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ABSTRACT

We study in detail the influence of different chemical potentials (baryon, charged, strange, and neu-
trino) on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal
limit. We discuss the influence of non-zero masses, the inclusion of leptons, and different constraints,
such as charge neutrality, zero-net strangeness, and fixed lepton fraction. We also investigate for the
first time how the symmetry energy of the system under some of these conditions approaches the
conformal limit. Finally, we briefly discuss what kind of corrections are expected from perturbative
QCD as one goes away from the conformal limit.

Keywords Conformal limit · Quark matter · Chemical potential · Symmetry energy

1 Introduction and Formalism

In the zero temperature limit, baryons start to overlap at a few times saturation density and, through some mechanism
that is not yet understood, quarks become effectively deconfined Baym et al. [2018]. In this work we discuss dense
matter in terms of baryon chemical potential µB , instead of baryon (number) density nB , as the former (together with
other chemical potentials, such as electric charge µQ or strange µS) is the fixed or independent quantity in the grand
canonical ensemble. The correspondence between nB and µB is model dependent, but, at finite temperature, the µB

at which deconfinement takes place is expected to be even lower (see e.g., Alford et al. [2008]), which highlights
the importance of studying quark matter. We are particularly interested in understanding the conformal limit, the
asymptotically high µB at which matter can be described by a free (non-interacting) gas of massless quarks. For this
reason, in the present work, we focus on modelling quark matter only and for the time being restrict ourselves to the
zero-temperature limit.

To describe the quarks, we make use of a free Fermi gas under different assumptions. To start, we describe them simply
by a massless gas, then introduce different non-zero but constant quark masses, and vary independently the baryon,
electric charge, and strange chemical potentials. We further link the chemical potentials by imposing charge neutrality
and/or zero net strangeness. We also discuss the role played by leptons, discussing beta equilibrium and the role played
by neutrinos (with chemical potential µν ). We investigate large µB and different µQ and µν , as these are important for
astrophysical scenarios, such as neutron stars and neutron-star mergers. On the other hand, we investigate the effects of
µS , which is important for discussions related to relativistic heavy-ion collisions and the early universe Letessier et al.
[1995].

We also discuss the symmetry energy of quark matter for some of the constraints we study and investigate how it
changes as we approach the conformal limit. The so called symmetry energy (which is really the asymmetry energy)



is one of the most important features of nuclear physics in general, since it is related to the ratio between the different
components of the nuclear systems Baldo and Burgio [2016]. Several works have addressed the symmetry energy
of quark matter Chu and Chen [2014], Chen [2017], Wu et al. [2018], Thakur and Dhiman [2017]. This physical
quantity is defined as the difference of energy per baryon E/NB (or energy density per baryon density ε/nB) between
completely isospin asymmetric matter δ = 1 and isospin-symmetric matter δ = 0:

Esym =
Eδ=1

NB
−

Eδ=0

NB
=

εδ=1

nB
−

εδ=0

nB
, (1)

where δ was originally defined for matter with neutrons and protons in terms of densities ni as

δ =
nn − np

nn + np
. (2)

In this case and also when one is considering up and down quarks, δ can also be written as

δ = −2YI = 1− 2YQ , (3)

for non-strange matter, using the Gell-Mann–Nishijima formula Nakano and Nishijima [1953] with fractions YI and
YQ summing over i = baryons or quarks and defined in terms of particle isospin Ii and electric charge Qi, respectively

YI =

∑

i Iini
∑

i ni
, YQ =

∑

i Qini
∑

i ni
, (4)

with baryon (number) density nB =
∑

ni, where the quark densities ni are divided by 3.

However, it is important to note that, as discussed in Ref. Aryal et al. [2020] and Appendix A of Ref. Yao et al. [2024],
in the presence of hyperons (or in our case strange quarks), Eq. (3) does not apply. For this reason, we restrain to the
discussion of symmetry energy for the 2-flavor case (with up and down quarks).

When leptons are included, we assume beta equilibrium, in which case electrons and muons have chemical potential
µe = µµ = −µQ. In the special case that (electron and muon) neutrinos are trapped, µν is determined by fixing the
lepton fraction

Yl =

∑

lep nlep
∑

i ni
, (5)

usually hold equal to the canonical value 0.4, to simulate conditions created in supernova explosions
Burrows and Lattimer [1986].

Finally, we briefly discuss the effects of interactions in the case that they are week enough to be discussed pertur-
batively, i.e., using perturbative Quantum Chromodynamics, pQCD). At large temperatures and/or quark chemical
potentials, the strong coupling becomes small enough to allow an infinite number of terms to be approximated by a fi-
nite number of terms to describe interactions Politzer [1973]. At zero temperature, QCD needs perturbative expansions
and normalization group techniques. The problem was first addressed in the late seventies Freedman and McLerran
[1977a,b,c] showing that already at the second order in αS log-singularities and non-trivial effects due to the renormal-
ization scale appear. In the particular case of beta equilibrium, first-order corrections cancel out, leading to the very
simple and popular description for neutron stars in terms of free quarks plus a constant bag correction Alcock et al.
[1986]. This description is consistent with our work, up to a bag constant (usually fitted to phenomenology). But, even
in the massless beta equilibrium case, it has been shown that the effect of interactions is not negligible in the density
or chemical potential regime relevant for astrophysics Fraga et al. [2001].

At zero temperature, pQCD corrections have been calculated up to next-to-next-to-next-to-leading order (N3LO)
Gorda et al. [2021a,b] (see Eq. 42 of Vuorinen [2024], where our free calculations would correspond to the term of
order zero in the couplingαs). With non-zero quark masses, pQCD corrections have been calculated up to next-to-next-
to-leading order (N2LO) Fraga and Romatschke [2005], Kurkela et al. [2010], Graf et al. [2016], Gorda and Säppi
[2022]. In this case, the QCD running coupling constant implies running non-zero masses at finite chemical potentials.
See recently published lecture notes of pQCD in the context of astrophysics for more details Vuorinen [2024]. In this
work, we do not study interactions, but simply discuss different kinds of conformal limit (for free quarks) and quantify
how different they are from each other. Nevertheless, even in this simplest scenario, as a first attempt to clarify, e.g.,
the influence of various chemical potentials on the conformal limit, our approach is complementary to the study of
interactions.

2 Results

We describe in detail the free Fermi gas formalism we use in this work (for quarks and leptons) in Appendix A. We
begin our discussion by ignoring the contribution of leptons to the thermodynamical quantities (later we include dif-
ferent possibilities and discuss them). In the figures that follow, the pressure P and baryon density nB are normalized
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Figure 1: Baryon density (upper panel) and pressure (lower panel) of quarks with different number of flavors and
different masses normalized by the respective massless cases.

by respective values of a free gas with the same number of quark flavors included, but with quark masses mi = 0 and
µQ = µS = 0. Simple analytical equations for the pressure of all the massless cases discussed in this work are derived
in Appendix B. We start our discussion considering only one chemical potential, and then expand our discussion to
two and three chemical potentials.

2.1 One chemical potential µB

We start by comparing the quark mass effect on nB versus µB in the left upper panel of Fig. 1. Because in this
case µQ and µS are zero, all quarks present the same chemical potential µi = µu = µd = µs = 1

3µB . Due to our
normalization (thermodynamical quantities divided by the massless case with the respective number of flavors), all
massless cases have constant value 1. Nevertheless, this does not mean that they are the same (if not normalized). To
discuss the effect of quark masses, we start with 1 flavor with mass of the up m = 2.3 MeV or down m = 4.8 MeV
quarks, then we look at the 2-flavor case with these masses for both light quarks. After that, we look at 3-flavors and
use first only non-zero mass for the strange quark m = 95 MeV and then the masses for the 3 quarks. The quark
masses we use correspond to the Particle Data Group (PDG Olive et al. [2014], within the error bars of updated values
Workman and Others [2022]). From hereon we refer to these masses as “realistic”.
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We find that the introduction of realistic quark masses decreases the density for low µB , with the s-quark mass affecting
the density until larger µB (up to 621 MeV) than the two light quarks (up to 55 MeV). To calculate these thresholds,
we use throughout this paper the criteria of a deviation of 10% from the black line with value 1. For P versus µB ,
shown in the lower panel of Fig. 1, the lines are very similar in shape (to the ones in the upper panel of the figure).
The introduction of realistic quark masses decreases again P for low µB , with the s-quark mass affecting the pressure
until larger µB (up to 834 MeV) than the two light quarks (up to 77 MeV).

2.2 Two chemical potentials µB and µQ

Now, we abandon the unphysical 1-flavor case, and continue with 2- and 3-flavor cases. The 2-flavor case has recently
become more relevant for dense matter because it has been shown that the core of neutron stars can harbor 3-, as well as
2-flavor quark matter Holdom et al. [2018]. For this case we add another (electric charge) chemical potential, breaking
some of the degeneracy in the quark chemical potentials: µup = 1

3µB + 2
3µQ, µdown = µstrange =

1
3µB − 1

3µQ. Once
more, we normalize thermodynamical quantities dividing by the respective values of the same quantity for a free gas
with the same number of quark flavors included, but with mi = 0, in addition to µQ = 0. Following this procedure,
we aim at determining how the conformal limit and its deviation depend on µQ.

When µQ is determined by charge neutrality, the results even for the massless case depend on the number of flavors. In
this case, only the 3-flavor case is coincidentally equal to the µQ = 0 case (see the explanation following Eqs. (50) to
(53) in Appendix B). For 2-flavor, this is not the case, and the pressure is lower than in the µQ = 0 case, establishing
a new lower conformal limit (see upper panel of Fig. 2). Expressions for the pressure for each particular chemical
potential case (always keeping mi = 0 for simplicity) can be found in Appendix B. Compare e.g., Eqs. (38) and (47).
When adding quark masses, µQ determined by charge neutrality lowers the pressure (in comparison to the respective
massless case and to the massless case with µQ = 0) such that it goes to the respective conformal limit at larger µB .
Using again the criteria of 10% deviations from the respective conformal limit, the s-quark mass affects pressure until
µB = 839 MeV and the two light quark masses until µB = 118 MeV.

Nevertheless, one issue about this approach should be noted: we are comparing very small values of µQ with very
large values of µB . See the middle panel of Fig. 2 for a comparison. This is particularly the case for 3-flavors of quarks,
and (except for extremely low µB) this behavior is independent of the quark masses. For small values of µB , both for
2 and 3-flavors, the dependence of µQ and µB can be predicted in fair agreement with Eq. (46). For this reason, next,
we add a fixed electric charge chemical potential to study how it affects the conformal limit, which translates into an
increase in pressure (see, e.g., the different lines for 3-flavor quark matter with realistic masses in the lower panel of
Fig. 2), specially at low values of µB . For massless quarks and µQ = −20 MeV, the pressure is always above the
conformal limit for µQ = 0, independently of the number of flavors. Once the quark masses are finite, the pressure
decreases, specially in the 3-flavor case (but also for the 2-flavor case). For larger absolute values of µQ, the pressure
becomes larger, even going above the conformal case (with and without µQ). For example, for the 3-flavor case with
realistic quark masses and µQ = −50 MeV, the pressure deviates 10% (of the µQ = 0 conformal limit) at µB = 698
MeV and for µQ = −100 MeV at µB = 415 MeV (the latter one from above). Finally, there is one important remark
regarding the behavior of the normalized pressure: in the lower panel of Fig. 2, it is shown that this physical quantity
decreases for small values of µB; however, this behavior doesn’t mean that the pressure itself (not normalized) is not
a monotonically increasing function of µB . Here, we must remember that our normalization is carried out by dividing
the thermodynamical quantities (such as pressure) by the massless case with the respective number of flavors, and the
free Fermi pressure of this system of massless quarks used for normalization scales as µ4

B; therefore, in those ranges of
µB where P for massive quarks increases at a lower rate than µ4

B , the normalized pressure decreases without implying
any thermodynamical inconsistency.

2.3 Three chemical potentials µB , µQ, and µS or µν

Going further, we can add another (strange) chemical potential and constrain it, e.g., to strangeness neutrality. The
issue is that at zero temperature strangeness neutrality means that there are no strange quarks, and the 3-flavor reduces
to the 2-flavor case. For this reason, we fix µS instead to specific values. µS breaks the degeneracy in the remaining
quark chemical potentials: µup = 1

3µB + 2
3µQ, µdown = 1

3µB − 1
3µQ, µstrange =

1
3µB − 1

3µQ + µS . Once more, we
normalize thermodynamical quantities dividing by the respective values of the same quantity for a free gas with the
same number of quark flavors included, but with mi = 0, in addition to µQ = 0.

Fixing µS increases the pressure, similar to fixing µQ. Compare, for example, the massless 3-flavor case in the upper
panel in Fig. 3 and lower panel in Fig. 2 and note that the pressure for a given µB is now much higher. When quark
masses are added, the similarity disappears, because µS only affects the strange quarks, which do not appear for low
values of µB , unless the µS value is larger than the strange quark mass, which corresponds to our case of µS = 100
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Figure 2: Pressure (upper panel) and electric charge chemical potential (middle panel) of quarks with 2 chemical
potentials normalized by the respective massless case with one chemical potential, µB . The electric charge chemical
potential is determined by charge neutrality. For massless 3-flavor quarks, the cases with and without µQ coincide.
Lower panel: Pressure of quarks with 2 chemical potentials, being µQ fixed to different values, normalized by the
respective massless case with one chemical potential, µB .
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Figure 3: Pressure of quarks with 2 or 3 chemical potentials, including the strange chemical potential, normalized by
the respective massless case (with one chemical potential, µB). The electric charge chemical potential is either zero
(upper panel), determined by charge neutrality (middle panel), or fixed (lower panel). For massless 3-flavor quarks,
the cases with charge neutrality and without µQ coincide.
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Figure 4: Upper panel: Pressure of quarks with 2 or 3 large chemical potentials, normalized by the respective massless
case with one chemical potential, µB . Lower panel: Pressure of quarks and leptons with 2 or 3 chemical potentials,
normalized by the respective massless case with one chemical potential, µB . For beta equilibrium with leptons, µQ is
determined by charge neutrality. When neutrinos are present, their chemical potential µν is determined by fixing the
lepton fraction, Yl.

MeV. For µS = 50 and µS = 100 MeV, the 10% deviation from the conformal limit takes place at µB = 1743 and
µB = 4227 MeV, respectively (both from above).

Now we consider the case in which additionally µQ 6= 0, determined to reproduce charge neutrality (middle panel of
Fig. 3). For massless 3-flavor quarks, the cases with charge neutrality and without µQ coincide. When masses are
introduced, the curves are still very similar (to the upper panel for the µQ = 0 case), except at very small µB , where
the quark masses are comparable to both µB and µQ. For µS = 50 and µS = 100 MeV, the 10% deviation from the
conformal limit takes place at µB = 1743 and µB = 4227 MeV, respectively (both from above). When a fixed value
of µQ is used, it increases the pressure further, specifically at low µB (see lower panel of Fig. 3). For µQ = µS = 50
and µQ = µS = 100 MeV, the 10% deviation from the conformal limit takes place at µB = 2070 and µB = 4723
MeV, respectively (both from above).

Next, we investigate the effects of having much larger values of µQ and µS , comparable to µB , for 3 flavors of quarks
in the upper panel of Fig. 4. As expected, the changes due to the additional chemical potentials take place at much
lower µB (notice the different scale in the y-axis of the figure) and practically all the curves are above the one chemical
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potential (µB) conformal limit. An exception is the case with large (negative) µQ (and µS = 0) because, according to
Eqs. 6 and 26, quarks can only exist after a given µB = 381 MeV, at which the momentum ki and P become finite
(see Eq. 49 for the massless case). In this case, the pressure differs from the one chemical potential conformal limit by
more than 10% until µB = 10 583 MeV. In the case of large µS , quarks can exist at any µB and the pressure differs
from the one chemical potential conformal limit by more than 10% until µB = 44 237 MeV. When we combine large
µS and (absolute value of) µQ, the pressure differs from the one chemical potential conformal limit by more than 10%
until µB = 48 897 MeV. In this case, the curve in the upper panel of Fig. 4 begins only at µB = 1000 MeV. This can
be understood once more from Eqs. 6 and 26. The same effect can also be seen (although more subtle) in the bottom
panel of Fig. 2, where the fixed µQ cases start at µB = −µQ.

Finally, we investigate changes due to the inclusion of a free gas of leptons (electrons and muons) in beta equilibrium
(and participating in the fulfillment of charge neutrality). As it can be seen in the lower panel of Fig. 4, the inclusion
of leptons (which appear in very small numbers or not at all) doesn’t change the pressure. The picture changes
though when lepton fraction is fixed. In this case, which also includes neutrinos, the pressure is considerably higher,
not because of the neutrinos themselves, but because the larger amount of negative leptons forces the appearance
of a large amount of up quarks, changing considerably the quark composition of the system and the stiffness of the
equation of state Jiménez [2020]. This same stiffening occurs with nucleons in equilibrium with a fixed fraction of
leptons in the context of protoneutron stars and supernova explosions (see, e.g., Roark and Dexheimer [2018] and
Gudmundsson and Buchler [1980]). The grey full line shows a kink for µB ∼ 400 MeV, when the muons appear.
Note that the difference in massless versus massive quarks is still very pronounced when Yl is fixed.

2.4 Symmetry energy

As already discussed, we calculate the symmetry energy only for the 2-flavor case, for which it was originally defined.
The symmetry energy can be defined for strange matter, but the problem in this case is that it becomes ambiguous,
as the two sides that appear in Eq. 3 (in terms of YI or YQ) become different because of the Gell-Mann–Nishijima
formula. Instead of choosing one particular definition for strange matter, we prefer not to use it. For more details
regarding the treatment of the symmetry energy for strange matter, see, e.g., Chu and Chen [2014].

To perform the calculation, we fix nB in this case (instead of µB as we have been doing) because the symmetry energy
is defined for a given nB , but limit the x-axis to approximately the corresponding range from the previous figures. The
upper panel of Fig. 5 shows that the curves are a monotonically increasing function of density and that the light quark
masses don’t affect the results. Indeed, the effect of the mass is expected to be negligible in the symmetry energy of a
free quark gas, since the quark masses are taken as very small at any density, while physically they should increase as
density decreases. At very high density, much above the range shown in Fig. 5, when the interactions are so weak that
they can be neglected, the independence observed on the quark mass means that it is correct to consider the conformal
(or massless) limit for the high density limit of QCD, because massless quarks or quarks with physical masses of the
order of the MeV are basically equivalent. This feature is reinforced by the clear overlapping of the equations of state
P (ε) for the corresponding 2-flavor cases here analyzed, as shown in the lower panel of Fig. 5. In this plot, the range of
µB is the same of the previous figures (running form 0 to, approximately, 1400 MeV). Notice that the independence on
the light quark masses applies to every thermodynamical quantity that is not normalized by the respective conformal
limit (and does not include derivatives). Numerically, we define δ = 0 as the 2-flavor µQ = 0 case (corresponding to
the 2-flavor lines in Fig. 1) and δ = 1 as the 2-flavor YQ = 0 case (with µQ 6= 0 corresponding to the 2-flavor lines in
the top and middle panels of Fig. 2).

3 Discussion and Conclusions

Perturbative corrections to a free gas of quarks due to interactions always bring down the pressure to lower values.
Although these corrections have been calculated to higher orders for massless and massive (strange) quarks, they
cannot directly be carried out to low baryon chemical potentials µB (or, interchangeably, low baryon densities nB in
the zero-temperature limit). This steams from the fact that matter in this regime is not perturbative and at some point
a phase transition to hadronic matter takes place. As a result, for the relevant regime of densities inside neutron stars,
µB ≤ 1500 MeV, pQCD predicts that the pressure is lower than 80% of the free gas value (see for example Fig. 1 of
Ref. Graf et al. [2016]) but with a very large band going all the way to P = 0. It is important to clarify that this band is
not an error bar, but the envelope considering the different scenarios of strange quark mass proposed in Kurkela et al.
[2010] and a variation of the renormalization parameter Λ̄ (see Fraga and Romatschke [2005], Kurkela and Vuorinen
[2016], Gorda et al. [2018], for more details).

Note that pQCD figures are usually shown normalized by the same case, same massless quark and chemical potentials
conditions, only turning off the interactions (in Ref. Graf et al. [2016] the effect of masses are highlighted, but the
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chemical potential conditions are kept the same). Their intention is to show the changes in the equation of state due to
the interactions. Our approach is different, and in our view complementary: we are only looking at free quarks, but we
are normalizing our figures to different quark masses and, most importantly, chemical potential values or conditions.
Our intention is to measure how much these masses and chemical potentials affect the equation of state.

To do so, in this work, we have investigated the equation of state of a free gas of quarks focusing on how the confor-
mal limit is reached when different chemical potentials are varied and different constraints (e.g. , for laboratory vs.
astrophysics) are considered. This is done by using combinations of 1, 2, or 3 chemical potentials out of the 4 we
consider, each related to a possible conserved quantity: baryon number B (µB), electric charge (µQ), strangeness (µS),
and lepton number (µν). We have also derived expressions for massless quarks under different conditions and used
the proportionality between the results to illustrate our discussion.

We have studied the effects of using different quark masses (including PDG values), number of flavors, and different
ways to fix the various chemical potentials considered. The latter procedure implies enforcing charge neutrality and,
when leptons were included, beta equilibrium. When leptons (electrons, muons, and their respective neutrinos) are
present, the pressure in not altered. An exception is the case in which the lepton fraction is fixed. For different cases,
we have quantified the deviation from the one-chemical potential (massless) conformal limit by verifying at which µB

the pressure deviates by more than 10%. This value varied from µB = 77 to 48 897 MeV. Depending of the values of
chemical potentials, e.g, µQ, even the light quark masses can become relevant at large µB . This shows that one must
be careful about making statements concerning comparisons with "the" conformal limit.

Finally, we have shown that the behavior of the symmetry energy is monotonically increasing and does not depend on
the light quark masses.
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A Appendix: General Expressions

For each particle i, we can write its chemical potential as the combination of the independent chemical potentials of
the system (each associated with a conserved quantity) weighted by the respective particle quantum number. In our
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case, of conserved baryon number, electric charge, and strangeness, we have

µi = QBµB +QiµQ +QSi
µS , (6)

where the baryon number for quarks is QB = 1/3 and Qi and QSi
are the electric charge and strangeness of each

quark. Here µB , µQ, and µS are the baryon, electric charge, and strange chemical potentials of the system. In our
formalism, the isospin chemical potential µI = µQ Aryal et al. [2020]. Alternatively, Eq. 6 can be derived from
the principles of thermodynamics. One may start considering the additive property of the internal energy U for a
n-component system:

U(λS, λV, λN1, ...λNn) = λU(S, V,N1, ...Nn) , (7)

where λ is arbitrary and S, V and Ni denote the entropy, the volume and the number of particles of a given component
i, respectively. Let us differentiate this “extensivity condition” with respect to λ:

∂U(λS, ...)

∂(λS)

∂(λS)

∂λ
+

∂U(λV, ...)

∂(λV )

∂(λV )

∂λ
+

∂U(λN1, ...)

∂(λN1)

∂(λN1)

∂λ
+ ...

+
∂U(λNn, ...)

∂(λNn)

∂(λNn)

∂λ
= U(S, V,N1, ...Nn) . (8)

Setting λ = 1 in the above equation, we obtain:

∂U

∂S
S +

∂U

∂V
V +

∂U

∂N1
N1 + ...+

∂U

∂Nn
Nn = U . (9)

Now, using the definition of the intensive parameters T (temperature), P (pressure) and µi (chemical potential), we
arrive at the Euler equation:

U = TS − PV + µ1N1 + . . . + µnNn . (10)

Inserting the above equations into the expression for the Gibbs energy G = U + PV − TS, we have:

G = TS − PV + µ1N1 + . . . + µnNn + PV − TS =⇒ G =

n
∑

i=1

µiNi , (11)

which is known as the Gibbs-Duhem relation. In the condition of chemical equilibrium, the Gibbs energy must be
minimized with respect to one of the quantities Nj . For constant temperature and pressure, this condition reads:

n
∑

i=1

(

∂G

∂Ni

)

T,P,Ni6=j

dNi

dNj
= 0 . (12)

Now, let ηj stand for the coefficient that gives the proportion of the component j with respect to the other components
of the system. If the component j suffers a variation dNj = η̄j , all the other components must also have a variation
given by dNi = (η̄j/ηj)ηi in order to keep the balance between the components implied by the condition of chemical
equilibrium. Therefore, dNi/dNj = ηi/ηj . Additionally, according to Eq. 11,

µi =

(

∂G

∂Ni

)

T,P,Ni6=j

. (13)

As a result, Eq. 12 can be written as:
n
∑

i=1

ηiµi = 0 . (14)

Considering that baryon number QB , electric charge Q and strangeness QS are conserved quantities, the three conser-
vation laws can be respectively written as

n
∑

i=1

ηiQBi
= 0 ,

n
∑

i=1

ηiQi = 0 and

n
∑

i=1

ηiQSi
= 0 . (15)

As long as we have n variables and 3 equations, it is possible to write 3 of the ηi as a functions of the other n− 3, as
follows:

η1QB1
+ η2QB2

+ η3QB3
= −

n
∑

i6=1,2,3

ηiQBi
, (16)
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η1Q1 + η2Q2 + η3Q3 = −

n
∑

i6=1,2,3

ηiQi , (17)

η1QS1
+ η2QS2

+ η3QS3
= −

n
∑

i6=1,2,3

ηiQSi
. (18)

Clearly, the 3 independent components chosen to construct the above relations are completely arbitrary. As a conse-
quence, we may consider a certain species 1 such that QB1

= 1, Q1 = 0 and QS1
= 0; a certain species 2 such that

QB2
= 0, Q2 = 1 and QS2

= 0; and a certain species 3 such that QB3
= 0, Q3 = 0 and QS3

= 1. In this case, the
above equations simplify to

η1 = −

n
∑

i6=1,2,3

ηiQBi
, η2 = −

n
∑

i6=1,2,3

ηiQi and η3 = −

n
∑

i6=1,2,3

ηiQSi
. (19)

Plugging Eq. 19 into Eq. 14, we find:

n
∑

i6=1,2,3

ηiµi =
n
∑

i6=1,2,3

ηi(QBi
µ1) +

n
∑

i6=1,2,3

ηi(Qiµ2) +
n
∑

i6=1,2,3

ηi(QSi
µ3) . (20)

Defining µ1 = µB (the baryon chemical potential), µ2 = µQ (the electric charge chemical potential) and µ3 = µS

(the strange chemical potential), the above equation can be rewritten as:

n
∑

i6=1,2,3

ηiµi =

n
∑

i6=1,2,3

ηi(QBi
µB) +

n
∑

i6=1,2,3

ηi(QiµQ) +

n
∑

i6=1,2,3

ηi(QSi
µS) . (21)

Finally, since all the factors ηi are independent, the above equation only holds if the coefficients are equal, i.e.,

µi = QBi
µB +QiµQ +QSi

µS , (22)

which precisely corresponds to Eq. 6, if we consider that all quarks have an identical baryon number QB , such that
QBi

= QB = 1/3.

The general expressions for energy density and pressure of a relativistic free Fermi gas of particles i can be derived
from the Dirac Lagrangian density extracting the diagonal components of the energy-momentum tensor (assuming an
ideal fluid). The (number) density is simply the integral of the distribution function. Using the natural system of units,
they are

ni =
gi
2π2

∫ ∞

0

dki k
2
i (fi+ − fi−), (23)

εi =
gi
2π2

∫ ∞

0

dkiEik
2
i (fi+ + fi−), (24)

Pi =
1

3

gi
2π2

∫ ∞

0

dki
k4i
Ei

(fi+ + fi−), (25)

where gi = 6 is the spin and color degeneracy factor, ki is the momentum,

Ei =
√

k2i +m2
i ≥ 0, (26)

is the energy of the state, mi the mass, f± the distribution function of particles and antiparticles fi± = (e(Ei∓µi)/T +

1)−1, with µi being the particle chemical potential, and T the temperature.

In the T = 0 limit, antiparticles provide no contribution, f− = 0, and f+ = 1 up to the Fermi momentum, ki = kFi
,

Ei = µi and the integrals for the above thermodynamic quantities are evaluated analytically

ni =
gi
6π2

k3Fi
, (27)

εi =
gi
2π2

[

(

1

8
m2

i kFi
+

1

4
k3Fi

)

√

m2
i + k2Fi

−
1

8
m4

i ln
kFi

+
√

m2
i + k2Fi

mi

]

, (28)

Pi =
1

3

gi
2π2

[

(

1

4
k3Fi

−
3

8
m2

i kFi

)

√

m2
i + k2Fi

+
3

8
m4

i ln
kFi

+
√

m2
i + k2Fi

mi

]

. (29)
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B Massless Quarks

For the massless particle case, the expressions above further reduce to

ni =
gi
6π2

k3Fi
=

gi
6π2

µ3
i , (30)

εi =
gi
8π2

k4Fi
=

gi
8π2

µ4
i , (31)

Pi =
1

3

gi
8π2

k4Fi
=

1

3

gi
8π2

µ4
i , (32)

reproducing εi = 3Pi.

Note that, in the case of massless free quarks, we can also write µi = ki. Therefore, we can write the chemical
potential for each quark flavor using Eq. (6)

µu =
1

3
µB +

2

3
µQ = ku , (33)

µd =
1

3
µB −

1

3
µQ = kd , (34)

µs =
1

3
µB −

1

3
µQ + µS = ks . (35)

We use the convention that both the strangeness and µS are positive. Alternatively, one could use both as negative
without changing the results. Eqs. 33, and 34 are equal if µQ = 0. Eqs. 33, 34, and 35 are equal if µQ = 0 and µS = 0.
The density and pressure of each quark flavor can be written further as

ni =
µ3
i

π2
=

k3i
π2

, (36)

Pi =
µ4
i

4π2
=

k4i
4π2

. (37)

Next, we discuss the pressure for specific conditions concerning number of flavors and chemical potential constraints
(not including leptons):

• 2-flavor, µQ = 0

P = Pu + Pd = 2Pu =
2µ4

u

4π2
=

µ4
B

162π2
=

µ4
B

1598.88
. (38)

• 3-flavor, µQ = 0, µS = 0

P = Pu + Pd + Ps = 3Pu =
3µ4

u

4π2
=

µ4
B

108π2
=

µ4
B

1065.92
. (39)

• 2-flavor, µQ fixed

P = Pu + Pd =
1

4π2

(

µ4
u + µ4

d

)

=
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+

(

1

3
µB −

1

3
µQ

)4
]

=
1

4π2

(

µ4
B

81
+

4µ3
B

27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB

3

8µ3
Q

27
+

16µ4
Q

81

+
µ4
B

81
−

4µ3
B

27

µQ

3
+

6µ2
B

9

µ2
Q

9
−

4µB

3

µ3
Q

27
+

µ4
Q

81

)

=
1

324π2

[

2µ4
B + 4µ3

BµQ + 30µ2
Bµ

2
Q + 28µBµ

3
Q + 17µ4

Q

]

. (40)
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• 2-flavor, µQ from charge neutrality

Starting from
∑

i Qini = 0
2

3
nu −

1

3
nd = 0 , (41)

2

3

µ3
u

π2
−

1

3

µ3
d

π2
= 0 , (42)

2µ3
u = µ3

d , (43)

2

(

1

3
µB +

2

3
µQ

)3

=

(

1

3
µB −

1

3
µQ

)3

, (44)

2
1
3
1

3
µB −

1

3
µB = −2

1
3
2

3
µQ −

1

3
µQ , (45)

µQ =
−
(

2
1
3 − 1

)

µB

2
4
3 + 1

= −0.07 µB . (46)

We can then use Eqs. 43 and 46 to calculate the pressure

P = Pu + Pd =
1

4π2

(

µ4
u + µ4

d

)

=
1

4π2

(

µ4
u + 2

4
3µ4

u

)

=
1

4π2

(

1 + 2
4
3

)

µ4
u =

1

4π2

(

1 + 2
4
3

)

(

1

3
µB +

2

3
µQ

)4

=
1

4π2

(

1 + 2
4
3

)

[

1

3
µB −

2

3

(

2
1
3 − 1

2
4
3 + 1

µB

)]4

=
1

4π2

(

1 + 2
4
3

)

[

2
4
3 + 1− 2

4
3 + 2

3(2
4
3 + 1)

]4

µ4
B

=
1

4π2(2
4
3 + 1)3

µ4
B =

µ4
B

1721.59
. (47)

• 3-flavor, µQ fixed, µS = 0

P = Pu + Pd + Ps =
1

4π2
(µ4

u + µ4
d + µ4

s) =
1

4π2
(µ4

u + 2µ4
d) , (48)

because µd = µs are equal, resulting in

P =
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+ 2

(

1

3
µB −

1

3
µQ

)4
]

=
1

4π2

(

µ4
B

81
+

4µ3
B

27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB

3

8µ3
Q

27
+

16µ4
Q

81

+ 2
µ4
B

81
− 2

4µ3
B

27

µQ

3
+ 2

6µ2
B

9

µ2
Q

9
− 2

4µB

3

µ3
Q

27
+ 2

µ4
Q

81

)

=
1

324π2

(

3µ4
B + 36µ2

Bµ
2
Q + 24µBµ

3
Q + 18µ4

Q

)

. (49)

• 3-flavor, µQ from charge neutrality, µS = 0

Starting again from
∑

iQini = 0
2

3
nu −

1

3
nd −

1

3
ns = 0 , (50)

2

3

(

µ3
u

π2

)

−
1

3

(

µ3
d

π2

)

1

3
−

(

µ3
s

π2

)

= 0 , (51)
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2µ3
u − µ3

d − µ3
s = 0 , (52)

but, since in this case µd = µs, we have:

µ3
u = µ3

d , (53)

which implies (from Eqs. 33 and 34) µQ = 0 and reproduces the 3-flavor case with µQ = 0, µS = 0.

• 3-flavor, zero net strangeness

Starting from
∑

QSi
ni = 0, at T = 0 this implies ns = 0, no matter if µQ = 0 or µQ 6= 0. As a consequence, this

case reproduces the respective 2-flavor case.

• 3-flavor, µQ fixed, µS fixed

P = Pu + Pd + Ps =
1

4π2
(µ4

u + µ4
d + µ4

s)

=
1

4π2

[

(

1

3
µB +

2

3
µQ

)4

+

(

1

3
µB −

1

3
µQ

)4

+

(

1

3
µB −

1

3
µQ + µS

)4
]

. (54)

Using the result from Eq. 49

P =
1

324π2

(

3µ4
B + 36µ2

Bµ
2
Q + 24µBµ

3
Q + 18µ4

Q

)

+
1

4π2

(

µ4
S −

4

27
µ3
QµS −

4

3
µQµ

3
S +

4

3
µBµ

3
S +

4

27
µ3
BµS

+
6

9
µ2
Qµ

2
S +

6

9
µ2
Bµ

2
S −

12

27
µ2
BµQµS +

12

27
µBµ

2
QµS −

12

9
µBµQµ

2
S

)

. (55)

• 3-flavor µQ = 0, µS fixed

Using Eq. 55 with µQ = 0

P =
1

π2

(

1

108
µ4
B +

µ4
S

4
+

1

3
µBµ

3
s +

1

27
µ3
BµS +

1

6
µ2
Bµ

2
S

)

. (56)

• 3-flavor, µQ from charge neutrality, µS fixed

Starting from
∑

Qini = 0
2

3
nu −

1

3
nd −

1

3
ns = 0 , (57)

2µ3
u − µ3

d − µ3
s = 0 , (58)

2

(

1

3
µB +

2

3
µQ

)3

−

(

1

3
µB −

1

3
µQ

)3

−

(

1

3
µB −

1

3
µQ + µS

)3

= 0 , (59)

2µ3
B

27
+

12µ2
BµQ

27
+

24µBµ
2
Q

27
+

16µ3
Q

27
−

2µ3
B

27
+

6µ2
BµQ

27
−

6µBµ
2
Q

27

+
2µ3

Q

27
− µ3

S −
3µ2

BµS

9
+

6µBµQµS

9
−

3µ2
QµS

9
−

3µBµ
2
S

3
+

3

3
µQµ

2
S = 0 , (60)

2µ2
BµQ

3
+

2µBµ
2
Q

3
+

2µ3
Q

3
− µ3

S −
µ2
BµS

3
+

2µBµQµS

3
−

µ2
QµS

3
− µBµ

2
S + µQµ

2
S = 0 . (61)

In the above expression, we still need to isolate µQ and replace in Eq. 55.
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