenges in adapting the
DFBSDE framework to HD systems are robustness to
the initial state and assurance of cyclic motion. This re-
quires the initial value function estimator to be robust
to a wide range of states. The loss function (17) only
trains the estimator for a fixed x0. To ensure that the
learned value function estimator is robust to variations
in the initial state, we can train it such that it provides
an accurate estimation for all of the states recorded. The
measured cost-to-go can approximate the value function

Ṽ(xk, tk) = qN (xN ) +
N�1X

i=k

(q̄(xi) + r(u⇤
i
))�t

� V
T

x (xi, ti,Hi | ✓)⌃T (xi)�wi. (18)

Using (18), we can learn the initial value function using

LV =
MX

j=1

NX

i=0

kV0(x
j

i
, ti | �)� Ṽ(xj

i
, ti)k2. (19)

Thus, the loss function for the Hybrid FBSDE (HFB-
SDE) becomes

LHFBSDE = LFBSDE + �LV (20)

with the terminal cost calculated using the state after the
jump x

+

N
and � 2 R+ adjusts the weighting between the

Algorithm 2 Penalty Function Update

1: Given: k: Boundary steepness, �: Change of bound-
ary steepness, �: Update threshold, �: Threshold
change ratio, nI : Iteration number, �: Boundary
steepness change acceleration, ⌘: Update interval, ⌘0:
Max interval, ��: Threshold change acceleration;

2: if state trajectory not inside constraint boundary
then

3: if (nI mod ⌘) = 0 then

4: Calculate �2

C = variance of the costs
{C1, · · · ,C⌘} for the past ⌘ episodes;

5: if �C < � or (nI mod ⌘0) = 0 then

6: k = k+�, � = �+��, � = ��, � = �+�;
7: if � < 0 then

8: � = 0;
9: if � > 1 then

10: � = 1;
11: else

12: Update penalty function with new parameters.

two losses. This terminal cost encourages cyclic motion.

4 Simulations

In this section, we show the performance of our control
algorithm using a continuous nonlinear system: the cart-
pole for a swing-up task; and a hybrid nonlinear system:
a five-link biped for walking. The trained model was
evaluated over 256 trials for all systems. For the cart-
pole experiments, two LSTM layers with size 16 are used
at each time step, followed by a dense layer with an
output size corresponding to the state dimension. For
fixed initial states, the initial value function estimation
uses a trainable weight of size one. The initial hidden
state and cell state for the LSTM layers are estimated
using a trainable weight of size 16. For the five-link biped
experiments, we used two LSTM layers with size 32,
followed by a dense layer with size 10. The initial value
function network has four layers with size [8, 16, 8, 1].
The initial hidden state network consists of four di↵erent
networks for estimating the initial hidden state and the
initial cell state of the two LSTM layers; they all consist
of two dense layers that have an output size of 8.

4.1 Cart-pole Swing-Up Task I

The task for the cart-pole system is to swing the pole up
and stabilize it at the top. The cart-pole dynamics are

(M +m)ẍ�m` sin ✓✓̇2 +m` cos ✓✓̈ = u (21)

m`2✓̈ +m` cos ✓ẍ+mg` sin ✓ = 0. (22)

The cart position and pendulum angle are represented by
x and ✓, respectively. The pendulum angle is zero when it
is pointed downwards. The state of the cart-pole system
is [x, ✓, ẋ, ✓̇]T . In our experiments, we set the cart mass
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Fig. 3. This figure compares the performance between the state constrained (purple) and unconstrained (blue) controller. The
demonstrated performance is from 256 trials. The darker blue and purple curves show a sampled trajectory from each setting.
The light blue and purple regions show the state space each controller covers. The black dashed lines are the state constraints,
and the orange lines give the state targets.

Fig. 4. The color scheme follows Figure 3. The leftmost figure shows the trajectory generated by the unconstrained controller
violates the constraints. By applying the penalty function and following the adaptive update scheme, the velocity trajectory
retreats inside the constraint boundaries and eventually satisfies the constraints.

Fig. 5. Illustration of five-link biped model.

to M = 1.0kg, the pole mass to m = 0.01kg (point mass
at the tip), the pole length to ` = 0.5m, x0 = 04⇥1, and
the target state as [0,⇡, 0, 0]T . The control is saturated at
±10N, the cart position is constrained between ±1.5m,
and the cart velocity is constrained between±2.5m. The
time horizon is chosen to be 2.5 sec and the time step
is �t = 1/110 sec (this specific value of �t is chosen
randomly). We use the state cost function

q̄(x) =
1

2
(x� x̄)TQ(x� x̄) + p(x) (23a)

qN (x) =
1

2
(x� x̄)TQN (x� x̄) (23b)

where x̄ is the target state, Q is the cost weight matrix
for the state, and QN is the terminal state cost matrix.
We use the control cost defined in (9). The cost matri-
ces are chosen as Q = QN = diag([0.5, 1.0, 0.1, 0.1])
and R = [0.1]. p(·) is the penalty function, in this ex-
ample p(·) is a logistics function-based penalty func-
tion (14), with c(x) = [x, ẋ]T and bmax = �bmin =
[1.5, 2.5]T . Fig. 3 shows the state trajectories generated
by the trained controller. The state trajectory gener-
ated by the trained constrained DFBSDE controller sat-
isfies the state constraints, while they are violated signif-
icantly under the trained unconstrained controller. The
e↵ect of the penalty function can be immediately seen in
Fig. 4, even with a small k value. With k = 1.5, the part
of the trajectory that lies outside the constraint bound-
aries is greatly reduced. After gradually increasing k to
6.0, followingAlgorithm 2, the entire cart velocity trajec-
tory lies within the constraint boundaries.We also tested
directly training with k = 6.0 without the adaptive up-
date. The algorithm becomes numerically unstable af-
ter one epoch due to large gradients. This demonstrates
that our method provides a stable training scheme.

4.2 Five-Link Biped Walking Task

The biped model of interest is shown in Fig. 5, derived
from [3]. The leg on the ground is the stance leg, the
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Fig. 6. Comparison of knee angles for constrained and un-
constrained systems. To avoid hyperextending, the knee an-
gle should be positive, i.e., above the black dashed line.

leg in the air is the swing leg, and the link representing
the upper body is the torso. The biped state x 2 R10⇥1

consists of the link angles with respect to the horizontal
plane q 2 R5⇥1 and the link angular velocities q̇ 2 R5⇥1,
i.e., x = [qT , q̇

T ]T . Note that the q denoted here is
di↵erent from the state cost function q(x). The biped
model has four actuated joints at the knee and hip joints.
The control u 2 R5⇥1 consists of the applied torque at
the actuated joints u = [0, u1, u2, u3, u4]T , where the 0
corresponds to the unactuated stance ankle. The output
of the controller will only consist of ũ = [u1, u2, u3, u4],
then a mapping matrix T = [0, I4⇥4] is used to obtain
u = T ũ. The parameters of the biped model can be
found in [13]. The five-link biped dynamics is

M(q)q̈+C(q, q̇)q̇+G(q) = u, (24)

where M(q) 2 R5⇥5 is the inertia matrix, C(q, q̇) 2
R5⇥5 the Coriolis matrix, and G(q) 2 R5⇥1 the gravita-
tional terms. The dynamics is in the form of (1) after con-
sidering stochastic noise. A heel strike (HS) occurs when
the biped comes into contact with the ground, which sig-
nals the termination of the current step, and initiation
of the next step. During this transition, the swing and
stance legs are swapped. We assume this transition is in-
stantaneous, the biped is symmetric, and the new swing
leg leaves the ground once the HS occurs (i.e., no double
support phase). The joint indexing depends on the cur-
rent swing and stance leg definition. Defining the joint
angles right before HS as q� 2 R5⇥1 and the joint an-
gles right after HS as q+ 2 R5⇥1, we have q+ = Ĩ5⇥5q

�,
where Ĩ5⇥5 2 R5⇥5 is the anti-diagonal matrix. The
HS creates an instantaneous change in angular velocity.
Defining the angular velocity before HS as q̇

� 2 R5⇥1

and the angular velocity after HS as q̇+ 2 R5⇥1, we have
x
+ = fH(x�), with fH : R10⇥1 ! R10⇥1 being the de-

terministic HS transition map [13].

To generate realistic walking motion, we need to avoid
hyperextension in the knee. We transform this con-
straint into a variant of the ReLU-based penalty func-
tion in (15): p(x) = ↵ReLU(�(q4 � q5)) where ↵ is
a weighting coe�cient for the penalty function, and q4
and q5 are defined in Fig. 5. A quadratic cost is applied
to the control. We choose R = diag([2, 0.2, 0.2, 2]).
This choice of R implies that hip motors are more pow-

Fig. 7. In this figure, the motion generated by our proposed
controller ensemble is shown. The torso is depicted in green,
the swing leg in purple, and the stance leg in blue.

erful than knee motors, which is true for many robots.
The state cost q(x) is the weighted distance between the
state x and a nominal terminal state x̄ plus the penalty

q̄(x) = 1/2(x� x̄)TQ(x� x̄) + p(x) (25)

withQ = 10I10⇥10. The terminal state cost has the same
form as (25), the sole di↵erence is replacing the state cost
matrix withQN = 10Q. The target state is chosen to be

x̄ =
h
0.10, 0.50,�0.10,�0.35,�0.40,�1.50

� 0.50, 0.00,�0.55,�2.00
iT

. (26)

A comparison between the motion generated by the con-
strained and unconstrained DFBSDE controller is given
in Fig. 6. The unconstrained controller hyperextends the
swing knee, while the constrained controller does not.
Since the chosen penalty function could constrain the
system directly, the k value doesn’t need to be updated.
In previous examples, the penalty functions are logistic
function based. This works well when the constraint set
is large since it creates a bu↵er between the interior of
the constraint set and its boundary. However, the con-
straint set for locomotion tasks is relatively small, mak-
ing ReLU functions a better candidate. For the five-link
biped experiments, we use a time step of 0.01s.

Variations in the initial states make dissecting a multi-
step walking problem into multiple single-step walking
problems a challenging task.We train a robust controller
to deal with this issue. We find it di�cult for a single
controller to handle all possible initial configurations.
Thus, we use an ensemble of controllers, where each con-
troller handles a range of initial configurations around a
nominal state. For the duration of one footstep, only one
controller is used, which is the controller in the ensemble
that has the shortest distance between the initial state
and its nominal state. The nominal state of a controller
is known a priori. After training, the motion generated
by this approach is shown in Fig. 7, where the ensem-
ble size is three. The corresponding swing knee angle
is shown in Fig. 8. It can be seen that no hyperexten-
sion occurred, which shows the e↵ectiveness of enforc-
ing the state constraints. On average, the initial range
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Fig. 8. This figure shows the swing knee angles for the motion
depicted in Fig. 7.

each controller can handle spans 6.03 deg for the joint
angles and 19.01 deg/sec for the joint velocities. Fig. 7
shows a tucking motion generated by the torso and the
swing leg. This is due to our biped model’s relatively
small control authority over the torso. Without the for-
ward angular momentum generated by the tucking mo-
tion, the torso gradually tilts back over multiple steps.
Since there is no direct control over the torso, it is dif-
ficult for the DFBSDE controller to recover. We also
compared the computation time of our proposed method
for obtaining the control for one time step with trajec-
tory optimization [13] (TO). As expected, our approach
generates comparable results while being computation-
ally more e�cient. Solving for the control action requires
0.96s for a Hermite-Simpson TO approach, compared
with 5.6ms for our proposed method.

5 Conclusion

In this paper, we solved SOC problems with state con-
straints using an LSTM-based DFBSDE framework
which alleviates the curse of dimensionality and numer-
ical integration issues. The state constraints are applied
using an adaptive update scheme, significantly improv-
ing training stability. We also show how to adapt the
algorithm to handle HD systems in addition to the con-
tinuous dynamics setting. The e�cacy of our approach
is demonstrated on a cart-pole system and a five-link
biped which has hybrid dynamics.
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and F. Allgöwer. Stochastic mpc with o✏ine uncertainty
sampling. Automatica, 81:176–183, 2017.

[17] M.N. Mistry, J. Buchli, and S. Schaal. Inverse
dynamics control of floating base systems using orthogonal
decomposition. In Proceedings of the IEEE International

Conference on Robotics and Automation, Anchorage, AK,
pages 3406–3412, May 2010.
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