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Abstract

The accurate prediction of suitable chiral stationary phases (CSPs) for resolving

the enantiomers of a given compound poses a significant challenge in chiral chromatog-

raphy. Previous attempts at developing machine learning models for structure-based

CSP prediction have primarily relied on 1D SMILES strings1 or 2D graphical represen-

tations of molecular structures, and have met with only limited success. In this study,

we apply the recently developed 3D molecular conformation representation learning al-

gorithm, which uses rapid conformational analysis and point clouds of atom positions in

1The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation
for describing the structure of chemical species using short ASCII strings.
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3D space, enabling efficient chemical structure-based machine learning. By harnessing

the power of the rapid 3D molecular representation learning and a dataset comprising

over 300,000 chromatographic enantioseparation records sourced from the literature,

our models afford notable improvements for the chemical structure-based choice of ap-

propriate CSP for enantioseparation, paving the way for more efficient and informed

decision-making in the field of chiral chromatography.

Introduction

Chiral Chromatography has been the most widely used technique for measuring enantiopu-

rity for nearly four decades1, but the issue of which of the dozens of available chiral stationary

phases (CSPs) will be best suited for resolving the enantiomers of a particular compound re-

mains difficult to predict. Presently, the preferred technique for developing chromatographic

methods involves the rote screening of multiple chiral columns using high-performance liq-

uid chromatography (HPLC) or supercritical fluid chromatography (SFC) instruments, often

equipped with column switching devices. This empirical approach, though widely adopted,

can be time-consuming and resource-intensive, particularly when dealing with newly syn-

thesized compounds2,3 with limited prior characterization data. Machine learning (ML)

techniques offer new possibilities for advancing research in chiral chemistry and improving

our understanding of chirality in various fields. Many examples demonstrate a variety of ap-

plications including chiral chromatography 4–6, asymmetric catalysis7–9, molecule detection10,

or optical rotation prediction11.

The availability of Chirbase, a massive database comprised of more than 300,000 in-

dividual chiral chromatographic records extracted from the literature by Roussel and co-

workers12,13, has encouraged preliminary attempts at structure-based ML for CSP predic-

tions. Progress to date has been somewhat modest12, with the scarcity of negative data in

literature reports being identified as an impediment to further advancements 14. Rebalancing

the data set to compensate for missing negative data has been somewhat helpful 13, but model
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performance still lacks the level of certainty needed for routine use in chiral chromatographic

method development.

Chemical structure-based machine learning models typically use traditional one-dimensional

(SMILES)15 or two-dimensional chemical graph16,17 molecular representations, from which a

collection of molecular ‘features’ are extracted that together describe certain characteristics

of the molecule of interest (for example, Molecule A possesses a total of 11 carbon atoms,

12 hydrogen atoms, 2 nitrogen atoms, and 2 oxygen atoms, 5 double bond equivalents, a

carbonyl oxygen that is 3 bonds removed from a nitrogen atom, an indole ring system, etc.).

Models are then trained on the association of such features with some measurable properties

such as solubility, NMR peak shift, etc. While progress in this area has been remarkable in

recent years, the use of molecular descriptors derived from 1D or 2D molecular representa-

tions may not fully capture the subtle differences in shape and conformation that frequently

play a crucial role in molecular properties associated with catalysis, reactivity, and molecular

recognition.

We have recently developed the deep neural network (DNN) model, 3DMolMS 18, which

represents the chemical structures of the input compound as ‘point clouds’ in 3D, where each

component atom is represented by x, y, z-coordinates and an atom identifier (e.g. carbon

atom, oxygen atom, etc.). With this approach, no specific information about bond con-

nectivity is recorded, although this information can of course be deduced from interatomic

distances. 3DMolMS encompasses all the advantages realized by three-dimensional molec-

ular representation learning. Notably, it incorporates SE(3) invariance (pertaining to the

Euclidean group involving 3D displacement motions like translations and rotations) 19–22,

high efficiency, and geometric completeness23. The 3DMolMS algorithm applies a rapid cal-

culation of a single lowest energy conformer for each molecule in the training set, which

is then converted to a point cloud. The model was initially developed for structure-based

prediction of MS fragmentation in tandem mass spectrometry, where it shows improved

performance relative to previously developed ML models. Subsequently, transfer learning
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employing the 3DMolMS model has afforded improved ML predictive models for disparate

properties of compounds such as their retention time (RT) in liquid chromatography (LC)

and collisional cross sections (CCS) in ion mobility spectrometry (IMS) 18.

Based on these results, we reasoned that the 3DMolMS model could be useful for improved

structure-based enantioselectivity prediction for specific CSPs. Accordingly, we have revis-

ited previously developed ML models, evaluating the prospects for improving performance

using the 3DMolMS approach combined with transfer learning. Specifically, we developed

3DMolCSP, which extends the DNN model of 3DMolMS, for enantioselectivity prediction.

We trained the model using the previously prepared CSP data set in ChirBase 12,13, and

evaluated the model using cross-validation and on an independent CSP dataset CMRT 5.

The results showed 3DMolCSP outperforms the previous ML models for enantioselectivity

prediction, while the transfer learning based on the pretrained model on spectra prediction

can further improve the model’s performance. These results suggest that 3DMolCSP is ready

to be used to assist in the selection of appropriate CSP for enantioseparation in the field of

chiral chromatography.

Methodology

Data Prepossessing

To train the 3DMolCSP model for enantioselectivity prediction, we exploited the experimen-

tal data curated in ChirBase, which contains the measurement of 42,361 unique enantiomer

pairs. Similar to the previous studies, we selected 18 different CSPs among 1603 chiral

columns, on which a sufficient number of compounds were experimentally tested. In addi-

tion to cross-validation on this training dataset, we evaluated the model on an independent

testing set, including 6 CSPs collected in CMRT5. The number of compounds in the training

and testing sets are summarized in Table 1. For the transfer learning approach, we adapted

the pretrained model of 3DMolMS for tandem mass (MS/MS) spectra prediction, which
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Table 1: Number of compounds with the experimental data of 18 different CSPs available
in ChirBase and CMRT. The enantiomers are counted as one compound.

CSP
No. of Compounds

All After preprocessing
ChirBase CMRT ChirBase CMRT Overlap

Chiralcel OD (Lux Cellulose-1) 14395 178 13746 171 8
Chiralpak AD 11194 292 10906 269 14
Chiralcel OJ (Lux Cellulose-3) 4261 111 4170 102 5
Chiralpak AS 3666 156 3605 151 13
Whelk-O 1773 0 1691 0 0
Chiralpak IA 1380 805 1345 727 25
Pirkle (R or S)-DNBPG 1338 0 1334 0 0
Chiralcel OB 1276 0 1257 0 0
Chirobiotic T 1155 0 1155 0 0
Chiralpak IC (Lux i-Cellulose-5) 1035 931 1024 893 22
Chiralpak IB 680 300 679 285 0
Cyclobond I 642 0 639 0 0
Chiral-AGP 574 0 575 0 0
Cyclobond I RN 533 0 553 0 0
Chirobiotic R 462 0 460 0 0
Chirobiotic V 351 0 351 0 0
Chirobiotic TAG 308 0 308 0 0
Ultron-ES-OVM 189 0 189 0 0

was previously developed by us using the training data collected in the spectral libraries of

Agilent DCPL and NIST2024.

We followed the same data preparation procedure as used in the previous studies 13,18.

For each data set record sharing the same chiral chemical structure, we selected the optimal

condition recorded for each CSP, ensuring that each enantioselectivity value was unique. We

retained the compounds composed solely of the most common atoms (i.e., C, H, O, N, F, S,

Cl, P, B, I and Br). The lowest-energy three-dimensional conformations are generated from

their respective SMILES strings using the ETKDG25 algorithm implemented in the RDKit

library 2.

Discretization of Enantioselectivity Values

The CSP enantioselectivity values, denoted as α, serve as the critical indicators of the sep-

aration efficacy achieved by a CSP in chiral chromatography using high-performance liq-
2Open-source cheminformatics: https://www.rdkit.org/
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α

brush type CSPs

polymer-based CSPs

1 1.05 1.15 2

1 1.1 1.2 2.1

Class 0 (no separation or poor separation)
Class 1 (separation is achieved or almost achieved)
Class 2 (excellent separation)
Class 3 (large separation)

Figure 1: The four classes (denoted as Class 0, 1, 2 and 3, respectively) of compounds are
defined based on their α values for the brush type or the polymer-based CSPs. Between
these two types of CSPs, the fraction of compounds in the four classes are 10-15%, 20-30%,
45-55%, and 10-15%, respectively.

uid chromatography (HPLC) or gas chromatography (GC). These values are fundamental

to assessing the selectivity and discriminatory power of each CSP in resolving enantiomers.

Specifically, α, the ratio of retention factors (k1 and k2) on the chiral stationary phase (CSP),

quantifies the separation between enantiomers, with higher values indicating greater separa-

tion. Retention factors, denoted by k, are standardized parameters defined as (tR− tM)/tM ,

where tR denotes the time the analyte spends in the stationary phase, and tM denotes the

retention time for an unretained analyte. Unlike tR, which depends on specific instrument

conditions such as the column length, column inner diameter, and the flow rate, the re-

tention factor allows for easier comparison and communication of results across different

chromatographic systems.

As described in the previous study13, the CSP’s dataset consists of two types of CSPs: the

brush type CSPs and the polymer-based (e.g. carbohydrate or protein) CSPs, respectively.

For each type, the compounds are grouped into four classes based on their enantioselectivity

values, as shown in Figure 1.

Imbalanced Data Handling and Data Augmentation

Two pivotal methodologies are employed on the training dataset: resampling, employed to

achieve category balance, and data augmentation, utilized to enhance the model’s resilience
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in both enantiomeric configurations (S and R). To address the issue of imbalanced training

data (i.e., the number of compounds in one class is much greater than those in the other

classes), we randomly re-sampled the compounds in classes with fewer compounds within

each CSP for training purposes.

It is worth noting that the 3DMolCSP model is geometrically complete 23, which allows

it to differentiate between two enantiomeric configurations, as proved in section S1. We also

conduct the prediction of the elution order of enantiomers, and showed in the results section

that our model is capable of distinguishing enantiomers’ configuration. Considering this ca-

pability, both enantiomer configurations are given as input into 3DMolCSP, in an attempt

to enable the model to learn chiral information from both configurations. The other configu-

ration of enantiomers can be easily calculated by inverting z-coordinate of one configuration

conformation, which is also known as flipping data augmentation in ‘point clouds’-based

methods26. When evaluating, we average the predicted results from two configurations of

each enantiomer as the final predicted enantioselectivity values.

Neural Network Architecture Optimization

The deep neural network of 3DMolCSP for enantioselectivity prediction in CSPs is based on

the architecture of 3DMolMS18, while we enhanced the elemental convolution and optimized

the decoder component to efficiently retrieve the chiral information from compounds 3D

conformations.

3DMolConv 2.0: In the original elemental convolution, we represent each molecular 3D

conformation as a point set, denoted by X = {x1, x2, ..., xn}, where xi ∈ RF and F is the

input dimension. We employ a message-passing method specifically tailored for molecular

structures. The features of central points are dynamically updated across layers by aggre-

gating weighted features from both the central point itself and its k-nearest neighbors. The

weights are learnable from the atoms’ distances (d) and the direction of bonds (ϕ). However,

we acknowledge that even though in theory, this operation is sensitive to enantiomers (as
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demonstrated in the section S1), in practice, the model encounters the challenge of effectively

learning sufficient chiral information to distinguish enantiomers. To address this challenge,

we developed an enhanced elemental convolution (denoted as 3DMolConv 2.0 ) in an at-

tempt to more explicitly model the bond directions by concatenating them into neighbors’

features3:

xl+1
i = xl

i +
∑

j∈N (xl
i)

W l [d(xi, xj)] ◦
[
xl
j||ϕ(xl

i, x
l
j)
]

(1)

where ◦ represents the element-wised multiplication, || represents the concatenation, xl
j rep-

resents one (i.e., xj) of the k-nearest neighbors of the atom xi in layer l, and the W l repre-

sents the filter on distances. Here, the distance between two atoms xi and xj is computed

as d(xi, xj) = ||xi − xj||, and the angle between the point vectors xi and xj encodes the

information related to either the bond angle or the non-bond angles of the edge ⟨xi, xj⟩:

ϕ(xi, xj) =
∑

k∈N (xi)
e⊤ijeik, where eij denotes the vector representation related to the edge

eij between xi and xj: eij = x⊤
i xj.

Decoder: Since our model is specifically designed to predict the enantioselectivity for each

CSP, which is a single value, we narrowed down the width of the four decoder layers to

512, 256, 128, and 64, respectively. Furthermore, there is no need to concatenate any meta-

data into the embedded molecules within the latent space. As a result, the total number of

parameters in 3DMolCSP is reduced to 11, 025, 344.

Feature Enrichment for Elution Orders Prediction

In the CSP enantioselectivity prediction, the two enantiomers with the same chemical struc-

ture are expected to demonstrate the same enantioseparation. We use the x, y, z-coordinates

and other eight atomic attributes shown in Table 2 as the input atomic features. However,

for the prediction of the enantiomers’ elution order, the model is expected to learn sufficient
3The initial version of 3DMolConv can be represented as xl+1

i = xl
i +

∑
j∈N (xl

i)
W l

1 [d(xi, xj)] ◦
W l

2

[
ϕ(xl

i, x
l
j)
]
◦ xj , which contains two filters, filter on distances named W l

1 and filter on directions named
W l

2.
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Table 2: The point set encoding of a compound, in which each atom in the compound is
encoded as a vector of 22 dimensions, representing the x, y, z-coordinates and other attributes
of the atom. The feature marked by an asterisk is only used for the prediction of enantiomers’
elution orders.

Index Description
0-2 x, y, z coordinates
3-14 one-hot encoding of the atom type
15 number of immediate neighbors who are nonhydrogen atoms
16 valence minus the number of hydrogens
17 atomic mass
18 atomic charge
19 number of implicit hydrogens
20 is aromatic
21 is in a ring
22* is chiral center

3D conformations

stacked 

3DMolConvs

CSP decoder

predicted CSP enantioselectivity

3D conformations

mass spectra 

decoder

predicted mass spectra

metadata

stacked 

3DMolConvs

b. transfer

a. train

MS/MS 

prediction

c. train CSP 

prediction 

from pretrained 

encoder

Agilent PCDL NIST20 ChirBase

Figure 2: The workflow of building 3DMolCSP-TL model using the transfer learning ap-
proach. To build the 3DMolCSP model from scratch (i.e., the independent learning ap-
proach), we follow the flow in the right panel only.

distinguishable characteristics of two enantiomers. To guide the model to prioritize chiral

atoms in elution order prediction, we enrich the input atomic features by marking whether

the atom is a chiral center. It is worth noting that we do not inform the model of the specific

chiral tag, i.e. (R) or (S ), but let the model learn the chiral types by itself.

Training and Evaluation

The five-fold cross-validation approach is employed to evaluate the DNN model, where each

fold retains 20% of the data as the test set, while the remaining 80% is used for training.
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Two training approaches are utilized: to initialize the training from scratch (referred to as

the independent learning approach) and to initialize the training from the weights of the

pretrained 3DMolMS model (referred to as the transfer learning approach), as illustrated in

Figure 2.

Because accuracy could be a biased metric (accuracy paradox) 27 on the extremely imbal-

anced test dataset, we used three metrics to evaluate the performance of the model predic-

tions: F-measure (F1), Cohen’s Kappa (Kappa), and the area under the ROC curve (AUC).

As suggested by Piras et al., {Class 2, Class 3} hold the essential information toward mod-

eling the chromatographic enantioseparation. Thus, besides the results of the four-classes

classification, we also report the results for the binary classification on two super-classes:

{Class 0, Class 1} and {Class 2, Class 3}, respectively.

3DMolCSP is implemented in the PyTorch framework28. The model’s training process is

conducted on a single NVIDIA GeForce RTX 2080 Ti GPU, which takes approximately 175

minutes to train the models for all 18 CSP data sets. The source codes for data preprocessing,

training, and validation are made publicly available at https://github.com/JosieHong/

3DMolCSP.

Results and Discussion

Prediction of CSP Enantioselectivity

We first compared the performances of two types of 3DMolCSP models on four-class CSP

enantioselectivity prediction. Specifically, two 3DMolCSP models were built for each CSP

using the data sets from ChirBase: one was trained by independent learning (3DMolCSP-

SC) and the other was trained by transfer learning (3DMolCSP-TL). We evaluated the

models based on five-fold cross-validations: 80% randomly selected compounds were used

as the training data while the remaining 20% data were used as the testing data. For each

model, we performed five independent cross-validation experiments and reported the average
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Table 3: The performance of 3DMolCSP for enantioselectivity prediction. Two types of mod-
els are compared, which are trained by independent learning (3DMolCSP-SC) and transfer
learning (3DMolCSP-TL), respectively. Specifically, two types of models were built for each
CSP and their performances were obtained based on five-fold cross-validations. The per-
formance metrics were then computed on the prediction results of the four desirable classes
and averaged on validation samples. The improved performances by the transfer learning
are shown in ∆ F1 and ∆ Kappa.

CSP 3DMolCSP-SC 3DMolCSP-TL
F1 Kappa F1 ∆ F1 Kappa ∆ Kappa

Chirobiotic R 0.86 0.79 0.90 +0.04 0.85 +0.05
Cyclobond I 0.88 0.67 0.89 +0.01 0.65 −0.02
Cyclobond I RN 0.87 0.79 0.89 +0.02 0.82 +0.03
Chiralpak IB 0.87 0.78 0.88 +0.01 0.78 ±0.00
Chiralcel OD (Lux Cellulose-1) 0.90 0.81 0.87 −0.03 0.73 −0.08
Ultron-ES-OVMa 0.78 0.64 0.87 +0.08 0.74 +0.11
Chirobiotic V 0.84 0.77 0.87 +0.03 0.81 +0.04
Chiralpak AS 0.85 0.71 0.87 +0.02 0.70 −0.01
Chiralcel OJ (Lux Cellulose-3) 0.84 0.71 0.87 +0.02 0.73 +0.01
Chirobiotic TAG 0.84 0.78 0.86 +0.02 0.80 +0.03
Pirkle (R or S)-DNBPG 0.81 0.72 0.86 +0.05 0.79 +0.07
Chirobiotic T 0.83 0.75 0.86 +0.03 0.79 +0.04
Chiral-AGP 0.87 0.77 0.85 −0.02 0.72 −0.05
Chiralpak AD 0.88 0.75 0.85 −0.03 0.67 −0.08
Chiralcel OB 0.87 0.75 0.81 −0.06 0.62 −0.12
Chiralpak IC (Sepapak 5) 0.80 0.66 0.80 ±0.00 0.62 −0.05
Whelk-O 0.78 0.64 0.79 +0.01 0.64 −0.01
Chiralpak IA 0.80 0.68 0.77 −0.03 0.62 −0.06
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Table 4: Comparison of 3DMolCSP-TL and the state-of-the-art ML model for enantiose-
lectivity prediction. The Random Forest (RF) classifier results are extracted from Piras
et al.. All of the results are based on five-fold cross-validation, except for the results of the
RF classifier on Ultron-ES-OVM where ten-fold cross-validation is used. For comparison
purposes, the performance metrics were computed on the binary classification of two super-
classes ({Class 0, Class 1} and {Class 2, Class 3}, respectively) and averaged on validation
folds. The standard deviations among validation folds are shown in parentheses.

RF Classifier 3DMolCSP-TL
CSP F1 Kappa AUC F1 Kappa AUC
Chirobiotic R 0.80 0.61 0.90 0.95 (±0.02) 0.88 (±0.04) 0.97 (±0.01)
Chirobiotic T 0.85 0.74 0.94 0.93 (±0.01) 0.81 (±0.04) 0.93 (±0.03)
Chirobiotic TAG 0.77 0.52 0.83 0.93 (±0.03) 0.83 (±0.07) 0.96 (±0.01)
Ultron-ES-OVM 0.58 0.34 0.63 0.92 (±0.04) 0.74 (±0.14) 0.92 (±0.06)
Cyclobond I RN 0.82 0.62 0.88 0.92 (±0.04) 0.84 (±0.08) 0.96 (±0.01)
Chiralpak IB 0.72 0.46 0.81 0.92 (±0.01) 0.82 (±0.04) 0.95 (±0.02)
Cyclobond I 0.69 0.38 0.75 0.92 (±0.01) 0.60 (±0.08) 0.75 (±0.03)
Chiral-AGP 0.76 0.42 0.80 0.92 (±0.03) 0.73 (±0.10) 0.88 (±0.02)
Chirobiotic V 0.78 0.51 0.85 0.92 (±0.04) 0.82 (±0.09) 0.98 (±0.02)
Chiralcel OD (Lux Cellulose-1) 0.74 0.48 0.81 0.91 (±0.01) 0.74 (±0.05) 0.85 (±0.04)
Chiralpak AS 0.72 0.43 0.80 0.91 (±0.01) 0.73 (±0.03) 0.84 (±0.02)
Chiralcel OJ (Lux Cellulose-3) 0.73 0.47 0.81 0.91 (±0.02) 0.75 (±0.04) 0.86 (±0.04)
Pirkle (R or S)-DNBPG 0.82 0.68 0.90 0.91 (±0.01) 0.81 (±0.03) 0.95 (±0.01)
Chiralpak AD 0.75 0.50 0.82 0.90 (±0.02) 0.71 (±0.05) 0.84 (±0.03)
Whelk-O 0.82 0.63 0.90 0.89 (±0.03) 0.70 (±0.08) 0.84 (±0.06)
Chiralcel OB 0.74 0.47 0.80 0.87 (±0.02) 0.68 (±0.06) 0.85 (±0.02)
Chiralpak IC (Sepapak 5) 0.74 0.48 0.83 0.86 (±0.01) 0.67 (±0.04) 0.84 (±0.03)
Chiralpak IA 0.78 0.56 0.86 0.85 (±0.02) 0.67 (±0.04) 0.86 (±0.02)

performance in Table 3. It is worth noting that we did not show the results of AUC because

AUC is not suitable for evaluating the four-class prediction given that the four classes are not

independent (e.g., it is more valuable to predict a compound from Class 0 to be from Class

1 than to predict it to be from Class 3). As shown in Table 3, transfer learning improved

the performances of 3DMolCSP on 12 out of 18 CSPs, indicating the pretrained model on

spectra prediction can indeed enhance the prediction of enantioselectivity on CSPs.

Next, we compared the 3DMolCSP-TL with the state-of-the-art Random Forest (RF)-

based ML model for enantioselectivity prediction as reported previously 13. To ensure a fair

comparison, we evaluated the performance of binary classification in order to be consistent

with the approach employed in the previous model 13. As shown in Table 4, 3DMolCSP-TL

outperforms the RF Classifier in terms of F1 and Kappa on all 18 CSPs within the test set.
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Figure 3: Prediction of potentially optimal CSP. The accuracy was evaluated on the com-
pounds resolved by (i.e., falling into Class 2 or Class 3) more than one CSP in ChirBase.
(a) The number of compounds whose best enantioseparation is achieved by each CSP. (b)
The top-k (k=1, 2, and 3, respectively) accuracy for the potentially optimal CSP prediction.
The colored lines represent the accuracy of compounds in each CSP, while the black solid
line and dashed line represent the average predicted accuracy and average random guess
accuracy across all compounds, respectively.

For AUC, 3DMolCSP-TL performs better than the RF Classifier on 16 CSPs except for the

CSP of Whelk-O and Chirobiotic T, on which 3DMolCSP-TL performs only slightly worse

than the RF Classifier on Whelk-O and performs equally as RF Classifier on Chirobiotic T.

Assistance in CSP Selections

Given a compound with multiple available CSPs, researchers are interested in two critical

tasks: (1) determining whether the compound can be enantioseparated (i.e., classified as

Class 2 or Class 3, as defined in Figure 1) by any available chiral column; and (2) identifying

the most effective CSP for enantioseparation. Our model could be extended to assist in these

two selections. It is worth noting that the definition of CSP enantioselectivity is based on

ideal experimental conditions, wherein the effects of the mobile phase are not considered.

Consequently, while our model can suggest potentially optimal CSPs, the final selection

of a suitable CSP and mobile phase must be made by researchers based on the specific

requirements of their experiments.
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Addressing the first task, compounds that can be enantioseparated (i.e., classified in

Class 2 or Class 3) by at least one CSP are termed resolvable compounds. Conversely,

compounds that cannot be separated by any CSP are labeled as unresolvable compounds.

Our model enhances its functionality by predicting whether compounds are resolvable or

unresolvable across all available columns, achieving accuracies of 0.95 and 0.72 for resolvable

and unresolvable compounds, respectively. The detailed results are presented in Section S2.

Moving to the second task, when a compound has multiple CSP options for enantiosepa-

ration, determining the most effective CSP becomes critical. This selection should be based

on the CSPs’ enantioselectivity, prioritizing the chiral column that achieves enantiosepara-

tion and demonstrates the highest enantioselectivity for the specific compound. To aid in

this decision-making process, 3DMolCSP provides valuable insights by suggesting the po-

tentially optimal CSP. This is achieved through the analysis of predicted probabilities from

Class 2 and Class 3 validations across all available CSPs.

To evaluate our approach in selecting the potentially optimal CSP, we conducted an

experiment. The results, depicted in Figure 3b, showcase the top-k (for k=1, 2, and 3,

respectively) accuracy of 3DMolCSP in potentially optimal chiral column selection. The top-

k accuracy is calculated as the proportion of compounds for which the potentially optimal

CSP is predicted within the top-k selected CSPs by 3DMolCSP, as defined by the following

equation:

top-k accuracy =
|top-k selected CSPs ∩ potentially optimal CSPs|

|potentially optimal CSPs|
(2)

Here, ‘top-k selected CSPs’ refers to the CSPs predicted to achieve enantioseparation and

ranked within the top k positions for enantioselectivity.

For all compounds, the top-1, top-2 and top-3 accuracies are 0.61, 0.90, and 0.96, re-

spectively. As shown in Figure 3b, 3DMolCSP achieved satisfactory accuracies (e.g., top-1

accuracy > 0.54) on the compounds that are optimally enantioseparable by most CSPs.
4Note that the top-1 accuracy of the random guess of the potentially optimal CSP would be 0.41, given
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However, for two CSPs, namely Chirobiotic R and Chirobiotic TAG, the top-1 accuracy falls

below 0.5. These relatively low accuracies can be attributed to the smaller size of the data

set available for these particular CSPs as corroborated by Table 1 and Figure 3a. On the

other hand, for the CSP sets containing over 2000 compounds, the accuracies of potentially

optimal CSP predicted by 3DMolCSP are significantly better: the minimum top-1 accuracy

is 0.56.

Evaluation on An External Dataset CMRT

Finally, we evaluated the performance of 3DMolCSP using an external dataset namely

CMRT5 which contains the chiral HPLC retention times of 11,720 pairs of enantiomers.

Because only the retention times (tR) of enantiomers are collected in CMRT, we computed

the enantioselectivity values using a void time tM = 2.9 min estimated according to standard

experimental parameters (a 250 × 4.6 mm chiral HPLC column at 1 mL/min). Out of the

compounds that were separated using six different CSPs in the CMRT data set, a total of 87

compounds were also present in our dataset. We compared the α values of these compounds

in these two datasets. As shown in Figure S2, the r2 between the α values of the same

compounds is 0.846. After partitioning these compounds into two super-classes based on

their α values (see Methodology Section), we observed that 96.6% compounds fall into the

same super-class, indicating the external dataset provides a reliable basis for evaluating the

performance of 3DMolCSP-TL in a consistent manner. Therefore, we used enantioselectivity

computed on the six CSPs in the CMRT dataset to evaluate 3DMolCSP-TL trained on the

data in ChirBase.

In order to assess the performance of 3DMolCSP-TL on the CMRT dataset, we trained

the model using the complete ChirBase data set and subsequently evaluated its performance

on the CMRT data, excluding compounds that are shared between these two datasets. As

shown in Figure 4, the performance of 3DMolCSP on the CMRT data is relatively lower

the number of CSPs for each compound.
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Figure 4: Evaluation of 3DMolCSP-TL (trained using ChirBase data) on the external testing
dataset, CMRT. Here, the performances of 3DMolCSP-TL on all compounds in CMRT
excluding those also present in ChirBase (blue) are shown in comparison with the cross-
validation performances evaluated on ChirBase data (red) on six CSPs. The CSP names are
shortened, OD: Chiralcel OD (Lux Cellulose-1), AS: Chiralpak AS, AD: Chiralpak AD, IA:
Chiralpak IA, IC: Chiralpak IC (Lux i-Cellulose-5), and OJ: Chiralcel OJ (Lux Cellulose-3).

Table 5: Comparison of qGeoGNN and 3DMolCSP-TL on the testing set (10%) of CMRT.
3DMolCSP-TL0.5 denotes 3DMolCSP-TL using the threshold as 0.5, and 3DMolCSP-TL0.9

denotes 3DMolCSP-TL using the threshold as 0.9. qGeoGNN predicts α values, which can
not be evaluated by AUC.

One enantiomer
used for training

No enantiomer
used for training All

No. of
compounds 248 16 264

qGeo-
GNN

3DMol
CSP-
TL0.5

3DMol
CSP-
TL0.9

qGeo-
GNN

3DMol
CSP-
TL0.5

3DMol
CSP-
TL0.9

qGeo-
GNN

3DMol
CSP-
TL0.5

3DMol
CSP-
TL0.9

F1 0.62 0.67 0.68 0.75 0.75 0.88 0.63 0.68 0.69
KAPPA 0.20 0.19 0.25 0.50 0.00 0.71 0.22 0.19 0.26
AUC - 0.70 - 0.83 - 0.70
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than on the ChirBase data (throughout cross-validation), while the performance metrics

(F1, KAPPA, and AUC scores) are still satisfactory, especially on the CSPs with more

training data (such as Chiralcel OD, Chiralpak AD, and Chiralcel OJ).

Next, we compared 3DMolCSP-TL and qGeoGNN7 on a randomly chosen 10% test-

ing data from the CMRT dataset in accordance with the qGeoGNN paper’s methodology 5.

Because qGeoGNN is designed to predict vtR, where v is the flow rate, we converted its

predictions into corresponding α values using the experimental value of v and the estimated

tM . When computing alpha values during testing, it is imperative to utilize both configu-

rations. A potential information leakage arises from a situation in which the test set from

CMRT includes only one configuration, while the other configuration is employed in the

training set to determine the predicted alpha values. This occurrence may lead to leak-

age as a portion of the training set ends up being used for testing purposes. To account

for potential information leakage, we partitioned the testing set into two distinct subsets:

the first subset consisted of 248 compounds, wherein one enantiomer was utilized for train-

ing and the other for testing, while the second subset comprised 16 compounds including

both enantiomers within the testing set. Given the notable imbalance between positive and

negative samples, we recommend adopting a higher threshold (e.g., 0.9) instead of 0.5 for

categorizing predicted probability. In Table 5, we present performance results for both 0.5

and 0.9 thresholds, with the latter demonstrating markedly superior performance. For the

first subset, 3DMolCSP-TL exhibits an acceptable performance that is slightly better than

qGeoGNN. On the other hand, for the second subset where no information leakage exists,

3DMolCSP-TL outperforms qGeoGNN on almost all measures. These results demonstrated

the robustness and effectiveness of 3DMolCSP-TL in predicting the enantioselectivity of the

compounds not similar to those in the training set.
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Figure 5: AUC-ROC curve of elution order prediction. The CSP names are shortened, AD:
Chiralpak AD, IA: Chiralpak IA, IC: Chiralpak IC (Lux i-Cellulose-5), and OD: Chiralcel
OD (Lux Cellulose-1).

Prediction of Enantiomers’ Elution Orders

To highlight the model’s proficiency in discerning chiral structures, we utilize 3DMolCSP

to predict the elution order of two enantiomers with the same chemical structure. Initially,

we extracted the elution orders of enantiomeric pairs from ChirBase and retained only those

pairs within high enantioselectivity (labeled as {Class 2, Class 3}). A total of 5094, 7173, 662,

and 513 enantiomeic pairs were collected in Chiralpak AD, Chiralcel OD (Lux Cellulose-1),

Chiralpak IA, and Chiralpak IC (Lux i-Cellulose-5), respectively. Subsequently, we randomly

divided this data into the training and testing sets within a 9:1 ratio, ensuring that any

specific enantiomer pair does not appear in both the training and testing sets.

As shown in Figure 5, 3DMolCSP effectively predicts the elution orders when provided

with ample training data (i.e. for Chiralpak AD and Chiralcel OD [Lux Cellulose-1]). The

performances on the columns with smaller training sets (for Chiralpak IA and Chiralpak

IC [Lux i-Cellulose-5]) are relatively lower. The successful prediction of the enantiomers’

elution order validates our model’s capability to distinguish the compounds within the same

chemical structure but different 3D configurations in practical scenarios. This character-

istic of 3DMolConv 2.0 opens avenues for predicting other configuration-sensitive chemical
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properties, such as the retention time of enantiomers, etc.

Conclusion

In this paper, we introduce 3DMolCSP, a novel approach for predicting the enantioselectivity

of compounds in chiral chromatography based on their 3D conformations. The enhanced

structure-based model is proved to be geometrically complete, thus enabling it to capture

chirality-sensitive insights from both configurations (R and S ) of compounds. In addition,

we show that employing transfer learning with a pretrained model for tandem mass spectra

prediction improves the prediction of enantioselectivity.

Based on the cross-validation on the data in ChirBase, our transfer learning-enabled

model, 3DMolCSP-TL, outperforms the previous machine learning model based on the Ran-

dom Forest (RF) Classifier. 3DMolCSP can also be applied to selecting the potentially

optimal CSP and predicting unresolvable compounds on 18 CSP columns with sufficient

training data. When tested on an external data set, CMRT, 3DMolCSP outperforms the

previous deep-learning model, known as qGeoGNN, on enantioselectivity prediction. Fur-

thermore, the experiments on predicting the configuration’s elution order on 4 exampled

CSPs proved the capability to distinguish configurations in enantiomers in practice. These

compelling outcomes demonstrate the capability of 3DMolCSP to serve as a valuable tool for

selecting suitable CSPs, thereby facilitating successful enantioseparation within the realm of

chiral chromatography.

Our experiments point out the limitations of current deep learning methods in predicting

elution order for CSPs with limited training data. Future work could involve incorporating

CSP structural information into these models, facilitating knowledge transfer from data-

rich to data-poor CSPs, thereby enhancing prediction accuracy for new-generation CSPs on

which only limited experimental data are available.
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• AnalChem_3DMolCSP_supp.pdf: proof of geometric completeness; the details of imple-

ment and training settings; classes portion of datasets (Figure S1); consistency between

estimated alpha values from CMRT and experimental alpha values from ChirBase (Fig-

ure S2).

• The codes for data preprocessing, model training, and validation are available at

GitHub: https://github.com/JosieHong/3DMolCSP. The data on one chiral sta-

tionary phase collected in ChirBase, recognized as Chirobiotic V, is shared as a demo

dataset with the source codes.

The entire ChirBase is commercially available at https://chirbase.u-3mrs.fr/. To

reproduce 3DMolCSP, potential users may retrain the model on the ChirBase data using the

train code shared at GitHub.
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