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Abstract In the equatorial and subtropical east Pacific Ocean, strong ocean-atmosphere coupling results in
large-amplitude interannual variability. Recent literature debates whether climate models reproduce observed
short and long-term surface temperature trends in this region. We reconcile the debate by reevaluating a

large range of trends in initial condition ensembles of 15 climate models. We confirm that models fail to
reproduce long-term trends, but also find that many models do not reproduce the observed decadal-scale
swings in the East to West gradient of the equatorial Pacific. Models with high climate sensitivity are less
likely to reproduce observed decadal-scale swings than models with a modest climate sensitivity, possibly

due to an incorrect balance of cloud feedbacks driven by changing inversion strength versus surface warming.
Our findings suggest that two not well understood problems of the current generation of climate models are
connected and we highlight the need to increase understanding of decadal-scale variability.

Plain Language Summary We connect two pressing problems of current generation climate
models: their inability to reproduce observed trends of surface temperatures in the equatorial Pacific Ocean

and their high climate sensitivity. We first reconcile a debate on how and when models fail to reproduce the
observations. We then show that models which do not reproduce short-term swings in the gradient between East
and West equatorial Pacific Ocean tend to have a high climate sensitivity. Understanding this link will provide
physical arguments for trusting the high climate sensitivity models more or less but requires substantial research
from the ocean and atmosphere communities.

1. The Pattern Problem

The prevailing stratocumulus clouds over the equatorial and subtropical east Pacific dominate variations in the
global energy budget and are highly sensitive to local and remote surface temperatures. The cause of the observed
strengthening of the east-west gradient in the equatorial Pacific sea surface temperatures (SST; henceforth “gradi-
ent,” Figure 1a) has been a subject of debate since the 1990s. Major questions that remain unsolved are: (a) Is
the strengthening a response to greenhouse gas and/or aerosol forcing or part of decadal internal variability?
and (b) Do models not capture it because of their inherent biases in the mean-state, atmosphere-ocean coupling,
ocean mixing, atmospheric deep convection, cloud feedbacks, and/or inter-ocean basin interactions (e.g., Cane
et al., 1997; England et al., 2014; Gregory et al., 2020; Seager et al., 2019, 2022)?

In recent years, many climate modeling centers have generated initial condition ensembles (“large ensembles,”
e.g., Deser et al., 2020), which greatly improve the sampling of models' internal variability. Some studies argue
that the observed trends in the gradients fall within the range of trends simulated by the large ensembles (e.g.,
Olonscheck et al., 2020; Watanabe et al., 2021), while others argue that the observed trends lie outside the simu-
lated range (e.g., Seager et al., 2019, 2022; Wills et al., 2022). Here, we reconcile these seemingly contradicting
studies by analyzing all trends longer than 18 years between 1950 and 2020 in observations and large ensembles
of 15 climate models. The ongoing debate is about the strengthening of the gradient (blue colors in Figure 1b),
which is most pronounced in trends starting in the 1990s and ending in 2010s. However, recent trends starting in
1995 or later and 30-year or shorter trends centered around the 1980s indicate a weakening gradient (red colors
in Figure 1b).

Coupled Model Intercomparison Project (CMIP) models do not reproduce the observed trends well (Figure 1c).

. '
—t,)/o, were t, is a model's

We quantify the models' ability to reproduce the observed changes as ¢ = (¢

mean
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ensemble-mean trend and by definition its response to forced climate change, t , is the observed trend, and o is

obs
the sample standard deviation of the particular model's large ensemble (Olonscheck & Notz, 2017, illustrated in
Figure S1 of Supporting Information S1). Importantly, we do not necessarily expect the observations to lie close
to the ensemble mean, since the observed value contains just one out of many possible realizations of real-world
internal variability next to the unknown forced response. ¢ being larger than +2 states that the observations sit at
the very edge or outside the distribution, implying that a model's forced response and internal variability rarely
combine to match the observed gradient trend. Not only are most models unable to reproduce the long-term
strengthening of the gradient (beginning in the 1950s and ending in the 2010s) but also about half of the models
cannot simulate the shorter-term trends, referred to in the following as “swings” of the gradient in both directions
(along the diagonal), including the weakening of the gradient around the 1980s. Similar analysis of tropical
Pacific zonal wind stress and Southern Ocean SSTs also shows trend discrepancies that have been discussed in
the literature (Figure S3 in Supporting Information S1; e.g., England et al., 2014; Kostov et al., 2018; Zhang
et al., 2019). Depending on what period and trend-lengths the former studies sampled they tapped into these
model deficiencies to varying degrees. Clear interpretations of these model deficiencies are currently missing.
Notably, the recent weakening of the gradient starting in 1995 lies well within the simulated range (lower right
of Figure 1a and lower left of Figure 1c).

2. The Hot Model Problem

Many models in CMIP Phase 6 have a much higher climate sensitivity than their counterparts in previous phases,
and therefore their validity and applicability is being debated (e.g., Hausfather et al., 2022, and responses). The
increased sensitivity stems to a large degree from a more sensitive shortwave low cloud feedback, meaning
that low clouds reduce with warming, reflecting less solar radiation back to space and hence increasing global
temperatures (e.g., Zelinka et al., 2020). Here, we show a potential link between the two global climate mode-
ling problems—their inability to simulate the observed magnitude of swings of equatorial Pacific temperature
trends, and their potentially erroneous climate sensitivity, by correlating the models' climate sensitivity with ¢
(Figure 2 and Figure S4 in Supporting Information S1). We use the Effective Climate Sensitivity (EffCS) calcu-
lated with an idealized simulation of 150 years following a step-forcing of quadrupling CO, (Gregory et al., 2004;
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Figure 1. Surface temperature trends of various lengths in the equatorial Pacific Ocean in observations and climate model large ensembles. (a) Mean of HadISST1,
ERSSTvS, and COBE 1979-2020; (b) trend differences between the Eastern Equatorial Pacific (EEP, 5°S-5°N, 180°-80°W) and Western Equatorial Pacific (WEP,
5°S-5°N, 110°E—180°; boxes indicated in panel (a) in the mean of HadISST1, ERSSTv5, and COBE for any trend longer than 18 years between 1950 and 2020; (c)
Number of models for which the observations fall outside +2 standard deviations of the model mean. See Table S1 in Supporting Information S1 for model names
and number of ensemble members. Letters indicate previous studies coming to different conclusions about the discrepancy between models and observations. Circles
indicate the periods shown in Figure 2. Figure S2a in Supporting Information S1 overlays panel (c) on (b).
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Figure 2. Least-square linear regression of Effective Climate Sensitivity against the difference of the observed gradient changes within the simulated range for each
large ensemble (¢) for two 25-year trends (b and c). Histograms for both periods show the fitted normal distribution of SST trends used to determine ¢ of two model
ensembles for illustration (panel a and d). See Figure S2b in Supporting Information S1 for the multi-model mean value of ¢ for all time periods and trend lengths and
Figure S4 in Supporting Information S1 for the coefficient of determination and regression slope for all time periods and trend lengths. The coefficient of determination
for a regression without the outlier CESM2 is 0.63 for 1970-1995 an 0.45 for 1990-2015.

Sherwood et al., 2020) and call models with a high EffCS “hot models.” EffCS measures the sensitivity of models
with a long-term surface warming pattern projected toward the end of the 21st century or apparent in idealized
CO,-step-forcing simulations, which is very different from the one observed over the last 70 years.

For illustration, we pick two 25-year periods centered around the weakening of the gradients in the 1980s and the
strengthening of the gradients around the 2010s, while our findings hold for various trend lengths (Figure S4 in
Supporting Information S1). Hot models tend to rarely or never reproduce both observed swings in the gradient,
because of a narrow spread in trends due to internal variability (Figures 2a and 2d). We speculate how this might
come about: the model spread in EffCS is dominated by shortwave cloud feedbacks (Cess et al., 1990) and has
been traced to tropical- and subtropical marine low clouds. Their radiative feedbacks are mainly controlled by two
competing factors acting on multi-decadal timescales (e.g., Ceppi & Nowack, 2021; Cesana & Del Genio, 2021;
Forster et al., 2021a; Klein et al., 2017; Myers et al., 2021, 2023, see illustration in Figure S5 of Supporting
Information S1): first, remote warming in the tropical regions of deep convection follows the moist adiabat and
warms the entire tropical troposphere, resulting in an increase in the boundary layer inversion strength in the east-
ern tropical and subtropical Pacific. This negative “inversion feedback” increases low cloud extent and reflected
solar radiation and plays a role in establishing the magnitude of the SST gradient on decadal timescales (e.g.,
Bellomo et al., 2014; Clement et al., 2009; Klein et al., 2017). Second, local sea surface warming underneath the
stratocumulus cloud deck destabilizes the boundary layer which, in turn, reduces cloud extent and increases solar
absorption, constituting a positive “SST feedback”. Climate models do not explicitly resolve but parameterize
cloud, boundary layer, and deep convective processes and thus, have a large spread in the relative impacts of the
inversion versus the SST feedbacks (e.g., Forster et al., 2021b; Myers et al., 2021).

Consider case A in which internal ocean dynamics, for example, strengthen the gradient with the west warming
and the east cooling. Both the SST feedback and the inversion feedback would further cool the SSTs in the east-
ern tropical Pacific and amplify the gradient. Models with strong inversion feedback would have the strongest
changes in gradient. Now consider case B in which forced climate change is initially fairly homogeneous. In this
case, a model's SST feedback reduces low cloud cover and further warms the east, while the inversion feedback
still increases the low cloud cover and hence dampens the warming in the East. Models with a strong inversion
feedback may fully compensate for the positive SST feedback, but in models with a weak inversion feedback
the SST feedback dominates the net response (e.g., Klein et al., 2017; Myers et al., 2023). Hence, the model
with a strong inversion feedback will have less of a reduction or even an increase in low level cloud and thus,
less global mean warming. In this thought exercise, models with a strong inversion feedback would more likely
reproduce the observed decadal scale swings while warming moderately under forced climate change. Models
with a weak inversion feedback are less likely to reproduce observed decadal scale swings and do not strongly
counteract the positive SST feedback under forced warming with their inversion feedback—these are most likely
the “hot models.” The ability of models to reproduce the observed swings may also be related to their relative
amplitudes of variability in the West Pacific (invoking the negative inversion feedback) compared to the East
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Pacific (invoking the positive SST feedback). Most models have too much ENSO variability in the West Pacific,
while CESM2 (a notable outlier in Figure 2) has too strong variability in the Central and East Pacific (Capotondi
et al., 2020; Maher et al., 2023; Samanta et al., 2018).

3. Outlook and Summary

The relationship between a model's climate sensitivity and its ability to reproduce swings in the gradient is
intriguing and raises further questions. For example, the inability of the hot models to reproduce the swings is
opposite to what we would expect from the fluctuation-dissipation theorem, which states that—in the global
mean—systems or models with higher variability also have a higher sensitivity to external forcing (e.g., Cox
et al., 2018). Interestingly, the ability of the models to reproduce the observed long-term, slightly negative trend
in the gradient does not correlate well with EffCS (Figure S4 in Supporting Information S1) or the models' forced
response (not shown). Here, we show that none of the models reproduces long-term trends and many models
fail to reproduce short-term swings in the gradient between East and West equatorial Pacific Ocean. We show
that only the latter problem is related to the models' climate sensitivity: hot models extremely rarely or never
reproduce the observed magnitude of the swings in both directions. Future research should determine how these
model shortcomings relate to the relative amplitude and sign of SST feedback and inversion feedback and their
connection to inter-annual to multi-decadal variability in the Pacific. Further, it is imperative for model evalua-
tion and trust in climate change projections that we determine to what degree observed decadal to multi-decadal
trends in the equatorial Pacific are driven by internal variability, aerosol and greenhouse gas forcing and which
aspects the models fail to reproduce.

Data Availability Statement

The data that support the findings of this study are openly available. The large ensemble model output is obtained
from the Multi-Model Large Ensemble Archive http://www.cesm.ucar.edu/projects/community-projects/
MMLEA/. All other model output used here is accessible from the Earth System Grid Federation https://esgf-
data.dkrz.de/projects/esgf-dkrz/ and https://esgf-data.dkrz.de/projects/cmip6-dkrz/. The observational data sets
can be downloaded at Had-ISST1: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html (Rayner
et al., 2003), COBE: http://psl.noaa.gov/data/gridded/data.cobe.html (Ishii et al., 2005), ERSSTv5: https://www.
ncei.noaa.gov/products/extended-reconstructed-sst (Huang et al., 2017). The EffCS values are available through
(Zelinka, 2022; Zelinka et al., 2020). Scripts used in this study are available at https://github.com/shreyadhame/
pattern-hotmodel (Dhame, 2023).
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